

An Algebraic Approach to Modelling

the Regulation of Gene Expression

A thesis submitted to the University of Manchester for the degree of

Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

HOSAM ABDEL ALEEM

SCHOOL OF CHEMICAL ENGINEERING AND ANALYTICAL

SCIENCE

2

Contents

List of Figures ... 5

Nomenclature ... 6

Abstract .. 7

Declaration ... 8

Copyright Statement ... 9

Acknowledgement .. 10

Chapter 1: Introduction ... 11

1.1 Background .. 11

1.2 Mathematical modelling of gene expression regulation 14

1.3 Aims and objectives of this work .. 16

1.4 Organisation of this report .. 17

1.5 Summary .. 21

Chapter 2: The Regulation of Gene Expression ... 22

2.1 Introduction .. 22

2.2 Some basic concepts from cell biology ... 22

2.2.1 The genetic code .. 25

2.3 What is gene expression? .. 27

2.4 Why does a cell need to regulate the expression of its genes? 29

2.4.1 Response to internal cell requirements ... 30

2.4.2 Response to external signals .. 30

2.5 How does a cell regulate the expression of its genes? 31

2.6 Control of transcription ... 31

2.7 The lac operon .. 33

2.7.1 Structure of the lac operon ... 34

2.7.2 Operation of the lac operon.. 35

2.8 Other levels of control .. 38

2.8.1 Post-transcriptional control .. 38

2.8.2 Control of translation ... 38

2.8.3 Post-translational control ... 38

2.8.4 Further levels of control ... 39

2.9 “Omics” .. 41

2.10 Summary and Conclusion .. 42

3

Chapter 3: Modelling the Regulation of Gene Expression 45

3.1 Introduction .. 45

3.2 Mathematical modelling concepts and caveats .. 46

3.3 Model building decisions .. 53

3.4 Mathematical modelling in biology – Systems Biology 58

3.5 Modelling the regulation of gene expression ... 60

3.6 Modelling the regulation of gene expression using differential equations .. 69

3.7 Modelling the regulation of gene expression using Boolean functions 75

3.7.1 Background on logic design ... 76

3.7.2 Applying Boolean algebra to modelling the regulation of gene

expression ... 80

3.8 Summary and Conclusion ... 84

Chapter 4: Algebraic Structures .. 86

4.1 Introduction .. 86

4.2 Some fundamental concepts in algebra.. 87

4.3 Groups .. 89

4.3.1 Modular arithmetic .. 93

4.4 Finite Fields .. 95

4.5 Vector Spaces ..101

4.5.1 Functional Analysis ..105

4.6 Summary and Conclusion ..107

Chapter 5: Algebraic Modelling of Combinatorial Gene Regulatory Functions ..110

5.1 Introduction ...110

5.2 The Reed-Muller Expansion ..111

5.3 Combinatorial gene regulation as a function on a Boolean algebra115

5.4 Biological interpretation of the Reed-Muller expansion117

5.4.1 One variable regulatory function ...119

5.4.2 Two variables regulatory function ...120

5.5 Application to the reverse engineering of gene regulatory functions123

5.6 Combinatorial gene regulation as a polynomial on a finite field126

5.6.1 The Boolean difference ...128

5.6.2 Fault detection in logic circuits ...130

5.7 Application to the detection of mutation...135

5.8 Summary and Conclusion ..142

4

Chapter 6: A Transform Approach to Modelling Combinatorial Gene Regulatory

Functions ...143

6.1 Introduction ...143

6.2 Combinatorial gene regulation as a linear transformation on a function space

 ..144

6.3 Application to synthetic biology ..152

6.3.1 The stoichiometric matrix as a linear transformation156

6.4 Extension to the multiple-valued case ..158

6.4.1 Functions on finite fields...159

6.5 Synthetic biology using multiple-valued logic ..165

6.6 A conceptual view of transforms ..167

6.7 Summary and Conclusion ..170

Chapter 7: Application to the Modelling of Phage Lambda173

7.1 Introduction ...173

7.2 What is phage lambda and what does it do? ...174

7.2.1 Molecular interactions regulating gene expression176

7.3 How does phage lambda control its course of action?179

7.3.1 Construction of the switching region ...179

7.3.2 Operation of the lambda switch ...182

7.4 A binary model for gene regulation in phage lambda188

7.5 A multiple-valued model for gene regulation in phage lambda192

7.6 Conceptual differences between the binary and multiple-valued models ..195

7.7 Discussion ...196

7.8 Summary and conclusion ...198

Chapter 8: Summary, Conclusion and Future Research200

Appendix I: Published Paper 1 ...210

Appendix II: Published Paper 2 ..217

References ...224

5

List of Figures

Figure 1-1: Mathematical modelling as an input/output process. 19

Figure 1-2: Correspondence between the contents of this work and the standard topics.

 ... 21

Figure 2-1: a - Prokaryotic cell, b - Eukaryotic cell. .. 24

Figure 2-2: A nucleotide ... 26

Figure 2-3: The double helix of the DNA molecule. .. 27

Figure 2-4: Gene expression – the central dogma of molecular biology. 28

Figure 2-5: Structure of the lac operon. ... 34

Figure 2-6: A more detailed view of the structure of the lac operon......................... 37

Figure 2-7: Omics and their relationships – feedback paths between the different

layers not shown. .. 41

Figure 3-1: Venn diagram depicting sets of states of a given system and their

relationships. ... 47

Figure 3-2: Modelling as a process of abstraction. ... 52

Figure 3-3: Modelling decisions. ... 58

Figure 3-4: Levels of abstraction based on network size (hierarchy). 65

Figure 3-5: Two possible motifs involving three genes a, b and c. 66

Figure 3-6: The Hill function for different values of n. .. 71

Figure 3-7: Classification of logic circuits. .. 77

Figure 3-8: A multiple-valued discrete variable represented as a number of binary

variables. .. 82

Figure 4-1: A square and the effect of its rotations by the angles 0
o
, 90

o
, 180

o
 and

270
o
 from its original orientation. .. 91

Figure 4-2: A vector space of the three elements Carbon, Hydrogen and Oxygen. ..104

Figure 5-1: Causes of mutations. ..136

Figure 5-2: Types of mutations and their effects on protein function.138

Figure 6-1: The Reed-Muller functions for three variables.150

Figure 7-1: The two possible fates of a bacterium infected by phage lambda.175

Figure 7-2: Part of the Lambda DNA molecule depicting the promoters and operator

for the Lambda genes cI and cro. ...179

Figure 7-3: Cooperativity between two “repressor” dimers and the recruitment of

RNA polymerase. Adopted from Ptashne & Gann (2004)185

6

Nomenclature

x, x1, x2, Independent (mathematical) variables that can represent different

biological variables such as the activation state of a protein or the

concentration of a chemical species; that can be considered as

inputs to a gene regulatory function. In most of this work, the

values of these variables are binary or discrete multiple-valued.

y, y1, y2, Dependent (mathematical) variables that can represent different

biological variables such as the expression level of a gene; that can

be considered as outputs to a gene regulatory function. In most of

this work, the values of these variables are binary or discrete

multiple-valued.

 In general, letters towards the end of the alphabet e.g. u, v, w, x, y

and z represent variables.

 a0, a1, a2, Coefficients in an equation. In most of this work, the values of

these coefficients are binary or discrete multiple-valued.

d0, d1, d2, Truth values of a logic function. In most of this work those values

are binary or discrete multiple-valued.

 In general, letters towards the beginning of the alphabet e.g. a b, c,

d,.. etc. represent variables.

 When there are several equations in several unknowns and several

coefficients, they are represented in matrix form as is common in

linear algebra. In such a case vectors and matrices are denoted by

bold face letters.

i, j, k, Indices, i.e. running values usually ranging from 0 or 1 to some

positive integer n or m.

 In general, letters towards the middle of the alphabet represent

indices.

GF(q) Galois Field (also known as finite field) of order q. It is an

algebraic structure defined on a set with a finite number of

elements q. q is either a prime or a positive power integer power of

a prime.

 Indicates addition on a finite field.

7

Abstract

An Algebraic Approach to Modelling the Regulation of Gene Expression

Hosam Abdel Aleem

The University of Manchester

Doctor of Philosophy

September 2010

Biotechnology is witnessing a remarkable growth evident both in the types of new

products and in the innovative new processes developed. More efficient process

design, optimisation and troubleshooting can be achieved through a better

understanding of the underlying biological processes inside the cell; a key one of

which is the regulation of gene expression. For engineers such understanding is

attained through mathematical modelling, and the most commonly used models of

gene expression regulation are those based on differential equations, as they give

quantitative results. However, those results are undermined by several difficulties

including the large number of parameters some of which, such as kinetic constants,

are difficult to determine. This prompted the development of qualitative models, most

notably Boolean models, based on the assumption that biological variables are binary

in nature, e.g. a gene can be on or off and a chemical species present or absent. There

are situations however, where different actions take place in the cell at different

threshold values of the biological variables, and hence the binary assumption no

longer holds.

The purpose of this study was to develop a method for modelling gene regulatory

functions where the variables can be thought of as taking more than two discrete

values.

A method was developed, where, with the appropriate assumptions the biological

variables can be regarded as elements of an algebraic structure known as a finite field,

in which case the regulatory function can be considered as a function on such a field.

The formulation was adopted from electronic engineering, and leads to a polynomial

known as the Reed-Muller expansion of the discrete function.

The model was first developed for the more familiar binary case. It was given three

different algebraic interpretations each enabling the study of a different biological

problem, albeit related to gene regulation.

The first interpretation is as a function on a Boolean algebra, but using the Exclusive

OR (XOR) operation instead of the OR operation. The discriminating superiority of

the XOR allows a more efficient determination of the gene regulatory function from

the data, a problem known as reverse engineering.

The second interpretation is as a polynomial on a finite field, where analogy with the

Taylor series expansion of a real valued function allowed the coefficients of the

expansion to be thought of as conveying sensitivity information. Furthermore a

method was devised to detect mutation in the cell by regarding the problem as

detecting a fault in a digital circuit.

The third interpretation is as a transform on a discrete function space, which was

demonstrated to be useful in synthetic biology design.

The method was then extended to the multiple-valued case and demonstrated with

modelling the gene regulation of a well known example system, the bacteriophage

lambda.

8

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning

9

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to use such Copyright,

including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University

has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables

(“Reproductions”), which may be described in this thesis, may not be owned

by the author and may be owned by third parties. Such Intellectual Property

and Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the

University IP Policy (see

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-

property.pdf), in any relevant Thesis restriction declarations deposited in the

University Library, The University Library’s regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in The

University’s policy on presentation of These

10

Acknowledgement

I would like to thank my supervisor Professor Ferda Mavituna for her guidance, support and

patience throughout this study. I am very grateful for the financial support provided by the

EPSRC and Scottish Power through a Dorothy Hodgkin Postgraduate Award, without which

this work would not have been possible. I am also grateful to the University of Manchester

for providing additional funding, in this respect I would like to thank both Ms. Sandra

Kershaw and Ms. Samina Latif for their valuable help with the financial matters.

I am deeply indebted to Dr. David H. Green of the School of Electrical Engineering at the

University of Manchester for useful discussions and for leaving me some valuable books and

papers on his retirement. I am also grateful to Mr. Peter Senior for acting as my examiner for

the first and second year reports, and for his valuable feedback.

I am grateful to Dr. Esther Ventura-Medina and the School of Chemical Engineering and

Analytical Science for giving me the opportunity to demonstrate and facilitate on the first

year undergraduate modules, an experience that I really enjoyed. I would also like to thank

Dr. Dee Ann Johnson, and the Graduate Development Scheme (GraDS) team headed by Dr.

Jim Boran, for giving me the opportunity to present at their workshops, and for the many

workshops and training sessions I have attended with them. I am also grateful to Research

Councils UK (RCUK) for the many training courses off campus that they have funded.

I am grateful to my friend and colleague Dr. Raul Monoz-Hernandez for inviting me to join

him on the RCUK business plan competition together with the rest of the InLife Technologies

team (Julio, Chakko and Gabby). This was an experience that I have greatly enjoyed and

benefited from; we were shortlisted in the competition. I would also like to thank my

colleagues and friends in room B9 in the Mill, and on the EBL sessions and in the School in

general for their friendship and companionship.

During the course of this work, I suffered a major life threatening health problem for which I

spent some time in hospital and later at home, this caused me great delay in completing this

work. It was also a cause of great distress and anxiety. As usual, Professor Mavituna offered

her unconditional support and understanding, for which I am truly grateful.

Last but most certainly not least I am grateful to my sister Dr. Eiman Aleem and my cousin

Mr. Osama Kotb, who both came from overseas leaving their work and other commitments

behind, to be with me during those difficult times.

11

Chapter 1: Introduction

1.1 Background

Modern Biotechnology can be viewed, from an engineering perspective, as the

utilisation of living organisms or parts thereof for industrial purposes. As such it is

the technological application of modern biological sciences such as molecular

biology and genetic engineering in addition to more traditional ones such as

biochemistry. Biotechnology has been witnessing a spectacular and steady growth

that has been coupled with the advancement in those sciences, in particular over the

past two decades. This growth is evident in the new markets in which biotechnology

based products and services are being deployed and in the increase of their share in

the markets in which they already exist. Several recent government and industry

associations’ reports reflect this fact (BioIndustry Association 2004; European

Biopharmaceutical Enterprises 2007; Institute for Manufacturing 2007; Zika et al.

2007). Furthermore, the increase in funding for research and development both in

industry and academia, and the increase in investment both private and public in

biotechnology is further evidence of this trend (BioIndustry Association 2004;

Lahteenmaki and Lawrence 2006). This is further supported by the increase in the

number of patents awarded in the related biosciences; several times a year the journal

Nature Biotechnology publishes patent applications in those sciences (Caulfield et al.

2006).

The industrial application of biotechnology can be classified into, products and

services. Products refer to the substances produced by the organism; those vary

widely in the complexity of the molecule from ethanol and simple organic acids to

complicated antibiotics, enzymes and biopharmaceuticals (Atkinson and Mavituna

1991; Ratledge and Kristiansen 2006; European Biopharmaceutical Enterprises 2007)

More recently, the use of renewable resources as feedstock for production processes

has witnessed increased interest, for sustainability and environmental impact

considerations (Herrera 2004; Werpy and Petersen 2004; Lorenz and Eck 2005; Patel

and Crank 2006; Zika et al. 2007). One particular such product that has been the

12

focus of much attention and debate is Biofuels due to the strategic role of energy and

food supply (Farley and Rouse 2000; Werpy and Petersen 2004; Patel and Crank

2006; Ragauskas et al. 2006). The organism itself can also be the product of the

biotechnological process, such as yeast which is utilised extensively in the baking and

brewing industries.

As for services, they entail the utilisation of biotechnological processes or products

either for the production of other products that may or may not be biological in nature,

or to perform a given task which may fall in any of several application domains.

Applications of industrial relevance include environmental ones such as waste

treatment (Atkinson and Mavituna 1991; BioIndustry Association 2004; Ratledge and

Kristiansen 2006; Institute for Manufacturing 2007), and also - of special importance

to engineers - biocatalysis and biotransformation (Straathof et al. 2002; Herrera 2004;

Kaul et al. 2004; Werpy and Petersen 2004; Lorenz and Eck 2005; Patel and Crank

2006), due to the high selectivity of enzymes which enables a more efficient and

economic production of chiral compounds. In addition to the modern applications of

biotechnology, there are of course the more traditional ones such as baking, brewing

and cheese making.

Oftentimes in order to produce the product or perform the task required, the

metabolism of the organism has to be manipulated for example to block a consuming

pathway or to enhance the flux of a desired product. This is achieved through

engineering the metabolic process of the cell, a field of biosciences appropriately

known as metabolic engineering. It involves manipulating the enzymatic and

regulatory processes in the cell using recombinant DNA technology in order to

achieve the desired changes in metabolism (Bailey 1991; Nielsen 2001). Enzymes are

products of the expression of genes, regulatory processes regulate this expression,

while recombinant DNA technology is used to insert or delete genes from the genome

of the organism (these terms and others that appear in the remainder of this chapter

will be explained later in this report). To be able to do this in a manner that achieves

the desired results there is a need for understanding how those genes operate, what

factors control them and how, and also what cellular processes they control.

13

Unlike the industrial applications outlined above, medical applications of modern

biological sciences have a different focus. They are not concerned with production

but with understanding, in particular the causes of disease and consequently how to

cure them, for example through identifying drug targets. Many diseases can be

attributed to problems in the regulation of gene expression; a prominent example is

cancer which involves loss of control of the cell division cycle. The number of genes

involved in cancer development is estimated to be more than eighty and the number is

continually increasing with new discoveries (Vogelstein and Kinzler 2004). Other

medical applications include tissue culture and the related area of stem cell research,

which are intimately related to the regulation of gene expression for cell

differentiation (Gilbert 2000). In addition there are many applications in the other life

sciences for example in agriculture related to crops and in breeding of farm animals

among many others.

One of the underlying commonalities among these different applications, whether

industrial, medical or other life sciences, is that they all rely on the understanding of

gene expression and how it is regulated. Such understanding is attained through

experiments in molecular biology and other related modern biological sciences. The

development of increasingly advanced analytical technologies coupled with

sophisticated information technology (IT) and software functionality, resulted in the

generation of massive amounts of data from these experiments. Indeed, the

proliferation in the amount and type of information related to gene expression and the

different functions in a living cell over the last decade has been overwhelming. These

have been collectively referred to as omics and include information related to the

genes (genome), the transcription of these genes (transcriptome), the proteins

resulting from their translation (proteome) and the metabolic activities mediated by

some of those proteins (metabolome) among other “omes”. These different layers of

functionality interact to yield the behaviour exhibited by the cell, whether normal or

anomalous.

A collection of data alone is not sufficient to reveal the underlying causes. In order to

be able to understand the complex interactions involved in the regulation of gene

expression and how the different functions are carried out, a systems approach is

needed that explicitly takes into account such interactions and integrates this data

14

(Wolkenhauer et al. 2003). Indeed, one of the major endeavours in a systems based

approach in general is to attempt to understand the interactions of the different

components of a system and the functionality that emerges from such interactions

(Doebelin 1980). The main tool utilised in investigating this problem is mathematical

modelling, which is the topic of this work, namely the mathematical modelling of

gene expression regulation, in particular using discrete mathematics.

1.2 Mathematical modelling of gene expression regulation

Mathematical modelling essentially matches a method to a problem; it invents neither.

For a given problem, there are several modelling methods each employing different

mathematical formalisms or variations of a given one. Thus for a new method to be

accepted it has to provide some benefits on existing ones such as computational

efficiency, different insight into and interpretation of the problem or the capability to

investigate new functionality that is not easily achievable under the existing methods.

In this work we introduce a method that provides the last two benefits. In particular

the method we use is based on abstract algebraic concepts as will be detailed in later

chapters, and the problem we attack is that of the regulation of gene expression.

The expression of a gene is normally controlled by several factors, some may be

internal to the cell such as the growth stage the cell is at or the division phase of the

cell cycle, where in either case different functions are required by the cell. Other

factors may be external to the cell, for example the available nutrients in the

surrounding environment or signals from other cells. Hence from a mathematical

point of view we can represent gene expression as a function of the different factors

that affect it.

As with any modelling task, there are several mathematical approaches to formulate

this functional relationship that depend on what we want to study, the data available,

the level of detail desired, and indeed the purpose of the modelling exercise to begin

with. By and large the most common modelling approach uses differential equations

where the different variables take continuous values; however, it is not the only

approach.

15

From a systems point of view, there is more than one way to classify a system. One

classification is into continuous and discrete where the terms refer to the variables

involved, whether they take continuous or discrete values. In a more abstract sense

those variables describe the states of the system, and would correspondingly belong

to either a continuous or a discrete set. Other classification include stochastic versus

deterministic, static versus dynamic among others.

Differential equation models are easy to understand conceptually as they represent

rates of change of some variables with respect to time and how they relate to other

variables, resulting in a system of simultaneous differential equations. Because of

their dependence on the time element, they can use numerical data representing a time

course, available from experiments and can also generate similar data. Thus in

essence the main advantage of differential equation models is that they can produce

quantitative data. However, there are major problems with those models, for example

most tend to use linear time invariant representation of systems producing linear

constant coefficient ordinary differential equations. Those ignore nonlinearities of

functions, time dependence of parameters and spatial distribution of variables, when

such effects are taken into account they lead to exceedingly complicated equations

potentially non-linear time-varying partial differential equation that are difficult to

solve even for simple special cases. Furthermore, in formulating the model on a

molecular level, often choices have to be made concerning which molecules and

which molecular mechanisms to include in the model, for example delays due to

transport phenomena are often ignored. Differential equations are sometimes based

on kinetic models of reactions and as is well known kinetic parameters and also

affinity constants are difficult to measure, hence in many cases they are estimated

from the data or their values just assumed. Perhaps more importantly is that in some

cases the assumptions on which the differential equation paradigm is based might not

be valid to begin with. This is the case when there is a small number of molecules

present in the cell, in which case the assumption of a continuous change in their

concentration might not be valid (Vilar et al. 2003). Hence there is a need for other

types of models that do not involve the complexities and the uncertainties outlined

above, but need only capture the qualitative behaviour of a system. Clearly this will

lose the quantitative power of differential equation models but gain simplicity in

return.

16

One common qualitative approach is that based on the Boolean modelling formalism,

which assumes that all variables are binary in nature, i.e. they can take only one of

two values. Thus a gene can be either on or off instead of having different levels of

expression, a protein can either be activated or de-activated instead of having

different states of activation, similarly an effector molecule can be either present or

absent rather than having different concentration values. Whilst this is an extreme

case of the continuous variation, limiting it to the two extremes of its range of values,

it does have conceptual, experimental and even mathematical justifications. It should

be noted that the Boolean approach is used in logic design of electronic circuits; we

will thus make use of the wealth of knowledge and techniques in this area and apply

it to the modelling of gene expression regulation.

One of the main drawbacks of the Boolean approach however, is that it restricts the

number of values of a variable to two only, a situation that is not always realistic in

the context of the regulation of gene expression. Hence in this work we will present a

method that is easily extendable to the multiple-valued (yet discrete) case, but more

importantly provides additional insight into the regulation problem and useful

functionality that is not easily attainable with the usual Boolean approach.

1.3 Aims and objectives of this work

To recap the discussion above, we outline the following:

 The goal of this work is to produce a method for modelling gene regulatory

functions using a discrete multiple-valued mathematical representation.

 The motivation behind this work is the desire to optimise biotechnological

processes through attaining a better understanding of the regulation of gene

expression underlying them.

 The specific objectives that contribute towards achieving this goal are to

o Introduce a method for the qualitative mathematical modelling of

binary gene regulatory functions.

o Investigate the new biological perspective of the mathematical

formulation provided by this method and the potential new biological

problems that can be studied using it.

17

o Extend the method to the multiple-valued case.

o Apply the method to an existing problem to demonstrate its utility.

 The philosophical approach underlying this work is to use abstraction in order

to separate the details of a problem from its core concepts, thus revealing the

commonality between it and similar problems in other application domains;

hence allowing the use of existing methods from such domains.

 The pedagogical approach (so to speak) is two-fold; to start with concepts the

reader is already familiar with from which to abstract to the new concepts, and

to start with simple special cases from which to generalise to the more general

case.

 The outcome of this work is a method and not a model.

1.4 Organisation of this report

Writing a report that spans more than one discipline is not an easy task, in particular

choosing the appropriate level of detail. Inevitably some readers will find the

treatment too detailed while others will find it lacking in detail; striking a balance

between the two is always a challenge for someone writing for readers from different

backgrounds. Indeed in the preface of their introductory book on gene expression

Ptashne and Gann (2002) describe this dilemma by stating “We face the strain of

deciding where details illuminate or obscure the main points”. This work is no

exception, as it spans both biology and mathematics albeit from an engineering

perspective. Since this work is presented to an engineering school the reader is more

likely to be familiar with mathematics than with biology. It was decided to try to give

as much background in biology as required and at an elementary level, unfortunately

risking oversimplifying or stating the obvious in some instances. On the other hand it

was also decided to avoid fine details that would not help in the development of the

work, effectively “obscuring” rather than “illuminating” the argument. With regard to

mathematics, some of it will be familiar to all engineers such as differential equations

and those will be treated rather concisely. Other mathematical tools might not be

familiar to some engineers and those will be introduced in more detail, but only as

necessary to elucidate the concepts and not more. This work is rather mathematical in

nature and hence abstract. It can be considered to fall in the realm of theoretical

18

biology, which is essentially the theoretical study of biology often from a

mathematical perspective, in some sense similar to theoretical physics (Westerhoff

2007). Research in biology is normally conducted, and knowledge generated using

observations and experiments. Theoretical biology on the other hand uses logic and

reasoning, both tools of mathematics, and indeed mathematics itself, to produce

models and theories that can interpret or predict observations or generate hypotheses

that can be tested experimentally.

The purpose of this study is to develop a method for the mathematical modelling of

the regulation of gene expression based on discrete mathematics, in particular

adopting techniques and ideas from logic design of electronic circuits. Towards this

end we chart the following course.

In this chapter, chapter one, we have started by providing the motivation for this work.

As engineers our first motivation was applied, i.e. the industrial application of

biotechnology, and we have also touched on other application domains mainly the

medical one. This has led us to the conclusion that all the applications irrespective of

their nature require an understanding of the regulation of gene expression. Hence the

applied has led us to the basic science, which we indicated generates large amounts of

data. This then led us to the convenience or even the necessity of utilising

mathematics in order to understand the interactions between the different processes

generating the data. After briefly discussing differential equation models, the most

common modelling approach, and outlining its benefits and its shortcomings, we

proposed discrete models in particular an approach similar to that used in logic design.

Hence the logical progression of the argument thus far is as follows: Maximising

applied benefit requires understanding the basic science which requires the use of

mathematical models and among those discrete models have potential benefits that

have not been adequately explored.

Chapter two is about what we want to model which is the regulation of gene

expression. We first introduce some fundamental concepts from molecular biology

that we then use as a foundation to build upon the main topic namely gene expression

and how it is regulated. In chapter two we will explain many of the terms encountered

in section 1.1 above.

19

In chapter three we address the modelling of gene expression regulation. In the

context of this work, mathematical modelling can be considered as the research

method, i.e. the tool modellers use to understand gene expression regulation (the

ultimate goal). Hence it is important to understand some of the implicit assumptions

associated with mathematical modelling in order to be able to assess the validity of a

model. In particular we will discuss some notions related to modelling, such as its

purpose, tools and limitations and some underlying epistemological issues. To use

engineering analogy, modelling is essentially a process whose inputs are the

observations and the knowledge of the underlying system being modelled, and whose

output is the model (figure 1-1). From such a perspective the model produced will not

only depend on the data and knowledge available about the system but will also

determined by the limitations of the mathematical machinery used, in a similar way

as the output of an industrial process is limited by its capability.

Figure 1-1: Mathematical modelling as an input/output process.

After this introduction we survey some of the common mathematical methods used in

modelling the regulation of gene expression. Those are mainly based on differential

equations, but we will also discuss Boolean models found in the literature and their

limitations, which will lead us to suggest our own method based on concepts from

abstract algebra. Chapter three is an elaboration on section 3.2 above.

In chapter four we will thus introduce some fundamental concepts from algebra

which will be used in developing our method. Those are abstractions and

generalisations of some of the more familiar concepts. There are two main algebraic

notions that we will want to take forward from that chapter, namely finite fields and

linear vector spaces.

Mathematical

Modelling

Observations

Existing

Knowledge

Model

20

Chapters five and six constitute the main contribution of this work, namely

representing discrete gene regulatory functions on finite fields and function spaces,

thus they build on the material in chapter four. In chapter five we will address the

binary case where we will represent it first as a function on the usual Boolean algebra

but with a different interpretation, and then as a polynomial on a finite field. We will

suggest biological problems that can be studied by those techniques, namely reverse

engineering of gene regulatory functions, and mutation detection. In chapter six we

will represent the binary case as a transform on a function space, then generalise it to

the multiple-valued case. In both we will suggest how such a method can be used to

design biological systems in what is currently known as synthetic biology.

In chapter seven we apply the method developed in chapter five and six to a

biological example, namely the phage lambda in the bacterium Escherichia coli,

which is used as a model system for studying gene expression regulation. It is

important to remember that in this work we develop a method rather than produce a

model. Hence the example systems are used for demonstrating the method rather than

for their own right. Simple well studied example cases are used in order not to mask

the method by the complexity of the system it is applied to.

In the final chapter we will summarise the whole development, point out to the

limitations of the method and to avenues of research that it opens up both within the

context of this work and in the wider context.

Each chapter will start with a roadmap of what is going to be covered in it, and will

end with a short summary and when appropriate conclusion that highlights its main

points and links it to the chapter that follows it in what is hoped to be a logical

succession of ideas forming a linked chain.

It is acknowledged that this work might not fit in the standard pattern of presentation

whereby it would be organised in standard chapter titles such as “introduction,

literature review, method, results, discussion”. However, all those elements are

covered here albeit in a different guise. Figure 1-2 depicts a mapping between the

chapters of this work and the standard topics.

21

Figure 1-2: Correspondence between the contents of this work and the standard topics.

Vertical arrows do not necessarily indicate dependence.

1.5 Summary

This chapter provided motivation for the choice of problem and for the choice of

method for solving this problem. In addition the problem itself was defined namely

modelling the regulation of gene expression using discrete mathematics. The aims

and objectives were outlined and the organisation of the report was presented.

Ch1: Introduction

Ch 2: Regulation of Gene

Expression

Ch3: Modelling the Reg.
of Gene Expression

Ch4: Algebraic

Structures

Ch5: Algebraic Model

Ch6: A Transform

Approach

Ch7: Application to
Phage Lambda

Ch8: Conclusion

Motivation, Aims,
Organisation

Background: Biology

Critique of Methodology,
Literature Survey

Background: Algebra

Development of

Method

Results

Discussion

Proof of Concept,
Discussion

Summary, Critique of

Method, Future Work

22

Chapter 2: The Regulation of Gene Expression

2.1 Introduction

This report is about mathematical modelling of the regulation of gene expression. As

is common in engineering modelling tasks, one needs to acquire some understanding

of the main components of a system and how they interact in order to be able to

capture them in a model. The purpose of this chapter is thus to present the main

concepts and principles underlying the regulation of gene expression. We do so by

addressing three main questions namely, what is gene expression? Why does the cell

need to regulate it? And how does it do that? In order to answer these questions we

first need to briefly introduce some basic concepts from cell biology. This will also

help us to set the ground for the rest of this work and outline the terminology used.

The material will be presented in a way that we hope is amenable to engineers,

through making analogies to concepts from chemical engineering, in particular

process control.

2.2 Some basic concepts from cell biology

A cell is the building block or smallest unit of any living organism. Such organisms

may consist of one or more cells, up to many millions (Alberts et al. 2004). Survival

is arguably the ultimate goal of all living beings, thus a cell must have the ability to

perform the necessary functions required for its own survival, that of the organism it

is part of (if any), and of its species as a whole. A brief and structured look at the

cellular functions associated with each of these levels of survival is presented below.

Functions that intrinsically relate to the cell’s own survival include synthesising

(and/or utilising) the necessary molecules and producing the energy required for this

and other biological activities. Such activities take place inside the cell and hence

have to be coordinated both structurally (in terms of space) and functionally (in terms

of time, i.e. issues of precedence and concurrency). To achieve this, a cell has

different compartments (known as organelles) in which different functions take place;

23

of special importance among those compartments is the cell nucleus which houses its

genetic code (DNA). Such cells are termed Eukaryotes and are mainly found in multi-

cellular organisms. On the other hand, some of the organisms made up of a single cell

do not have this intricate spatial segregation; in particular they lack the cell nucleus

and are termed Prokaryotes (figure 2-1). In such a case the DNA is present along with

other molecules in the cell body without being segregated. Indeed, the fact that

Prokaryotes are made-up of a single cell means that this cell has to perform all the

functions that would otherwise be distributed over many cells. This requires higher

efficiency and agility on part of the organism. While all bacteria are Prokaryotes, not

all single cell organisms are, for example yeast which consists of a single cell is a

Eukaryote.

Although we will occasionally mention Eukaryotes, our focus here will be on

Prokaryotes due to several reasons. Firstly, the regulation of gene expression is much

better studied and understood in bacteria (Prokaryotes) than in Eukaryotes and hence

Prokaryotes will provide a more reliable test bed for our model. Secondly, due to the

industrial relevance of bacteria, and finally, for pragmatic reasons and that is the

simpler nature of Prokaryotes. Since the purpose of this work is to develop a

mathematical modelling method rather than produce a particular model, using a

simple and familiar system as a test case to model will avoid masking the merits of

the method in the details of what is being modelled.

Functions of the cell that relate to the survival of the organism of which it is part,

include the ability to communicate with other cells within the organism. This

communication causes the cells - among other things - to aggregate into tissue that

forms organs which is particularly important in the developmental stages of the

organism (Gilbert 2000). This communication is also important when the organism is

under threat from external agents such as pathogens.

To clarify the matter of development, which is essentially the formation of the body

of the organism, consider a building say an apartment block. The structural units,

those that carry the load of the building are the columns and beams and are made of

concrete or steel. Walls are made of bricks or panels, windows from glass, floors

from wood or tiles and so forth. The point is that the different functional parts of the

24

building are made from units that are suitable for that function. The situation is

similar for a multi-cellular organism, for example in the human body different organs

are made from cells that are suitable for the function of that organ, e.g. the liver,

muscle or blood vessel each has a different type of cell. Given that the whole human

body starts from one cell which is the fertilised egg, how do the different cell types

emerge? This process is known as differentiation and involves the specialisation of

the cells to different functions. Differentiation is also related to and is part of another

developmental process known as morphogenesis which can be viewed as the

emergence of the structure and form of the organism (Gilbert 2000).

Figure 2-1: a - Prokaryotic cell, b - Eukaryotic cell.

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.)

25

Morphogenesis is one of the major applications of the regulation of gene expression.

It is worth noting that a stem cell, which is frequently discussed in the media, is a cell

that can differentiate into any cell type and hence is of great importance in what is

known as regenerative medicine.

Finally, for the functions of a cell that relate to the survival of the species as a whole,

the most important is the ability to reproduce. For a single cellular organism, this

essentially means the ability of the cell to replicate itself, i.e. to divide. The new cells

must have all the molecules needed or that may be needed for their correct

functioning and survival. Achieving this is of course impractical as some of those

molecules may never be used during the lifetime of the cell, such as in the case of the

response to certain environmental conditions like stress or starvation, or an attack by

another organism that may never occur. Thus rather than replicate every molecule

that may potentially be needed, it is more practical to replicate the ability to

synthesise such molecules, i.e. a form of blueprint. This blueprint is the

Deoxyribonucleic Acid or DNA molecule of the cell, and it contains all the

information necessary for survival of the organism, in a coded form often referred to

as its genetic code (Alberts et al. 2004).

2.2.1 The genetic code

The DNA molecule is a polymer that consists of a string of units known as

nucleotides. A nucleotide is formed of three main chemical components namely, a

pentose sugar known as Deoxyribose sugar, a Phosphate group and an organic base

(figure 2-2).

There are four types of bases known as Adenine, Guanine, Thymine and Cytosine,

denoted by A, G, T and C respectively, leading to four corresponding types of

nucleotides. The DNA molecule has a particular double stranded structure famously

known as the “double helix” (figure 2-3). Within the limits imposed by this structure,

only certain combinations of bases can interact with high affinity, these are A-T and

G-C and are thus referred to as base pairs (figure 2-3) (Nelson and Cox 2000).

26

Figure 2-2: A nucleotide

 (Source: en.wikipedia.org, under the Creative Common Attribution Share License.)

One of the fundamental molecules that the DNA codes for is a protein which is of

utmost importance for cellular activities. Proteins have both structural and functional

roles in the cell. The former involves forming part of some of the structural units in

the cell such as the cell wall. The functional role of proteins is varied and includes

acting as receptors on the cell membrane to detect external signals and relay them to

the appropriate location in the cell, and acting as channels that allow molecules in and

out of the cell. Proteins also have a crucial regulatory role within the cell as explained

below.

The backbone of a protein is a chain of amino acids known as a polypeptide, and it

ranges in length from a few hundred amino acids for small proteins to a few

thousands for large ones (Alberts et al. 2004). The chain folds in different

conformations depending on the amino acids present and other factors such as any

other molecules attached to the chain. There are twenty different types of amino acids

in the cell. Given that there are only four different types of nucleotides, the minimum

number of nucleotides needed to code for an amino acid is three. Indeed three

nucleotides taken together are known as a codon and they code for one amino acid.

The number three comes from the fact that three nucleotides, each being one of four

possible types gives four to the power three, i.e. 4
3
 = 64 (sixty four) different code

words. This means that some of the twenty amino acids will have more than one code,

27

known as synonyms, providing robustness against errors in a sense similar to the

codes used in communication engineering (May et al. 2004). Also some of the

additional code words, called stop codons, are used to indicate the end of

transcription.

Figure 2-3: The double helix of the DNA molecule.

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.)

The sequence of nucleotides on a DNA molecule that codes for one protein is known

as a gene. More precisely, genes that code for a protein are known as structural genes,

and that is because not all genes code for proteins as some code for other molecules

such as the Ribonucleic Acid (explained below) which forms part of other functional

units in the cell. The total number of nucleotides in a DNA molecule, which form the

genome of the organism, can range from a few thousands for some bacteria to billions

for humans and other primates corresponding to up to tens of thousands of genes

(Alberts et al. 2004; Davidson 2006).

2.3 What is gene expression?

In general, gene expression refers to the process by which the information in the

DNA is transformed into cellular function. This function is often but not always

28

carried out by a protein, hence the process often culminates in the synthesis of a

protein. Towards this end a series of steps takes place that starts with the transcription

of the gene from the DNA into another form known as the RNA, followed by the

translation of the RNA into a protein that is then assembled and processed in the

necessary way to carry out its ultimate function. This flow of information is

commonly known as the central dogma of molecular biology and stipulates that

information flows in one direction only, i.e. DNA RNA Protein (figure 2-4).

Figure 2-4: Gene expression – the central dogma of molecular biology.

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.)

RNA which stands for Ribonucleic Acid is also a nucleic acid and like DNA it

consists of a string of nucleotides, where now the Deoxyribose sugar is replaced by

Ribose sugar, and the base Thymine is replaced by another base, Uracil (U).

The transcription step is necessary because DNA being the blueprint has to be kept

intact for future use. Transcription effectively makes a copy of the blueprint for use in

the “production run” of a protein. The transcribed RNA molecule on the other hand is

mainly used to take the message from the DNA to the place in the cell where it will

be translated into an amino acid chain, hence is referred to as the messenger RNA

(mRNA). Transcription is carried out by a very important enzyme known as RNA

polymerase together with the aid of other molecules. The translation machinery in the

29

cell is known as the ribosome and consists of a large complex of proteins and another

RNA molecule known as ribosomal RNA (or rRNA), (figure 2-4). The translation

process uses a third type of RNA known as transfer RNA (or tRNA) which transfers

the necessary amino acids to the ribosome to add to the growing polypeptide chain.

Because it is not needed after relaying the message, the mRNA molecule does not

need to be particularly stable; in fact this is actually desirable in order to get rid of un-

used mRNA molecules, and is one of the tools used by the cell to regulate the rate at

which a gene is expressed as explained below. The reduced stability of the mRNA

molecule compared to that of the DNA molecule is achieved by the structural

difference between the two, (table 2-1). On the other hand, because the DNA

molecule carries all the information needed for the preservation of the life of the cell

and the species, it has to be stable as it hands down this information from one

generation to another through cell division. This stability is achieved by the rigid

specifity of base pairing imposed by the structure of the molecule, together with the

components involved in that structure namely the type of sugar and bases involved.

Table 2-1: Comparison of DNA and RNA molecules.

Comparison criteria DNA RNA

Sugar Deoxyribose Ribose

Bases A, C, G & T A, C, G & U

Structure Double-stranded Single-stranded

Stability High Lower

2.4 Why does a cell need to regulate the expression of its

genes?

As mentioned earlier the cell might not need all the proteins it can produce or the

functions they perform all the time. Furthermore, for a multi-cellular organism

different organs will have different types of cells that will express different genes

depending on the function of that organ. Thus the cell must have a means by which to

decide when to express a certain gene and when not to, and also the levels to which it

needs to express it. This is achieved through the regulation of gene expression. Indeed

30

this flexibility leads to one of the remarkable features of a living organism, namely its

ability to adapt to its environment and to its own varying needs. Consequently the

decision of which genes to express is based on several factors, some are internal to

the cell while others are external to it, whether from the environment as in the case of

single cell organisms, or from other parts of the body for multi-cellular ones. Those

two classes of factors are briefly described below.

2.4.1 Response to internal cell requirements

Different molecules are needed by the cell at different points in its lifetime. For

example for bacteria in a bioreactor, different functions are performed during the

growth phase than the stationary phase. Another example is with the cell division

cycle which comprises several phases, each with its own function and hence gene

expressions. Even when the same molecules are needed for different biological

processes, their quantities might vary with time and need. On the other hand, for

multi-cellular organism, for example humans, different cells are specialised to

perform different functions yet all have the same DNA. Each function may require a

different set of proteins; hence such cells need to be able to switch on only the genes

that express the required proteins while switching off the rest of the genes (Alberts et

al. 2004; Davidson 2006). Furthermore, changes in the genes expressed can be

triggered by events intrinsic to the cell such as in response to errors in DNA

replication or DNA damage, where certain molecules are required to fix the damage.

2.4.2 Response to external signals

Changes in the environment surrounding the cell, especially extreme conditions such

as starvation or heat shock for bacteria, cause changes in gene expression both

qualitatively (which genes are expressed) and quantitatively (the level to which they

are expressed). Less drastic changes in environmental conditions can also be a cause

of change in gene expression, such as the change in the type of nutrient in the

environment. Similarly for a multi-cellular organism signals from other parts of the

organism can trigger changes in gene expression such as in response to hormones or

to chemical cues causing cell differentiation during development as explained earlier.

31

2.5 How does a cell regulate the expression of its genes?

Having identified the need to regulate gene expression, we now consider how the cell

effects this regulation. Similar to an industrial process, different conditions may lead

to certain decisions being taken by the cell to switch relevant genes on or off in a

series of events. Regulation can take place at any of the different levels of gene

expression, from the initiation of transcription to the degradation of proteins which

are usually the final product of gene expression (figure 2-4). Clearly it would be more

efficient to control expression at its inception, i.e. at the level of transcription

initiation as it means that no energy is wasted in transcription or translation before the

mRNA molecule (the product of transcription) or the protein (the product of

translation) is degraded. However, as outlined earlier a condition may occur that

necessitates halting the expression of some genes that is already in progress, or

expressing others in response to the condition. Depending on such a condition the cell

can employ either global controls or local ones. Global controls act on most genes at

the same time, as for example in the case of extreme environmental conditions that

may require the cell to halt several processes at once and invoke an emergency

response, similar to a shutdown system in a process plant. Local controls on the other

hand, act only on those genes involved in the function to be regulated, similar to a

control loop in a unit operation of a process plant. The ability to exercise global

control means that the cell can override local controls when necessary. It should also

be noted that the response to changing conditions may cause some genes to increase

their expression levels and others to decrease them, similar to direct and reverse

acting control in industrial processes. The different levels of regulation are briefly

outlined below without the details of their molecular mechanisms; those will be

discussed further when dealing with particular applications in later chapters.

2.6 Control of transcription

In order for the transcription of a gene to start, the enzyme RNA polymerase which

performs it needs to identify the location at which to start transcription and the

direction in which to proceed. This information is indicated by a region on the DNA

molecule upstream of the gene known as the promoter. In addition, it needs an

32

indication of the end of transcription, this is provided by a stop codon as discussed

above.

The question that arises then is how does RNA polymerase recognise the promoter?

An ideal promoter has a certain pattern of nucleotides termed the consensus sequence,

which RNA polymerase recognises, binds to and starts the transcription process. In

general, the promoter of a gene does not have the exact consensus sequence but will

deviate from it. The level of transcription will depend on how close the promoter

sequence is to the consensus one (Ptashne and Gann 2002). If the difference between

them is large, a protein known as a transcription factor will be needed to facilitate the

binding of RNA polymerase to the promoter (Ptashne and Gann 2002). Other

transcription factors may also be involved in the transcription process to regulate

expression resulting in either gene activation which increases the transcription rate or

alternatively gene repression which decreases it (Wagner 2000). The transcription

factors, being proteins, are products of other genes hence leading to genes regulating

other genes which may feedback to the original ones. The result is an interconnected

network of genes with feedback and feed forward interactions (Thieffry et al. 1998;

Davidson 2006). A regulatory protein such as a transcription factor often needs a

small molecule to activate it, which binds to some domain of the protein. Such

molecules are known as effector molecules, and often carry information about the

controlling condition (Alberts et al. 2004).

In summary, the changes in the different conditions affecting the cell are relayed to

the transcription machinery through a cascade of signalling molecules ending with the

effector molecule which binds to the transcription factor. This may then either

increase the rate of expression of the gene or decrease it.

The normal un-regulated state of a gene is called its basal state, and gene regulation

would then modulate this state in response to the appropriate conditions. For example

a gene that is normally on would be switched off when the relevant condition occurs.

Certain genes are on all the time independent of any conditions, and are referred to as

being constitutively on. Examples of those are the so called housekeeping genes

which are necessary for the key activities of the cell such as energy production.

33

For the sake of completeness we mention that transcription takes place in three stages,

namely initiation, elongation and termination. Initiation involves starting the

transcription process through recruiting the different molecules as described above.

Elongation involves the addition of the different nucleotides to the growing RNA

molecule. Finally termination releases the synthesised RNA molecule.

2.7 The lac operon

We now give an example of transcription regulation that clarifies some of the

concepts outlined above such as transcription factor, activation, repression,

constitutive, regulated, effector molecule and global and local controls. We illustrate

this by a simplified presentation of the lac operon in the bacterium E. coli.

In some cases, a bacterium needs to coordinate the regulation of several genes

together, for example when the products of those genes are involved in some

metabolic function. In such a case the concept of an operon is employed, which is

essentially a group of genes that are transcribed and regulated together. An operon

consists of two functional regions that may be physically interspersed or overlapping

on the DNA molecule. One region contains the structural genes, i.e. those that code

the proteins contributing to the metabolic function. The other region is a regulatory

region that controls the expression of the structural genes, and hence contains their

promoter and may also contain other genes that produce transcription factors that

control the structural genes. There are many operons in E. coli and they can contain

as little as two or as many as twenty structural genes (Nelson and Cox 2000).

Bacteria prefer glucose as their energy source because of its relatively high potential

energy. In addition glucose is also a precursor for many metabolic pathways

synthesising different types of biomolecules. A precursor in this sense is similar to

the feedstock in a chemical process. Glucose has a straightforward metabolic pathway

to utilise it known as glycolysis. Other sugars have to be transformed into glucose or

to one of its derivatives before they can be utilised by the bacteria, hence consuming

energy in this conversion. Thus when the medium contains several sugars including

glucose, all sugar metabolising pathways other than glycolysis have to be inhibited,

i.e. their genes switched off (Nelson and Cox 2000). On the other hand when glucose

34

is not present but another sugar is, then the bacteria have to be able to switch on the

pathway to metabolise this sugar. One of the well studied cases in E. coli is that of the

sugar lactose where regulation is achieved through the lac operon (figure 2-5).

Figure 2-5: Structure of the lac operon.

2.7.1 Structure of the lac operon

Like other operons, the lac operon consists of a regulatory region and the structural

genes. The regulatory region contains a gene called LacI that produces a protein

called the "Lac repressor” which acts as a transcription factor. When this protein

binds to the operator region on the DNA molecule it represses the structural genes.

The regulatory region also contains the promoter of the LacI gene, and the promoter

of the structural genes (all of which are regulated by a single promoter due to the

nature of an operon), in addition to the operator region just mentioned. The second

region of the operon contains the structural genes which code the proteins necessary

for the utilisation of lactose in the absence of glucose. Note that it is a convention in

the context of the lac operon not to consider the LacI gene as a structural gene even

though it codes for a protein. Structurally, the lac operon consists of the following

units on the DNA molecule as depicted in figure 2-5.

Regulatory region

 pLacI: Promoter for the regulatory gene LacI.

 LacI: Regulatory gene that encodes a transcription factor known as the “Lac

repressor”, which as the name indicates, is a repressor protein.

 pLac: Promoter for the structural genes.

 O: Operator, a region on the DNA to which the repressor protein binds to

repress the transcription of the structural genes.

pLacI LacI pLac O LacZ LacY

 LacA

Regulatory

Region

Structural

Genes

35

There is another part of the regulatory region that is functionally distinct but

structurally overlapping with the promoter pLac, and hence not shown in the figure.

This is a site on the DNA molecule where an activator protein binds to the DNA

molecule as explained later. Note that by convention, the names of genes are

italicised.

Structural genes

 LacZ: Gene encoding the enzyme -galactosidase which cleaves lactose to

produce glucose and galactose for further metabolism.

 LacY: Gene encoding the enzyme galactoside permease which transports

lactose into the cell from the surrounding medium.

 LacA: Gene encoding the enzyme galactoside transacetylase which takes part

in lactose metabolism.

2.7.2 Operation of the lac operon

The gene LacI is constitutively expressed, i.e. it is expressed all the time and its

product protein, the “Lac repressor” is thus present in the cell all the time. When there

is no lactose in the medium, Lac repressor binds to the operator region which

overlaps the promoter of the operon (overlap not shown in figure 2-5), preventing

RNA polymerase from starting transcription, hence none of the structural genes will

be expressed.

Normally there is a very small amount of the enzymes -galactosidase and

galactoside permease in the cell, due to the basal expression level of the operon.

Hence when lactose is present in the medium (and no glucose is present), a small

amount permeates into the cell and is isomerised to allolactose. Allolactose acts as an

effector molecule to the transcription factor protein Lac repressor, it binds to it and

prevents it from binding to the operator region. Hence RNA polymerase can bind to

the promoter of the structural genes and start transcribing the genes producing the

enzymes -galactosidase and galactoside permease allowing more lactose into the cell

and lactose metabolism carries on. In this role allolactose is known as an inducer of

the operon.

36

Glucose is the preferred energy source for E. coli, hence when it is present in the

medium the lac operon should be switched off irrespective of the presence of lactose.

There is no point expending energy in producing the enzymes necessary for

metabolising lactose when glucose metabolism is more efficient. Hence glucose

inhibits the metabolism of lactose; in fact it inhibits the metabolism of all other sugars

as mentioned above. When glucose is absent however, the metabolism of the other

sugars should be enabled, this is achieved using a transcription factor known as

Catabolite Activator Protein (CAP) which as the name indicates, acts as an activator.

CAP needs the effector molecule cyclic AMP or cAMP to enable it to bind to its

binding site which overlaps the promoter of the operon (the structural genes). This

enhances the transcription of the lac genes by RNA polymerase, increasing the

transcription rate ten folds. Hence there are four possible situations for the lac operon

summarised in table 2-2.

In summary there are two approaches to controlling the operon, one is used by lactose

(or the inducer in general) and termed negative control, while the other by cAMP and

termed positive control. The difference is in the effect of the binding of the effector

molecule to the transcription factor and consequently on transcription. In the first case,

when the inducer binds to the repressor protein (Lac repressor) it prevents it from

binding to the operator region and hence allows transcription to start. On the other

hand, when cAMP binds to the activator protein (CAP) it enhances transcription. It is

clear from table 2-2 that in the case of the lac operon, when both controls are acting

on the operon, repression overcomes activation.

Table 2-2: The different nutrient conditions and their effects on the lac operon.

Glucose

concentration

cAMP

production

CAP

(Bound

to

DNA)

Lactose

concentration

Lac

repressor

(Bound

to DNA)

Operon

state

Explanation

Low High Yes Low Yes OFF Activation &

repression

Low High Yes High No ON Activation &

no repression

High Low No Low Yes OFF No activation

& repression

High Low No High No OFF No activation

& no

repression

37

The production of cAMP is coupled to the presence of glucose, when the

concentration of glucose is high, production of cAMP is low, hence the transcription

factor CAP will not be activated and hence the metabolism of all sugars other than

glucose will be repressed. In such a scenario glucose acts as a global regulator for all

sugar metabolism via cAMP and CAP. The opposite happens when the concentration

of glucose is low.

It should be noted that the above presentation of the structure and functional

operation of the lac operon is highly simplified. For example, structurally the

operator region O to which the repressor protein binds is not contiguous, but is

dispersed into three different locations that are interspersed with the structural genes

and their promoter (figure 2-6).

Figure 2-6: A more detailed view of the structure of the lac operon.

These structural details have an effect on the functioning of the operon and its

expression levels. As explained in table 2-2 above, there are three different cases in

which the operon is switched off, however the expression rates in all three, whilst still

very low compared to the on case, are not equal. This is because the binding of CAP

to the DNA alters its conformation making the binding of the repressor different than

when CAP is not present, and both cases are different from the case when neither

protein is active (corresponding to the case when both nutrients are present). For a

more in depth discussion of the lac operon with more details of the regulatory

mechanisms involved, see for example (Ptashne and Gann 2002; Santillan and

Mackey 2004a), and for a discussion of the metabolism of other sugars and their

regulation see for example (Kaplan et al. 2008; Kremling et al. 2009).

PI I O1 P O2

Z O3

A Y

38

2.8 Other levels of control

In the previous section we have considered the control of transcription, but what if a

condition occurs after a gene has already been transcribed, that necessitates regulating

it either by stopping its expression completely or changing its expression level? The

cell should have the ability to control this level at later stages after transcription,

especially in the case of an extreme condition. This is usually done by degrading the

molecule to be controlled such as mRNA or even the final product of expression

which is the protein. We briefly outline those controls below.

2.8.1 Post-transcriptional control

This refers to controls that are exercised after transcription has taken place but before

translation and hence are performed on the mRNA molecule. For Prokaryotes,

translation takes place in the cytoplasm which is the free space in the cell. As far as

gene expression is concerned, regulation at this stage mainly involves preventing the

mRNA from being translated, for example by degrading it.

2.8.2 Control of translation

Like transcription, translation also takes place in three stages, initiation, elongation

and termination, where elongation here is of the polypeptide chain formed. Each of

these stages is regulated by certain proteins. If translation is allowed to start it can

still be controlled while in progress using those proteins, either to halt translation

temporarily and resume it later, or to completely terminate it without producing a

protein. In the latter case, the resulting polypeptide will eventually degrade.

2.8.3 Post-translational control

Translation of the mRNA into a protein is not the end of the story as this protein

needs to be folded in the appropriate conformation and then undergo other chemical

modifications such as glycosylation before it is ready to perform its intended function.

Often several such proteins are assembled together to form a larger protein, common

examples of which are homodimers which consist of two proteins of the same type,

and heterodimers involving two proteins of different types. There can also be

39

assemblies of more than two proteins. The protein also has to be transported to the

location in the cell where it will perform its function, a process known as protein

targeting. Only then gene expression is complete.

Given that the protein has already been produced, post-translational control of gene

expression involves disrupting any of the above processing steps of the protein (e.g.

chemical modification or assembly). However, the most important means of post-

translational control is by degrading the protein. Degradation can be left to take place

naturally which will take a long time, or it can be performed by enzymes that cleave

proteins, achieving a much faster result. This process is known as protein lysis, or

proteolysis and the enzymes that lyse the protein are known as proteases.

2.8.4 Further levels of control

The different stages of regulation of gene expression outlined above culminate in the

protein being ready to perform its functions, i.e. it is available if needed. There are

other processes in the cell that may then activate or de-activate the protein in response

to different stimuli. Those are normally reversible processes, unlike proteolysis.

Examples of such processes include the binding of an effector molecule to the protein

as discussed above; a common process among those is phosphorylation which

involves the binding of phosphate to the protein and its reverse process of

dephosphorylation.

The above discussion relates to producing a protein and activating or de-activating it

(effectively switching it on or off), however, if the protein acts as an enzyme, i.e. a

catalyst (as opposed to a controlling factor) it may have additional controls. For

example, its activity can be modulated in a kinetic manner through different

inhibitions by its substrate or product (Fell 1997).

It is obvious that the closer the control action is to the final product of gene

expression, the faster the response will be. If one switches a gene off through

transcription control then it will take some time for the actual protein levels that this

gene codes for to vanish. This is because the mRNA molecules that have already been

transcribed before the switch off will still be present in the cell, and they will be

40

translated into more proteins. Only when those proteins and the ones that already

existed in the cell have all been degraded that the complete switch off will be effected.

Preventing translation on the other hand will have a faster response as only the

proteins that have already been translated will be in the cell as no further translation

will be allowed. An even faster response can be achieved by destroying the protein on

the spot through proteolysis. On the other hand, if only temporary halting of the

function is required, as for example in response to relatively small changes in

conditions, then phosphorylation and dephosphorylation result in a faster and more

efficient response.

Typical time duration of some of these processes in E. coli is as follows: binding of

an effector molecule to a transcription factor takes a few milliseconds, transcription

of a gene takes about a minute and translation twice as much. The lifetime of an

mRNA molecule is a few minutes and of a protein about a couple of hours (Alon

2007a).

This gradation in speed of response has analogous situations in industrial control

where the closer the control action is to the process variable the faster is the response.

Such concepts are utilised in cascade control where a control loop is nested inside

another. The inner loop has faster dynamics than the outer one and affects the control

action much more quickly, a strategy often employed in distillation columns control

(Stephanopoulos 1984).

Speed of response whether in a cell or an industrial process comes at a price, i.e. there

will always be a trade off. Damaging an mRNA molecule or a protein after going

through the long process of transcription and/or translation means that large amounts

of energy have been wasted. However, this is imperative if the fast response is

required for the very survival of the cell. An analogy in an engineering system would

be hitting the brakes of a car to prevent it from crashing. The energy of the car is

wasted as heat energy in the tyres and may even damage the tyres, but this is

imperative to save the whole car or prevent injury to its passengers.

41

2.9 “Omics”

The genome of an organism contains all its genes in the DNA, whether expressed or

not. Some of those genes will be transcribed under the appropriate conditions, while

others may never be transcribed. The set of all possible transcripts, i.e. mRNA

molecules generated by the transcription process is referred to as the Transcriptome;

again not all of those will necessarily be translated into proteins. The set of all

proteins that can be produced from the mRNA of the organism, irrespective of

whether they are actually produced or not is known as its Proteome. Some of the

proteins will act as transcription factors through interacting with other proteins,

effectively involved in on/off (logic) control, those form the Interactome. Other

proteins will act as catalysts in the metabolic processes of the organism and will

contribute to the Metabolome, which is the set of all chemicals that are processed

inside the cell. Those different layers of cellular functionality and the enormous

amount of data they produce are collectively referred to as “omics” (figure 2-7). A

wide array of advanced analytical techniques is used to generate this omics data

through carefully designed experiments, for an overview of such techniques see

(Lorkowski and Cullen 2003; Lay et al. 2006).

Figure 2-7: Omics and their relationships – feedback paths between the different layers not

shown.

Genome

Transcriptome

Proteome

Metabolome
Interactome

Transcriptional Control

Post-transcriptional

/Translational/ Post-

translational Controls

Environmental

and other factors

42

The different layers of functionality as depicted in figure 2-4 and the corresponding

figure 2-7, interact with each other to yield the behaviour exhibited by the cell. For

example, transcription regulation determines which part of the genome will go into

the transcriptome, i.e. which genes will be transcribed. From a mathematical

standpoint, this can be regarded as a mapping from the genome to the transcriptome

under the transcription regulation function. Similarly, post transcriptional,

translational and post translational controls specify another mapping, that from the

transcriptome to the proteome. The conditions in the cell environment, for example

the concentrations of the different nutrients and other molecules required for

metabolism, will determine the activity of the different enzymes (part of the

proteome). This is manifested in the fluxes within the metabolic network (the

metabolome), and can be viewed as a mapping from the proteome to the metabolome.

Functionality of another part of the proteome, that which is concerned with regulatory

proteins is mapped to the interactome. In a mathematical sense, one can think of the

resultant effect of the interactions at the different layers as a composition of these

mappings. It should be noted that these different functions are affected by both

external and internal conditions to the cell. Furthermore, the interactions involve

feedback both within a layer as in the case of enzyme activity, and between layers as

in the case of the regulation of gene expression.

The overwhelmingly large amounts of data produced by the omics experiments pose

a challenge in their analysis and interpretation, requiring mathematical and

computational tools to undertake this task (Wolkenhauer et al. 2003; Lay et al. 2006;

Mehta et al. 2006; Selzer et al. 2008). Thus the mathematical view of regulatory

functions outlined above coupled with the engineering view alluded to several times

earlier, provide a powerful basis for assimilating and understanding this data. The

approach often used by engineers in attacking such problems is mathematical

modelling. There are several modelling approaches employed and we will look at the

most commonly used ones in the next chapter.

2.10 Summary and Conclusion

The purpose of this chapter was to introduce the regulation of gene expression to

engineers as a prelude to developing a mathematical modelling method later in this

43

report. The strategy followed to achieve this was two pronged; firstly to simplify the

treatment as much as possible, and secondly to use analogies with engineering

systems.

There are two outcomes from this chapter relating to this strategy, the first is to give

an overview of the regulation of gene expression, with particular emphasis on

Prokaryotes (bacteria). To reach this outcome, we first had to provide the foundation

to build upon, which involved presenting some basic concepts from molecular

biology. This equipped us with enough knowledge to answer three main questions

important for the understanding of the regulation of gene expression, namely what is

gene expression, why does the cell need to regulate it and how does it do that?

It is the last question that we elaborated upon most, indicating the different levels of

gene regulation, namely transcription, post-transcriptional, translation and post-

translational regulations. We have placed special emphasis on transcription regulation

because it is the most studied and the best understood. It also makes more sense for

the cell to control gene expression at its inception rather than at a later stage, hence

avoiding wasting the energy spent getting to that stage. We also covered the lac

operon in the bacterium E. coli as an example of transcription regulation. This helped

us elucidate some of the fundamental concepts in transcription regulation, such as

gene activation and repression, constitutive and regulated genes and basal expression

level; and also the main players in this process such as a transcription factor,

promoter and effector molecule. In covering the above, Prokaryotes were chosen

rather than Eukaryotes because of their wide use in industry, their simpler

composition and because they are well studied. It should also be pointed out that the

treatment was highly simplified, especially with regards to the details of the

molecular mechanisms such as the binding of RNA polymerase to the DNA and the

role of transcription factors on a molecular interaction level.

Discussion of the regulation of gene expression at the different levels of cell

functionality led us to a discussion of the different omics including genomics,

trancriptomics, proteomics and metabolomics, and the proliferation of the

corresponding types of data. Such a large amount of data is impossible to make sense

of intuitively; mathematical and computational tools are needed to assimilate all this

44

data in a meaningful way. Hence this makes a case for the use of mathematical

modelling to study the regulation of gene expression.

The second outcome from this chapter is to point out throughout the presentation and

wherever appropriate, the similarity between regulation of gene expression in a cell

and regulation of an industrial process. Consequently this suggests that the means

used for the analysis of industrial processes in particular mathematical modelling, can

be used in studying gene expression, further reinforcing the case for the use of

mathematics in such an endeavour. So how can we apply mathematics to the

modelling of the regulation of gene expression? This is the topic of the next chapter.

45

Chapter 3: Modelling the Regulation of Gene

Expression

3.1 Introduction

The purpose of this chapter is to examine how to build mathematical models of the

regulation of gene expression and to briefly survey some of the more common

modelling methods used. Before doing that however, we need to outline some key

concepts related to modelling. In the previous chapter we have described gene

expression and how it is regulated, we also made the case for the use of mathematical

modelling to understand this regulation. In this sense, mathematical modelling is our

research method, and as with any method, before employing it one has to be aware of

its limitations and potential pitfalls. Hence we start this chapter with a discussion of

some of the theoretical issues related to modelling and the underlying concepts. In

order to build models of real life systems, a modeller needs to make some choices and

decisions; hence after discussing the theoretical issues we will need to address some

of the practical issues involved in modelling. Among the decisions a modeller has to

make is the level of abstraction at which he will consider the phenomena being

modelled and how much detail he is willing, and able to incorporate into the model.

Armed with this knowledge, we will then survey some of the common approaches to

modelling the regulation of gene expression. Rather than derive mathematical

formulations, we will look at the big picture and classify the models according to

different criteria, both biological and mathematical. There is a wide choice of

mathematical formalisms available to the modeller, and amongst those by and large

the most common is modelling using differential equations which gives quantitative

models. Hence we will demonstrate how to apply them in a generic way, to the

modelling of gene expression regulation presenting their advantages and also pointing

out some of their shortcomings and of quantitative methods in general. This will lead

us to consider models of a qualitative nature, among which, one of the most widely

used are Boolean models. Those too have their shortcomings which we will discuss,

paving the way to proposing our method.

46

3.2 Mathematical modelling concepts and caveats

The purpose of modelling a given system is to understand how it functions in order to

be able to predict its behaviour and possibly to ultimately control it. In this section we

briefly touch on some of the theoretical issues underlying the process of modelling,

those can be described as meta-modelling issues. The purpose is to point out to some

of the conceptual limitations of modelling, and hence to set realistic expectations with

regards to the results the models provide. This reality check is important because of

the growing role of modelling in modern biology as evident in the proliferation of the

emerging discipline of Systems Biology, currently a very active area of research.

A model of a system is essentially a representation of our perception of the system

rather than of the system itself (Casti 1989). This applies to any modelling approach

but here we are primarily interested in mathematical models whereby systems are

described by equations and where numerical values may be assigned to some system

parameters.

We first denote briefly what is meant by a system and the state of a system. The IEEE

Standard Dictionary of Electrical and Electronic Terms defines a system as “a

combination of components that act together to perform a function not possible with

any of the individual parts” (Radatz 1997), such functionality of a system that is not

present in its components but results from the interaction of those components is

termed “emergent” functionality (Nagel 1961). Whilst intended for engineering or

physical systems, the above definition is general enough to encompass other forms of

“systems” such as biological, economic or even social systems. Hence, a system is

not necessarily tangible, but it does need to be “observable”, meaning that one should

be able to make observations about it, whether qualitative or quantitative. The

observations describe the state of the system, which is the second notion we want to

discuss. A state is one of those concepts that are usually understood intuitively but are

hard to articulate in a formal definition. Nonetheless, a state is taken to indicate the

information about the system at a given time instant that is sufficient to completely

describe the system at that instant (Cassandras 1993). A familiar example for

engineers is in thermodynamics where the state of a system is described by various

state variables such as pressure, volume, temperature and entropy. It should be noted

47

however, that a state need not have a physical interpretation as it is an abstract notion

(Casti 1989).

The above discussion then implies that the observation mechanism should be able to

distinguish between different states, if it cannot then the states are considered

equivalent with respect to this particular observation mechanism, even if they are

different in reality. This then prompts the question, what is reality and how do we

know whether the observations do or do not represent it? This raises philosophical

questions related to acquiring knowledge and representing it, i.e. epistemological and

ontological issues (Nagel 1961). In summary, we can conjure up a mental image as

depicted in the Venn diagram in figure 3-1, whereby we have some system whose

behaviour is described by states. We can then say that reality represents the set of all

possible states of the system (the universal set U in the diagram), some of which will

be observable (the set S) and among those, some will be distinguishable from each

other (the set X). From that last set of states we can use a subset to build a model. All

those sets are in an inclusion relationship in the set theoretic sense, i.e. each set

includes the one following it in the above description, as depicted in figure 3-1.

Figure 3-1: Venn diagram depicting sets of states of a given system and their relationships.

U

S

X

 M2

M1

 M3

 Mn

48

Different subsets of the overall set of observations represent different aspects of the

system behaviour and can be used to build different models (the sets M1, M2, .., Mn).

Note that two (or more) of the observation subsets used for building a model may

intersect, which means that some aspect of the system behaviour can be described by

more than one model. On the other hand two such subsets may be mutually exclusive

indicating that there is no model that can capture both aspects of the system

behaviour. One such example is in quantum mechanics with the dual particle/wave

aspect of elementary particles where only one aspect of their behaviour can be

observed under a given experimental setup.

Of course figure 3-1 can provoke further philosophical questions, for example how do

we know the boundaries of the universal set U if it is not completely observable? In

fact how do we know whether anything other than the observable actually exists? As

we have mentioned, this is a mental image and is based on past human experience.

For example, according to the theory of evolution bacteria existed long before

humans did, yet we only became aware of their presence in the seventeenth century

after the invention of the optical microscope (Porter 1976). Similar arguments hold

for many other areas of human endeavour. This means that the set of observable

states grows with the advancement of technology. As with the example of the

microscope, many other technologies allow us to know things now that we did not

know in the past such as the different omics information discussed earlier.

Undoubtedly new technologies will be developed with time that will expand the

observable set S further within the universal set U. Furthermore, the set of discernable

states X among those observable, expands with the advancement of technology as

well. Consider temperature measurement for example, for a thermometer with

resolution of one tenth of a degree, the two temperatures 25.42
0
C and 25.43

0
C are the

same, i.e. they are equivalent states with respect to this particular thermometer (or

observation mechanism in general). With a higher resolution thermometer they

become two distinct states, hence the set X becomes a larger subset of the set S. Will

S or indeed X ever reach U? This is an important question that is beyond the scope of

this work and falls more in the realm of the philosophy of science, for more details

see for example the work of Karl Popper or Thomas Kuhn (Nagel 1961; Casti 1989;

Casti and Karlqvist 1990). We will thus cease this line of thought at this point and

resume our discussion of modelling.

49

Observations tell us what happens but not how it does. Because a collection of data

does not in itself constitute knowledge (Duncan 2007), there is a need for a means to

relate the observations in a meaningful relationship. As suggested in the previous

chapter, this is a role suitable for a mathematical model which can be viewed as a

representation of the observable reality in some formal mathematical system. In a

more abstract sense, a model is a mapping from the set of observations to the set of

states described by the model (Casti 1989). Ideally those two sets should be the same,

meaning that the model should be able to reproduce the set of observations, i.e.

describe it as it is (a descriptive model). However, a model is more useful if it can

also predict the behaviour of a system in addition to describing it, i.e. a predictive

model. The predictions produced by the model are the results of derivations and

mathematical manipulations of the model, which are then translated to expected

observations. This means that the model should be able to reproduce observations that

lie outside the set of observations on which it was built. To account for un-modelled

features, modellers often resort to adding stochastic terms to the mathematical

description to embody the uncertainty about the knowledge of the system. The

uncertainty is assumed to be due to either aspects of the system behaviour un-

accounted for in the model, or noise (error) in the observations accounted for

(Kazakos and Papantoni-Kazakos 1990). Inevitably there will be discrepancies

between the data produced by the model and those recorded from experiments,

functions of such discrepancies (usually statistical) can be used to judge the quality of

the model. It should be pointed out that even a non-predictive model or theory in

general (i.e. not necessarily mathematical) can still have great explanatory power and

hence be very useful. A highly celebrated example of such a case in biology is the

theory of evolution which describes the evolution of the characteristics of a species

but it does not predict how it will change in the future. In other words, knowing the

environmental conditions we cannot predict the genetic makeup of the emerging

species nor even its physiological description. In essence the theory of evolution tells

us how we got here, but does not tell us where we are heading, thus it describes an

observation but cannot predict its future course (Casti and Karlqvist 1990).

The above discussion places two types of constraints on the accuracy and hence

usefulness of a mathematical model, in particular its predictive power. The first type

of constraints relates to the set of observations because as outlined above, our

50

knowledge of the system is limited by what we can observe of its behaviour. Hence,

whilst the model is based on a subset of the total observations, it attempts to make

prediction about aspects of the system behaviour that may not be reflected in these

observations, potentially undermining the accuracy of the model. The second sort of

constraints is the mathematics being used, as different modelling formalisms are

better suited to different investigations of a system’s behaviour, and can support

different mathematical derivations, leading to different results and predictions some

of which may be more accurate than others.

Because we can use different subsets of observations in formulating a model (figure

3-1), there can be more than one model of the same system each describing some

aspect of its observable behaviour using potentially different mathematical

formalisms. We will discuss some of these formalisms below and in later chapters.

Furthermore, once we have chosen a particular subset of observations, we can still

have more than one model describing the same set, providing different views and

different inferences. Those are considered equivalent models that are related to each

other by some form of “transformation”, an example familiar to engineers is time

domain and frequency domain descriptions of a system, related by the Fourier

transform. This issue will also be discussed in later chapters.

To give a concrete example of these abstract notions we consider a liquid storage tank.

We may be interested in the level of the liquid in the tank which is a continuous

variable taking real values lying between zero and some maximum corresponding to

the height of the tank. This case can be modelled by a simple differential equation

relating the rate of change of the level to the inlet and outlet flow rates and

parameterised by the tank cross sectional area. Such a model is often used in

regulatory control of the liquid level. Alternatively, we may only be interested in

whether the liquid level exceeds a certain point in the tank above which there is a

possibility of spillage and hence a potentially hazardous situation, especially if the

liquid is flammable or toxic. From such a viewpoint the liquid level can be in one of

two states, either above or below the hazardous point, a situation that can be

conveniently described using Boolean algebra. Such a model is used for the design of

a safety shutdown system that may override the regulatory control of the level.

51

This simple example highlights the ideas discussed above in that different

observations may require different mathematical tools to develop different models for

the same physical system. It further illustrates that some of the models may be

quantitative in nature such as the one modelling the actual liquid level in the tank

whilst others may be qualitative such as the one describing whether the level is above

or below a certain value, irrespective of how far it is from that value.

Casti (1989) summarises these ideas in stating that “a model is a mathematical

representation of the modeller’s reality, a way of capturing some aspects of a given

reality within the framework of a mathematical apparatus that provides us with a

means for exploring the properties of that reality mirrored in the model.” Note that as

mentioned at the end of this quote, only the properties of the system “mirrored in the

model” can be studied by it, emphasising that investigating different aspects of the

system behaviour may require different models.

From an application stand point, formulating a mathematical model, i.e. describing

the (observable) real life system in mathematical terms requires knowledge of the

system at hand, i.e. domain specific knowledge. Once the system is described

mathematically however, it becomes a mathematical problem and a battery of

methods is available for its investigation and manipulation including analysis,

synthesis and optimisation methods. The results obtained have then to be interpreted

from a domain specific viewpoint for a sanity check as some results of the analysis

while mathematically sound, may be physically meaningless such as obtaining

negative values for parameters (figure 3-2). In this sense mathematics can be thought

of as a language and modelling as a translation from one language, the domain

specific knowledge into another, the abstract mathematical knowledge. Indeed,

modelling is essentially a process of abstraction that divorces the system from its

domain specific setting and transforms it into a mathematical entity. When doing so

we find that oftentimes systems that are distinct in real life are modelled by the same

mathematical description. For example the second order linear differential equation

with constant coefficients describes both a mechanical system of mass, spring and

damper, and also an electrical system of inductance, capacitance and resistance. The

abstractions of those physical elements are the notions of inertia which resists motion,

stiffness which stores energy and dissipation which dissipates energy (Doebelin 1980;

52

Cha et al. 2000). This proves further that a model is just a mental construct with no

intrinsic physical significance, only when related to a particular physical system does

it acquire this significance.

Figure 3-2: Modelling as a process of abstraction.

To summarise the main points raised in this section we state the following

 A model describes a subset of the observable reality

 There can be more than one model for a system, each corresponding to a

particular subset of observations.

 For a given subset, there can be equivalent models where equivalence is

meant in the sense that they describe the same set of observations but with

different mathematical machinery (usually related by transforms).

 Modelling is an abstraction process which means that different systems when

abstracted from their implementation details can end up with the same

mathematical model.

 The predictive power of a model is limited by both the observations on which

it is built, and the mathematical formalism used to build it, including any

assumptions related to both.

Real Life
System

Mathematical
Model

Domain Specific

Knowledge

Mathematical
Manipulation

Modelling

Interpretation

Mathematical
Knowledge

53

The essence of this section is captured by a quote attributed to the British statistician

George Box in which he says “all models are wrong, some are useful”, a rather

cynical variation of which is given by Wolkenhauer and Ullah (2007) as “all models

are wrong, some more than others”.

3.3 Model building decisions

This section addresses issues that mirror the theoretical ones discussed above,

representing their applied counterparts. Here we consider the decisions a modeller

needs to make when embarking on a modelling task. For our purpose we will

consider the model of a system to be a representation of some aspects of the system

that are of interest to the modeller. Two key concepts are embedded in this statement;

the first relates to the phrase “some aspects” and the second to the phrase “of interest

to the modeller”. Those two concepts correspond to similar ones in the theoretical

discussion above relating to the subset of the set of observations to use and that the

model investigates aspects of system behaviour that are reflected in the model.

The notion that a model represents “some aspects” of the system implies that the act

of modelling involves a simplification of the system behaviour. Thus it is not only

acceptable that a model ignores some aspects of that behaviour, but in fact it is

expected to do so. It would be impractical to expect a model to represent every

feature of the system, as in such a case it ceases being a model and becomes a replica

of the system. From a practical standpoint then, an important decision in the

modelling process is, which aspects of the system behaviour to ignore and which to

include in the model. The answer to this question leads us to the second concept and

that is that the model has to address the issues “of interest to the modeller”, i.e. those

for which the model is formulated in the first place. Therefore the model should

ignore aspects of the system behaviour that are believed not to contribute to or at least

not to strongly influence the function being studied.

To illustrate these concepts let us look at a concrete example. Consider a metal rod

exposed to heat, this system can be studied from different engineering perspectives. A

mechanical engineer could be interested in the expansion of the rod. A materials

engineer may be interested in the effect of heat on its tensile strength, a metallurgist

54

in the molecular structure, an electrical engineer in the effect of heat on its resistance,

a communication engineer on its electromagnetic properties in case it is being used as

an antenna. Different equations and hence models relate the different properties

mentioned above to heat, those range from straight forward linear algebraic equations

in the case of linear expansion or change in electrical resistance to vector partial

differential equations in the case of heat transfer and electromagnetism. To attempt to

formulate a single model that captures all these behaviours of the system is a futile

endeavour, simply because the “interest” of each of those engineers is different.

Hence the scope of the model will have to be limited to the features and functions of

the system relevant to this interest.

Within the scope of the model, the modeller needs to decide on the level of

abstraction at which the system being modelled will be viewed. Normally the more

abstract the view is the less detail about the system will be needed, as for example

with the case of the liquid level in a storage tank mentioned above. Sometimes

however, it is the nature of the details that changes rather than the amount. For

example when studying a chemical reaction in a stirred reactor, will the modeller

investigate the behaviour of the bulk liquid and how the reaction will be affected by

the mixing speed, or will he study the kinetics of the reaction irrespective of the

reactor, or possibly only consider a stoichiometric approach? Each of these levels of

abstraction involves different types of details about the reactants and the vessel.

Hence, once decided on the level of abstraction, the modeller has to further decide on

the amount of detail to include in the model.

For example, when considering the bulk liquid we can ask whether it will be

considered homogeneous or not, if not how will its composition change with location

in the vessel? Another issue that comes up in some situations is directionality, i.e. is

some property say viscosity the same in all directions (anisotropic) or does it have

different values in different directions possibly because of lack of homogeneity of the

liquid due to inadequate mixing? Furthermore, are the system parameters - such as

properties of the liquid or the vessel - constant or do they vary with time, and if they

do, is this variation deterministic or stochastic (random)? Will those parameters be

treated as lumped or distributed? For example in electrical engineering the resistance

of a wire is effectively distributed over its length, however, it is often treated as

55

lumped. This treatment may be valid under certain circumstances and invalid under

others, for example when the wavelength of the current in a wire is of the same order

of magnitude as the length of the wire, the wire will start to act as an antenna and can

no longer be treated as a lumped element (Doebelin 1980). These concepts may also

apply to the variables being investigated and not just the parameters, as for example

with the case of fluid particles in a pipe where the velocity will depend on their

distance from the pipe wall.

The exposition above indicates that, depending on the amount of detail included in

the model, it can become very complicated. Hence the modeller should include only

the details that serve the purpose of the model, in a sense using Occam’s razor, i.e.

that one should use the simplest model possible that adequately describes the system

behaviour (Gershenfeld 1999). Whilst this argument calls for simplifying the model,

one should be careful not to oversimplify as this may give misleading results. Hence,

there will always be a trade-off between accuracy attained by including more details

in the model and simplicity attained by ignoring some details. The modeller has to

strike a balance between those two objectives. Indeed, when discussing modelling,

Gershenfeld (1999) indicates that “Many efforts fail because of an unintentional

attempt to describe either too much or too little”.

Having decided on what to model and the amount of details involved, next the

modeller has to decide on which modelling method to use. This will not only depend

on what is being modelled but rather paradoxically on the modelling method itself,

where sometimes a method is used solely for the sake of mathematical tractability.

Fitting a system in a given mathematical framework may require many simplifying

assumptions regarding its behaviour. For example a system may be assumed to be

linear, primarily to enable benefiting from the wealth of methods available for linear

systems analysis, as non-linear systems are difficult to analyse. Indeed, Naylor and

Sell (1982) capture this further trade-off when stating “The formulation then of a

mathematical model is a compromise between mathematical intractability and

inadequate description of the system being modelled.”, echoing the earlier quote by

Gershenfeld albeit from a different perspective, that of mathematical tractability

rather than of amount of detail.

56

The paradox referred to above comes from the fact that on the one hand choosing a

method depends on what the modeller wants to investigate, and on the other the

method chosen constrains what the modeller can investigate. This emphasises again

the notion of the mathematical formalism constraining the usefulness of a model as

outlined in the theoretical discussion above (Casti 1989).

There are several mathematical methods that can be used in modelling, we will only

highlight the main ones, but perhaps more importantly we will classify them. One

classification is into dynamic versus static models. Models of dynamic behaviour

describe the change of a given variable normally with respect to time in response to

change in another one or more variables. Hence they are useful in studying such

features as speed of response and the related dynamic characteristics such as damping

and delay. Static models on the other hand describe a relationship between the

variables that conveys the dependence between them without regard to time. For

example a stoichiometric equation is a static relationship between the reactants and

how the products depend on them, but it does not contain any information about

timing and hence the speed of the reaction. On the other hand, kinetic models contain

rate and hence timing information and can thus be used to determine quantitative

information about the concentrations of the reactants and products at different points

in time and how fast they reach those concentrations. Another example is in networks

whether road networks, communication networks, piping networks or more relevant

to our work here, gene regulatory networks. Static information is essentially

embodied in the network topology, i.e. connectivity, for example the number of

routes that connect two cities whether directly or indirectly through intermediate

cities. Dynamic information on the other hand is contained in the traffic patterns on

the roads between those two cities such as issues of congestion and throughput, which

will determine how fast it takes to go through each route, i.e. issues of timing. A third

example is in process control where static information is used in the shutdown system

(logic control), as for example in the tank liquid level scenario discussed previously

stipulating that if the level in the tank exceeds a certain point then shutdown this

particular unit. Dynamic information on the other hand would be used in regulatory

control where it would help specify the controller gains and timing (integral and

derivative) to be able to control the speed of response of the change in liquid level

and how far it can deviate from the desired value. It is clear that whilst dynamic

57

models provide more information about the system being modelled in particular

quantitative information, they in return require more information for building a model,

again quantitative one. This causes two concerns; firstly that often such information is

very difficult to obtain, such as kinetic parameters for a reaction. Secondly the

accuracy of the results obtained from the model will be limited by the accuracy of this

information, in addition of course to the accuracy of the model itself as discussed

above. Those concerns undermine the advantages of dynamical models or any models

providing quantitative information in general.

Dynamic behaviour can be modelled using continuous time in which case they are

formulated using differential equations. Alternatively, values of the variables of

interest may only be available at discrete points in time, as in the case of sampled

systems, hence leading to difference equations. The values of the variables being

investigated can also be assumed to be continuous or discrete, the latter leading to a

discrete event systems formalism such as finite automata and Petri nets. Another

classification is into deterministic versus stochastic models, where the latter means

that the variables are assumed to be random processes, hence characterised by

probability distributions. A deterministic description on the other hand does not

contain this probabilistic aspect. The three classifications mentioned above namely

static v dynamic, continuous v discrete and deterministic v stochastic are orthogonal

in the sense that a model can belong to either type of each of the three classifications,

e.g. dynamic discrete deterministic or dynamic continuous stochastic, etc.

We can summarise this section in two main points. The first concerns modelling

decisions and the second concerns modelling errors, reflecting the choices and

caveats involved in modelling.

Modelling decisions

There are three main decisions the modeller needs to make, as depicted in figure 3-3,

usually in the following order

 The level of abstraction at which to view the system

 How much detail to include in the model

 The mathematical formalism to use

Each of these decisions can have sub-decisions as outlined above.

58

Modelling errors

There are two main conceptual sources of error that are a result of simplifications in

modelling, those are;

 Simplification due to ignoring some aspects of the system behaviour

 Simplification for the sake of mathematical tractability

Those two sources of error are different from errors due to measurement. Modelling

errors are deliberate in the sense that the modeller consciously chooses to make those

simplifications, while measurement errors are inevitable as they are ultimately

governed by the technology available.

Figure 3-3: Modelling decisions.

3.4 Mathematical modelling in biology – Systems Biology

Mathematical modelling has been utilised in biology for a long time, at least since the

early twentieth century in the work of Lotka and Volterra in the 1920’s on modelling

population dynamics involving prey-predator relationships (Rosen 1970). The

following decade, the journal “Bulletin of Mathematical Biology” was launched in

1939.

As the knowledge of biological processes grew, especially at the molecular level

following the work of Monod and others in the 1960s, there was a surge of interest in

applying mathematics in biology in particular using a dynamical systems approach.

Several books appeared at the time that formally applied dynamical systems theory to

biology, for example the book by Rosen in 1970. This was also evident in the launch

of several journals devoted to the subject around that time such as Journal of

Theoretical biology in 1961, Mathematical Biosciences in 1967 and Journal of

Model

Level

 of Abstraction

Amount

 of Detail

Mathematical

 Formalism

59

Mathematical Biology in 1974 among others. With the recent proliferation in the

quantity and quality of omics data as outlined in the previous chapter, a new wave of

interest in applying mathematics to biology emerged. What sets this new wave apart

from earlier ones is that the scope (several sub-cellular processes), the data (vast

amounts of high quality data) and the mathematical tools utilised have expanded

greatly (Kitano 2002; Wolkenhauer 2007). But perhaps more important than the

mathematics is the shift in the underlying conceptual view to modelling, evident in

the new emphasis on the interconnectivity of systems rather than on an individual

system, which resulted in some philosophical discussions on “holism” versus

reductionism (Kell and Oliver 2004; Van Regenmortel 2004; Cornish-Bowden and

Cardenas 2005; Noble 2008; Gatherer 2010). This holistic view has led to the birth

(or some would argue reincarnation) of the new interdisciplinary field of Systems

Biology (Cornish-Bowden 2005; Noble 2008). Like the previous waves of interest in

applying mathematics to biology, this one has also led to the publication of several

books and the launching of several journals, for example Systems Biology in 2004

(later IET Systems Biology), Molecular Systems Biology in 2005 and BMC Systems

Biology in 2007. From such a perspective, Systems Biology is yet another phase in

applying mathematics in biological research, with its own scope and tools that match

the current research questions in biology and reflect the current technology, i.e. the

availability of omics data.

The above is not meant as an account of the history of mathematics in biology, but

rather pointing out some of the milestones in this history related to adopting a

Systems approach. Unsurprisingly there are different views regarding the usefulness

of such approaches in molecular biology (Cornish-Bowden 2005). Some are so

sceptical of Systems biology as to state that “Because it is so broad and has few

recognized boundaries and plenty of funding, it is attractive to anyone who has ever

thought about life and has some relevant technical expertise.” (Werner 2007). Others

on the other hand are overly optimistic and view Systems Biology almost as a

panacea that will usher in a new era of biology, and describe it as a “paradigm shift”

that will cause us to re-examine the philosophical basis of biology and will eventually

lead to answering the question “what is life?” (Westerhoff et al. 2009). Our view

however, is a more pragmatic one; we believe that modelling in its current form is

just another tool added recently to the biologist’s toolbox borne out of need. Note that

60

here we are talking about biological systems in the sense of cell biology rather than

population biology and epidemiology which have used mathematical models for

decades as mentioned above. In cell biology the emphasis of research has changed

over the years, with each phase necessitating new tools. In the past it was mostly

about biochemistry and hence the tools used were concerned with chemical

composition, reaction characteristics and physical properties. Those have led to the

discovery of the double helix which ushered in the era of genetics and molecular

biology in general; one strand of this led with time to the change of emphasis from

metabolites to the genes that code the enzymes catalysing the metabolic reactions.

This necessitated the development of tools that can deal with genes and DNA such as

PCR and related techniques. Again research in genetics led to the study of gene

expression at its different levels, transcription, translation and post translational

modifications of proteins, which led to the development of all the “omics” tools, as

discussed in the previous chapter. Those tools generated large amounts of data, but

because more information does not necessarily mean better understanding, there was

a need for a means to assimilate all this data, investigate the different levels of

functionality and how they interact, and interpret the results. Mathematics came as a

fitting candidate for this job. Of course along all those developments there was a

development in bioinformatics that matured greatly with the proliferation of the

“omics” disciplines. Hence in such a context mathematics, in particular from the

perspective employed in Systems Biology, can be viewed as a tool needed to address

the recent problems that have arisen in biological research. Again in a sense it is

merely a phase in the natural progression of biological research; or to use biological

terms, it was “naturally selected” because it was the “fittest” tool for this particular

period in the “evolution” of biology.

3.5 Modelling the regulation of gene expression

In this section we survey the main mathematical approaches used in modelling the

regulation of gene expression and their conceptual basis. There have been several

excellent surveys in the literature of this topic over the past few years, for example

(Smolen et al. 2000; Wessels et al. 2001; De Jong 2002; Ideker and Lauffenburger

2003; Schlitt and Brazma 2007; Hecker et al. 2009). Hence, rather than simply

transcribe such sources here, we will instead take a more abstract view whereby we

61

will classify the main modelling approaches and for each we will discuss the

underlying assumptions, the advantages and limitations of the resulting models and

their use. This, we believe, is more instructive than the actual mathematical

formulation and its details which can be pursued in any of the pertinent references

cited. In presenting the different modelling approaches we will apply the concepts

discussed above, namely the level of abstraction, the amount of detail and the

mathematical formalism used. Naturally there are several ways to classify such

models; we will consider three such classifications, based on scale, function and

mathematical formalism.

The levels of abstraction adopted in many modelling approaches are based on scale,

i.e. the number of genes studied and included in the model. We remind ourselves that

we want to model the regulation of gene expressions, i.e. under what conditions will

the different genes be expressed and to what level of expression. Those conditions -

normally conveyed by effector molecules - are mediated to the genes through

transcription factors, which are in turn products of other genes. Thus the highest level

of abstraction, i.e. the largest scale, is the one that would include all the regulated and

regulating genes in the organism’s genome, sometimes referred to as the regulatory

genome (Davidson 2006). Some of those genes will be producing transcription

factors in response to external and internal signals as discussed in chapter two, while

others will be the target of those transcription factors. Oftentimes genes would be

controlling and being controlled by other genes in positive and negative feedback

loops, and resulting in an interconnection network of genes. Some genes also regulate

their own expression in a form of auto-regulation (Alon 2007a).

As an example, the gene regulatory network for yeast contains more than two

thousand genes and more than a hundred transcription factors. Some genes are

affected by more than one transcription factors and some transcription factors affect

more than one gene in a network of interactions (Lee et al. 2002). The association

between the target genes and the transcription factors is established through

transcriptome experiments whereby the expression levels of the genes are measured

and those that are above some threshold are clustered together. A time series of

measurements is taken at different points in time and these associations are followed;

persisting ones indicate that the genes in a cluster are co-regulated. Bioinformatics

62

tools and analytical experiments determine which genes produce the transcription

factors and what their target genes are. There are some pitfalls to be aware of in this

approach, firstly that the expression threshold used for clustering is often subjective

in nature and will depend on the researcher and what they are trying to study and their

own bias. Secondly, co-expression does not necessarily mean dependence or

causation, it may merely mean correlation or association. It should also be noted that

transcriptome experiments are performed under specified conditions for the cell, and

consequently different conditions may lead to different interaction networks. This is

in contrast with the genome which is static in that it does not normally change

throughout the lifetime of a given individual of an organism.

So what can be studied at this scale and what mathematical methods can be used? As

indicated above, on an abstract level, a gene regulatory network is an interconnection

network, other examples of which have been mentioned above. The method

commonly used for studying networks is graph theory (Carré 1979). In its most basic

form, a graph is described mathematically by two sets, a set of vertices - sometimes

referred to as nodes - and a set of edges connecting those vertices in pairs. The nodes

can represent any entities the modeller is interested in investigating and the edges

represent the relationships between those entities. Engineering examples of graphs

representing networks include railways, piping, electrical distribution and

computer/communication networks as has been described above. The nodes for those

can be train stations, pumping stations, electrical substations and servers/switches

respectively. The edges can be the appropriate corresponding connections between

those nodes; in the examples above those represent physical connections such as

railroads, pipes or wires, however, generally speaking this need not be the case.

Connections can also represent information flow rather than material flow.

In terms of details included in models represented by a graph, the most basic

information is the network topology, i.e. the connectedness, indicating whether two

nodes are connected or not. Additional layers of information can be added on top of

that, for example directionality, such as the direction of traffic on a road network or

of flow in a piping network, resulting in a directed graph. Furthermore quantitative

information can be included such as distance between two points on a road network

and are indicated as weights on the edges connecting two nodes.

63

When applying the concepts from graph theory to modelling gene regulatory

networks, we find that nodes can represent genes, and edges represent the regulatory

relationships between those genes. Directionality would indicate which gene affects

the other, while a sign on the edge (positive or negative) would indicate whether this

effect is activating or inhibiting, thus providing further details.

As with other application domains, the graph theory approach allows investigating

issues of connectedness which in the context of gene regulatory networks indicate

regulatory effects. For example, analysis by graph theory can reveal whether two

genes are connected through some regulatory route which may be indirect and hence

might not have been detected by past experiments. This can serve to generate

hypotheses that can be tested experimentally. Graph theory can also reveal whether

there is more than one route connecting two genes hence indicating redundancy that

may explain why when some genes are knocked out the cell still carries out the

function believed to be coded by those genes.

Another property of networks that can be investigated using graph theory is the in-

degree and out-degree of a node, which refers to the number of edges with input

arrows to the node and those with output arrows respectively. In the context of gene

regulatory networks the in-degree of a gene (node) indicates the number of

transcription factors regulating it. Similarly the out-degree indicates the number of

genes regulated by the transcription factor produced by this gene. For regulatory

genes, the out-degree is often much higher than the in-degree, indicating that such

genes control many others, while being controlled by a limited number of factors

themselves (Davidson 2006; Alon 2007a). Genes that control a large number of other

genes are known as hubs, an example of which is the gene producing the CAP protein

utilised in sugar metabolism as discussed in the context of the lac operon in the

previous chapter.

A recent fairly exhaustive (and exhausting) coverage of the application of graph

theory in biology is given by Lesne (2006). A more readable account is given by

Alon (2007b), while applications to bacteria and yeast are given by Christensen et al.

(2007) and Lee et al. (2002) respectively. Note that the same graph theoretic concepts

are used in modelling metabolic networks and signal transduction networks as well.

64

Further details can be added to the gene network in the form of probabilistic

information leading to Bayesian networks. The idea is that given the dependency of

some genes on some other controlling genes, one can establish a directed graph in the

form of a decision tree, wherein a parent node would represent the controlling gene

and the children nodes represent the genes controlled by it. The probability of a child

gene being expressed will clearly depend on the probability of expression of the

parent gene leading to conditional probabilities for the different genes in the network

(Friedman et al. 2000; Needham et al. 2006). Note that the terms parent and child in

this context refer to their position in the tree and not to a biological progeny

relationship. The Bayesian approach is intuitive and provides further value to the

graph, but suffers from two main drawbacks. The first is by virtue of its decision tree

topology a Bayesian network does not allow for feedback paths, and the second is

that obtaining the probabilistic information required for the network is not easy,

especially for large networks.

Whilst Bayesian networks do not allow feedback paths between genes, a general

graph does, and this manifests itself in the presence of cycles in the graph. Normally a

cycle involves several nodes (genes) connected in such a way as to form a closed path

in the graph, hence indicating a closed feedback regulatory system. Such cycles or

repeated patterns in general are known as network motifs and they usually involve a

few genes. A closed path implies directionality in that it has a start and an end and

they coincide. It should be emphasised that a motif need not form a closed cycle; it is

essentially a given pattern of interconnection of nodes that form a subgraph of the

main graph. Motifs are sometimes referred to as modules since they can be viewed as

performing separate functions in a modular fashion, as such they represent the next

level of abstraction in studying gene regulation (figure 3-4).

A motif consists of a small number of genes with a certain interconnection pattern

that results in specific dynamic behaviour of this small regulatory network. Two

examples of possible interconnections of three genes are depicted in figure 3-5.

Among all the possible motifs, only a subset occurs in real life gene networks as

verified by experimental results. Alon (2007a) provides a comprehensive graphical

illustration of all possible graphs for three and four genes, and gives in depth analysis

65

of some of the more common ones, in particular the three gene feed forward motifs,

which can be either coherent or incoherent.

Figure 3-4: Levels of abstraction based on network size (hierarchy).

An example of each is depicted in figure 3-5, where the gene a affects both genes b

and c; its effect on gene c is through two routes, a direct one, and an indirect one

through gene b. The motif on the left is a coherent feedforward loop where the effect

of gene a on gene c is the same through either the direct route a-c or the indirect route

a-b-c, both activating c, hence coherent. The motif on the right is an incoherent

feedforward loop where the route a-c activates c while the route a-b-c inhibits it. The

mathematical formalism used for studying the dynamics of motifs is differential

equations or Boolean networks as will be explained later.

Perhaps the most obvious, possibly controversial, assumption regarding motifs is

their very existence. To be able to analyse motifs separately means that they are

assumed not to interact with the rest of the network of which they are part, a notion

that is questioned by some on the basis of potential cross talk between different

motifs (Hartwell et al. 1999; Vilar 2006). The argument usually presented in support

of the existence of motifs is drawn from metabolism where the metabolic network is

Network
(100s – 1000s of genes)

Motif
(Sub-network of few genes)

Operon

or single gene

Abstract

Detailed

66

broken down into independent sub-networks each with a different function, such as

glycolysis and the other different anabolic and catabolic pathways.

Figure 3-5: Two possible motifs involving three genes a, b and c.

The + sign indicates activation of the gene at the head of the arrow by the one at its base, while the –

sign indicates inhibition.

The lowest level of abstraction in the classification based on network size or

equivalently on number of genes considered, is a single gene or operon. Recall from

chapter two that an operon is a collection of functionally related genes that are co-

expressed, and are found in bacteria. This level of abstraction is the one most used,

since it is easier to obtain detailed experimental information and test hypotheses for a

few genes than for a few hundreds. The related studies aim to understand the

regulation of gene expression on a molecular level, i.e. how the different molecules

involved affect expression of the gene investigated. Again the most common

mathematical approach employed is differential equations for quantitative studies,

and Boolean algebra for qualitative ones.

The above classification of the modelling approaches of the regulation of gene

expression is based on network size, and it is clear that the lower the level of

abstraction, the more detail about the individual genes is needed (figure 3-4). This is

normally the case with other classifications as well, the more abstract we get the less

detail we need and vice versa. In this vein, Ideker and Lauffenburger (2003) provide

another classification that can be considered conceptual in the sense that it is based on

the type of information utilised. Their classification is summarised in table 3-1 below.

It should be noted that they are careful to point out that the demarcation lines between

these levels are somewhat arbitrary in nature.

+

+

+

a

c

b

+

-

+

a

c

b

Coherent

Feedforward Loop

Incoherent

Feedforward Loop

67

Table 3-1: Classification of gene regulatory models based on information utilised, according to

Ideker and Lauffenburger (2003).

Level of

abstraction
Information

Mathematical

formalism

Highest

(Abstracted)

Components & Connections Statistical mining

Bayesian networks

 Influences & Information Bayesian networks

Boolean models

 Mechanisms

Markov chains

Lowest

(Specified)

Mechanisms including Structure Differential equations

Schlitt and Brazma (2006, 2007) present yet another classification which is based on

a mixture of functional and structural features of the regulatory system. Again they

stress the two points mentioned above, namely the arbitrary nature of the division

between the different levels of abstraction and that the amount of detail increases the

less abstract the model becomes. They have suggested four levels of detail for

modelling gene regulatory processes, summarised in table 3-2 below.

Table 3-2: Classification of gene regulatory models based on structural and functional

information, according to Schlitt and Brazma (2007).

Amount

of detail
Structure/Function Purpose

Method/Mathematical

formalism

Least Parts list Identify transcription

factors and their

targets

Bioinformatics and

experimental

 Topology Identify network

topology or “wiring

diagram”

Statistical tools

 Control logics Identify regulatory

effects (activation and

inhibition)

Linear functions,

Boolean functions

Bayesian networks

Most Dynamics Describe and simulate

dynamic response

Synchronous Boolean

networks, Differential &

difference equations

One can roughly see the correspondence between the concepts in the three

classifications outlined above as summarised in figure 3-4 and tables 3-1 and 3-2. For

example, the notions of Parts list and topology in table 3-2, components and

connections in table 3-1 and network and motif in figure 3-4 are all related and

convey structural information. Similarly, the concepts of control logics in table 3-2

and influences and information in table 3-1 relate to the signs and directions of

68

arrows in figure 3-5 (which is an elaboration of the middle tier of figure 3-4). Finally,

dynamics in table 3-2 and mechanisms in table 3-1 relate to the mathematical

formulations of regulation at the level of an operon or an individual gene as discussed

earlier.

There are other classifications that are more or less of the same nature as the ones

outlined above. Another classification worth mentioning however, because of its

different perspective and its comprehensive nature is the mathematical classification

presented by De Jong (2002). He surveys the different mathematical formalisms

utilised in modelling the regulation of gene expression and what they can be used for.

The classification criteria and the resulting classification are summarised in table 3-3

below. Three of those, namely static/dynamic, discrete/continuous and

deterministic/stochastic have been discussed above. For the two additional

classifications, qualitative/quantitative is self evident, while coarse/average/fine refers

to the amount of detail that can be described by the corresponding formalism.

Table 3-3: Classification of gene regulatory models based on mathematical formalisms utilised

and their properties, according to De Jong (2002).

Mathematical

formalism

Properties of mathematical formalism

Static/

Dynamic

Discrete/

Continuous

Deterministic/

Stochastic

Qualitative/

Quantitative

Coarse/

Average/

Fine

Graphs Static N/A Deterministic Qualitative Coarse

Bayesian

Networks

Static Both Stochastic Quantitative Coarse

Boolean

Networks

Dynamic Discrete Deterministic Qualitative Coarse

Generalised

Logic Nets

Dynamic Discrete Deterministic Qualitative Average

Differential

Equations

(Linear or

non-linear)

Dynamic Continuous

Deterministic Quantitative Average/

Fine

Stochastic

Master

Equation

Dynamic Discrete Stochastic Quantitative Fine

In table 3-3, Generalised Logic Networks refer to networks where the variables can

take more than two discrete values, hence they are a generalisation of Boolean

69

Networks where the variables take only two values. How this is done, and also the

Stochastic Master Equation will be explained below.

Table 3-3 emphasises the point mentioned earlier about how the different features of

a modelling method are independent of each other (e.g. e.g. dynamic discrete

deterministic, etc). Perhaps the main drawback of this classification is that it does not

say much about the situations in which these methods can be used. Granted, table 3-3

lists the features of each mathematical formalism, but unlike tables 3-1 and 3-2 above,

it does not contain any information about the biological context. However, a modeller

is normally expected to be familiar with the process he is planning to model and

hence should be able to use this table as a guide for choosing the appropriate

formalism.

We have presented several ways in which mathematical models of the regulation of

gene expression can be classified. We now look at how the models themselves can be

formulated. We will consider the two most commonly used formalisms, differential

equations and Boolean functions. We will also consider them at the level of

abstraction in which they are most widely applied, namely the modelling of a single

gene or operon; thus corresponding to the bottom of figure 3-4 and of tables 3-1 and

3-2.

3.6 Modelling the regulation of gene expression using

differential equations

Differential equations represent in general a function of the rate of change of a

variable, in our context here with respect to time. Most of the models of gene

expression at this level of abstraction entail modelling transcription regulation. As

explained in chapter two, transcription of a gene takes place using the enzyme RNA

polymerase, hence it can be viewed as an enzyme catalysed biochemical reaction in

which the gene is the substrate and the mRNA molecule is the product. One way to

study chemical reactions is using rate equations in which the rate of change of

concentration of the chemical species concerned is studied in response to the

70

concentrations of other chemical species affecting the reaction. In a general form this

is given by the differential equation

),....,,...,.(1 nj
i xxxf

dt

dx
 3-1

where the xj’s (with i and j = 1,2, ..., n) represent the concentrations of the different

chemical species and the function f represents the dependence of xi on all the xj’s, and

is in general a non-linear function. In its simplest form, the reaction involves the

conversion of one chemical species into another. Hence

)(xf
dt

dx
 3-2

where x is the substrate, and naturally the rate at which it is consumed is the same as

the rate the product is produced. For a simple enzyme catalysed reactions, the

function f can be represented by the Michaelis-Menten kinetics, given by

xK

xV

dt

dx

m
 max 3-3

where Vmax is the maximum rate achievable, and it occurs when the enzyme is

completely saturated with the substrate, i.e. x is very large. Km is the substrate

concentration at which the reaction rate is half the maximum. Both numbers can be

verified by substituting in the equation above.

Michaels-Menten kinetics are derived based on the simplifying assumption that the

enzyme essentially has one binding site and hence binds one molecule of the substrate.

For an enzyme with more than one binding site, the binding of the substrate to one

binding site may affect the affinity of the enzyme to the substrate (through the other

binding sites). It can either increase the affinity to the substrate or decrease it, i.e.

having either a positive or a negative effect respectively, known as a homotropic

cooperativity. It may also increase the affinity to another molecule or decrease it,

known as a heterotropic cooperativity.

For a protein with n binding sites, normally associated with n subunits of the protein,

and full homotropic cooperativity, i.e. one substrate, the kinetics can be represented

71

by the Hill function. However, in its more general form, the Hill function can be

formulated in a way that encompasses the more general case with different types of

cooperativity.

nn

m

n

xK

xV

dt

dx

 max 3-4

where Vmax and Km have similar interpretations as above, and n is known as the Hill

coefficient, which for the general case can take real values, i.e. not limited to integers.

It is clear that when n = 1, the Hill kinetics reduces to the Michaels-Menten kinetics.

The Hill function is depicted in figure 3-6 for different values of n.

Figure 3-6: The Hill function for different values of n.

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.)

When using the Hill function to model the regulation of the expression of a gene by

an activator x, the left hand side represents the activity of the gene (the rate of its

expression) in response to the change in concentration of the activator. When x is a

repressor, the Hill function takes the form

nn

m

n

xK

xV

dt

dx

 max1 3-5

which after normalisation and algebraic manipulation can be written as

n

mK

x

V

dt

dx

1

max 3-6

72

In general the expression of a gene can be regulated by more than one molecule in

particular transcription factors, in which case f becomes a function of more than one

variable. Furthermore, the different variables relate to different genes, hence we end

up with a network of genes being regulated by the same molecules, some of which

are products of some of the genes involved. This situation can be represented by a set

of coupled differential equations whereby for n variables we get

),...,,(211
1

nxxxf
dt

dx

),...,,(212
2

nxxxf
dt

dx
 3-7

and

),...,,(21 nn
n xxxf

dt

dx

These equations can be written more concisely as a vector differential equation like

below, where now x indicates a vector of variables and f a vector valued function of

those variables and vector valued quantities represented in bold face

)(xf
x

dt

d
 3-8

Which variables to include as factors affecting the expression of a gene will lead to

different models for the same gene, and the same is true with the way those factors

are assumed to exert their effects, as manifested in the function f. In effect this means

that which molecules are included in the model and their assumed mechanisms of

action will determine the model.

These crucial points can be demonstrated by the case of the lac operon explained in

chapter two, which in spite of being well studied has a myriad of models describing

its operation. A basic model would include glucose and lactose, however, the

realisation that it is not those two molecules per se that effect the regulation, but

others derived from them or using them, led to more complicated models. For

example, allolactose - which is obtained by the cleavage of lactose - is the molecule

that acts as an inducer of the lac operon rather than lactose itself. Similarly the operon

73

is activated by cAMP - which is produced in response to low glucose - rather than by

glucose itself.

When considering the effect of lactose in the model, the first thing to do then is the

choice of molecules, as the concentration of lactose outside and inside the cell will

differ since inside the cell it will be broken down into allolactose. Furthermore, for

this breakdown to take place we will not only need the enzyme -galactosidase which

cleaves lactose, but the enzyme galactoside permease as well, which allows lactose

into the cell in the first place. This idea led to experiments with non-metabolisable

inducers. For example Tian and Burrage (2005) take the different concentrations of

the inducer inside and outside the cell into account and produce a model of six

differential equations some of which are non-linear. A much simpler model of only

four differential equations is produced by Vilar et al. (2003) again with emphasis on

the permease. Santillan (2008) developed a comprehensive (and complicated) model

that treats the operator region as three distinct locations (see chapter two) and

considers how lactose interacts with them. He also considered the interaction of CAP

with one of the operator sites, and included in the model the role of the sugars as

energy sources rather than just inducers. This model has eighteen differential

equations and twenty five parameters either estimated or obtained from the literature

and was built on previous work by Ozbudak and others that involved extensive

experimental investigations (Ozbudak et al. 2004; Santillan et al. 2007). Narang

(2006) considers mixed substrate growth in a bioreactor, in particular that with

glucose and lactose, and compares three models that take cell growth into account. A

different approach is taken by Bintu et al. (2005) who formulate a model using

statistical thermodynamics to find the probability of binding of RNA polymerase and

the different transcription factors to the DNA molecule, and of the effector molecules

to those transcription factors. Stochastic effects are also incorporated explicitly in the

model by Stamatakis and Mantzaris (2009). The above is a very limited sample of

models of the lac operon using differential equations, selected to illustrate the

conceptual differences between them and is not meant to constitute an even limited

survey of the topic.

Further complications of the modelling task arise in situations where molecules of a

relevant chemical species are only present in a very low concentration. In such a case

74

the change by only one molecule out of a hand full can cause a large percentage

change in concentration, hence the assumption of continuity on which differentiation

is based would no longer be valid. Continuity is premised on the idea of an

infinitesimal change which does not hold in such a case, and other methods are

needed. One such method uses what is known as the Chemical Master Equation

(CME), which like the statistical thermodynamics model mentioned above is based

on the probabilities of two molecules coming in contact with each other and hence

reacting. See Erdi and Toth (1989), and Wolkenhauer et al. (2004) for a discussion of

these topics. Yet another complication comes from the fact that under normal

conditions the cell is growing, hence effectively the volume in which the molecules

are contained is increasing which means that the concentrations will be decreasing.

Furthermore, the spatial distribution of the molecules in the cell is usually ignored,

where the cell is treated as if it a well-mixed reactor, undermining the accuracy of the

model further (Vilar et al. 2003).

What we want to demonstrate from this exposition is that a system as well studied

and characterised as the lac operon, can still have a myriad of models that differ

greatly in complexity. Even though all of these models are formulated at the same

level of abstraction, that of the regulation of a single operon, they include different

details. Such details are associated with the different molecules included in the model

and the mechanism of their molecular interactions, and also the values of the

parameters of the models. The fact that there are so many assumptions and

uncertainties about the model and its parameters greatly undermines its value as a tool

for quantitative analysis. Indeed, another investigation involving extensive

experiments under different conditions and using two inducers namely, lactose and a

non-metabolisable inducer, carried out by Setty et al. (2003) gave drastically different

values for the two spanning orders of magnitude, but they did give the same trend.

Hence the qualitative results gained from a model are arguably more reliable and

consequently more useful than quantitative ones. This rationale is reflected in a quote

by Fowkes and Mahoney (1994) where they state “It is often the case that the

qualitative insights gained from modelling are more important than any quantitative

results obtained.”

75

In this section we have outlined how a quantitative modelling approach, namely

differential equations can be applied, and demonstrated it conceptually using the lac

operon. This discussion highlighted the problems with such methods which

undermine their quantitative power and hence make the case for a simpler albeit only

qualitative approach to modelling the regulation of gene expression. In the following

section we will consider one of the most widely used qualitative methods, which is

based on Boolean functions.

3.7 Modelling the regulation of gene expression using

Boolean functions

The Boolean approach entails variables and functions that can take only two values,

usually indicated by 1 and 0, hence termed binary. When applied to modelling the

regulation of gene expression, these values can acquire corresponding biological

interpretations. For example a gene can be either expressed or not expressed, i.e. ON

or OFF, a regulatory protein (such as a transcription factor) either activated or

deactivated, and an effector molecule (chemical species) either present or absent. This

is an abstraction from the continuous case by which we assume that each of these

biological entities can be in one of two states ignoring intermediate values, and hence

can be represented by a binary variable. Note that the corresponding binary values do

not in general refer to the actual physical values. For example when the variable

representing the effector molecule is 1, this does not necessarily mean that its

concentration is 1 (of whatever units used), it only means that the concentration is

above the threshold needed to activate the protein. Similarly a value of 0 means that

the concentration is below that which is necessary for activation.

Of course this is an approximation of the actual values of the variables, albeit a

conceptually meaningful one. It can also be considered as a limiting case from a

mathematical standpoint, where for example the Hill function in figure 3-6

approaches a Step function when the Hill coefficient n becomes very large. The Step

function represents a binary variable in that it takes only two values, as evident from

figure 3-6.

76

The Boolean approach can be used to model both static and dynamic relationships

between the variables. By static we mean a fixed mapping between the inputs and the

outputs, in the sense that the same inputs will always give the same outputs

irrespective of the state the system is in. On the other hand in dynamic behaviour, the

output will not only depend on the current input but also on the current state of the

system. Those notions are somewhat different from the ones common in dynamical

systems theory in which they would be referred to as autonomous or time-invariant,

and non-autonomous or time varying respectively. The Boolean approach is

extensively used in the design of digital electronic circuits, also known as logic

circuits, and this is the point of view we will adopt here. For example the concepts

raised above relating to static and dynamic behaviours have counterparts in digital

circuits. Hence it will be helpful to give a brief overview of such circuits on an

abstract level, i.e. not involving implementation details. This is standard logic design

material that can be found in many textbooks on the topic, we have used Wakerly

(2000) and Green (1986) which vary in treatment from the practical (Wakerly) to the

more abstract (Green). We present the material here in an intuitive rather than a

formal fashion and give examples that we believe make it more comprehensible to

those without a background in electronic engineering.

3.7.1 Background on logic design

The terms Boolean, binary, logic and switching are often used interchangeably in

electronic engineering, so are the terms circuit and network. The phrase logic circuit

(or any of its variations from the terms above) normally refers to circuits whose

elements can be in one of two states, either on or off, i.e. binary, such as switches.

When expressed numerically as 1 and 0 respectively, such networks can be

conveniently represented as Boolean functions and analysed using Boolean Algebra,

whose operations are the well known logic AND, OR and NOT.

One way to classify logic circuits is into combinational and sequential circuits (figure

3-7). In a combinational logic circuit, the current output of the circuit is determined

only by the combination of its current inputs. For a sequential logic circuit on the

other hand, the current output depends in general on the current inputs and the current

state of the circuit, which in turn is determined by the past sequence of inputs. Thus,

77

such circuits possess some form of memory functionality that retains previous states.

They also employ some feedback mechanism to facilitate the utilisation of these

states in determining the current output. Thus, in comparison with the discussion

above, combinational circuits represent static behaviour while sequential ones

represent dynamic behaviour.

Figure 3-7: Classification of logic circuits.

We clarify the difference between the two types of circuits (or functions in general)

by the example of a television remote control. When selecting a channel using the

numerical keypad we go directly to the selected channel, for example pressing 5 on

the keypad will take us to channel 5, and this will happen every time we press 5

irrespective of which channel we are currently watching. Hence the same input will

always give the same output, thus representing a combinational logic function. Now

consider pressing the up arrow on the remote control, the channel we go to will

depend on which channel we are currently watching, which as mentioned above

depends on how many times we have pressed the up and down arrows before. Hence

which channel we will end-up at will depend not only on the current input (up arrow),

but also on the current state (the channel we are currently watching), which in turn is

determined by the past sequence of inputs, thus representing a sequential logic

function. In short, the same input may give different outputs depending on the current

state, and alternatively at a given state different inputs may give different outputs,

which is the more common view. These concepts apply to the next state as well (not

Logic Circuits

Combinational Sequential

Synchronous Asynchronous

78

just the current output) meaning that the next state of the circuit will be determined by

the current input and the current state. Such type of sequential circuits is said to have

the Markov property. However, in some cases we might need past states in addition

to the current one to be able to determine the next state. A common example of such a

sequential circuit is the traffic light controller. When the current state is yellow,

information about the previous state - whether it was green or red - is needed in order

to be able to decide on the next state.

It is clear that analysis and design of sequential circuits is more complicated than that

of combinational ones. An additional layer of complexity is introduced when several

such elements or circuits are interconnected, as the changes of their states may be

synchronous (all occurring together) or asynchronous (figure 3-7). Further

complexity is added when the occurrences of some conditions are random in nature;

an example is when a car arrives at the sensor at an intersection to trigger the traffic

light change. Such conditions need to be modelled probabilistically.

In the analysis and design of combinational circuits, the mapping of the inputs to the

outputs is often represented by a truth table, which lists all the possible input

combinations and the corresponding outputs. This is then expressed as a Boolean

function which can be manipulated mathematically using the Boolean algebra rules to

investigate the circuit behaviour. One of the common ways to express a Boolean

function is the Disjunctive Normal Form (DNF), more commonly known as the

canonical Sum of Products (SOP) to engineers. As the name implies, such an

expression contains the sum of product terms, some of which may have negated

variables. In Boolean algebra, a product term also known as a conjunction is an AND

gate (or operator), a sum or disjunctive term is an OR gate and negation is a NOT

gate. Hence any combinatorial circuit can be represented using those three types of

gates (Birkhoff and Bartee 1970), the truth table representation of which is given in

table 3-4 where the first two columns contain all the possible values of the variables

x2 and x1, and the other columns contain the result of applying the operators to those

variables.

79

Table 3-4: The logic operators (gates) AND, OR and NOT.

x2 x1
x2 x1

(x2AND x1)

x2 + x1

(x2 OR x1)
2x

(NOT x2)
1x

(NOT x1)

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 1

1 1 1 1 0 0

Sequential circuits on the other hand have more ways of definition and representation

than combinational ones. Common representations include a state transition table

which relates the current output and next state to the current input and current state,

and state transition diagram which is a compact pictorial representation of the state

transition table. In addition to the logic gates just described, sequential circuits need

components with memory functionality, those are known as flip-flops.

Given a combinational circuit represented by its truth table, (table 3-5), its canonical

sum of product expression (or DNF) is given by the sum of all the possible product

terms (also known as the min terms). Thus for a two variable function, the DNF is

given by

12312212112012),(xxdxxdxxdxxdxxf 3-9

where the di’s are binary constants taking the values 0 or 1 depending on the function

specification, and the over-bar on the variables indicates logic negation (NOT). We

will revisit this expression later in the following chapters.

Table 3-5: Truth table representation of a generic logic function.

min term

number
x2 x1 f (x2, x1)

0 0 0 d0

1 0 1 d1

2 1 0 d2

3 1 1 d3

The reader might wonder why in the tables and equation we write x2 on the left of x1

rather than on the right. This is a matter of convention in which the juxtaposition of

the variables is viewed as a multiple digit number, in our case this is x2x1, and the

80

variable with the smallest subscript (x1 in this case) is placed in the least significant

digit position followed by the next higher one to its left and so on.

Another matter of convention relates to the presentation of the values of the variables

in the truth table, those are normally ordered in ascending order of binary count. This

means that values of the variables when viewed as a multi-digit binary number, count

in binary with the increasing row number. The equivalent count in decimal is given in

the “min term number” column of table 3-5. We mention these two conventions here,

namely order of the variables in the columns and order of their values in the rows, to

avoid early on any distraction by the notation on the expense of the concepts.

3.7.2 Applying Boolean algebra to modelling the regulation of gene

expression

Application of concepts from logic design to the modelling of the regulation of gene

expression is best illustrated by an example. Consider the lac operon discussed in the

previous chapter, in particular table 2-2 in chapter two describing its operation. It is

repeated in table 3-6 below, with the terms High and Low referring to concentration

substituted for by 1 and 0 respectively, similarly with the terms ON and OFF

referring to the expression of the operon.

Table 3-6: Truth table representation of the lac operon.

Glucose

x2

Lactose

x1

Operon

expression

0 0 0

0 1 1

1 0 0

1 1 0

It can be expressed in the disjunctive normal form by a straightforward substitution of

the values of the di’s in the equation to get

1212),(xxxxf 3-10

This translates to the logic statement [(NOT glucose) AND lactose], which means

that for the operon to be turned on (its genes expressed) we must have the condition

81

that there is no glucose and that there is lactose. This agrees with the explanation of

the lac operon in chapter two. Hence representing gene regulatory functions using

Boolean functions is a convenient and compact method that faithfully captures its

behaviour (within the binary assumption of course).

This simple example illustrates a combinational gene regulatory function, sometimes

referred to in the context of gene regulation as a cis-regulatory function (Yuh et al.

1998); more complicated functions are also investigated in the literature (Buchler et

al. 2003). It should be noted that the term “combinatorial” is used in the gene

regulation literature in place of the term “combinational” which is used in the logic

design literature. Hence in the rest of this work we will adopt the former.

Sequential logic is used to model gene regulatory functions that involve interactions

between the different genes forming regulatory networks as discussed above. There is

a large body of research in this area including the early work of Kauffman and of

Thomas among others, and is still an active area of research, (Glass and Kauffman

1973; Thomas 1973, 1991; Kauffman 1993; Faure et al. 2006).

The major advantage of Boolean models is that they are intuitive and are

straightforward to formulate, especially for combinatorial functions. However, like

any other modelling approach, they too suffer from some major shortcomings

(Smolen et al. 2000). The most obvious of course is that they only allow for two

states for the variables considered. Furthermore sequential logic models usually

assume that all the states in the system will be updated synchronously, i.e. they will

all change at the same time, which of course is not realistic. Also the qualitative

behaviours described by the sequential logic models do not always correspond to the

ones predicted by continuous models, in particular in the number of steady states

(Smolen et al. 2000). Allowing more than two states and allowing for asynchronous

state transitions should provide a better approximation to the continuous case.

Whilst allowing for only two states for a variable or a function might be a reasonable

approximation in some situations, it is not so in others. One area of gene regulation

where such an approximation is not accurate is in morphogenesis, which is the

creation of shape and form in (usually) higher organisms. This is achieved by a

82

concentration gradient of chemicals generically known as morphogens where the

highest concentration is at its point of generation and gradually decreases with

distance from that point (Gilbert 2000). At different thresholds of this concentration,

different genes are expressed. Hence it can be considered as a discrete variable but

with more than two values, where the number of discrete values corresponds to the

number of activation thresholds.

Thomas and co-workers addressed this problem by assuming a number of (dummy)

binary variables that is the same as the number of thresholds, with each being 0 when

the original variable is below a given threshold, and 1 when it is above it as depicted

in figure 3-8 adapted from their paper (Snoussi and Thomas 1993). Hence for a

variable with m thresholds, we get m binary variables dividing the range of that

variable into m + 1 regions.

Figure 3-8: A multiple-valued discrete variable represented as a number of binary variables.

 Adapted from Snoussi and Thomas (1993)

In figure 3-8, the continuous variable X has three thresholds denoted by T1, T2 and T3,

which result in three binary variables denoted X1, X2 and X3 dividing the range of the

original variable X into four activation regions. When using such an approach in

modelling combinatorial logic functions, we get an unnecessarily large number of

awkward variables that do not have intuitive meaning and that make both the

formulation and analysis more tedious. There are other methods for modelling

discrete multiple-valued functions that are normally used in the modelling of discrete

X1 = 0

X3 = 0

X2 = 0

X1 = 1

X3 = 0

X2 = 0

X1 = 1

X3 = 0

X2 = 1 X2 = 1

X3 = 1

X1 = 1

0 T1 T2 T3

X

83

event systems, and include Petri nets and finite automata among others which are

mainly applied in computer science rather than engineering (Cassandras 1993). Petri

nets in particular are gaining wider applicability in modelling gene regulation (Comet

et al. 2005; Chaouiya et al. 2008), however they get exceedingly complicated with

scale (Murata 1989).

We will thus develop a multiple-valued state modelling approach that naturally

extends the use of Boolean models beyond two states, albeit with some minor

restriction on the number of states. The method is based on the algebraic structures

known as finite fields, also known as Galois fields, where the binary representation is

a special case of the multiple-valued one. We will also give it other mathematical and

biological interpretations. Hence we first need to introduce some concepts from

abstract algebra, which is the topic of the next chapter.

Before moving to the next chapter, we need to highlight some caveats common to all

gene regulatory models whether qualitative or quantitative. Firstly for multi-cellular

organism (Eukaryotes), most of the models in the past were based on measurements

in-vitro, i.e. when the cell is not within its organism, yet they are claimed to represent

the situation in-vivo, i.e. when the cell is within the organism. Recent advances in

analytical techniques are starting to tackle this anomaly. Secondly for single cell

organisms (Prokaryotes and Eukaryotes), measurements are made on communities of

cells, yet they are assumed to represent the situation for each individual cell, an

assumption that is questionable on the basis that the measurements actually represent

an ensemble (spatial) average (Vilar et al. 2003; Wolkenhauer et al. 2004).

Furthermore, when modelling regulation at some level, say transcription, the effect of

molecules at other regulatory levels e.g. translation is ignored (see figures 2-6 and 2-7

in chapter two). Whilst sometimes justified by the difference in the speed of response

of the different molecular processes, known as the quasi-steady state assumption, it

does nonetheless undermine the accuracy of the models. Indeed there is a growing

trend towards multi-scale modelling where the effects of the processes at more than

one scale are integrated in one model (Arnold et al. 2005).

84

3.8 Summary and Conclusion

This chapter covered two main topics, the first relates to modelling in general and the

second to the modelling of the regulation of gene expression in particular.

In the first part we introduced some theoretical concepts underlining modelling and

some practical considerations to take into account when building models. From this

part we concluded that the accuracy of a model is constrained by both the

simplifications of the system behaviour in order to build the model and the

mathematical formalism used to build it. Both of those issues are determined by the

decisions a modeller makes when building a model, such as deciding on the level of

abstraction of the treatment and the amount of detail to include in the model in

addition of course to the mathematical formalism to use. In this part we also briefly

discussed different classifications of models. We also gave a brief synopsis of the

evolving role of mathematical modelling in biology. The main points from the first

part of this chapter are summarised at the end of sections 3.2 and 3.4.

The second part of this chapter was concerned with applying the concepts introduced

in the first part, to the modelling of the regulation of gene expression. In particular we

classified models based on different criteria such as the scale of the genetic network

being modelled, the functions and information involved and other hybrid criteria, and

demonstrated a loose equivalence between the different classifications. Up to this part

all the treatment was conceptual in that it did not contain equations, the mathematical

nuts and bolts. The main ideas are summarised in figure 3-4 and tables 3-1, 3-2 and 3-

3. In the remainder of the second part of this chapter we presented two types of

models quantitative and qualitative. For each we discussed the most common method,

namely differential equations and Boolean functions respectively and discussed their

application to the lac operon, the well studied bacterial regulatory system. This

demonstrated both the advantages and drawbacks of each method. Differential

equation models have the advantage of providing quantitative information, however,

this is undermined by the many uncertainties involved in building the model. These

include the choice of molecules to include in the model and their mechanisms of

interactions, and the unavailability of some parameters which thus have to be either

estimated from the data or assumed. In addition, they often ignore spatial distribution

85

of the molecules and delays in responses. These shortcomings call for the use of

qualitative models among which Boolean functions are the most popular. However, in

spite of their simplicity and intuitive appeal Boolean functions also suffer from

shortcomings, most notably that they are limited to only two values for the variables.

This has prompted us to develop a method (to be presented in chapter five) for which

the binary case is a special case of the multiple-valued one.

Thus the outcome to take forward from this chapter is that there is a need for another

method for modelling gene regulatory functions that can represent them as discrete

multiple-valued functions. This method is based on concepts from abstract algebra

and functional analysis. Hence we introduce those in the next chapter.

86

Chapter 4: Algebraic Structures

4.1 Introduction

The purpose of this chapter is to introduce two mathematical concepts that will be

utilised in later development of a discrete modelling formalism for the regulation of

gene expression, namely finite fields and vector spaces. We have indicated in the

previous chapter that the concentration of effector molecules that activate proteins

and the activation states of those proteins, in addition to the expression levels of

genes can all be modelled qualitatively by discrete states. The simplest case is two

states leading to the Boolean formalism, but they can also have more than two states

requiring a different mathematical approach. In this chapter we introduce the

mathematical background needed for developing such an approach.

The presentation philosophy here mimics that in chapter two. In chapter two when we

discussed the regulation of gene expression, we started by introducing some

fundamental concepts in cell biology and then built the other concepts of the chapter

on them. Here too, we will start by reviewing some fundamental concepts in algebra

such as a set and a binary operation with its different properties, which we will then

use to introduce some of the common algebraic structures. An algebraic structure is

essentially a set with one or more binary operations defined on it the properties of

which determine the resulting algebraic structure. We will briefly examine algebraic

structures with one binary operation and discuss a representative example namely

groups. We will also consider algebraic structures with two binary operations mainly

fields, with finite fields as a representative. We will then use fields to introduce

vector spaces which are abstractions of the familiar Euclidian space; we will abstract

further by considering function spaces. We are mainly interested in discrete structures

here, but most of the treatment applies to the continuous case as well.

Many of the concepts discussed in this chapter are already familiar to engineers,

albeit in a less abstract form. Hence, just as chapter two was an introduction to gene

expression for the non-biologist, this chapter is an introduction to abstract algebra for

87

the non-mathematician. Since this work is presented to an engineering school,

engineers are ultimately the intended readership. Consequently our approach in

presenting the material here will be an intuitive one that demonstrates the concepts by

concrete examples rather than by theoretical proofs and prolonged derivations

common in mathematical treatment. Thus most of the sources used for this chapter

are engineering ones and hence related to applications rather than theory. Among

those is the book by Davio et al. (1978) which covers most of the material in this

chapter, but is unfortunately not very readable and does indeed have such a reputation

in the literature. Another book that has been consulted frequently when writing this

chapter is that by Gallian (1994). Other books that have also been useful are those by

Birkhoff and Bartee (1970), Rosenbrock (1970), Naylor and Sell (1982), and Strang

(1988). It is important to remember that the purpose here is not to present the

mathematical results for their own sake, but in order to utilise them in later

development.

4.2 Some fundamental concepts in algebra

Modern algebra, also known as abstract algebra because of its abstract approach,

deals with sets of objects and binary operations on those sets, unlike classical algebra

which is concerned with numbers and formulas and the arithmetic operations on them

(Birkhoff and Bartee 1970). Modern algebra is also concerned with abstract algebraic

structures and their properties, both of which are in essence abstractions of the more

common algebraic notions related to numbers. Hence the concepts presented here are

abstractions of those that most engineers are already familiar with.

One of the most fundamental concepts in abstract algebra is that of a set, which is

merely a collection of entities. The members of the set - known as its elements – do

not necessarily have to represent numbers, as they can indicate any abstract elements

that usually share some common property. For example the set of genes or proteins or

regulatory functions and so forth. The elements of a set can be discrete, termed

countable, such as the set of integers, or may form a continuum and hence

uncountable, such as the set of real numbers. The number of elements in a set, known

as its cardinality, can be finite or infinite. Clearly only countable sets can have a finite

number of elements.

88

A binary operation can be defined on a set, whereby binary means that it acts on two

elements of the set at the same time. It is essentially a rule that involves the two

elements to give another element. Examples of binary operations on integers and real

numbers include addition and multiplication. If the outcome of the binary operation is

also an element of the set, the set is said to be closed under this operation; such

property is termed the closure property. As an example, the set of integers is closed

under multiplication, but not under division because the quotient of the division of

two integers is not always an integer, and hence will not belong to the original set. It

is worth mentioning that the notion of closure is often embedded in the definition of a

binary operation. In such a case a binary operation is defined as a function that

assigns to each pair of elements of the set an element of the same set. According to

this definition, addition is considered a binary operation on the integers while division

is not. In our treatment here, however, we will consider closure as a property rather

than as part of the definition, as we believe this will make it easier to explain some of

the algebraic concepts involved.

Depending on the properties that the set has under the given binary operation, one

gets different algebraic structures (Gallian 1994). Such properties are well known and

include the associative property, the existence of an identity, the existence of inverses,

and the commutative property. As a review of those properties, consider the elements

a, b and c to be any arbitrary elements belonging to the set of real numbers, and

consider the binary operation to be normal addition. Then those properties can be

described as follows

1. Closure property

a + b is an element of the set

2. Associative property

a + (b +c) = (a + b) + c

3. Existence of an identity (denoted by 0)

a + 0 = 0 + a = a

4. Existence of an inverse for an element a of the set

There exists an element, often denoted “-a” such that

a + (-a) = (-a) + a = 0, the identity of addition

5. Commutative property

a + b = b + a

89

We have used addition only as an instance of a binary operation and the set of real

numbers as an example of a set. The properties have the same definitions for other

binary operations and other sets, although possibly with different notations.

The reader might be tempted to ask “So what? Don’t those properties always hold?”

It is here where we need to resort to abstraction to appreciate that this is not

necessarily the case. For example, it was pointed out above that the set of integers is

not closed under the binary operation of division. Similarly, the associative property

does not hold for division for the set of real numbers as demonstrated by the quotient

10/(5/2) = 10/(2.5) = 4, which is different from the quotient of (10/5)/2 = 2/2 = 1. For

the identity property, consider the set of even numbers under normal multiplications,

it does not have a multiplicative identity because there is no number in the set that

satisfies property 3 above (for multiplication). For the existence of an inverse,

consider the set of say 2 × 2 matrices under matrix multiplication, not all such

matrices have an inverse as singular matrices will not. Similarly matrix multiplication

is not commutative. The key point in these counter examples is to consider the idea of

a set and a binary operation in a wider sense than that of the usual set of real numbers

under the normal arithmetic operations.

The more properties a set has under the operation considered the progressively richer

the algebraic structure gets. It is possible to define two binary operations on the same

set in which case even richer structures emerge. We will consider in the next sections

structures with one and with two binary operations,

4.3 Groups

In this section we consider algebraic structures with a single binary operation defined

on them, in particular structures known as groups, but we will have a brief look at

simpler structures first.

Among the five properties of a binary operation outlined above, when only the first

two are met, the algebraic structure is known as a Semigroup (Rosenbrock 1970).

When the third property is met as well, we get a Semigroup with identity, more

commonly known as a Monoid (Birkhoff and Bartee 1970), (table 4-1). If the first

90

four properties are all met, the algebraic structure is known as a Group, in such a case

the identity is unique and furthermore, each element of the Group will have a unique

inverse. Groups constitute one of the most important algebraic structures and we will

discuss them further here. It should be noted that when the binary operation is also

commutative, i.e. property 5 is met, we get commutative versions of each of the

structures above, namely a commutative semigroup, a commutative monoid and a

commutative group. The term Abelian is often used interchangeably with the term

commutative, in which case we say for example an Abelian Group.

Table 4-1: Algebraic structures with one binary operation.

An x indicates that the property applies.

Algebraic

structure

Property

Closure Associative Identity Inverse

Semigroup x x - -

Monoid x x x -

Group x x x x

There are myriad examples of groups such as the set of real, rational or complex

numbers under addition, all of which represent Abelian groups. Those sets are

continuous; however discrete sets also form groups such as the set of integers under

addition. Similarly the set of real, rational and complex numbers but without zero

represent Abelian groups under multiplication whereby the identity is 1, and where

zero is excluded because it does not have a multiplicative inverse. However, the set of

integers (excluding zero) is not a group under multiplication because the

multiplicative inverse of an integer is not an integer (except for 1). If we abstract from

these common examples, we find that the set of all square matrices of dimension two

for example form an Abelian group under addition. They do not form a group under

multiplication however, because singular matrices will not have an inverse (they

behave like zero does for real numbers). If the set is restricted to non-singular

matrices then we get a group, but it is not Abelian because matrix multiplication is

not commutative as has been indicated in the previous section.

The above examples involved number systems or matrices, however, as mentioned

earlier abstract algebra is not limited to numbers but addresses different types of

objects. To demonstrate this, we now give an example adapted from Gallian (1994) to

illustrate the above concepts for a more abstract case. Figure 4-1 depicts a square

91

followed by its clockwise rotation by the angles 0
o
 (i.e. no effect), 90

o
, 180

o
 and 270

o

from its original position, as indicated by the positions of the four letters A, B, C and

D near its corners. Each rotation is denoted by the letter R and the angle of rotation as

a subscript. Now form the set S = {R0
o
, R90

o
, R180

o
, R270

o
} and define the binary

operation as the composition of two elements of the set, i.e. the outcome of the binary

operation of two consecutive rotations is the resultant rotation.

Figure 4-1: A square and the effect of its rotations by the angles 0
o
, 90

o
, 180

o
 and 270

o
 from its

original orientation.

It is clear from figure 4-1 that the identity of this binary operation is the rotation R0
o

as it does not affect the outcome of any other rotation, e.g. R0
o
 R90

o
 = R90

o
. It can also

be verified from the figure that R90
o
 and R270

o
 are the inverses of each other because

they cancel out the effect of each other, i.e. the inverse undo what the original

operation does. So a rotation by 90
o
 followed by a rotation by 270

o
 results in a

rotation by 360
o
 which is equivalent to the original figure without rotation, i.e. R0

o
,

the identity of the binary operation. Also each of R0
o
 and R180

o
 is the inverse of itself,

hence every element of the set has an inverse. The associative property can also be

verified by inspection. Thus the set S with the binary operation as defined does

indeed form a group. In fact it is an Abelian group since the resultant of any two

rotations does not depend on the order they are carried out. This group is known as

the Cyclic Rotation group of the square in the plane.

The binary operation on the elements of the set is commonly represented in a tabular

form known as the operation table or Cayley table, where the operation is indicated in

the top left hand corner of the table and the top row and left column contain the

elements of the set. The table shows the outcome of the binary operation on the

elements of row i and column j in the table. The operation table for the example

above is given by table 4-2, where for example R180
o
 (third row of the rotations)

R0
o

D

#

A B

C C

D A

B B

C D

A A

B C

D D

#

A B

C

R90
o
 R180

o
 R270

o

92

followed by R90
o
 (second column of the rotations) yields R270

o
 (the cell at the

intersection of the relevant row and column). Note that the order is important since

not all groups are Abelian. For the particular group in the example above,

examination of table 4-2 demonstrates all the properties of an Abelian group, namely

properties 1 to 5 in the previous section.

Table 4-2: Operation table for the cyclic rotation group of the square.

Composition

of Rotations
R0

o
 R90

o
 R180

o
 R270

o

R0
o
 R0

o
 R90

o
 R180

o
 R270

o

R90
o
 R90

o
 R180

o
 R270

o
 R0

o

R180
o
 R180

o
 R270

o
 R0

o
 R90

o

R270
o
 R270

o
 R0

o
 R90

o
 R180

o

We can extend the set S to include reflection H around a horizontal axis passing

through the midpoint of two sides, a similar reflection V around a vertical axis and a

reflection around each of the diagonals denoted D1 and D2. We again define the

binary operation as the composition of two operations, any two of the different

reflections and rotations. We still get a group, known as the Dihedral group of the

square (also known as its group of symmetry), although now this is not Abelian

because not all the elements commute. For example a reflection followed by a

rotation is in general not the same as a rotation followed by a reflection; the reader

can verify this by attempting such compositions on figure 4-1. The two groups

described here are instances of a more general class of groups known as the groups of

symmetry of lattices which are commonly used in crystallography and

stereochemistry.

This example was particularly chosen to demonstrate several concepts. It is meant as

an exercise in abstraction, to free the mind from restricting algebraic structures to

numbers and mathematical operations. As a consequence, it showed the elements of

the set as rotations, but they may as well be anything else, for example electronic

components, genes or proteins, with the binary operation defined according to the

context. Furthermore, it demonstrates that the set underlying a group can have a finite

number of elements and not necessarily infinite like the set of integers. This last point

serves as a motivation for the idea of modular arithmetic discussed next.

93

4.3.1 Modular arithmetic

Following our presentation philosophy, we will start with a concrete example and use

it to extract the general ideas. Consider a finite set of integers say the set of four

integers {0, 1, 2, 3}, if we use ordinary integer addition as the binary operation we

will get numbers that do not belong to the set, i.e. the set will not be closed under

normal addition. For example whilst 2 and 3 are elements of the set, their sum 5 is not.

To overcome this anomalous situation we re-define addition using what is known as

modular arithmetic. In modular arithmetic an integer is represented by the remainder

of its division by some number (also an integer), and the normal arithmetic operations

are performed with respect to that number. In the case of our example here this is

performed with respect to the number of elements in the set, i.e. four, thus any

number greater than 3 will be represented by the remainder of its division by 4. For

example 4 will be represented by 0 because there is no remainder for the division, 5

will be represented by the remainder 1 since 5/4 = 1 + 1/4, and so on.

Formally an integer a divided by another integer m gives a quotient q and a remainder

r (we restrict our discussion to positive integers), that is

m

r
q

m

a
 4-1

where the remainder r will always be less than m. The above equation can be

rewritten as

rqma 4-2

This form is used to define the modular representation of integers, which means that

an integer a modulo another integer m, is represented by an integer r which is the

remainder (or residue) of the division of a by m and denoted by

rrqmma)(mod 4-3

 a is said to be congruent to r modulo m. It follows that all integers with the same

remainder are considered equivalent from the point of view of modular representation.

94

This representation can be used to perform arithmetic operations on finite sets of

integers, where addition and multiplication are now defined using the modular

representation of the elements of the set. In such a modular arithmetic we have

))(mod()(mod)(mod

))(mod()(mod)(mod

mbambma

mbambma

 4-4

When we consider the example of the set {0, 1, 2, 3} above, we find that now with

modular representation 2 + 3 gives 1 (since 2 + 3 = 1 mod 4) which is an element of

the set. This is indeed the case for all the elements of the set as indicated in table 4-3,

hence the set is now closed under modular addition.

Note that a similar notion of modularity is used in clock representation whereby the

hours are calculated from the minutes modulo 60. A demonstration of that is in bus

schedules where bus arrival times are indicated by a certain minute after the hour,

irrespective of what the hour is, hence considered equivalent. Note also that the idea

of re-defining arithmetic operations to suit a different context is not totally alien to

engineers since it is used in defining the multiplication of complex variables for

example, where the phase in addition to the magnitude is involved in the

multiplication.

Table 4-3: Operation table for addition modulo 4 on the set {0, 1, 2, 3}.

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

A close inspection of table 4-3 reveals that the set in question, under modular addition

actually forms an Abelian group. The five necessary conditions are met, closure has

just been demonstrated, associativity and commutativity are evident by inspection of

table 4-3, and the identity is 0, only the inverses might not be obvious. To clarify that,

when we look at every row (or column) of the table we find that the identity 0 appears

once, the two elements at whose intersection this occurs are inverses of each other.

From table 4-3 we can see that 1 and 3 are inverses because 1 + 3 = 3 + 1 = 0 mod 4,

while 2 is its own inverse. Further inspection of table 4-3 indicates that it is identical

95

in structure to table 4-2, the operation table of the cyclic rotation group, except for a

change of notation, i.e. the elements of the set and the binary operation have different

names, but same properties. This is a further demonstration of the power of

abstraction in that it reveals the commonality among markedly different applications.

As a matter of notation, Zm refers to the set of the first m integers {0, 1, …, m-1},

with addition and multiplication defined modulo m. Whilst this set is always a group

under modular addition, this is not always the case under modular multiplication. For

example table 4-4 shows the multiplication table for the set {0, 1, 2, 3} discussed

above. When considering a multiplicative group we always exclude 0 because it has

no multiplicative inverse. When we consider the rest of the elements of the set we

find that the multiplicative identity 1 does not appear in the row or column of 2

indicating that 2 has no multiplicative inverse. Thus the set fails one of the conditions

for a group, and hence is not a group. The exception for this case is when the number

m is a prime number (a number divisible only by 1 and itself), in which case the set

Zm (excluding zero) forms a group under modular multiplication, since in such a case

every element will have an inverse. We will not go into the details of this here.

Table 4-4: Operation table for multiplication modulo 4 on the set {0, 1, 2, 3}.

× 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

It is clear from this discussion that the properties relate to the binary operation and are

not inherent to the set, since the same set may form a group under one operation and

not under another.

4.4 Finite Fields

When two binary operations are defined on a set, the above properties will need to

apply to each of them separately, moreover the relation between the two operations

introduces an additional level of richness to the algebraic structure. Depending on

96

which properties are met by the binary operations and how they relate to each other

we get different algebraic structure, just as with the case of a single binary operation.

Consider a set with two binary operations defined, that we will generically call

addition and multiplication, bearing in mind that this is only a name and does not

necessarily mean that they correspond to the usual addition and multiplication. We

can have several cases regarding the properties of the two operations, however we

will only consider the two most important ones: a Ring and a Field.

For a set to constitute a ring under the two binary operations addition and

multiplication - irrespective of how they are defined - the following conditions must

be fulfilled (recalling that zero is always excluded when considering multiplication)

 The set forms an Abelian group under addition

 The set forms a semigroup under multiplication

 Multiplication is distributive over addition, i.e. for a, b and c elements of the

set, we have

a.(b +c) = a.b + a.c

When the semigroup is commutative we get a commutative ring. Examples of rings

include the set of real, rational and complex numbers under normal addition and

multiplication. Since a ring does not require a multiplicative inverse for elements of

the set, it follows that the set of integers under the same operations is a ring, also the

set of square matrices of a given dimension under matrix addition and multiplication

is a ring, albeit a non-commutative one. Another very important type of rings is the

polynomial ring, i.e. the set whose elements are polynomials and where the binary

operations are polynomial addition and multiplication. The ring of integers and the

ring of polynomials have corresponding properties and roles especially in building

finite fields. The examples just mentioned have infinite number of elements, however

there are rings with a finite number of elements as well, such as the set Zm with

modular addition and multiplication discussed above. The set Z4 whose operation

tables are presented in table 4-3 and 4-4 above is an example of the finite case. The

multiplication table of the set, table 4-4, reveals one of the problems with rings

namely that they can have a zero divisor. This means that there can be two non-zero

elements in the set whose product is zero, this is the case with the number 2 as is clear

from table 4-4. This anomalous situation restricts the usefulness of rings, in particular

97

in solving algebraic equations. Hence there is a need for a more powerful algebraic

structure that alleviates this problem, and this is the role of fields.

For a set to constitute a field under addition and multiplication (however we define

them), the following conditions must be fulfilled:

 The set forms an Abelian group under addition

 The set forms an Abelian group under multiplication

 Multiplication is distributive over addition as explained above

With their additional properties fields enable solving algebraic equations, and of

particular importance among those are polynomials. The simplest polynomial is that

of degree one, i.e. a linear equation given by

cbax 4-5

where a, b, c and the possible values of x all belong to some field

To be able to solve this equation, we need first to have an additive inverse for b,

which we will indicate here by (-b), to get

)()(bcbbax 4-6

)(bcax 4-7

We then need a multiplicative inverse for a, that we will indicate by a
-1

, to get

)]([11 bcaaxa 4-8

)]([1 bcax 4-9

and hence obtain the value of x.

This simple example demonstrates why fields with their property of the existence of

both additive and multiplicative inverses for their elements, are needed for the

solution of linear equations. We have also used the associative property with both

addition and multiplication.

Note that in the above analysis we did not place any conditions on the field in

question, hence it applies to any field. Whilst the sets of real, rational and complex

98

numbers under normal addition and multiplication all form fields, the set of integers

does not as it does not form a group under multiplication as discussed earlier. But

how about a set with a finite number of integers, for example the set Zm discussed

above, does it form a field under modulo m addition and multiplication? The answer

depends on the value of the integer m. We have demonstrated above that Zm is always

an Abelian group under modular addition so this part of the definition of a field is

fulfilled. As for multiplication we have indicated that Zm is a group only when m is a

prime. It can also be proved that modular multiplication is distributive over modular

addition. Hence we can conclude that a set with a finite number of elements is a field

under modular addition and multiplication when this number is a prime. Such a field

is known as a Galois field and denoted by GF(p) where p is a prime number which is

the number of elements of the field (also known as the order of the field), and where

the operations on the field are defined modulo p. The definition of a finite field also

applies when the order of the field is a power of a prime, in which case the field is

denoted by GF(p
n
) where n is a positive integer. GF(p

n
) is known as the extension

field of the base field GF(p), but now addition and multiplication for the extension

field are defined differently from the modular definition of the base field.

In general a finite field is denoted by GF(q) where q can be either a prime or a

positive integer power of a prime. The elements of the field and the operations on

them are defined using polynomials on the field, but we will not elaborate on that

here as the treatment becomes too abstract and bears no direct impact on the

remainder of this work. Finite fields and polynomials on them are used extensively in

coding theory, part of communication engineering, we refer the interested reader to

some of the classic texts in that area which we have used, for example (Berlekamp

1968; Lin and Costello 1983; McEliece 1987).

We have demonstrated the theoretical importance of fields, in particular their

fundamental role in algebra and that is in solving equations, but why are they

important to us here, in the context of this work? There are two reasons for that, both

relate to our application of modelling the regulation of gene expression. Of special

interest to us in this context are finite fields and in particular functions defined on

them. Before we discuss those however, we need to briefly review another

fundamental concept in mathematics, that of a function.

99

A function in its basic form is a mapping from one set called the domain of the

function to another set called its codomain, and is denoted by f: A B, where A is

the domain and B the codomain. The function assigns to each member of the domain

a single element in the codomain. The domain and codomain can be the same set, in

which case we get f: A A. Engineers are familiar with the concept of functions

where the domain and codomain are usually the set of real numbers, so we get

functions such as f(x) = x
3
, or f(x) = sin x. However, in line with our abstract approach

in this chapter, the sets need not represent number systems and the function does not

have to be a mathematical formula. For example consider the set of students in a class

as the domain of the function; define a function that assigns each student to a gender,

so the codomain will be the set of two elements {Male, Female}, another function on

the same set of students can assign to each student a nationality category say {UK,

EU, International}.

The domain of a function can comprise more than one set, for example we can then

define a function that determines the funding options for a student based on their

gender and nationality category. This last function would have those two sets as its

domain and the set of funding options as its codomain, indicating that the function

can map the product of several sets, known as the Cartisian product of those sets, to a

single set. When we map the Cartisian product of two sets X and Y to a third set Z,

we indicate this by f: X×Y Z, where members of the domain are represented by (x,

y) known as an ordered pair. The reader may have deduced where we are heading

with this line of thought, and that is a binary operation as defined above is essentially

a mapping from the Cartisian product of a set by itself, to itself (when the operation is

closed), denoted by f: X
2
 X. The adjective “ordered” in the phrase “ordered pair”

is important because not all operations are commutative, hence the function may give

a different value for (x, y) than for (y, x). Note that the notion of a binary operation

can be generalised to an n-ary operation which is an operation involving n members

of a set (or in general members from n sets).

Functions can be defined on any algebraic structure including the ones outlined above.

Furthermore, we can have a set whose elements are functions and whose binary

operations are defined accordingly. For example we can define the binary operation

as function composition as we have effectively done with the rotation group of the

100

square above. This is common in mathematics and loosely means that the codomain

of one function is used as the domain of the other function. It is interesting to note

that when those functions map a set to itself, then the set of such functions under the

binary operation of function composition forms a monoid, an algebraic structure

discussed above. The identity of the monoid in this case is the identity function which

maps each element of the domain to itself.

Now we return to our motivation for studying fields, and the first reason for

discussing them here, is restricted to finite fields and relates to functions defined on

them. One of the powerful properties of a finite field is that any function defined on it

can be represented by a polynomial on the field of degree less than the order of the

field.

A polynomial f(x) of degree n over a field F is given by

k
n

k

k xaxf

0

)(4-10

n

n xaxaxaa ...2

210 4-11

where the coefficients ak and the values that x can take belong to F, hence the values

of f(x) will also be in F. This is a powerful property that we will use in our

development of a method for modelling the regulation of gene expression in the next

chapter.

It is worth mentioning at this stage that Boolean algebra which was discussed in the

previous chapter in the context of qualitative modelling of the regulation of gene

expression, is also an abstract algebraic structure consisting of a set with two binary

operations. Those are the usual AND and OR operators sometimes referred to as

Boolean product and Boolean sum respectively. One of the properties of these

operations that may appear unfamiliar to some engineers is that they are both

distributive over each other thus giving (for a, b and c Boolean values)

a.(b +c) = a.b + a.c 4-12

a + (b.c) = (a + b).(a + c) 4-13

101

Another counterintuitive property is that known as idempotency, given by

a +a = a 4-14

In addition Boolean algebra has a unary operation, i.e. an operation acting on only

one element, which is the operation of complementation denoted by NOT. Such a

structure is known as a distributive complimented lattice. We will not go through

further details here, but the interested reader can follow the theoretical aspects of

Boolean algebra in Birkhoff and Bartee (1970) and the applied aspects, especially to

logic design in Wakerly (2000).

We have mentioned earlier that there are two reasons why we are interested in fields

in this work; the first has to do with functions on finite fields. The second reason is

their role in defining vector spaces, which we explore further in the next section.

4.5 Vector Spaces

A vector space is a generalisation of the concept of the three dimensional Euclidean

space, albeit not limited to three dimensions. As is well known to all engineering

students, a vector has a direction and a length. The direction of the vector is

determined by its co-ordinates; an n-dimensional vector v will have the co-ordinates

(a1, a2,, an), where the ak’s belong to some field. Note that, as mentioned earlier,

the order of the ak’s is important, for example the three dimensional vector (a, b, c)

will in general have a different direction from (a, c, b) even though they will both

have the same length. The length of a vector can be scaled by a factor, appropriately

known as a scalar and belongs to the same field as the coordinates.

The key point to note from this description of a vector, which is not normally stressed

in engineering courses, is that the numbers representing the coordinates and the scalar

belong to a field in the general sense explained in the previous section. Indeed, this

field is not limited to the field of real numbers as is commonly practised in

engineering courses, but can be any field as discussed above including a finite field,

with the mathematical operations being those of the field considered. This leads us to

the issue of what sorts of operations can we perform on a vector, and consequently

what sort of algebraic structure emerges?

102

In line with the abstract approach employed in this chapter, we introduce an algebraic

structure known as a vector space. As with any other structure it consists of a set with

binary operations defined on it. In this case we have a set V of vectors, where each

vector v consists of an n-tuple, i.e. an ordered sequence of n numbers (a1, a2,, an)

from some field F as just mentioned. The elements of F are known as scalars and the

binary operations of F apply to them. We also define two binary operations on the set

V

 Vector addition defined as the component-wise addition of two vectors. This

binary operation forms an Abelian group on the set V.

 Scalar multiplication defined as multiplying a scalar by every component of the

vector, and satisfying the following properties were a and b are scalars and u and

v are vectors (as a matter of convention, letters at the beginning of the alphabet

indicate scalars and those towards the end indicate vectors and presented in bold

face)

1. a (b v) = (a.b) v

2. a (u + v) = a u + a v

3. (a + b) v = a v + b v

4. 1 v = v

It should be stressed that this operation involves a scalar and a vector, unlike the

well known operation of the dot product of two vectors also commonly referred to

as scalar multiplication.

In an abstract sense, and using the notation introduced earlier, vector addition is a

mapping f: V×V V, and scalar multiplication is a mapping g: F×V V

Note that in stating the above properties we have ignored some of the subtleties

involved, where we used the same addition symbol for two different operations,

namely vector addition of property 2 and addition in the field F of property 3. For

multiplication we used the dot for the multiplication of two scalars as on the right

hand side of property 1, and juxtaposition for the multiplication of a scalar and a

vector as on its left hand side.

Since the vector space is closed under vector addition and scalar multiplication, it

follows that the sum of any number of (scaled) vectors, known as their linear

combination, is also a vector in the space. Conversely it can be proved that there is a

103

set of vectors {v1, v2,, vn} in the vector space, whereby any vector v in the space

can be represented as a linear combination of these vectors, i.e. it can be expressed as

nvvvv nccc 21 21 4-15

where the ck’s are scalars belonging to the field F.

Such a set is said to span the vector space, and when it is the smallest set (i.e. the one

with the least number of vectors) with this property, it is known as the basis of the

vector space. An important condition on this set is that its vectors are linearly

independent, meaning that they can never be linearly combined to give zero. In other

words, we can not have

021 nvvv nccc21 4-16

unless all the ck’s are zero

A basis set is the maximal linearly independent set in the space, meaning that any set

with more vectors will not be linearly independent. It is also the minimal spanning set,

meaning that any set with fewer vectors will not span the entire vector space. The size

of the basis set, i.e. its number of elements is the dimension of the vector space.

As an aside, to avoid confusion we highlight a matter of notation in the use of

brackets. The parentheses or round brackets (,) are used to enclose the components or

coordinates of a vector, while the braces or curly brackets {, } are used to enclose

elements of a set, whatever that set is. So for example, the n-tuple (a1, a2,, an)

represent the components of an n-dimensional vector, while {v1, v2,, vm}

represents a set of m vectors, each consisting of an n-tuple as above.

Recall that any vector in the Euclidean space can be represented as a linear

combination of its coordinates indicating that they are linearly independent. But they

also have an additional property and that is they are perpendicular, more formally

known as orthogonal. It follows that any set of orthogonal vectors is linearly

independent but not the vice versa. The condition for orthogonality is well known to

104

engineers, basically that any two vectors are orthogonal if their dot product (or more

generally the inner product) is zero.

The inner product is a binary operation on the set of vectors that assigns a scalar

value from the underlying field F to the product of two vectors, i.e. it is a function

given by h: VxV F. We will not go through the formal properties of the inner

product. One example of an inner product is the dot product, and for two real valued

vectors a = (a1, a2,, an) and b = (b1, b2,,bn) is given by

n

k

kkba
1

.ba 4-17

As with the other algebraic structures discussed above, a vector space is an abstract

structure as well, i.e. it does not have to correspond to a geometrical space, but can

represent any other space. For example, consider organic molecules consisting of the

three elements Carbon, Hydrogen and Oxygen, if we imagine they form a basis set of

a vector space, then they will span this space as depicted in figure 4-2 (Palsson 2006).

This means that any compound consisting of those three elements, such as a

carbohydrate, will fall in this space and will be represented by a linear combination of

them.

Figure 4-2: A vector space of the three elements Carbon, Hydrogen and Oxygen.

Water

H2O

C

 H

O

Carbon Dioxide

CO2

Ethane

C2H6

105

Note that this space represents the elemental composition only, hence it is known as

the elemental space (Palsson 2006). It does not provide any information on the

stereochemical structure of the organic molecules in the space, thus all molecules of

the same composition will be represented by the same point in this space. We have

included three elements so that we can visualise it, however, in principle we can

include more elements in which case we can represent more compounds in such a

vector space. As an extreme case, the set of all hundred or so elements in nature will

span the space of all substances in the world! Again this demonstrates the power of

abstraction in enabling using the same tools for approaching markedly different

problems.

An excellent source for engineers on vector spaces and linear algebra in general is the

book by Strang (1988). It should be noted that an inner product is not required for the

definition of a vector space as outlined above. A vector space is an algebraic concept,

while the concept of orthogonality which is based on an inner product is a geometric

one (Naylor and Sell 1982).

We can define functions from one vector space to another as we can do with any

other algebraic structure, of particular interest is a class of functions known as linear

transformations. Consider two vector spaces X and Y over some field F, and define a

function L: X Y such that for any vectors x1, x2 and x in X, and scalar a in F we

have

L(x1 + x2) = L(x1) + L(x2) 4-18

 aL(x) = L(a x) 4-19

this function L is a linear transformation from X to Y. Any linear transformation on a

vector space can be represented by a matrix. Linear transformations are very

important in algebra and have many engineering applications especially in functional

analysis, which we introduce very briefly next.

4.5.1 Functional Analysis

We have discussed above vector spaces with dimension n wherein a vector can be

represented by an n-tuple of points from some field F. The question now is what

106

happens if those points become infinite? In this case the vector space is considered

infinite dimensional and every vector will have an infinite number of points. When

those points form a continuum, they can be considered as functions and we get a

function space. These functions can be defined on any set S, the domain, but their

values will be from the field F of the vector space. So a vector in this space will be

defined by a function fi: S F, where S is the domain and F the co-domain of each

function.

The concepts of linear independence and span and hence the concept of a basis will

carry over to the infinite dimensional case. We mention two examples of a linear

combination of vectors on a function space, namely the Taylor series and the Fourier

series.

A continuous and infinitely differentiable function f(x) can be represented by its

Taylor series expansion which all engineers are familiar with and is given by

...
!2

)0('')0(')0()(
2

x

fxffxf 4-20

Or in a concise form

k

k

k xcxf

0

)(4-21

where the ck’s are calculated from the derivatives of f(x) and divided by the factorials

as in the equation above. This is a linear combination of single term polynomials x
k

(sometimes referred to as monomials). Those polynomials are linearly independent

because their linear combination cannot be identically zero (i.e. zero for all values of

x) unless all the coefficients ck’s are zero. Hence the set of polynomials form a basis

for functions fulfilling the conditions mentioned. The expansion of course is valid

only in the region of the definition of the function where the series converges.

The next example is the Fourier series expansion which many engineers are familiar

with. For a periodic function f(t) with period 0, the Fourier series is given by

)sincos()(00

1

0 tkbtkaatf k

k

k

 4-22

107

This can also be expressed in exponential form as

tjk

k

k ectf 0)(

 4-23

where the coefficients ak and bk or alternatively ck are calculated from the well known

Fourier integrals.

This is a linear combination of the trigonometric functions, or alternatively the

exponentials. Again those functions are linearly independent, furthermore, they are

orthogonal because the inner product of any two sines (or cosines) with different

frequencies is zero. In fact, with the appropriate scaling the functions can be made

orthonormal, recall that an orthogonal set of vectors where each vector has unit length,

known as a unit vector, is called an orthonormal set. It should be noted however, that

now the inner product has to be defined according to the vector space at hand, so in

this case it is defined using integration.

Many other function spaces can be defined with different domain set and co-domain

field for the functions involved. In particular, the set on which the functions are

defined can be a finite set and the field on which it takes its values can be a finite

field, which is the case we are interested in for the remainder of this report. Of course

the corresponding basis, inner product and transformations will be specified

according to the functions involved. The study of such spaces is known as functional

analysis, more commonly known to engineers are operator theory. An excellent

source for engineers on this topic is the book by Naylor and Sell (1982).

4.6 Summary and Conclusion

The treatment in this chapter can be thought of as consisting of two braided strands

constituting knowledge and skill. The first is the mathematical knowledge presented

while the skill that we hope we have managed to develop an appreciation for and

familiarity with is that of abstraction. Admittedly this chapter might be somewhat

difficult to read. This is probably not as much due to the difficulty of the

mathematical subject matter, as it is due to the abstract view of the concepts involved.

108

In presenting the mathematical subject matter we started with the very basic concepts

and moved to more advanced ones. Mathematical concepts are often thought of as

being built on each other in a tower of Babel fashion, therefore we followed a

strategy by which each concept was built on the previous ones. So we used the

concept of a single binary operation on a set to introduce groups, which we then used

together with two binary operations on a set to introduce fields. Fields were then used

to introduce vector spaces which were abstracted further to present function spaces.

Some topics might appear not to have direct impact on our work such as groups and

other concepts. However, groups for example are there for two reasons relating to the

two strands of our presentation. Firstly they provided an introduction to the other

algebraic structures that followed them, and secondly as an exercise in abstraction

that helps to build the intuition into an application.

It should be noted that the treatment here was very simplified and we consciously

avoided many of the theoretical details as our purpose in this chapter was the results

and not how they were arrived at. Consequently we deliberately avoided proofs and

derivations.

There are two main mathematical concepts that we want to take forward from this

chapter, namely fields and vector spaces. Among the fields, finite fields are of

particular interest to us within the context of this work for two reasons. Firstly,

because of their powerful property by which any function on a finite field can be

represented by a polynomial on the field. Secondly because they can be used to model

finite sets and hence are suitable candidates for modelling multiple-valued biological

variables such as concentrations of molecules, activation states of proteins or

expression levels of genes.

The second concept is that of a vector space which we have indicated is based on a

field. Again of particular interest are vector spaces based on finite fields because they

will be used in our modelling of the regulation of gene expression. Another notion

related to vector spaces that was introduced here and that will be used in future

development is the idea of a function space, which is essentially a space whose

vectors are functions. We will be interested in discrete functions in particular, hence

weaving the two main topics of this chapter a function on a finite field and a space of

109

such functions into the mathematical fabric of a vector space of functions on a finite

field.

We will use all these concepts in the next chapter to model the regulation of gene

expression.

110

Chapter 5: Algebraic Modelling of

Combinatorial Gene Regulatory Functions

5.1 Introduction

In this chapter we present another modelling approach for combinatorial gene

regulatory functions that results in an equation known as the Reed-Muller expansion

of the function. We have indicated in the introduction to this work in chapter one that

application of a new method to an existing problem should provide an advantage on

current methods for investigating the problem. The method mentioned here allows the

problem to be seen from a different perspective, and allows investigating other related

problems. Using the concepts introduced in the previous chapter we will give the

Reed-Muller expansion three different algebraic interpretations, each of which will

give biological insight and useful tools that enable investigating different problems

related to gene regulation.

This is the main contribution of this work and it migrates concepts across disciplines

in such a way that allows posing the problem of one discipline in the form of another

problem in a different discipline. One of the particularly interesting applications we

present below is posing the problem of detecting mutations in the genome of an

organism as the problem of detecting a fault in an electronic circuit. Perhaps the

intellectual contribution here is in the ability to detect and formulate the commonality

between the two seemingly different problems. This entails abstracting and detaching

the domain specific details of a problem from its domain independent core, allowing

one to see the commonalities between problems across domains.

We have indicated above that we will investigate three algebraic interpretations of the

Reed-Muller expansion. The first interpretation is to view the Reed-Muller expansion

as a function on a Boolean algebra, but in a way different from that mentioned in

chapter three. The second is to view it as a polynomial on a finite field, and the third

as a transformation on a function space, both of those were introduced in the previous

111

chapter. All three will have different biological interpretations and use. To make the

material manageable we will cover the first two in this chapter and the third will be

treated separately in the next chapter.

5.2 The Reed-Muller Expansion

It has been pointed out in chapter three that the levels of gene expression can be

abstracted to two states corresponding to maximum and minimum expression or on

and off; similarly with the different variables involved in gene regulation such as the

activation states of a protein and the concentrations of effector molecules. Such

binary (i.e. two valued) variables are normally represented by the values 1 and 0

respectively, i.e. they belong to the set {0, 1}. Consequently the regulatory functions

defined on these variables can be modelled using the rules of Boolean algebra.

Here we will take a different approach to modelling these functions, based on the fact

that the set {0, 1} with the appropriate definition of addition and multiplication

constitute the finite field GF(2). Given that 2 is a prime number, then addition and

multiplication can be defined modulo 2, with their operation tables shown in table 5-1.

The number 2 is actually the smallest prime number (other than unity), consequently

GF(2) is the smallest finite field. In fact it is the simplest since it consists of only two

elements, the minimum required of a field, namely the additive identity 0 and the

multiplicative identity 1. It follows then from the closure requirement of a field that

the only non-zero element in the field which is 1, is its own additive and

multiplicative inverse. This makes arithmetic operations on GF(2) particularly simple

as is evident from table 5-1.

Table 5-1: Addition and multiplication modulo 2.

+ 0 1 × 0 1

0 0 1 0 0 0

1 1 0 1 0 1

Again as mentioned in chapter three when a binary function f of n binary variables

denoted by f: {0, 1}
n
 {0, 1} is considered as a function on a Boolean algebra

(whose operations are the logical AND, OR and NOT), then it can be represented by

112

the disjunctive normal form (DNF). Recall that the terms binary, Boolean and logic

are often used interchangeably.

On the other hand when the function f is considered as a function on the finite field

GF(2) whose operations are addition and multiplication modulo 2, then it can be

represented by another canonical form known as the Reed-Muller (RM) expansion.

This representation has its origins in the early work of Reed and of Muller separately,

on error correcting codes and on Boolean functions (Reed 1954; Muller 1954),

although there are claims that it had been developed earlier in the former Soviet

Union and Japan separately (Falkowski 1999; Stankovic and Sasao 2001). As is

common in our approach throughout this work, we will explain the RM expansion

using a concrete example then extend it to the general case subsequently.

Consider a two variable function specified by the truth table in table 5-2, repeated

below from chapter three where the numbering convention and the definition of min

term were explained. The di’s in the table are binary constants taking the values 0 or 1

according to the value of the function at the corresponding values of the variables x1

and x2.

Table 5-2: Truth table representation of a generic logic function.

min term

number (m)
x2 x1 f(x2, x1)

0 0 0 d0

1 0 1 d1

2 1 0 d2

3 1 1 d3

The RM expansion of this function is given by (Green 1986; Almaini 1994)

1232211012),(xxaxaxaaxxf 5-1

where the encircled sum symbol (also known as the ring sum) denotes modulo 2

addition and juxtaposition of variables denotes modulo 2 multiplication, as it does in

other multiplication.

113

There are several algorithms in the literature for computing the coefficients ai’s and

are primarily concerned with computational efficiency (Habib 1993; McKenzie et al.

1993; Falkowski and Rahardja 1997). Here however, we are more interested in the

analytical rather than the numerical side of the problem as it gives interesting insight

into its biological interpretation. We will thus use a method presented by Green (1986)

and also by Almaini (1994).

To find the coefficients ai’s, we substitute the different values of the variables x1 and

x2 and the corresponding values of the function from table 5-2 into equation 5-1 to get

32103

202

101

00

)1,1(

)0,1(

)1,0(

)0,0(

aaaafd

aafd

aafd

afd

 5-2

This can be put in matrix form to give

3

2

1

0

3

2

1

0

1111

0101

0011

0001

a

a

a

a

d

d

d

d

 5-3

These equations compute the function values di’s from the coefficients ai’s. Normally

however, the di’s are given as they define the function, and we want to find the RM

expansion. Thus rearranging equations 5-2 by merely adding the first equation to the

second and to the third, and the first three to the fourth, then solving for the ai’s

bearing in mind that we are using modulo 2 arithmetic, we get the RM coefficients in

terms of the truth values of the function (Green 1986; Almaini 1994)

)1,1()0,1()1,0()0,0(

)0,1()0,0(

)1,0()0,0(

)0,0(

32103

202

101

00

ffffdddda

ffdda

ffdda

fda

 5-4

Or in matrix form as

114

3

2

1

0

3

2

1

0

1111

0101

0011

0001

d

d

d

d

a

a

a

a

 5-5

Note that equations 5-4 and 5-5 have the same form as equations 5-2 and 5-3

respectively.

We have mentioned that the RM expansion, like the DNF is a canonical

representation of a function. In this context, a canonical representation is one that can

uniquely express every possible function of the variables. For n binary variables there

are 2
n
 combinations of values; when those are used as inputs to a binary function, we

get
n22 different possible output functions. For n = 2, there are 4 (=2

2
) different

combinations of the inputs and 16 (=2
4
) possible functions with truth values shown in

table 5-3.

Table 5-3: All possible binary functions of two binary variables.

m
Inputs Outputs

x2 x1 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

2 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

To clarify the numbering notation in table 5-3, we recall from chapter three that the

order of the inputs x2x1 is chosen such that the variable with the lowest index

corresponds to the least significant digit of a binary number. We also use the same

convention when numbering the functions where we arrange them such that the index

of a function represents the decimal equivalent of a four digit binary number whose

most significant digit is f (1,1) and least significant digit is f (0,0). Thus the index

represents the binary number given by f (1,1) f (1,0) f (0,1) f (0,0) which ranges from

0000 to 1111 with equivalent decimal value ranging from 0 to 15 indicating the 16

different functions in table 5-3. As an example to clarify this numbering notation,

consider the function f7, which has the values f (1,1) = 0, f (1,0) = 1, f (0,1) = 1, f

(0,0) = 1. When written as a single binary number this becomes 0111 which has the

decimal value 7, the index of the function.

115

We know from equation 5-1 that the RM expansion has four different terms each with

a coefficient ai that can be either 1 or 0, hence we can have 2
4
 (=16) different

equations each with a unique combination of coefficients and hence of terms,

corresponding to one of the sixteen functions in table 5-3. This intuitive argument

demonstrates that the RM expansion uniquely represents every function on the field,

and hence is canonical.

5.3 Combinatorial gene regulation as a function on a

Boolean algebra

The Reed-Muller expansion of a binary function is expressed in terms of the

operations of addition and multiplication modulo 2, given in table 5-1 above. A closer

look at the table reveals that addition modulo 2 is the same as the exclusive OR (or

XOR) logic operator in table 5-4. XOR gives a value of 1 when only one of its two

inputs is 1 but not both, unlike the logic OR operator which gives 1 when either or

both of its inputs are 1 (table 5-4). Hence the relationship between the two operators

OR and XOR is given by

122121 xxxxxx 5-6

where the plus sign on the left hand side indicates OR. The last term (x2x1) serves to

eliminate the case when both variables are 1 simultaneously. Table 5-1 also shows

that multiplication modulo 2 is equivalent to the logic AND operator. The two logic

operators AND and XOR are presented in table 5-4 below.

Table 5-4: The logic operators AND, XOR, OR and NOT.

x2 x1
x2 x1

(x2AND x1)
12 xx

(x2XOR x1)

x2 + x1

(x2OR x1)
11 x

(1 XOR x1)
1x

(NOT x1)

0 0 0 0 0 1 1

0 1 0 1 1 0 0

1 0 0 1 1 1 1

1 1 1 0 1 0 0

Comparison of the two tables (5-1 and 5-4) reveals the equivalence between the GF(2)

operators of addition and multiplication on the one hand, and the Boolean operators

of XOR and AND on the other. Furthermore, it is well known, and also obvious from

116

table 5-4 that the complement of a logic value can be computed using the XOR

operator by

11 1 xx 5-7

As has been mentioned earlier, a binary function can be represented on a Boolean

algebra by its disjunctive normal form (DNF) given by (see chapter three)

12312212112012),(xxdxxdxxdxxdxxf 5-8

where the di’s are the values of the function as specified by its truth table, table 5-2

above. Now using equations 5-6 and 5-7 in equation 5-8, and using the distributive

property of AND over XOR and the Boolean algebra rule stating that the logic

product (i.e. AND) of a variable by its complement is 0, we get

12312212112012)1()1()1)(1(),(xxdxxdxxdxxdxxf 5-9

After simplification this becomes

123210220110012)()()(),(xxddddxddxdddxxf 5-10

which is the RM expansion of equation 5-1 with the coefficients given by equation 5-

4. This provides a derivation of the RM expansion without resorting to the finite field

properties, but only using Boolean algebra; it is actually a canonical representation

since it is uniquely derived from a canonical representation (the DNF). It also

demonstrates that the RM expansion can be viewed as a Boolean function that uses

XOR and AND rather than OR, AND and NOT. As an aside and on a more technical

note, we do not even need the full properties of a Boolean algebra, a Boolean ring is

sufficient, hence the term ring sum mentioned above. A discussion of rings is given in

chapter four, however we will not pursue this line of thought here as it is too technical

for our purpose, and will not provide any additional insight into the problem.

117

5.4 Biological interpretation of the Reed-Muller expansion

Representation of binary gene regulatory functions in the literature is mostly based on

Boolean algebra in particular the disjunctive normal form (DNF) and to a lesser

extent the related conjunctive normal form (CNF). The biological interpretation of the

DNF in particular has been studied extensively in the literature. Among the good

treatments of the topic are the works of Hwa related to generic regulatory functions

(Buchler et al. 2003), Alon for E.coli, (Setty et al. 2003; Mayo et al. 2006; Kaplan et

al. 2008) and Davidson for higher organisms (Istrail and Davidson 2005; Oliveri et al.

2008).

Boolean algebra is based on the logical operators AND, OR and NOT which are

linguistic based connectors that combine logic statements, hence the terms disjunctive

and conjunctive. They have their origins in formal logic in particular the so called

prepositional logic (Rautenberg 2006). A DNF statement essentially lists the set of

conditions whether positive (asserted) or negative (negated) that has to exist

simultaneously for an outcome to occur. In chapter three we gave a Boolean

expression for the lactose operon in the form of the logic statement “Operon

expression = [(NOT glucose) AND lactose]”, which can have the logic values - also

known as truth values - of “True” or “False”. Its logical interpretation is that when

both conditions, the negative one and the positive one are True, then the outcome will

also be True. In biological terms this means that when (NOT glucose) is True AND

lactose is True, then the Operon expression is true. In other words when there is no

glucose and at the same time there is lactose, then the operon genes are expressed.

This representation and the associated interpretation is intuitive and can be

manageable for a small number of variables, however, it becomes unwieldy, awkward

and difficult to interpret when the number of variables is large. Furthermore, it lacks

the analytical and computational power of the familiar mathematical manipulations

on fields, even when the truth values of True and False are expressed numerically as

1 and 0, partly because of some of the unusual mathematical properties of Boolean

algebra such as idempotency, see chapter four.

We have demonstrated that the RM expansion provides an equivalent mathematical

representation to the Boolean expressions, in the sense that it can express all the

118

functions that can be represented by the Boolean expressions. We now consider the

interpretation of the RM expansion in the context of gene expression regulation.

Because the RM expansion (see equation 5-1 above) is formulated in terms of the true

variables, i.e. does not contain negated variables, the gene expression level can be

calculated right away by substituting the values of the different variables.

Consequently, when all the variables are zero, the RM expansion gives the basal

expression level of the gene. Since a0 is the only coefficient in the expansion that is

not multiplied by any of the variables (i.e. the xi’s), we can tell right away by

inspection the normal unregulated (basal) level of expression of the gene, without

need for substituting any values for the variables. So what sort of biological

interpretation of the RM expansion do we get when we substitute values for the

different variables representing the regulatory factors affecting the expression of a

gene? As usual we will consider concrete cases from which to generalise.

In their preliminary study of the transcription regulatory network of E. coli, Thieffry

et al. (1998) studied 500 regulated genes from which they found that more than 300

were regulated by a single transcription factor, about 150 by two factors and the rest

by three or four factors, with only one regulated by six factors. A more

comprehensive recent study reflected the same pattern (Martinez-Antonio et al. 2008)

known as a power law relationship whereby the number of genes regulated is

inversely proportional to the number of regulating transcription factors (usually raised

to some power greater than one) (Christensen et al. 2007). This means that the

number of genes (or operons) regulated by two transcription factors is proportional to

1/2 while those regulated by three is proportional to 1/3, which is a lower number (of

course multiplied by some factor), and so on. The situation is even more pronounced

when those numbers are raised to some power greater than one. The importance of

regulation by two factors is clear in the study by Kaplan et al. (2008) of nineteen

sugar metabolism operons in E .coli. In light of this discussion we first consider the

biological interpretation of the single variable RM expansion which is the most

common case, and then consider the two variable case which is the second most

common. It should be noted that the situation in yeast is more complicated and can

have up to a dozen or more factors regulating a gene (Lee et al. 2002), and even

119

further complicated in higher organisms, in particular in the regulation of

development (Davidson et al. 2002; Oliveri et al. 2008).

5.4.1 One variable regulatory function

For a one variable regulatory function the RM expansion is given by

xaay 10 5-11

There are four (=
122) possible binary functions for one variable obtained by the

different combinations of the binary values of the coefficients a0 and a1, (table 5-5).

As explained above, a0 represents the basal transcription level of the gene which is

then modulated by the regulatory factor x. If a0 is 0 then the gene is normally off (not

expressed) and x is an activator that when it becomes high (e.g. high concentration)

turns the gene on. On the other hand if a0 is 1 then the gene is normally on in which

case x is a repressor that turns the gene off when it (the repressor) becomes high. Note

that we are mainly interested in non-degenerate functions, i.e. those that depend on all

the variables, in this case only one variable. The degenerate case occurs when a1 is 0

leading to two trivial (unregulated) cases. The first case is when a0 is 1 corresponding

to a constitutive gene which is always expressed, such as housekeeping genes (see

chapter three). The second case is when a0 is 0 which is meaningless.

Table 5-5: Different biological explanations for the one variable Reed-Muller expansion.

Note that a0 and a1 are the coefficients in the expansion while x is the input.

a0 a1 Equation Explanation

0 1 xy x is an activator

1 1 xy 1 x is a repressor

1 0 1y Constitutive gene (trivial)

0 0 0y Meaningless case (trivial)

This simple example illustrates the benefit of the RM expansion as a modelling

approach; we were able to infer the behaviour of the regulatory function solely by

looking at the coefficients of the equation. For the single variable case we do not even

need to substitute any values for the variable x. The different cases are summarised in

table 5-5.

120

5.4.2 Two variables regulatory function

For a two variable regulatory function the RM expansion is given by

12322110 xxaxaxaay 5-12

As explained earlier, there are sixteen different binary functions for the two binary

variables (table 5-3). Two of these functions are trivial, namely f0 and f15 in table 5-3,

and four functions are degenerate i.e. depend on only one of the two variables; those

are f3, f5, f10 and f12 in table 5-3. The degenerate cases reduce to the single variable

case discussed above. The remaining ten functions depend on both variables, and

those are the ones we are interested in in this section. Again a0 represents the basal

expression level of the gene (or operon), so we will examine the other three

coefficients. To avoid degeneracy both variables must appear in the equation, which

leads to five cases for each of the two values of a0 as analysed below.

Assume that a0 is zero, i.e. the gene is normally unexpressed, then with regard to

equation 5-12 above, the five cases are as follows

Case 1: a1 = 1, a2 = 1, a3 = 0

This leads to the following equation

21 xxy 5-13

This indicates that either of the two inputs (regulatory variables) can switch the gene

on, i.e. each is an activator, but when they are both present they counteract each other

and the gene remains off. This is obvious from the exclusive OR form of the Boolean

function in equation 5-13. This function has algebraically appealing features as it is a

linear function, i.e. it does not include products of the variables.

Case 2: a1 = 1, a2 = 0, a3 = 1

121 xxxy 5-14

This case indicates that the presence of x1 is necessary for the activation of the gene,

since the output cannot be 1 unless x1 is also 1. However, it is not sufficient since

having x1 = 1 on its own does not guarantee that y = 1, because if in addition we have

121

x2 = 1, then y will be 0 in spite of x1 being 1. On the other hand, a similar argument

reveals that x2 is sufficient on its own for repression (preventing the gene from being

expressed, i.e. causing y = 0) because when x2 = 1, we have two cases either x1 = 1

which gives y = 0, or x1 = 0 which also gives y = 0. However, x2 is not necessary for

repression, since it can be achieved in the absence of x2 if x1 is also absent.

A well known example of this case is the lac operon where x1 represents lactose, as

the operon cannot be turned on unless lactose is present. However, its presence does

not guarantee that the operon will be on because if glucose is also present the operon

will not be turned on. On the other hand, x2 represents glucose as its presence

guarantees repression, but repression can also occur without it if in addition lactose is

not present. See chapter two for a detailed discussion of the lac operon.

Case 3: a1 = 0, a2 = 1, a3 = 1

122 xxxy 5-15

This case is the same as case 2, except that now x2 is the activator while x1 is the

repressor.

Case 4: a1 = 0, a2 = 0, a3 = 1

12xxy 5-16

This is a synergistic case in which the gene cannot be switched on unless both inputs

are present. Any one of the regulatory factors on its own is not sufficient to switch the

gene on, both are necessary. This is essentially an AND gate.

Case 5: a1 = 1, a2 = 1, a3 = 1

1221 xxxxy 5-17

This is equivalent to an OR gate (see equation 5-6 above) where any one of the

regulatory factors on its own is sufficient to turn the gene on. When both factors are

available then the gene will also be switched on. The different cases are summarised

in table 5-6.

122

Table 5-6: Different biological explanations for the two variable Reed-Muller expansion with a0

= 0. Note that the ai’sarethecoefficientsintheexpansionwhilex1 and x2 are the inputs.

Case a1 a2 a3 Equation Explanation

1 1 1 0
21 xxy Only one or the other on its own (but

not both together) can switch the gene

on.

2 1 0 1
121 xxxy x1 is necessary but not sufficient to turn

the gene on

x2 is sufficient but not necessary to turn

the gene off.

3 0 1 1
122 xxxy x2 is necessary but not sufficient to turn

the gene on

x1 is sufficient but not necessary to turn

the gene off.

4 0 0 1
12xxy Both are necessary together to switch

the gene on.

5 1 1 1
1221 xxxxy One or the other or both together can

switch the gene on, (i.e. either is

sufficient).

When a0 is 1 this represents the case where the gene in normally on and the regulatory

proteins either switch it off or keep it on. From the properties of the XOR operator we

know that combining 1 with a variable (or a function in general) gives its complement

as demonstrated by equation 5-7 above. Thus analysis similar to the case of a0 = 0 can

be carried out to give similar results with the appropriate interpretation, and we get

the second set of five cases that are counterparts to the five above. As an example, we

consider the counterpart to case 1 above, namely

Case 6: a1 = 1, a2 = 1, a3 = 0

This leads to the following equation

211 xxy 5-18

This indicates that either of the two inputs on its own can switch the gene off, hence

acting as a repressor. But when they are both present at the same time they counteract

each other and the gene remains on.

The argument for a larger number of variables can be extrapolated from that for the

two variable case as will be discussed in the next chapter. We have demonstrated one

benefit of the RM expansion, namely that it gives a different biological insight into

123

the equation. However, this is not the only benefit, next we consider how when

interpreted as a Boolean function with XOR operator it can facilitate the

identification of the gene regulatory function.

5.5 Application to the reverse engineering of gene

regulatory functions

Reverse engineering of gene regulatory function is the process by which the

dependence of the expression of a gene on the different conditions affecting it is

determined. The abstract form of this problem is known in the system engineering

literature as system identification and is part of the modelling process of a system.

The underlying idea in its basic form is that a description of the system can be

inferred through exciting it with certain inputs and measuring the corresponding

outputs.

System identification is essentially the design of an experiment and involves several

steps, starting with the choice of an appropriate model or equation to fit the

measurements to, known as the model structure problem. Another step is choosing

the inputs that will excite (or in layman’s terms, tease out) the different behavioural

modes of the system. After applying the inputs and measuring the corresponding

outputs, the parameters are computed using any of a variety of algorithms, each with

its own merits and drawbacks. After that comes the problem of model validation

whereby the model is tested against actual measurements and if unsatisfactory

adjusted, and the process repeated until satisfactory according to preset criteria. There

are many textbooks that discuss the different aspects of system identification; one of

the well known ones is that by Ljung (1998).

The same underlying concepts apply when identifying Boolean functions representing

gene expression regulation (D'Haeseleer et al. 2000; Lahdesmaki et al. 2003). Again

there are different approaches to the problem surveyed in the literature (Camacho et

al. 2007; Cho et al. 2007). Normally in reverse engineering studies the measurements

represent a time course of gene expression, i.e. a time series and hence they represent

a dynamic process. Recall from chapter three that dynamics in Boolean networks are

124

modelled by sequential circuits while static relationships are modelled by

combinatorial (combinational) ones. Note that it is the same genetic network being

identified in either case, and there is a debate as to which is more representative of the

network, dynamic or static measurement. Dynamic measurements describe a time

course but of a single biological process under a fixed set of environmental conditions

and hence the measurements of the different variables will be correlated. Static

measurements on the other hand describe the outputs corresponding to different input

conditions and hence can be regarded as more exhaustive in coverage, (Akutsu et al.

1999; D'Haeseleer et al. 2000; Lahdesmaki et al. 2003). In theory, because the set of

input combinations is finite, it can be applied exhaustively, however in practice this is

not always possible. To identify an n variable binary function we need 2
n

combinations of the binary inputs, for example when n is two we have four

combinations as outlined in table 5-2 above, however this number grows

exponentially with n and quickly becomes impractical. Because of that, there have

been several attempts to develop methods to reduce the number of data points needed

while retaining an acceptable accuracy. One such algorithm is developed by Akutsu

et al. (1999) that significantly reduces the number of data points needed for a large

network of Boolean nodes, but requires the Boolean function for each node to be

limited to two inputs, hence emphasising further the special value of the two input

function.

This work is concerned with combinatorial functions, and hence we will limit our

discussion to reverse engineering based on measurements representing different input

conditions. One study of this sort is the extensive one performed by Setty et al. (2003)

on the lac operon, where different concentrations of the regulatory molecules were

applied and the corresponding gene expression levels measured.

In the choice of the equation to identify (i.e. the model structure), a canonical form is

desirable because it gives a unique representation for a given function, meaning that

different functions will have different equations. We have demonstrated two

canonical representations for Boolean functions, the DNF and the RM expansion. As

is clear for the DNF from equation 5-8 above, the connective for the different terms

in the equation is the OR operator, represented by the + sign. This is why the DNF is

often referred to in the engineering literature as the canonical sum of products,

125

because it is an “ORing” of AND terms. On the other hand, in the RM expansion the

connective is the XOR operator as is evident from equation 5-1, and the terms being

connected are not all AND terms, some of them consist of just a single variable, i.e.

not a product term.

The logic operator OR has poor discriminating ability which makes the DNF a bad

choice from an identification viewpoint. On the other hand XOR has a much superior

discriminating ability. The truth tables for both, together with the NAND operator are

shown in table 5-7, for three inputs.

Table 5-7: Comparison of the logic operators OR, NAND and XOR.

Inputs Output

x3 x2 x1 OR NAND XOR

0 0 0 0 1 0

0 0 1 1 1 1

0 1 0 1 1 1

0 1 1 1 1 0

1 0 0 1 1 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

It is clear from table 5-7 that for the OR operator the output is unchanged for seven

out of the eight inputs. This is a very inefficient representation of the function since it

is unable to distinguish between seven out of the eight inputs, i.e. inspecting the

output corresponding to the seven inputs does not reveal any information about which

of the inputs is applied. On the other hand, the XOR operation maintains a minimum

Hamming distance of 2 between inputs that give the same output value. Recall that

the Hamming distance between two binary numbers is the number of digits in which

they differ, for example 001 and 010 are different at the first two positions from the

right, while the third digit is the same, hence they have a Hamming distance of two.

Inspecting table 5-7, we find that for any two outputs with the same value, the

Hamming distance between the corresponding inputs is 2. For example the inputs that

give an output of 1 are {001, 010, 100, 111}, and the Hamming distance between any

two of them is 2; similarly with any inputs causing an output of 0. Thus XOR

provides a powerful building block for representation of logic functions.

126

Furthermore, the outputs of the OR and NAND operators are identical for six of the

eight input conditions, as evident from table 5-7. This means that six of the inputs

cannot discriminate between the two functions. In general, the operators OR, NAND,

AND and NOR cannot distinguish between 2
n
 – 1 of the 2

n
 input combinations that

can be applied to them, as such they are the most inefficient of all possibly binary

operators (Hurst 1978).

This discussion points to a potential benefit of the RM expansion over the DNF with

regard to system identification, in general leading to more efficient experiments.

As a clarification regarding table 5-7, in computing the truth values of the XOR

operation the associative property is used. It is clear from the table that XOR is an

odd parity operation, i.e. it gives a 1 in the output when the number of 1s in the input

is odd. This applies to any number of input variables.

5.6 Combinatorial gene regulation as a polynomial on a

finite field

The Reed-Muller expansion in equation 5-1 is a polynomial in two variables on the

Galois field GF(2). With the appropriate analogy to real valued polynomials it can be

given a Taylor series like interpretation, which is an expansion for real valued

functions. So first let us review some facts about polynomials on the real numbers

field and about the Taylor series expansion. As usual we will start with the simple

case to be able to illustrate the concepts more clearly.

The definition of a polynomial familiar to all school students is that it is a function of

the form

n

nxaxaxaaxf ...)(2

210 5-19

where n is a positive integer and is the degree of the polynomial, provided that an is

not zero. The coefficients ai, where i = 0, 1, ..., n, and the values that the variable x

can take are all real numbers, and hence the resulting values of f(x) are also real

numbers. More abstractly, the coefficients and the variable can in general belong to

127

any field including finite fields, with addition and multiplication being the operations

of that field. Consequently the values of the function will also belong to the same

field. In fact polynomials have a fundamental role in the construction of finite fields,

and there are other definitions of a polynomial that relate to that.

Another concept that is familiar to engineering students is that of the Taylor series

expansion. The idea is that a continuous and infinitely differentiable function f(x) can

be represented around zero by a power series given by

....
!

)0(....
!2

)0()0()0()()(

2

)2()1(
k

x
f

x
fxffxf

k

k 5-20

Where f(k)(0) is the k
th

 derivative of the function evaluated at the point x = 0. This

expansion is also known as the MacLaurin expansion, with the term Taylor expansion

indicating the general case which includes the expansion around points other than 0

as well. Of course this representation of the function is valid only for the range of

values of x where the series converges. In practice only a limited number of terms is

calculated and higher order terms are ignored which means that the function is

approximated by a polynomial, say of degree n.

For a function of two variables x and y, the Taylor series expansion around the point

(0,0) is given by

...])0,0()0,0(2)0,0([
!2

1
])0,0()0,0([)0,0(),(22 yfxyfxfyfxffyxf yyxyxxyx

 5-21

where fx and fy are the partial derivatives of the function with respect to x and y

respectively, and the other subscripts indicate higher order partial derivatives in the

corresponding orders.

Comparing equation 5-21 with equations 5-1 and 5-4 of the RM expansion, we notice

some similarity which we will now clarify by introducing the concept of the Boolean

difference.

128

5.6.1 The Boolean difference

The concept of the Boolean difference was introduced by Reed in his original paper

of 1954 (Reed 1954) and was later developed further by him and other authors (Akers

1959; Reed 1973; Thayse and Davio 1973). It is an adaptation of the usual derivative

of a function on the real numbers field to the case of the Galois field of order 2, GF(2).

We will introduce the Boolean difference here in a way that we believe is much

simpler and more intuitive than the way it is normally introduced in the literature, and

that is by resorting to concepts the reader is already familiar with.

Recall that the derivative of a real function f(x) with respect to the real variable x is

the rate of change in the value of the function corresponding to the change in the

value of the variable, given by

x

xfxxf
lim

x

xf
iml

xx

)()()(

00
 5-22

Now on GF(2) the variable x can only take the values 0 and 1, hence the only change

in x will be by the value of 1 giving x = 1. In this case the limit has no meaning and

we get the Boolean difference rather than derivative. Note further that on GF(2)

addition and subtraction are the same since 1 is its own additive inverse. Now

applying those facts to equation 5-22 and noting that we are using modulo 2 addition,

we get

)()1()(xfxfxf 5-23

Using equation 5-7 above, this can be re-written in the form

)()()(xfxfxf 5-24

This is an intuitive result since on GF(2), the variable x can only take two values

namely a given value and its complement. Hence the Boolean difference of a function

with respect to its variable is simply given by

)1()0()(ffxf 5-25

It should be noted that, unlike derivatives with respect to real variables, the Boolean

difference does not distinguish the direction of change in the function. So a change in

129

the function value from 0 to 1 cannot be distinguished from a change from 1 to 0, this

is because as mentioned earlier, on GF(2) 1 and -1 are the same.

In the case of more than one variable, like in the real valued case were we get partial

derivatives, here we get partial differences with respect to the relevant variables. So

the Boolean difference of the function of two variables f(x2, x1) with respect to x1 is

obtained by changing x1 but not x2, this is given by

)1,()0,(),(22121
xfxfxxfx 5-26

Note that this function does not depend on x1 anymore and is only a function of x2

which means that the second difference of f(x2, x1) with respect to x1 will be zero. It

also means that the second difference with respect to x2 (of the first difference with

respect to x1) will now be given by

)]1([)]0([),(2212 1112
 xfxfxxf xxxx 5-27

Using equation 5-26 this becomes

)]1,1()0,1([)]1,0()0,0([),(1212
ffffxxfxx 5-28

Note that this function does not depend on x2 nor on x1. Thus any higher order

differences will be zero. Now let us look at those differences evaluated at the point

(0,0), we get from equations 5-26 and 5-28 the following

)1,1()0,1()1,0()0,0()0,0(

)0,1()0,0()0,0(

)1,0()0,0()0,0(

12

2

1

fffff

fff

fff

xx

x

x

 5-29

Those together with the value of f (0,0) are exactly the same as equations 5-4 above

of the coefficients of the Reed-Muller expansion. Hence the Reed-Muller expansion

can be written as

122112)0,0()0,0()0,0()0,0(),(
1221

xxfxfxffxxf xxxx 5-30

This has exactly the same form of the Taylor series expansion around the point (0,0)

given by equation 5-21, noting that second order differences with respect to the same

130

variable and all higher order differences with respect to all variables are zero. Hence

the RM expansion can be viewed as a Taylor series expansion on GF(2) taking into

account the difference in the interpretation of course of some of the mathematical

concepts involved. Again, strictly speaking, equation 5-30 is the MacLauren series

expansion. One however, can expand the function around other points to get a Taylor

series expansion (Akers 1959; Thayse 1974b), although in such a case the coefficients

will not correspond to those of the RM expansion. Furthermore, the Taylor series

expansion whether around the point (0,0) or any other point indicates that one can

construct the function (i.e. identify the parameters or reverse engineer it) solely by

knowing its Boolean differences around some point, without the need for knowing the

actual values of the function around a set of different points (Akers 1959). This can

be verified from equation 5-30 by using a substitution like that used for equations 5-2

above.

From a biological perspective, this Taylor series interpretation means that the

coefficients of the RM expansion provide sensitivity information of the gene

regulatory function with respect to the different regulating variables. More

interestingly however, the Boolean difference can be used as a tool to detect

mutations in the DNA that affect the function of a gene. This task can also be

performed using the RM expansion without resorting to the Boolean difference

because formulation of a logic function in the form of the RM expansion allows it to

be easily tested for certain types of faults (Reddy 1972). By placing the problem of

detecting mutations as a problem of detecting faults in a logic circuit we can utilise

the methods used for the latter to detect such mutations. To do that we first need to

introduce fault detection in logic circuits, then introduce mutations and then establish

the correspondence between them that would allow us to apply the former to the latter.

5.6.2 Fault detection in logic circuits

Fault detection is a growing area within the field of logic design because of the

increasing complexity of electronic circuits. We will only present here the concepts

that will help us migrate some of the techniques of fault detection to the problem of

mutation detection. No attempt is made here to give an even concise survey of the

131

field, however, certain fundamental concepts need to be introduced irrespective of

what we will cover.

There are three related concepts underlying fault diagnosis, those are failure, error

and fault. A failure is said to occur when the circuit, or a system in general, does not

perform the function it is designed to do. A failure is caused by an error in the

operation of the circuit or some subpart of it, which means that it will be in a state

other than the one it should be in. An error is caused by a fault which is a physical

damage of some sort, such as a short circuit. Those and other concepts are covered in

the comprehensive text by Jha and Gupta (2003) from which we take the following

example to clarify them. Consider a motor car; a puncture in a tyre is a physical

damage resulting in the tyre being deflated, i.e. its pressure having a different value

(is in a different state) from the correct one, and hence the car cannot travel. By

analogy to the concepts above, the puncture is the fault, the low pressure in the tyre is

the error and the inability to travel is the failure.

Note that whilst a failure is caused by an error which in turn is caused by a fault, the

converse is not necessarily true. In other words, not all faults cause errors and not all

errors cause failure. This is the principle behind fault tolerant design whose purpose

is to ensure that the function will not be interrupted when a fault occurs, which is

crucial in applications where maintenance is very difficult, costly or dangerous. Such

situations occur for example in the case of a space craft in outer space, or a

pacemaker inside a patient’s body.

Other concepts related to faults which we will later translate to the context of

mutation are the cause and effect of faults. In electronic circuits, a fault can be caused

by problems in manufacturing thus producing a defective circuit, or it can occur

during operation such as damage due to applying the wrong voltage, environmental

conditions such as excessive temperature or radiation, or aging of components.

Normally the ultimate effect of a fault is failure.

Fault diagnosis involves two processes namely fault detection and fault location, i.e.

locating the point in the circuit where the fault occurred. To be able to detect a fault,

it must cause an error, otherwise it will not be detectable. Furthermore, faults must be

132

distinguishable from each other otherwise we might detect the occurrence of an error

but cannot find the fault causing it. The obvious approach to finding a fault is to apply

all the possible combinations of inputs to the circuit, measure the corresponding

outputs and compare the results with those of the fault-free circuit to decide on the

fault. As with the case of system identification discussed above, this approach is not

practical as it is expensive and time consuming not to mention that applying all inputs

to a faulty circuit can cause additional problems and faults. Thus there is a need for a

more rational approach to the problem other than the brute force one, whereby a

formal process can be followed in a systematic way that will produce a minimum

number of tests (Lala 1997; Jha and Gupta 2003). There are several such methods and

they are based on modelling both the errors and the faults.

As is often the case, models can be formulated at different levels of abstraction, as

was mentioned in chapter three in the context of modelling gene regulatory networks.

In the case of modelling circuits for the purpose of error and fault detection, the levels

of abstraction include investigating at the system level, subsystems, gate level (such

as AND, OR and other gates) or the device level, where devices such as transistors

are used to implement gates (depending on the technology). Error models are mainly

probabilistic models concerned with the probability of occurrence of the different

errors and the correlation between them. Fault models are representations of the

possible physical problems that can happen on a circuit and include so called stuck-at

faults and bridging faults among others.

The stuck-at fault model which we will use in our analysis means that the logic value

at some point or line in the circuit is stuck at some value and does not change

irrespective of the change of other signals in the circuit affecting that point. For a

binary circuit the point can be either stuck at 0 or stuck at 1, denoted by s-a-0 and s-a-

1 respectively (Jha and Gupta 2003).

We will consider two methods for fault detection, the first which we will derive and

discuss in some detail, is based on the Boolean difference. The second method uses

the RM expansion, and we will only describe the principle behind it without the

details. Both methods have the same underlying principle namely applying a carefully

chosen set of inputs to the circuit, observing the output, and in most cases, comparing

133

it with the error free output. As mentioned above, for this approach to work the inputs

applied have to excite the error in the presence of the fault. For example if one of the

two inputs to an AND gate is stuck at 0, then of the four possible input combinations

that can be applied, namely (0,0), (0,1), (1,0) and (1,1), only the last one will cause

an error at its output, see table 5-4. Furthermore, it should be possible to detect the

error at the output. This is important because internal points in the circuits may not be

accessible, such as in the case of packaged integrated circuits.

Those two concepts, namely exciting the error and detecting it at the output, are

known as error generation and error propagation respectively. The latter means that if

the fault causes an error at an internal point in the circuit, the test inputs should be

chosen to guarantee the propagation of this error to the output. It is worthwhile to

note that the concepts of error generation and propagation relate to similar concepts in

control theory known as controllability and observability. Controllability investigates

whether the system can be forced into a given state by an input, while observability is

concerned with whether a given state can be detected from the output, both having

impact on the testability of a system.

To derive the method for fault detection, assume that if a circuit is fault free its output

will be f(x), and if it has a fault then it will implement a different function, call it fe(x)

for function with error. To be able to detect the fault, the two functions must be

different. So for a two variable function for example, we must have

),(),(1212 xxfxxf e 5-31

Since on GF(2) any value is its own inverse, then by adding fe(x2, x1) to both sides we

get

0),(),(1212 xxfxxf e 5-32

And since on GF(2) the only other value than 0 is 1, we get the condition for

detecting a fault in a logic circuit as

1),(),(1212 xxfxxf e 5-33

134

This equation tells us the condition for the existence of an error, but this error might

be caused by one or more faults. Since our purpose here is only to demonstrate the

method, we will use the simplest fault model, and that is a single fault of the stuck-at

type and that it occurs at one of the inputs. Let us assume that the fault occurs at the

input x1 then to detect a stuck-at 0 fault we apply a value of 1 at the x1 input. Now due

to the fault, the value of 1 will be seen by the circuit as a value of 0 and hence it will

produce the erroneous output f(x2, 0) instead of the correct output f(x2, 1). Similarly

for a stuck-at 1 fault we apply the value of 0 at the corresponding input. Thus to

detect a stuck-at value fault on one of the inputs, we apply the complement of the

value at that input to invoke an erroneous output. In this case for a stuck-at fault at the

x1 input, equation 5-33 becomes

1),(),(1212 xxfxxf 5-34

On comparison with equation 5-26 above, we find that the left hand side of equation

5-34 is the Boolean difference of the function with respect to x1 given by

),(),(),(1212121
xxfxxfxxfx 5-35

Hence the condition for detecting a single stuck-at fault at one of the inputs of a logic

circuit is that the Boolean difference of the function implemented by the circuit, with

respect to that input is 1, i.e.

1),(121
 xxfx 5-36

The solution of this equation on GF(2) gives the values of the inputs that will

guarantee detection of the fault, i.e. its generation and propagation. Reed (1973) gives

the condition for the existence of a solution to this equation. In fact he applies it to the

more general case of multiple faults and does not limit his analysis to faults at the

inputs (Sellers et al. 1968; Reed 1973). In general there can be more than one set of

values for the variables that satisfies equation 5-36, each set is known as a test vector.

For a function of many variables this procedure can be repeated for each input and

will give a number of test vectors for each input, some of which may overlap.

The second method for fault detection uses the Reed-Muller expansion directly

without the need for resorting to the Boolean difference. As is clear from equation 5-1

135

above, the RM expansion is a modulo 2 sum of modulo 2 product terms. The modulo

2 sum is an odd parity operation as discussed above where the XOR operation

implements the modulo 2 addition. Hence the idea behind fault detection using the

RM expansion is to choose the appropriate pattern of inputs that will give the

appropriate number of 1s from the product terms that will be propagated to the output.

This makes it very easy to test for internal faults, in fact an all 0s input and all 1s

input can detect a fault on any of the modulo 2 adders irrespective of the function

implemented. Similarly it is very easy to test for faults at the multipliers inputs and

outputs. Details of the development of the method and examples of its application can

be found in the literature (Reddy 1972; Akers 1987; Damarla and Karpovsky 1989;

Gil and Ortega 1998).

5.7 Application to the detection of mutation

We now turn our attention to the main reason for introducing the material on fault

detection, and that is to apply it to the detection of mutations in a gene. We will map

the concepts introduced above in the context of electronic engineering to genetics,

starting with the cause and effect of mutations.

Recall that a mutation is a change in the DNA sequence of the cell. Generally

speaking there are two main causes for such change. The first is a spontaneous

change whereby a nucleotide is erroneously copied during DNA replication which is

part of the cell division process; and is known as a replication error. The occurrence

of such an error is very rare and its rate is normally around one base in every 10
10

, i.e.

one base in every ten billion is miscopied. Whilst replication errors are internally

caused, change in the DNA sequence can also be caused by external factors,

collectively known as mutagens, i.e. mutating agents or factors causing mutation.

This is the second possible cause of a mutation and is an induced mutation, as

opposed to the spontaneous one caused by replication errors. Mutagens can be

broadly classified into chemical, physical and biological factors (figure 5-1), all three

cause either damage or alterations to the DNA. Chemical factors such as carcinogens

react with the DNA and modify it, while physical factors such as radiation can

damage the DNA. Biological factors such as retroviruses integrate its own DNA into

that of the host organism hence altering its genetic makeup (Winter et al. 2002).

136

Figure 5-1: Causes of mutations.

On an abstract level one can note a correspondence between the causes of mutations

in a cell and the causes of faults in a circuit. Spontaneous mutations can be regarded

as corresponding to faults occurring during manufacturing of a circuit, in the sense

that they are both less common and occur before the fact. In other words, spontaneous

mutations occur before the cell even starts its life and gets exposed to the different

environmental factors. Correspondingly manufacturing defects occur before the

circuit is even put into operation and gets exposed to adverse operating and

environmental conditions. On the other hand, induced mutations correspond to faults

that occur during operation of a circuit in the sense that they are caused by external

factors. For a cell those are factors from the environment in which the cell lives, or

correspondingly for a circuit the conditions in which the circuit is operated.

The effects of mutations will depend on their type. Mutations are broadly classified

into point mutations and gross mutations. Gross mutations involve the alteration of a

large chunk of DNA such as deletion or swapping parts of a chromosome with each

other, and they can cause major problems in the organism. Point mutations on the

other hand involve the change of a single nucleotide (Winter et al. 2002). In analogy

with fault detection, we can think of point and gross mutations as single and multiple

faults respectively. Here we will focus on the different types of point mutations and

their effects.

Mutations

Spontaneous Induced

Chemical

(e.g. carcinogens)

Physical

(e.g. UV radiation)

Biological

(e.g. retrovirus)

137

The effect a point mutation will have on the coded protein will depend on the nature

of the mutation, and there are four major types. Recall from chapter two that a protein

consists of a string of amino acids, each coded by a three nucleotide (or base) codon.

Each nucleotide in the DNA can be one of four types A or G (both purines) or T or C

(both pyrimidines), that correspond to A, G, U or C in the RNA. Let us examine the

four main types of point mutations by considering how the change in any of the three

nucleotides of a codon affects the resulting amino acid. We will demonstrate this

using the amino acid Leucine (table 5-8).

Table 5-8: Examples of mutations in the first, second and third base of the codon for the amino

acid Leucine.

1
st
 base

2
nd

base

3
rd

base
Amino acid Side chain Remark

U U A Leucine
Hydrophobic -

Aliphatic

U U G Leucine
Same amino

acid

U A A STOP codon

A U A Isoleucine
Hydrophobic -

Aliphatic
Same protein

The code for Leucine is UUA, when the third base (A) changes into G, we still get the

same amino acid, hence there is no change in the resulting amino acid. This is known

as a silent mutation. When the second base changes from U to A, we get a STOP

codon instead of an amino acid, and is known as a nonsense mutation. When the first

codon changes from U to A, we get the amino acid Isoluecine, and is known as a

missense mutation (figure 5-2).

Silent mutations do not cause any change in the amino acid, they normally result in a

synonym of the original amino acid, i.e. a different code for the same amino acid.

This is normally the case when the mutation is in the third base of the codon.

Missense mutations result in a different amino acid, which if of similar characteristics

to the original one will not normally affect the resulting protein, as with the example

of Leucine and Isoleucine above, and is known as a neutral mutation (Russell 2006).

Some missense mutations however, may result in a major alteration of the

conformation and hence the function of the resulting protein. A well known example

is the mutation of glutamic acid to valine in the protein beta-globin, resulting in sickle

138

cell anaemia. Nonsense mutations result in the early termination of the translation of

a protein, hence an incomplete protein that will not perform the intended function,

potentially resulting in a major problem and often a different phenotype.

Figure 5-2: Types of mutations and their effects on protein function.

The fourth type of mutation is called a frame shift mutation, and results from

inserting or deleting a nucleotide in the sequence of a gene; since each codon

Mutations

Insertion/deletion

of bases
Change of bases

Frame-shift Mutation

No effect on

protein function

No effect on

protein function

(Neutral mutation)

Affects protein

function

Premature
termination of

protein translation

Silent Mutation
(no change in

amino acid)

Nonsense Mutation
(change of amino acid to

STOP codon)

Missense Mutation
(change of amino acid to

another)

Major effect on

protein

139

comprises three nucleotides this will cause an error in the resulting sequence of amino

acids, again leading to a mutant phenotype (Winter et al. 2002).

Given the different types of mutations, how can one detect that a mutation actually

occurred? The common technique is to sequence the genome and compare it with that

of the “wild type”. Here however, we are interested in the change in function (if any)

resulting from the mutation, rather than the details of the nucleotide alterations. It

should be noted that when sequencing a genome for the first time, the functions of

some genes might not be known, especially in eukaryotes. In such a case the

sequence of a gene is compared with that of a similar one in another organism whose

function is known, hence one can assume the function of the gene in question. This

process is known as homology analysis and relies heavily on computational and

bioinformatics tools, but it is not always accurate in eukaryotes.

In analogy with faults in electronic circuits, and since we are interested in the

function performed by a protein rather than its composition, then any mutation that

does not affect this function will not be detected. Thus silent mutations are analogous

to faults that do not cause an error. Neutral missense mutations that do not affect the

function of the resulting protein are analogous to faults that cause an unobservable

error. Finally any mutation that affects the function of the resulting protein such as

some missense mutations, most nonsense and frame shift mutations are considered as

errors causing failure.

Let us now consider a simple example to demonstrate these concepts and tools. Mayo

et al. (2006) have preformed a detailed study on the lac operon where they made

several mutations to different sites on the DNA molecule to test how this affects the

robustness (referred to as plasticity) of the gene regulatory function against such

mutations. The lac operon was explained in some detail in chapter two; recall that it

is controlled by two regulatory proteins, Lac repressor and Catabolite Activator

Protein (CAP). Mayo et al. (2006) made mutations to the sites on the DNA molecule

where those two proteins bind, hence altering their effect on the regulatory function.

They made several point mutations to each site and in some experiments to both sites

simultaneously. Since we are interested in the effect of the mutations on the function,

the number of point mutations on a given site will not affect our study as long as it is

140

on one site at a time. In their extensive study they obtained up to twelve different

logic functions, depending on the number and location of the mutations. Recall from

chapter two that the operator site consists of three non-contiguous regions which

explains the large number of functions. We will use the results of one of their

experiments which included mutations to the binding site of Lac repressor but not

CAP. Table 5-9 below shows the results of both the un-mutated (wild type) case and

the mutant. In line with our notation above we have called them f(x2, x1) and fe(x2, x1)

respectively.

Table 5-9: The lac operon regulatory function for the wild type and a mutant.

Glucose

x2

Lactose

x1

Wild type

f(x2, x1)

Mutant

fe(x2, x1)

0 0 0 0

0 1 1 0

1 0 0 0

1 1 0 1

This example will allow us to demonstrate two concepts, firstly how to use the RM

expansion to model a gene regulatory function, and secondly how to detect mutations

using the methods above. First let us consider the modelling task. Table 5-9 contains

the truth vectors for the two regulatory functions; substituting those in equation 5-5

above we get the coefficients for the polynomial of the RM expansion. Substituting

the coefficients in equation 5-1, we get the two functions below.

12112),(xxxxxf 5-37

1212),(xxxxfe 5-38

We will assume that we do not know which of the two factors the mutation affects.

So we assume that we performed an experiment where for each of the two factors we

applied the two limits, namely none and maximum as the authors have done, and

obtained the results of fe(x2, x1) in table 5-9. Now substituting the two functions of

equations 5-37 and 5-38 into equation 5-33 above, we get the condition of the

existence of a mutation is

1][][12121 xxxxx 5-39

141

Noting that the addition is on GF(2), the condition now becomes

11 x 5-40

This indicates that the error occurs only when x1 = 1, i.e. when lactose is applied.

Indeed this can be verified from table 5-9 by inspection of both cases, the wild type

and the mutant, where it is clear that the error occurs only when x1 = 1 indicating that

there has been a mutation in the part responsible for lactose.

Now knowing that the fault is in x1, in order to find the test vector, i.e. the values of

the inputs that will let us observe the error in the output, we take Boolean difference

of the original function with respect to the faulty input x1. So using f(x2, 0) and f(x2, 1)

from equation 5-37 and substituting in equation 5-35 we get

212),(
1

xxxfx 5-41

Using equation 5-36 we get

12 x ..5-42

which means that the error will only be observed when x2 = 1, i.e. when glucose is

applied, which is evident from table 5-9.

Hence equation 5-40 specifies the conditions for error generation, while equation 5-

42 specifies the conditions for error propagation. This is satisfactory from the point of

view of fault detection, however, from a biological viewpoint it does not tell us much

about the nature of the mutation. Again in fault detection we can conclude that this is

a stuck at zero fault because it only happens when x1 = 1, implying that the system

sees the 1 as a 0, hence stuck at zero. However, the biology is more complicated, we

know that the mutation is related to the lactose processing but we are not sure what it

is exactly. The biological equivalent of stuck at zero is that the cell does not effect the

action of lactose. This can be due to a problem with Lac repressor, either the protein

itself or the expression of the gene LacI that codes it; it can also be in its binding site

on the DNA molecule. It so happens that in this particular case we know that the

problem is in the binding site, but the issue to note here is that whilst mathematics

gives us the result we need biology to interpret it. This relates to the earlier discussion

142

in chapter three about the need for the domain specific knowledge to interpret the

mathematical results, (see figure 3-2 in chapter three).

5.8 Summary and Conclusion

In this chapter we have presented a simple development of the Reed-Muller

expansion of a logic function. It differs from the disjunctive normal form (DNF)

commonly used in the analysis and design of logic circuit in that it considers the

function on the finite field GF(2) rather than on a Boolean algebra. We then gave the

RM expansion two different interpretations on two algebraic structures. For each

algebraic interpretation we demonstrated biological insight and functionality. Firstly

we viewed the RM expansion as a function on Boolean algebra (a ring is actually

sufficient) that uses AND-XOR rather than the AND-OR-NOT operations. We have

demonstrated the superiority of the discriminating power of the XOR operation

compared to OR, and hence its potential value in the reverse engineering of genetic

networks. We then viewed the RM expansion as a polynomial on the field GF(2) and

presented a simple development of the Boolean difference which is used in fault

detection in logic circuits. Hence, we suggested that when a mutation is viewed as a

logic fault in the combinatorial gene regulatory function, the Boolean difference can

be used for mutation detection.

This emphasises an important notion in this chapter and indeed in the whole of this

report, and that is the power of abstraction. Namely that when one detaches the

underlying concepts from the implementation details, one can glide the methods

across the boundaries of the disciplines and possibly use methods that have been

known in one field for decades but not known in the other, even though they are tools

for investigating the same problems but in different contexts.

Regarding the RM expansion as a polynomial on the field GF(2), and using the

Boolean difference, we drew an analogy with the Taylor series expansion which is

also a polynomial on a field. However, the Taylor series expansion can also be

regarded as an expansion on a function space, where now for the Reed-Muller

expansion the functions are binary, presenting another analogy between the two that

we will explore in the next chapter.

143

Chapter 6: A Transform Approach to

Modelling Combinatorial Gene Regulatory

Functions

6.1 Introduction

This chapter constitutes the second part of the main contribution of this work. The

contribution is the theoretical development of a method for modelling discrete gene

regulatory functions. In the previous chapter we have introduced the core of this

development which is the Reed-Muller expansion for the binary case. We gave it two

algebraic interpretations namely as a function on a Boolean algebra and as a

polynomial on a finite field, each with a biological meaning and potential use. The

polynomial mentioned in the second interpretation can be viewed as a Taylor series

type of expansion, which as was discussed in chapter four can also be viewed as an

expansion on a function space. We will start this chapter by picking up this thread

from the last chapter and developing it further, in particular representing this

expansion as a transform on the function space as is common in functional analysis.

As with the other two interpretations in the previous chapter we also suggest an

application for the transform method, namely in the emerging interdisciplinary field

of synthetic biology. The second part of the development mentioned above builds on

the core which is the binary case and extends it to the multiple-valued case. In

analogy with the binary case we will give the development and possible biological

interpretations. Unlike the binary case however, we will not go into a detailed

mathematical argument but will only mention the results. We will give more

emphasis to the transform form of the multiple-valued case, in particular its

conceptual interpretation.

144

6.2 Combinatorial gene regulation as a linear

transformation on a function space

We have shown in the previous chapter that the Reed-Muller expansion can be

viewed as a Taylor series type of expansion on the field GF(2). We have also seen in

chapter four in the context of vector spaces that the Taylor series expansion for a real

function can be regarded as a linear expansion on a function space, where the

individual functions are given by the different powers of the independent variable x.

The Taylor series for a real function, repeated here for convenience from the previous

chapter (equation 5-20) where the notation has been explained, is given by

....
!

)0(....
!2

)0()0()0()()(

2

)2()1(
k

x
f

x
fxffxf

k

k

This can be written as

k

k

k xaxf

0

)(6-1

Alternatively it can be written as

k

k

k gaxf

0

)(6-2

where gk is the k
th
 power of x

For more than one variable, say n variables, this can be written in the general form

k

k

kn gaxxxf

0

12),,...,(6-3

where now gk is a monomial, i.e. a single product term of the variables given by

12

1212 ...),,...,(
kkk

nnk xxxxxxg n 6-4

and the ki’s in the exponent are positive integers. Now the Taylor series becomes a

linear combination of the functions gk’s rather than a polynomial in x. An example

with two variables x and y was given in the previous chapter (equation 5-21). With

more than two variables, the order of the variables in the equation becomes an issue.

145

For example for three variables x, y and z, how can we order the two monomials x
2
yz

or xy
2
z, given that both have an overall degree of four? The degree of a monomial is

the sum of the powers of its constituents, so both terms have the same degree. This

issue is resolved by choosing a particular ordering of the variables in the equation and

maintaining it throughout the analysis as shall be demonstrated later (Cox et al. 2007).

One should be careful not to confuse these two somewhat subtle aspects of the Taylor

series, namely that it is both a polynomial and a linear function at the same time. The

interpretation depends on what the linearity or otherwise is with respect to. So whilst

equation 6-1 represents a polynomial in x or more generally in several variables,

equation 6-3 represents a linear combination of functions (the gk’s). Hence the Taylor

series as expressed in 6-3 is a linear combination of non-linear functions given by

equation 6-4. Recall from chapter four that those functions are linearly independent,

and thus they form a basis that spans the whole space of continuous and infinitely

differentiable functions. Hence any such function can be represented by this linear

combination, with the appropriate coefficients for the different terms.

We now consider how the Reed-Muller expansion can be viewed as an expansion on

a function space. We start with the two variable case, which we will later generalise

to several variables. We have introduced the RM expansion in the previous chapter as

1232211012),(xxaxaxaaxxf 6-5

The coefficients of the RM expansion relate to the truth values of the function by the

matrix equation (from the previous chapter)

3

2

1

0

3

2

1

0

1111

0101

0011

0001

d

d

d

d

a

a

a

a

 6-6

which can be rewritten in compact notation as

Tda 6-7

Where a is the vector of the RM expansion coefficients given by

146

 3210 aaaaa

(The prime on a indicates the transpose of the vector, this is normally denoted by the

letter T but we chose to use the apostrophe in this case to avoid confusion with the

matrix T.)

and d is the vector of truth values of the function

 3210 ddddd

and T is a transformation matrix given by

1111

0101

0011

0001

T 6-8

It is well known from linear algebra that a linear transformation between two vector

spaces can be represented by a matrix and conversely a matrix can represent a linear

transformation between two vector spaces (Naylor and Sell 1982). Indeed the matrix

T transforms the truth values to the coefficients of the RM expansion. Furthermore,

from the previous chapter (equation 5-3), we have found that the equation that

computes d from a has the same form as equation 6-6 above, i.e. we have

Tad 6-9

But from equation 6-7 and noting that the matrix T is invertible on GF(2), we have

aTd
1 6-10

Hence we get

1TT 6-11

This means that the Reed-Muller expansion can be viewed as a transformation on a

vector space. In fact it is a transformation on a function space where the functions are

binary valued as opposed to the real valued functions of the Taylor series expansion

147

in equation 6-1 above. Furthermore, this transformation is not only invertible but is

its own inverse as well.

We can demonstrate that the RM expansion is a linear combination of functions on a

vector space by examining table 6-1 below with all the possible two variable

functions on GF(2), repeated from the previous chapter. We note from the table that

any of the sixteen binary functions can be represented by a linear combination (using

modulo 2 addition) of the functions f15, f10, f12 and f8. Each of these four functions

corresponds to a term in the RM expansion of equation 6-5. Furthermore, those

functions are linearly independent, i.e. none of them can be represented as a

combination of the other three or of any other functions in the table. Hence the

functions f15, f10, f12 and f8 span the space of all two variable binary functions, and

form a basis for this space. Indeed, comparing the truth values of the functions f15, f10,

f12 and f8 with the columns of the matrix in equation 6-8 reveals that they are the same.

This is not a surprise since the post multiplication of a matrix by a vector, which is

the operation in equation 6-6, leads to a linear combination of the columns of the

matrix with the coefficients being the corresponding elements of the vector (Strang

1988). It is worth noting from table 6-1 that the DNF of a function is a logic OR

combination of the functions f1, f2, f4 and f8, which represent the min terms as

explained in chapters three and five. They also form a basis (under logic OR) for the

space of all two variable Boolean functions, however, working with matrices on a

Boolean algebra is not as straightforward as on a field because of the unusual

properties of the Boolean algebra, see chapter four for more details.

Table 6-1: All possible binary functions of two binary variables.

m
Inputs Outputs

x2 x1 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

2 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

So why is considering the RM expansion as a linear transformation on a vector space

important? We will see shortly that this makes extending the RM expansion to several

variables much easier, and also gives an intuitive interpretation to synthesising logic

functions. Biologically and hence more relevant to our work, this will have

corresponding significance in the context of synthetic biology.

148

Let us now apply these concepts to the Reed-Muller expansion, where for an n

variable function it is given by a form similar to that of the Taylor series expansion,

equations 6-3 and 6-4 above.

12

12

12

0

12 ...),,...,(kkkn

n

bbb

n

k

kn xxxaxxxf

 6-12

Note that unlike real functions, the second and higher order differences of a Boolean

function with respect to the same variable is zero and hence we end up with a finite

sum as opposed to the infinite series for the continuous case.

We will choose a particular ordering of the variable where bkn....bk2bk1 is the n digit

binary representation of the decimal number k whose values range from 0 to 2
n
-1.

This is similar to the ordering of the functions above as explained in chapter five,

table 5-3. For example, for a four variable function, k will range from 0 to (2
4
 – 1) =

15 and will be represented by a four digit binary number. So for k = 7, its binary

representation is 0111 and the corresponding term in equation 6-12 will be given by

1237

1

1

1

2

1

3

0

47 xxxaxxxxa

For three variables, equation 6-12 becomes

12372361353412322110123),,(xxxaxxaxxaxaxxaxaxaaxxxf

 6-13

Using the same approach as for the two variable case in the previous chapter, we get

the corresponding equation for three variables, from which we can compute the

coefficients ak

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

11111111

01010101

00110011

00010001

00001111

00000101

00000011

00000001

d

d

d

d

d

d

d

d

a

a

a

a

a

a

a

a

 6-14

149

Where the monomials given by equation 6-12 represent the basis functions that span

the space of all three variable Boolean functions, and k in the equation ranges from 0

to 7 (= 2
3
 - 1). We will denote the basis functions by rk, given by

1237

236

135

34

123

22

11

0 1

xxxr

xxr

xxr

xr

xxr

xr

xr

r

 6-15

Considering the rk’s as vectors, equation 6-14 can be written as

 drrrrrrrra 76543210 6-16

where each rk is a function representing the corresponding column vector in the

matrix of equation 6-14, and they can be plotted against the decimal equivalent of the

binary values of the inputs as illustrated in figure 6-1. These eight (8 = 2
3
) basis

functions can be linearly combined to generate any of the 256 (= 2
8
) possible binary

functions of three variables.

Note that whilst the Reed-Muller functions are linearly independent, they are not

orthogonal. This can be verified by inspection of figure 6-1 for the three variable case,

where the inner product of any two of the functions is not zero. This is true for any

number of variables. See chapter four for a discussion of orthogonality.

As an aside and from a purely algebraic point of view, it is to be noted that the set of

basis functions is closed under component-wise multiplication, defined as the

multiplication of the corresponding components of any two columns, recall that we

are using modulo 2 multiplication. This closure means that the product of any two (or

more) functions in this set will also be in the set. Furthermore, r0 acts as an identity

(unity) for this operation i.e. when multiplied by any of the functions it does not

change it. This multiplication is also associative and commutative, hence the set

forms an algebraic structure known as a commutative monoid (see chapter four). In

150

fact the four functions r0, r1, r2 and r4 generate the other functions in the set, for

example r3 is obtained from the product of r1 and r2 (where 3 = 1 + 2), as can be

verified by inspection from figure 6-1 or from equation 6-14. Similarly, r5 is the

product of r1 and r4 (where 5 =1 + 4), and so on. Note that only the functions with

index 2
k
 where k is from 0 to n-1 generate the other functions, so in the case of n = 3,

those are r1, r2 and r4 in addition to r0 which acts as the identity. Hence r5 is not

generated by r2 and r3 (in spite that 5 = 2 + 3). Also note that this numbering holds

only with that particular ordering of the rk functions, known as the Hadamard

ordering (Hurst et al. 1985; Beauchamp 1987). For other orderings, the property that

n+1 functions generate the rest of the 2
n
 functions will still hold but the numbering of

the functions will be different, i.e. those will no longer be the ones with the 2
k
 index.

Figure 6-1: The Reed-Muller functions for three variables.

 1

f(x)

x

r0

r7

r3

r2

r5

r4

r1

r6

0
 5 6 7 4 3 2 1

151

In summary, n+1 particular RM functions generate the rest of the 2
n
 ones by

component-wise multiplication, and the total 2
n
 RM functions generate all

n22 binary

functions by linear combination.

We have mentioned earlier that one of the benefits of representing the RM expansion

as a linear transformation on a vector space is that it makes it easier to extend it to a

larger number of variables. By comparing equation 6-14 and equation 6-6 we find

that the transformation matrix for the three variables case (call it T3) relates to that for

the two variable case (call it T2) by

22

2

3

0

TT

T
T 6-17

where 0 in the matrix above is a 4 × 4 matrix of zeros.

For the general case of a function of n variables, the transformation matrix can be

obtained in a recursive manner by (Green 1986; Almaini 1994)

11

1 0

nn

n

n
TT

T
T 6-18

where 0 is a matrix of zeros of dimensions (2
n-1

 × 2
n-1

) and T1 is given by

11

01
1T 6-19

In the previous chapter we have considered combinatorial gene regulatory functions

of one and two regulatory variables. Using equations 6-18 and 6-19 the RM

expansion (and hence transform) for a larger number of variables can be determined

directly, which is much easier than the summation of equation 6-12. There are even

simpler ways to represent this recurrence relation, one method uses what is known as

the Kronecker matrix product whereby the product of two matrices is defined as the

multiplication of the second matrix by every element of the first. This means that the

Kronecker product of an m × n matrix by an r × s matrix is an (mr) × (ns) matrix.

Using this notion, the transformation matrix Tn for an n variable function is given by

the Kronecker product of the matrix T1 by itself n times (Green 1990a)

152

1TTn

n

 6-20

where the encircled multiplication sign indicates the Kronecker product of two

matrices, and the n indicates how many times the multiplication will be performed.

Using this notation, equations 6-6 and 6-14 above can be easily reproduced. This is

an even simpler notation than equation 6-18 and produces faster computational

algorithms (Green 1990a).

The RM expansion for the general n variable case corresponding to equation 6-18 is

given by the linear combination of the RM functions rk

k

k

kn raxxxf

n

12

0

12),,...,(6-21

This equation can be used in the synthesis of logic functions, which constitutes the

second benefit of the RM transform as alluded to earlier. We will explore this further

in the context of synthetic biology.

6.3 Application to synthetic biology

Synthetic biology is a field of research that combines biological knowledge with

engineering methodologies to produce biologically based systems that implement

new biological functionalities or improve on existing one, (Endy 2005;

Andrianantoandro et al. 2006). As an emerging interdisciplinary field it is still

relatively in flux and has not completely morphed in terms of scope and tools. In such

situations, it is not uncommon to have different perspectives of the field depending on

the background of the researchers (Brent 2004; Benner and Sismour 2005; de

Lorenzo and Danchin 2008; O'Malley et al. 2008). For scientists it is a tool for testing

biological hypotheses, generating new ones and even attempting to create artificial

life (Gibson et al. 2010). From an engineering perspective however, synthetic biology

is another engineering discipline, but that uses biological “technology” for

implementing the designed systems. Thus it employs biological components rather

than physical ones such as electronic, mechanical or structural components.

153

Applying the engineering design methodology to the design of systems using

biological components has produced several successful biological “devices” some

with novel functionalities that do not exist in nature, and that may not necessarily be

biologically useful but nonetheless serve to prove the methodology. Many of the

devices (we use the term here in a generic sense to mean functional units) developed

are catalogued in a standard way in an online registry [partregistry.com] that

resembles the format of the data sheets of electronic components. Some of the notable

examples of engineered biological systems have been reviewed by several authors

(Heinemann and Panke 2006; Drubin et al. 2007; Marchisio and Stelling 2008).

Indeed the design approach in synthetic biology has been particularly influenced by

that of electronic engineering as evident in adopting such terminology as genetic

circuits and logic design (Hasty et al. 2002), and where the design of different

functionalities has mimicked logic design in electronic engineering.

As has been mentioned in chapters three and five, logic design is usually performed

using the disjunctive normal form (DNF) of a logic function, which leads to

implementation using the well known logic gates AND, OR and NOT. This is also

the approach adopted in synthetic biology; indeed by abstracting from the

implementation technology (electronic vs biological) to the function being

implemented, one can transfer the methodology across disciplines. In the biological

domain several authors have suggested implementations of those gates, usually

employing transcription factors as inputs and mRNA as the output (Guet et al. 2002;

Dueber et al. 2004; Rodrigo and Jaramillo 2007; van Hijum et al. 2009). In such a

case the logic gate is effected using the cis-regulatory logic of the gene, see chapter

three and Istrail and Davidson (2005). One of the problems with the DNF approach

however, is the so called high fan-in required of the logic gates, meaning that a large

number of inputs is required to be connected to each gate, especially in the case of a

large number of variables. In the biological context this causes a problem of

molecular overcrowding at the promoter of the gene (Buchler et al. 2003). Hence an

alternative candidate for the design task in synthetic biology is the Reed-Muller

expansion, in particular in its transform form. The RM transform in effect automates

the design task and makes it transparent to the designing biologist who does not need

to be concerned with the mathematical background involved. In addition the Reed-

Muller formulation of a logic function allows for more implementation architectures

154

than are readily available for the DNF (Green and Edkins 1978). Another feature of

the RM approach is that it allows for modelling incompletely specified functions, i.e.

functions for which the outputs are only known for a subset of the possible input

combinations. Such a situation is conceivable in the context of gene expression

regulation where some regulatory factors might not have been tested for all their

possible values (Habib 1993; McKenzie et al. 1993; Debnath and Sasao 2000). It

should be noted that the DNF approach also allows for modelling such a situation, but

not in as straightforward a way as it is in the RM approach.

However, the RM design approach is not without drawbacks, the most prominent is

that it is difficult to obtain a minimal design, i.e. one that fulfils the specifications

while maintaining a minimum number of components. This, together with the lack of

development tools and the heavy capital and expertise already invested in the

traditional design approach are some of the reasons why the RM approach has not

been widely deployed in the electronics industry. The situation with synthetic biology

however is different; the small scale of the designs makes it possible to go through an

exhaustive search for the optimal design, or to utilise some of the somewhat difficult

optimisation techniques of the RM expansion (Green 1990a; Green and Khuwaja

1992; Debnath and Sasao 2000; Falkowski and Yan 2004). Furthermore, being a

nascent industry, there has not been heavy investment yet in productivity tools and

expertise that would otherwise prohibit exploring alternative design approaches.

Indeed, it is well recognised in industry that success of a method or a product is not

always based on technical merit, but often on commercial and economic factors.

As is well known, in any design task, the designer is given a set of specifications and

is required to produce a physical system that meets them. The specifications are given

at different levels of abstraction, for example for an electronic circuit they start with

the function to be performed by the system, but also include limits on power

consumption, speed of response, size, weight, fault tolerance and so forth. Here we

will limit our discussion to the functional specifications. Assume we are given the

specification in the form of the output values desired for the different inputs, this is

equivalent to being given the truth vector d. Hence all the designer has to do is

multiply the truth vector by the transformation matrix of the matching dimension as

155

in equation 6-7 to obtain the linear combination as in equation 6-21 which gives the

weighting on the basis functions needed to construct the desired function.

Let us demonstrate the application of the RM transform method to synthetic biology

by a fictitious example. Assume that a biologist wants to design a gene regulatory

system that is controlled by two conditions, whose effects may possibly be mediated

through transcription factors. It is required that each transcription factor on its own

represses the gene, thus when neither is present the gene will be expressed. Assume

further that it is also required that when both conditions are present at the same time,

the gene is switched on, possibly due to both repressors cancelling each other’s effect.

Thus we can use the function specifications outlined above to build a truth table for

this system as in table 6-2 where x1 and x2 represent the transcription factors and f (x2,

x1) the gene expression level.

Table 6-2: Specifications of a biological function to be synthesised.

x2 x1 f (x2, x1)

0 0 1

0 1 0

1 0 0

1 1 1

Using the truth values in the table in equation 6-6 above we get the coefficients of the

RM expansion, substituting those in equation 6-5 we get

2112 1),(xxxxf 6-22

Thus the biologist gets the required mathematical function right away, just by a

simple matrix multiplication on GF(2). Such a procedure can easily be automated to

become completely transparent to the user, whereby they enter the truth values and

get the coefficients. In fact there are functions in the mathematical packages

MATLAB and Mathematica that perform finite field arithmetic. The biological aspect

of the problem however, is more challenging than the mathematical one, i.e. how can

one implement this function using biological components. We will discuss this issue

later in this chapter.

156

6.3.1 The stoichiometric matrix as a linear transformation

It is worth pointing out at this stage that this linear combination is conceptually

similar to the stoichiometric matrix used in metabolic engineering for the analysis of

the fluxes in a given metabolic pathway, or indeed the whole metabolic network.

Metabolic engineering can be thought of as a precursor to synthetic biology in the

sense that its purpose was also to alter the genetic make-up of the organism, but to

achieve changes at the metabolic level to increase the production of certain desirable

metabolites often by orders of magnitude (Bailey 1991; Nielsen 2001). Which part of

a pathway to alter is decided based on the flux analysis of the different reactions in

the pathway and the control analysis of the enzymes catalysing those reactions. The

analysis often involves a material balance through the pathway to determine the rate

of concentration change of the different metabolites as the fluxes through the different

reactions of the pathway change. We review briefly the formulation of the

stoichiometric matrix to demonstrate how it can be viewed as a linear transformation.

Assume we have m metabolites involved in n reactions, and that metabolite i is

involved in reaction j with the stoichiometric coefficient ij, then a straightforward

material balance of the metabolite i through all the reactions in the pathway gives

ninjijii
i vvvv

dt

dx
 1111 6-23

Where xi is the concentration of the metabolite i and vj is the flux of reaction j. Of

course a metabolite will not normally be involved in every reaction of the pathway, so

some of the ij’s will be zero. The other stoichiometric coefficients will be either

positive or negative depending on whether the metabolite is a substrate or a product

of the reaction they relate to. Equation 6-23 indicates that the rate of change of

metabolite i will be determined by its net flux through all the metabolic reactions in

which it is involved, whether as a substrate or a product. This same procedure applies

to all the metabolites in the pathway and hence can be represented in matrix form

Sv
x

dt

d
 6-24

Where x is a vector of the concentrations of the m metabolites, hence it is m

dimensional, v is the vector of fluxes through the n reactions, thus n dimensional and

S is the m × n matrix of stoichiometric coefficients, given by

157

mnm

nj

....

......

....

..

1

2221

111211

S 6-25

Each row in the stoichiometric matrix S corresponds to a particular metabolite in the

pathway, and every column corresponds to a reaction. So row i indicates all the

reactions in which metabolite i is involved, while column j indicates all the

metabolites involved in reaction j. Normally the number of reactions is larger than the

number of metabolites because some metabolites are involved in several reactions, a

notable example of that are metabolic precursors which are the starting points for

many pathways. Hence the stoichiometric matrix has more columns than rows, i.e.

n > m.

We have mentioned earlier the well known algebraic fact that any matrix can

represent a linear transformation between two vector spaces, and the stoichiometric

matrix is no exception. It transforms the space of reactions (fluxes) to the space of

rates of changes of metabolite concentrations, with the transformation given by

equation 6-24. In analogy with equations 6-14 and 6-16 above, equation 6-24 can be

written in the form

 vssss
x

nj ...21
dt

d
 6-26

Where the sj’s are the reaction vectors containing the stoichiometric coefficients of all

the metabolites involved in the corresponding reactions. Again in analogy with

equation 6-21, equation 6-26 can be written as

js
x

n

j

jv
dt

d

1

 6-27

Since the space of reactions is m dimensional because each reaction can have a

maximum of m metabolites, and since we have n reactions where n > m, it follows

that not all the vectors sj are linearly independent. The maximum possible rank of the

stoichiometric matrix is m, however this is often not the case and the rank is less than

m, because some of the reactions are usually linearly dependent, for example having

158

stoichiometric coefficients that are multiples of each others. This means that the basis

set that spans the reaction space is a subset of the set of reaction vectors. The

stoichiometric matrix is extensively studied by Palsson (2006) from an algebraic

viewpoint with interesting metabolic implications.

Our purpose from this discussion of the stoichiometric matrix and the transform form

of the Reed-Muller expansion is to demonstrate that the concept of a linear

transformation between two vector spaces is applicable in the biological context with

the relevant interpretation of the spaces. The two contexts we used here are that of

gene expression regulation and of metabolic flux analysis.

It is clear from this discussion that a linear transformation can be non-square and

hence not invertible such as the stoichiometric matrix, or it can be square and

invertible but non-orthogonal such as the Reed-Muller transformation matrix. A

further case is when the invertible transformation is also orthogonal. Orthogonal

transformations have appealing features as their basis functions are intuitively similar

to the axes of a Euclidean space, but more importantly they have computational

advantages over non-orthogonal ones.

For a real function, the orthogonal transform most familiar to engineers is the Fourier

transform, but there are others, depending on the characteristics of the function being

transformed. There are also several orthogonal transforms for binary functions, the

most common and arguably intuitive one is the Walsh transform because of its

simplicity (Beauchamp 1975). The Walsh transform can be applied to binary

functions but requires first the transformation of the binary set {0, 1} to the binary set

{1, -1}. Algebraic equivalence between the two under certain binary operations can

be established, but we will not pursue this further.

6.4 Extension to the multiple-valued case

Recall that one of the aims of this work is to develop a mathematical modelling

method to represent discrete gene regulatory function that can take more than two

values. Toward this end we first addressed the two valued case using the Reed-Muller

expansion which is essentially an expansion on the two element finite field GF(2).

159

Whilst the simplest finite field, there is nothing fundamentally special about GF(2),

and hence the method can be applied to any finite field. Consequently, many of the

concepts introduced in the previous chapter and the earlier sections of this chapter can

be extended to the multiple-valued case with similar interpretations.

6.4.1 Functions on finite fields

Let us start by going back to the basic argument behind this work, which might have

been obscured in the discussion of the binary case. On an abstract level, the main idea

is that a biomolecular system (or any other system for that matter) that has multiple

discrete states, when appropriately defined can be described as a mapping from one

finite set to another, where the number of elements of the set corresponds to the

number of discrete states of the biomolecular entities involved. This mapping can

often be represented as a function on some algebraic structure, e.g. a group, a ring or

a field. Now to move to a more concrete argument, the biomolecular system in our

case is the regulation of gene expression and the algebraic structure is a finite field.

A powerful property of a finite field is that any function on it can be uniquely

formulated as a polynomial on the field with coefficients from the field. Furthermore,

the degree of this polynomial is less than the order of the field, i.e. less than the

number of discrete values of the variable involved. This has been discussed in chapter

four where we have indicated that the order q of a finite field must be either a prime

or a positive integer power of a prime. When the order is a prime p, modular

arithmetic is used. However when it is a power of a prime p
n
 then modular arithmetic

can no longer be used and addition and multiplication have to be defined differently

(Berlekamp 1968; Lin and Costello 1983; McEliece 1987). To see this, consider the

case of GF(4), where table 6-3 gives the modulo 4 operations while table 6-4 the

GF(4) operations which are clearly different.

Table 6-3: Addition and multiplication modulo 4.

+ 0 1 2 3 × 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 2 3 0 1 0 1 2 3

2 2 3 0 1 2 0 2 0 2

3 3 0 1 2 3 0 3 2 1

160

Table 6-4: Addition and multiplication on GF(4).

+ 0 1 2 3 × 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 0 3 2 1 0 1 2 3

2 2 3 0 1 2 0 2 3 1

3 3 2 1 0 3 0 3 1 2

It is clear from table 6-4 that elements of a finite field can no longer be treated as

ordinary numbers, rather they are more general mathematical entities, and that is why

they are often denoted by symbols rather than numbers (in fact they can be regarded

as polynomials). What matters for a finite field is not the nature of its elements but

the structure of the field. Indeed all finite fields of a given order are isomorphic

(mathematically equivalent), irrespective of how the elements and the two binary

operations are defined. This is a powerful property that allows us to redefine the

elements to suit whatever context we are using the field to model. See chapter four

for further discussion of finite fields.

Recall that we are modelling gene regulatory functions as combinatorial logic

functions, now defined on a general Galois field GF(q) rather than on the two element

GF(2). The theory of logic functions on finite fields is well developed in electronic

engineering where it is termed multiple-valued logic, and has been around for some

time (Menger 1969; Benjauthrit and Reed 1976, 1978; Pradhan 1978). The

motivation for developing such tools for logic design was the optimisation of several

cost factors in logic circuit design such as the number of gates, utilisation of

microchip area, switching speed and testability (Falkowski and Lozano 2005). In

spite of its potential benefits, multiple-valued logic design did not gain wide

acceptance in the digital design community due to the lack of efficient design tools

and implementation technology, among other reasons (McCluskey 1986). However,

we believe that it can prove valuable in the modelling of multiple-valued discrete

gene regulatory functions and can be used both as an analysis and a synthesis tool.

161

A q-valued function of a q-valued variable can be modelled as a polynomial on GF(q)

by

k
q

k

k xaxf

1

0

)(

 1

1

2

210

 q

q xaxaxaa 6-28

This is sometimes referred to as the multiple-valued Reed-Muller expansion. Note

that now the ring sum sign denotes addition on GF(q) and all the quantities in the

equation, whether the coefficient ak or the variable x and its different powers are q-

valued. The proof of this result from an electronic engineering perspective can be

found in the sources cited above (Menger 1969; Benjauthrit and Reed 1976, 1978;

Pradhan 1978), and from a mathematical perspective in Lidl (1994).

The counterpart of equation 6-28 in the binary case was given three different

interpretations namely a function on a Boolean algebra and a polynomial on a finite

field both covered in the previous chapter, and a transform on a function space

discussed above. Recall from chapter four that a Boolean algebra is a special case of a

distributive complemented lattice, hence by posing the multiple-valued case in such a

framework we can give equation 6-28 a corresponding interpretation, however this

requires a generalisation of the notions of complement, logic AND and OR. Such

generalisations do exist (Green 1986) but the mathematics becomes awkward, and

more importantly there is no obvious benefit from this interpretation. The second

interpretation, namely as a polynomial on the finite field GF(q) has already been

covered above. Interestingly, in analogy to the binary case, the concept of a difference

operator on a finite field, akin to the Boolean difference of the previous chapter has

been proposed by several authors leading to MacLuaren and Taylor series types of

expansions for functions of several variables on GF(q), (Thayse 1974; Wesselkamper

1978; Hwan Mook et al. 1998; Stankovic et al. 2004). However it is the transform

view of the expansion that we are interested in in this chapter, and we will introduce

it next.

162

As usual, let us take a concrete example, say q = 3 known as ternary logic. This

means that we will use modulo 3 operations as indicated in table 6-5 which makes the

derivation easier to follow. In such a case, equation 6-28 becomes

2

210)(xaxaaxf 6-29

Table 6-5: Addition and multiplication modulo 3.

+ 0 1 2 × 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

We follow a derivation similar to the one used in chapter five, but now for a ternary

function defined by the values of table 6-6, and presented by Green (1989).

Table 6-6: Truth table for a ternary function

Input x Output f(x)

0 d0

1 d1

2 d2

Substituting the different values of x and the corresponding values of f(x) from table

6-6 into equation 6-29 and noting that we are using modulo 3 arithmetic, we get

2102

2101

00

2)2(

)1(

)0(

aaafd

aaafd

afd

 6-30

or in matrix form

2

1

0

2

1

0

121

111

001

a

a

a

d

d

d

 6-31

By manipulating equations 6-30 or by inverting the matrix in equation 6-31 and again

remembering that we are using modulo 3 arithmetic, we get

2

1

0

2

1

0

222

120

001

d

d

d

a

a

a

 6-32

163

 or in compact form

Tda 6-33

and correspondingly

aTd
1 6-34

It is clear from equations 6-31 and 6-32 that now the transform matrix T and its

inverse are different, unlike the binary case (see chapter five).

Again following the presentation of the two valued case in chapter five, for a function

of n variables that are q-valued we get a polynomial on GF(q) with q
n
 terms,

 12

12

1

0

12 ...),,...,(kkkn

n

qqq

n

q

k

kn xxxaxxxf

 6-35

This is similar to equation 6-12 above, but now all the coefficients and variables are

q-valued and the summation is over GF(q). Also now qkn....qk2qk1 is the n digit q-uary

(i.e. base q) representation of the decimal digit k whose values range from 0 to q
n
– 1.

The highest possible power of any particular variable in this polynomial is less than q,

i.e. it is less than or equal to (q – 1), and consequently the highest possible power of

any monomial (i.e. product of variables) is n.(q – 1). Again we will be faced with the

issue of the ordering of the variables, and we will follow the same convention as with

the binary case above, but now the order will be that of counting in base q. Let us

take the example of a two variable ternary function, whereby we get

2

1

2

281

2

27

2

26

2

12512423

2

1211012),(xxaxxaxaxxaxxaxaxaxaaxxf

 6-36

We have 9 (= 3
2
) terms, the highest power of any variable is 2 (= 3 – 1), and the

ordering of the powers of the variables correspond to counting in base three as

explained in table 6-7.

164

Table 6-7: Ordering of the variables for the two variable ternary function of equation 6-36.

MSD = Most Significant Digit, LSD = Least Significant Digit.

Term number

in equation 6-36

Corresponding ternary no. Term in equation 6-36

MSD LSD Powers of x Monomial

0 0 0 x2
0
x1

0
 1

1 0 1 x2
0
x1

1
 x1

2 0 2 x2
0
x1

2
 x1

2

3 1 0 x2
1
x1

0
 x2

4 1 1 x2
1
x1

1
 x2 x1

5 1 2 x2
1
x1

2
 x2 x1

2

6 2 0 x2
2
x1

0
 x2

2

7 2 1 x2
2
x1

1
 x2

2
x1

8 2 2 x2
2
x1

2
 x2

2
x1

2

The two variable ternary transform can be obtained from the one variable one in a

recursive manner, similar to the binary case (Green 1989), where T1 is the 3 × 3

matrix in equation 6-32 above. In general for the n variable case we have

111

11

1

0

00

nnn

nn

n

n

TTT

TT

T

T

222

2 6-37

A readable and fairly comprehensive treatment of the general multiple-valued case

from an engineering perspective, including the direct and inverse transformation

matrices, some recursive relations and the arithmetic operations on several finite

fields is given by Green and Taylor (1974). Computational aspects of the problem of

determining the coefficients in the expansion have been addressed by several authors,

for example (Green 1989, 1990b; Jankovic et al. 2002; Falkowski and Lozano 2005;

Falkowski et al. 2005). Similarly, optimisation of the multiple-valued case including

incompletely specified functions is addressed by (Green and Edkins 1978; Watanabe

and Brayton 1993; Yunjian and Brayton 2000).

Note that the matrices discussed above are linear transformations on vector spaces

where the columns of the matrix are linearly independent vectors, hence leading to

invertible matrices. We will not derive these results as they are essentially

mechanistic extensions of the binary case, instead we will discuss later some of the

conceptual issues underlying transforms and how they can be interpreted in the

165

biological context. First we consider the application of multiple-valued logic to

synthetic biology design.

6.5 Synthetic biology using multiple-valued logic

As mentioned earlier design in synthetic biology mimics logic design in electronic

engineering. Logic design is mostly based on binary logic due to its intuitive

relationship to the binary states of electronic switches, ON and OFF or abstractly 1

and 0. The same mind set has been carried over to logic design using biomolecular

components in spite of them being free from this restriction. However, we believe

that this need not be the case, and that other forms of logic can be utilised and are in

fact more suitable for the description of logic systems based on biomolecules. Unlike

electronic switches, biomolecules and biomolecular components in general can have

more than two states. Hence, the type of logic employed in formulating the biological

function will depend on the number of states of the “technology” or biomolecular

components used to implement it. Working at a mathematical level of abstraction, the

challenge then would be to formulate the biological function in the framework of

multiple-valued logic.

In fact because of their inherent multiple state capabilities, biomolecular components

can even be used to implement non-biological functions such as those in an arithmetic

logic unit of a microprocessor. This leads to using fewer components and hence less

delay and routing issues between the components. Furthermore, the same number of

inputs can produce significantly larger number of functions. For example as outlined

in table 6-1 above, two binary inputs can produce sixteen (=
222) different binary

functions; on the other hand two ternary inputs can produce 19683 (=
233) different

ternary functions. This means that increasing the logic levels by just one, from binary

to ternary, results in a huge increase in the number of possible functions.

Thus when designing biological systems that implement non-biological functions (as

opposed to modelling existing biological ones), such as an adder for example, there

are several challenges faced. First is the choice of the logic levels; this will be

dictated by the context of the problem and will lead to the mathematical formulation

166

of the required function as mentioned above. Next comes the implementation issues

such as the choice of biomolecular components with the required number of states

and the biomolecular mechanisms that will execute the function.

For example if one wants to design a quaternary (radix 4) adder, then the natural

choice for logic levels is four. Next we need to formulate the function implementing

the adder, this is straight forward from the truth table of the adder and the Galois field

approach outlined above, where in this case GF(4) would be used. Then we need to

choose a biomolecule with four states, a suitable candidate would be a nucleotide,

which abstractly can be viewed as a variable that can take one of four different values

namely A, T, C and G. Next we need to identify the different “values” of the

nucleotide (as a quaternary) variable with elements of the field GF(4); recall the

discussion above about the abstract nature of the elements of a field. We had

developed one such mapping, albeit in a different context but is applicable here, see

Appendix I (Aleem et al. 2009). Perhaps the greatest challenge in this particular

problem is how to implement the mechanism that will read the strings of nucleotides

representing the quaternary numbers to be added, perform a bit–wise addition on

them and give the output. This can involve RNA polymerase to read the strings and

some other mechanism for addition, and outputting. Such an implementation is at a

different level of abstraction, mainly closer to the biological level than to the

mathematical one we are interested in in this work. It can be considered to fall in the

realm of DNA computing, which is essentially computation using DNA molecules.

This is a multi-disciplinary field with research relating to both the

mathematical/computational aspect of DNA computing and the biological aspects.

The former addresses such issues as the types of problems that can be solved and the

performance of the algorithms implemented, while the latter considers issues such as

the design of the DNA sequences involved and the different molecular manipulations

required for implementing the computations (Amos 2005). In fact the term

biomolecular computing is starting now to replace the term DNA computing to

indicate that other biomolecules such as RNA are used. Other examples of

biomolecules that can have several states include a morphogen which can have

several concentration thresholds each triggering a different behaviour in a developing

cell (see chapter three), and a regulatory protein which can have several activation

states depending on how many activation sites it has.

167

Whilst we do not rule out a binary logic approach to design since many biomolecules

do act in a binary fashion, we maintain that it is by no means the only or possibly

even the best option in some cases. Such natural deviation in behaviour from the

simple ON/OFF switches should be exploited in the design process.

6.6 A conceptual view of transforms

In this section we want to offer a brief discussion of the idea behind a transform,

relying on an intuitive argument rather than mathematical derivations. The first

question that comes to mind concerning transforms is, why do we need them in the

first place? In other words, what is the benefit we gain from using a transform in

analysing a problem? Well, the main benefit is that it transforms the information

about the function from one form into another (technically termed from one domain

into another), with the hope that the information in the new form will reveal some

features or characteristics of the function that are difficult to discern in the original

form. An example familiar to engineers is the Fourier transform which transforms the

information in a signal from the time domain to the frequency domain, a process

known as harmonic analysis. This means that the time course of the function reveals

information about its frequency content. This is very helpful in studying many

problems in engineering where frequency determines the response of the system. For

example electronic engineers use harmonic analysis for the analysis and design of

communication systems and their components such as filters and tuners. Mechanical

engineers use it for vibration analysis of rotary machinery, and civil engineers use it

for the analysis of structures under dynamic loads, to name but a few examples.

For a transform to be useful it must retain all the information that is in the original

function when it transforms it into the new form (or domain), otherwise some of the

features that we are hoping to detect in the new domain might get lost in the process,

rendering the exercise useless. Intuitively this means that since all the information is

intact in the new domain, it should be possible to recover it back to the original

domain; in a sense reversing the process. Mathematically this means that the

transformation, which is a matrix in our context here, must be invertible. Now, we

know from algebra that for a matrix to be invertible it has to have full rank, and this

only happens when its columns (and rows) are linearly independent, hence our

168

emphasis earlier on linear independence. Note that orthogonality is not necessary for

linear independence (although it is sufficient). Our interest in orthogonality is mainly

for convenience since as mentioned earlier, it provides computational advantages and

gives an intuitive feel to the transform.

There is another interesting facet of invertible transforms that comes from

information theory. Information theory started as a branch of communication

engineering that was concerned with the information content in a signal and whether

it is possible to recover all the original information in the transmitted signal from the

information in the received signal, given that it had travelled through a noisy

communication channel and hence corrupted (Shannon 1948; Cover and Thomas

1991). The noisy channel was characterised by an error probability distribution,

meaning that different parts of the signal (e.g. frequencies) will have different

probabilities of error. This characterisation was used to calculate the information

content of the received signal (which has travelled through the noisy channel) using a

function that was called the entropy of the signal. This term was used because of the

similarity in the form of the function to that of entropy in statistical thermodynamics.

Indeed both entropies in a sense carry information about the reversibility of the

process. This means that a transform such as the Reed-Muller or Fourier or any

reversible transform in general, represents a constant entropy process from the point

of view of information content. This matches perfectly with our earlier argument

about the reversibility of the transform as a condition for not losing any information,

i.e. for being able to recover all the original information, hence reversing the process.

The transform and its inverse are often referred to as the transform pair, and they have

even more interesting implications. Which one is the direct transform and which is

the inverse does not matter conceptually since both contain the same information

albeit in different forms. Nonetheless there are certain conventions, for example in the

Fourier transform pair, the transform from time to frequency is considered the direct

transform and from frequency to time is the inverse transform. For the Reed-Muller

transform we will consider the transform from the truth table domain to the

polynomial domain as the direct transform, and the reverse direction the inverse one,

such as in equations 6-33 and 6-34 above. The direct transform of equation 6-33 uses

the truth values of the function given by the vector d to determine the vector a of the

coefficients in equation 6-29. This means that it determines the contribution of the

169

different terms (representing the basis functions) to the overall function, i.e. it

analyses the function to its constituents. This is the same approach of the Fourier

series where it uses the time function to determine the contributions of the different

harmonics. Recall that the Fourier series (which is a special case of the Fourier

transform) is used to breakdown a periodic function into its harmonics and is given

by (Kraniauskas 1992)

)sincos()(00

1

0 kbtkaatf k

k

k

 6-38

Where is the fundamental frequency of the periodic signal and 0 is its period. The

different coefficients (the amplitudes of the waves) are given by

dttktfb

dttktfa

dttfa

T

k

T

k

T

0

0

0

0

0

0

0

0

0

00

0

sin)(
2

cos)(
2

)(
1

 6-39

We have used the Fourier series rather than the more general Fourier transform

merely for simplicity of presentation, and because it is in the form of a sum like the

case of the RM expansion. The frequencies are integer multiples of the main

frequency of the periodic function, i.e. they are its harmonics, hence the term

harmonic analysis. The function is said to be expanded in terms of the cosines and

sines (which are the basis functions for this case) where equations 6-39 determine the

coefficients of the expansion representing the contributions of the different harmonics

to the overall function as in 6-38. Equations 6-39 represent the direct transform, and

is known as the analysis transform as it analyses or resolves f (t) to its constituents.

On the other hand equation 6-38 represents the inverse transform and is known as the

synthesis transform as it uses the different basis functions to build the time function.

A similar interpretation applies to the Reed-Muller expansion where equation 6-33

represents the direct or analysis transform as it breaks down the function given by d

to the contributions from the different powers of x as in equation 6-29. Meanwhile the

synthesis equation 6-34 or equivalently 6-29, uses the basis functions as specified by

170

the vector a to build the function vector d. So essentially the analysis transform says:

here is a function, find out what it is made of? In systems biology this is known as a

top-down approach (Westerhoff et al. 2009). Conversely the inverse transforms says:

here is a set of functions, if you combine them with the coefficients (weights) given,

what function do you end up with? Again in systems biology this is known as a

bottom-up approach (Westerhoff et al. 2009). Hence the transform approach ties very

elegantly with concepts from systems biology.

One final note we want to make from equation 6-38 and 6-39 above, and that is the

direct transform of equations 6-39 uses all of the information in the time function to

determine the contribution of every single harmonic. This is evident from the limits

of integration which cover the whole period of the function, i.e. it includes all the

information in the time domain. On the other hand the inverse transform uses all the

information in the frequency domain to build the function in the time domain as

evident from the limit of the summation which goes to infinity covering all the

harmonics.

The situation with the RM expansion is a bit different, in that the direct transform

uses some but not all the information for a given coefficient, only the last coefficient

uses all the information as in equation 6-32. Similarly for the inverse transform in

equation 6-31. It should be noted that there are other discrete transforms with this

property, for example for the Walsh transform alluded to earlier, every coefficient in

one domain carries information about the function at all its points in the other domain,

as in the Fourier transform.

6.7 Summary and Conclusion

The core idea of this chapter is to apply the concept of transforms on function spaces

to the case of discrete combinatorial gene regulatory functions. We started with the

binary case building on the material of the previous chapter, where now we viewed

the Reed-Muller expansion as a transform on a binary function space. The basis

functions of this space are the Reed-Muller functions. For n binary variables, there

are 2
n
 RM functions that span the space of all possible n variable binary functions;

hence any such function can be constructed using the RM functions.

171

We then extended the concept of a transform on a function space to the multiple-

valued case. This required first defining the functions that constitute this space, and

for that we used a powerful property of finite fields whereby every function on the

field can be uniquely represented by a polynomial on the field. Similar to the binary

case this resulted in a number of functions that span the space and hence can be used

to build any function on it. For the finite field GF(q), the number of functions is q
n

where n is again the number of variables. Of course for both cases, the binary and

multiple-valued, a set of functions that span a space has to be linearly independent.

We have also presented an interesting conceptual discussion of transforms in general

that tied material from different areas of knowledge including information theory,

statistical thermodynamics, communication engineering and systems biology, thus

demonstrating the immense power of abstractions and of carrying concepts and tools

across disciplines.

Interesting as it may be in its own right, a conceptual value is not sufficient to adopt a

new method; practical benefits have to be accrued as well. The benefit can be in both

modelling and design of combinatorial gene regulatory functions or biomolecular

systems in general. The two concepts of modelling and design in the modern

biological context correspond roughly to systems and synthetic biology respectively.

We have addressed modelling implicitly in the previous chapter and design more

explicitly in this one.

Indeed for the case of synthetic biology, using a multiple-valued design approach

would decrease the number of components required to implement a function and

consequently the material transport involved and the associated delay. In addition it

can implement functionalities that may be difficult to achieve using binary logic.

However, as with any new approach, just as there are opportunities there are

challenges as well. For a method based on finite fields there are three main challenges.

The first is the order of the field which has to be either a prime or a power of a prime,

this is not a major issue since among the first nine integers (1 to 9) only 6 is neither;

and it is unlikely to design a function with more than ten discrete levels (0 to 9). The

second challenge is that of identifying members of a finite field with some

biomolecule or biomolecular component. Again this is not a major issue as

demonstrated above, as one is bound to find some biomolecule with the necessary

172

number of discrete states. Manipulating such a molecule then becomes the issue, and

indeed this is the third and major challenge confronting such a design approach.

There have been suggestions for implementing multiple-valued logic functions in

electronics, which may be possible to emulate in biomolecular technology. However,

this remains to be an area of potential future research.

This chapter concludes the development and interpretation of the method, we now

want to apply it to a real life system in more depth than has been done in this and the

previous chapter. The reason we did not get into too much detail of the biology in the

previous chapters is that we did not want the biology to obscure the maths. But now

that the mathematical formulation is completed we can apply it to a more detailed

biological system, which we will do in the next chapter.

173

Chapter 7: Application to the Modelling of

Phage Lambda

7.1 Introduction

In this chapter we apply the concepts introduced in chapters five and six, to model

gene regulation in the bacterial virus known as phage lambda. As in any modelling

endeavour it is important to understand the system being modelled in order to be able

to both formulate a meaningful model and better interpret the results. Thus we will

start this chapter by presenting phage lambda and its gene regulation. This

presentation will be rather biological in nature and builds upon the background

material introduced in chapter two. Here we will mimic the approach taken in that

chapter where the material was introduced through a series of questions. We first ask,

what is phage lambda and what does it do? Answering this question, in particular the

second part will lead us to expand on the discussion of the regulation of gene

expression by providing more detail on the molecular interactions involved in this

process. This will lay the foundation for answering the second question, namely how

does phage lambda effect its response to the regulating factors? Armed with this

knowledge we can then attack the modelling problem, where we will develop two

models, one binary and the other multiple-valued. The difference between the two is

not merely mathematical, but is also conceptual in nature, an issue that we will

discuss.

It is important to remember that the purpose of this chapter is not to present phage

lambda for its own sake, but rather in order to use it as an example for the modelling

approach discussed in this report. Hence it will not be discussed in any more detail

than is necessary for this task. Indeed phage lambda was chosen here because it has

been used in the scientific community as a model system, along with the lac operon,

for the study of the regulation of gene expression. We have discussed the lac operon

in some detail in previous chapters and here we introduce phage lambda. It should be

pointed out that the first part of this chapter is based to a considerable extent on the

174

excellent book by Ptashne and Gann (2004). We will conclude this chapter and

indeed this work, with a discussion of the merits and drawbacks of our method, in

light of the application above.

7.2 What is phage lambda and what does it do?

Phage lambda is a virus that attacks bacteria. Like most viruses it consists of a single

DNA molecule (a chromosome) encased in a protein “coat”. The phage infects the

bacterium by injecting its chromosome in the host leaving the protein coat behind.

The infection causes the bacterium to go into one of two possible regimes known as

lysis and lysogeny, explained below (figure 7-1). Which regime it will go into will

depend on the conditions in the surrounding environment. Lambda is known as a

bacteriophage i.e. bacteria eating, because it eventually destroys the bacterium it

infects.

Lytic route

In the lytic response to infection, the lambda chromosome is replicated and the

protein coat it encodes is synthesised extensively using the host bacterium

transcription machinery. The bacterium becomes quickly filled with phage lambda

viruses (DNA enclosed in protein) and after about 45 minutes the bacterium lyses

(breaks down) and nearly 100 new lambda phages are released.

Lysogenic route

In the lysogenic regime, the lambda chromosome is integrated into the host bacterium

DNA and is replicated and distributed passively with it as the bacterium grows and

divides. In this case the lambda phage is known as a prophage. This is a stable

situation that can go on for a long time if undisturbed. However, if the bacterium is

irradiated with ultra violet radiation, it stops growing and about 90 minutes later it

lyses and lambda phages are released.

The decision by lambda whether to lyse or lysogenise the bacterium depends on

conditions in the surrounding environment. Normally if the nutrients are scarce, the

bacterium will be deficient in the components required for the rapid and extensive

lytic growth in which lambda is synthesised, hence lambda lysogenises the bacterium.

175

Phage lambda is often referred to as a genetic switch as it can switch its effect on the

host bacterium from lysogeny to lysis in a process known as induction.

Figure 7-1: The two possible fates of a bacterium infected by phage lambda.

So how does lambda implement its effects? The answer is through the regulation of

the right genes in its DNA (not the bacterium’s). Before we explain the details of this

however, we briefly review the control of gene expression at the molecular level as

this will help us elucidate how lambda implements its function and consequently help

us in our modelling task. This review will build on material already covered in

chapter two, some of which will be repeated here for convenience and to make it self

contained.

Infected Bacteria

Lysogenic Lytic

Lysogenic

Lambda Phages

UV Radiation

Lysis Replication

176

7.2.1 Molecular interactions regulating gene expression

Recall from chapter two that a gene is a long stretch of DNA that encodes for a

protein. The expression of a gene starts with its transcription which makes a copy of

the code in the form of RNA. This process is performed by the enzyme RNA

polymerase and is often controlled by regulatory proteins. The first step in

transcription is the identification of the starting site. This is done with the help of the

promoter, which is a region of the DNA with certain sequence patterns that indicate

to RNA polymerase that it is a promoter of a gene. It specifies the start site for

transcription and the direction in which to proceed.

There are two important components involved in the regulation of gene expression,

DNA sites and proteins. The interaction of proteins with each other and with certain

DNA sites determines whether the gene will be transcribed or not and the rate of this

transcription. We can envisage several scenarios for these interactions.

The most straightforward scenario is the interaction of the protein RNA polymerase

with the promoter DNA site just described. However, the role of RNA polymerase in

transcription can be facilitated or impeded by regulatory proteins that bind to other

sites on the DNA called operators. For example a regulatory protein can bind to the

operator region (which sometimes overlaps with the promoter) to block the access of

RNA polymerase to the promoter hence preventing transcription, a mechanism

known as exclusion. An example of this scenario is the lac repressor protein

described in chapter two. On the other hand the regulatory protein can also bind to the

operator region to help RNA polymerase bind to the promoter, a mechanism known

as recruitment. An example of this scenario is the Catabolite Activation Protein (CAP)

of the lac operon, again mentioned in chapter two although its specific action was not

detailed there. Another scenario is when a regulatory protein binds to the operator site

to recruit another regulatory protein that then helps recruit RNA polymerase, a

mechanism known as cooperativity. Those four scenarios are summarised in table 7-1.

177

Table 7-1: Some scenarios of DNA/protein and protein/protein interactions.

Scenario Protein DNA site Effect Mechanism

1 RNA polymerase Promoter Straightforward

Transcription

-

2 Regulatory
protein

Operator or promoter Prevent
transcription

Exclusion

3 Regulatory

protein & RNA

polymerase

Operator (for reg.

Prot), promoter (for

RNA pol.)

Help start

transcription

Recruitment

4 Two regulatory

proteins

Two operator sites Help recruit

RNA

polymerase to
start

transcription

Cooperativity

This discussion raises two questions

1. What determines whether RNA polymerase needs the help of a regulatory

protein for recruitment to the promoter, or not?

2. What determines the binding of a given protein to the operator (whether for

exclusion, recruitment or cooperativity)?

To answer the first question, we note that the structure of a promoter includes two

standard sequences, known as consensus sequences, located at positions -10 and -35

upstream of the transcription starting site of a gene. RNA polymerase identifies those

two sequences and binds to the promoter accordingly. In some cases the sequences

deviate from the consensus pattern and hence it becomes difficult for RNA

polymerase to bind to them. In such a case RNA polymerase will need the help of a

regulatory protein to aid it in binding to the promoter, i.e. a case of recruitment. The

closer the sequence of the promoter is to the consensus sequence the less it will need

a regulatory protein to help bind RNA polymerase.

For the second question, the answer is determined by the affinity of the operator site

to the protein, which is determined by both the sequence of the site and the shape of

the protein. Since different operator sites normally have different sequences, they will

have different affinities to a given protein.

At low concentration, the protein will bind to the site that has the highest affinity to it.

As the protein concentration increases, it will bind to the site with the next lower

178

affinity, and so on. This type of affinity is known as the intrinsic affinity of the site to

the protein, in the sense that it is determined by the site and protein structures.

However, in some cases this intrinsic affinity can be altered with the help of another

molecule of the same or different protein. For example sometimes when a molecule

of a protein binds to one operator site it facilitates the binding of another of its

molecules to another site of a lower affinity, even though the protein concentration

may be lower than what would normally be needed for binding to that second site.

This means that the protein/protein interaction in this case increases the effective

affinity of the site to the new protein, i.e. a case of cooperativity.

In summary we can state the following:

a. A protein can bind to more than one operator site (usually not at the same

time).

b. An operator site can bind more than one protein (again not at the same time).

c. Which site the protein will bind to (in either of a or b above) is determined by:

 affinity of the site to the protein.

 concentration of the protein.

 cooperativity with another protein on an adjacent site.

d. When a protein binds to an operator site that overlaps with a promoter, it

prevents RNA polymerase from binding to the promoter, hence switching the

gene off or preventing it from turning on. This is known as negative control,

and this particular mechanism is known as the principle of exclusion.

e. When the binding of the protein to the operator site helps RNA polymerase to

bind to the promoter thus activating the gene, this is known as positive

control, and this particular mechanism is known as recruitment.

f. When the binding of a protein molecule to the operator site helps another

protein molecule to bind to another operator site, this is known as

cooperativity.

Armed with this review of the molecular interactions involved in regulating

transcription of a gene, we can now address gene regulation in phage lambda.

179

7.3 How does phage lambda control its course of action?

The switching of phage lambda from the lysogenic to the lytic route is controlled by

two regulatory proteins that are encoded by two lambda genes. One protein is simply

known as “repressor” and is encoded by a gene called cI, and the second is known as

cro and is encoded by a gene called cro. In order to understand how the two proteins

control lambda operation we need to consider the construction of the promoters and

operators of the genes that the two proteins regulate, which are the same genes cI and

cro.

7.3.1 Construction of the switching region

The region of the two promoters for the two genes cI and cro on the lambda DNA

molecule is depicted in figure 7-2. It consists of the following sites:

1. PRM the promoter for gene cI (shaded area on the left in figure 7-2)

2. PR the promoter for gene cro (shaded area on the right in figure 7-2)

3. An operator region that is divided into three sites

a. OR1 overlapping with the promoter PR

b. OR2 overlapping with both promoters PR and PRM

c. OR3 overlapping with the promoter PRM

Figure 7-2: Part of the Lambda DNA molecule depicting the promoters and operator for the

Lambda genes cI and cro.

The two genes encoding the regulatory proteins are not shown in the figure; only the

promoters and relevant operator sites are. Note that the two promoters are adjacent,

which means that the two genes transcribe in different directions as depicted in figure

OR1 OR2 OR3

PR PRM

 DNA molecule

Transcription of cro Transcription of cI

180

7-2. It may be instructive to compare this figure with figures 2-5 and 2-6 in chapter

two depicting the detailed construction of the lac operon.

A note on nomenclature

PR = Right Promoter, it is the promoter for the cro gene

OR = Right Operator

cro = control of repressor and other genes, a regulatory protein

expressed by the gene cro

PRM = Promoter for Repressor Maintenance, is the promoter for the

cI gene which expresses the regulatory protein “repressor”

repressor = a regulatory protein expressed by the gene cI

As a matter of convention, genes names are italicised while names of the

corresponding (or other) proteins are not. Also note that the promoter PRM

“maintains” the level of “repressor” but it does not initiate its expression. This is done

by another promoter for the same gene, but is not shown in this figure.

In lysogeny, all the lambda genes except cI are turned off to allow the lambda

chromosome to replicate passively with the host DNA. The regulatory protein

“repressor” coded by cI is the one that switches all the other lambda genes off, hence

we will concentrate on studying it in this chapter. This situation means that cI is the

only gene that remains on during lysogeny. It also autoregulates itself to maintain the

correct level of the protein under normal lysogenic conditions. It should be noted that

PRM needs positive control in order to be able to turn the gene cI on, i.e. it needs a

protein to bind to the DNA molecule to facilitate the binding of RNA polymerase to

the promoter PRM (by recruitment, scenario 3 in table 7-1). This protein is “repressor”

hence the autoregulation.

On induction, lytic growth ensues and cI has to be switched off to allow the other

lambda genes to be expressed. This occurs when the concentration of “repressor” falls

and cro starts to take over by first turning cI off further decreasing the concentration

of “repressor”, then turning the other genes on in a specific order. Note that PR does

not need a regulatory protein to help it bind RNA polymerase, as it is a strong

promoter.

181

The operator region that overlaps the two promoters plays a crucial role in this

programme. As depicted in figure 7-2, the operator has three sites of equal length and

similar nucleotide sequence. Each has a different affinity for “repressor” and for cro,

this is important because it determines which site fills first as the “repressor”

concentration rises. It should be noted that both “repressor” and cro normally exist as

dimers, i.e. two identical molecules (monomers) connected together. Each monomer

consists of two domains, an Amino domain that contacts the operator sites on the

DNA molecule, and a Carboxyl domain that interacts with another dimer. See figure

7-3, adopted from Ptashne and Gann (2004).

The site with the most intrinsic affinity for repressor is OR1, then both OR2 and OR3

have the same intrinsic affinity. However, because the binding of a “repressor” dimer

to OR1 aids another “repressor” dimer to bind to OR2 (by cooperativity, scenario 4 in

table 7-1), this makes the effective affinity of OR2 to repressor much higher than that

of OR3.

With cro the situation is the opposite, OR3 has more affinity for cro than both OR1

and OR2 whose affinities are equal. Unlike repressor however, there is no

cooperativity between proteins occupying adjacent operator sites with regard to

binding cro, because the promoter of its gene (cro) is strong. The different affinities

are summarised in table 7-2.

So how does this arrangement work in controlling lambda gene expression? We

consider this in the next section.

Table 7-2: Affinities of the three relevant operator sites of phage lambda to the regulatory

proteins“repressor”andcro.Thenumberof“+”signsindicatesthestrengthoftheaffinity.

Protein
Affinity to protein

Remark
OR3 OR2 OR1

Repressor +
+ (intrinsic)

++ (effective)
+++

Cooperativity - binding

of repressor to OR1

increases the affinity of

OR2 to repressor

cro +++ + +

No cooperativity -

binding of cro to OR3

does not affect the

affinity of OR2 to cro

182

7.3.2 Operation of the lambda switch

We now examine the operation of the lambda switch by considering the different

scenarios that can take place with regard to “repressor”, how it binds to the operator

sites and the effect of that on the expression of the two genes. We present each

scenario briefly as a series of successive steps each leading to the one following it.

Figure 7-2 should be referred to at each step to help elucidate the discussion. The

different scenarios are summarised in table 7-3 at the end of this section.

1. No“repressor”proteinpresent

 Since there are no “repressor” molecules, which are needed to aid RNA

polymerase to bind to PRM, then positive control cannot take place.

 RNA polymerase cannot bind to PRM

 The gene cI cannot be switched on.

As an aside, we consider the effect of the lack of “repressor” on the gene cro.

 because PR does not need positive control

 RNA polymerase will bind to PR

 The gene cro will be switched on and will start producing the protein cro

 Because of the high affinity of OR3 to cro, cro will bind to it first

 Since OR3 overlaps with PRM, hence the binding of cro to OR3 ensures that

RNA polymerase cannot bind to PRM by exclusion

 This ensures that the gene cI cannot be switched on.

Since our purpose here is to illustrate the modelling methodology to follow in later

section rather than explain the details of the lambda operation, we will thus limit our

discussion to “repressor” and will not follow cro in much detail.

2. Lowconcentrationof“repressor”

Note that “repressor” will mainly be present in the lysogenic state where no cro is

present. The first molecules of “repressor” will be synthesised by switching cI using a

promoter other than PRM which we will not discuss here. Hence we will assume that

“repressor” is present.

183

Case 2.1

 Since OR1 has the highest affinity for “repressor”, then the first “repressor”

molecules will bind to it

 Since the OR1 region overlaps with the promoter PR, binding “repressor” to

OR1 will prevent RNA polymerase from binding to PR by exclusion

 This will switch the gene cro off, or prevent it from turning on.

 However, because PRM needs positive control to bind RNA polymerase, and

since OR1 is too far from PRM to effect positive control, then RNA polymerase

will not bind to PRM

 The gene cI cannot be switched on.

Under normal conditions this scenario is not observed because cooperativity between

“repressor” dimers ensure that once one dimer binds to OR1, almost immediately

another binds to OR2 making the two sites fill virtually simultaneously, see case 3.1

below.

For the sake of the modelling exercise that follows, we consider two other cases of

low “repressor” concentration; namely what happens when “repressor” binds to either

of OR2 or OR3 on its own. It has to be emphasised that again, under normal conditions

this situation cannot be observed, but it can be set up experimentally by mutation of

the operator region. Studying those two situations is instructive in understanding the

effects of both operator sites (OR2 and OR3) on the molecular interactions between

the different players involved in regulation.

Case 2.2

In the case of a mutated lambda chromosome that is missing the operator sites OR1

and OR3, at low “repressor” concentration, the following scenario will take place

 “repressor” will bind to OR2, which will cause positive control,

 thus RNA polymerase will bind to PRM

 hence switching the gene cI on

It should be noted that since the OR2 site overlaps with the promoter PR, binding

“repressor” to OR2 will prevent RNA polymerase from binding to PR by exclusion,

184

hence preventing the gene cro from switching on. It should also be noted that because

OR2 is slightly closer to PR than it is to PRM and because of other molecular

mechanisms involved, this negative control by exclusion does not occur to the gene cI.

Case 2.3

In the case of a mutated lambda chromosome that is missing the operator sites OR1

and OR2, at low “repressor” concentration, the following scenario will take place

 “repressor” will bind to OR3 which overlaps with PRM

 Hence RNA polymerase cannot bind to PRM

 The gene cI cannot be switched on.

However, now because OR3 is too far from the promoter PR of the gene cro, it will

not exercise negative control on it. Hence RNA polymerase will bind to PR which will

switch the gene cro on.

3. Mediumconcentrationof“repressor”

We first consider the normal situation then look into the mutated ones.

Case 3.1

 “repressor” will bind to OR1 switching cro off as in the preceding case.

 When a “repressor” dimer binds to OR1 it helps another “repressor” dimer to

bind to OR2 by cooperativity. This happens almost immediately after the first

dimer binds to OR1.

 Once a “repressor” is bound to OR2, it facilitates the binding of RNA

polymerase to PRM by positive control (figure7-3).

 This will switch the gene cI on, which will produce more “repressor” in a

positive feedback loop.

Compare this with the switching on of cI in case 2.2 where positive control existed

but cooperativity did not.

Again we consider two mutated cases that are not observed under normal conditions.

185

Figure 7-3: Cooperativity betweentwo“repressor”dimersandtherecruitmentofRNA

polymerase. Adopted from Ptashne & Gann (2004)

Each of the dumbbell shapes represents a “repressor” monomer consisting of two domains. Two

dumbbells form a dimmer.

Case 3.2

In the case of a mutated lambda chromosome that is missing the operator site OR1, at

medium “repressor” concentration, the following scenario will take place

 “repressor” will bind to OR2,

 By cooperativity, another “repressor” dimer will bind to OR3 which overlaps

with PRM

 Hence RNA polymerase cannot bind to PRM

 The gene cI cannot be switched on.

Case 3.3

In the case of a mutated lambda chromosome that is missing the operator site OR2, at

medium “repressor” concentration “repressor” will bind to both OR1 and OR3

excluding RNA polymerase from either of PR and PRM, thus switching both genes (cI

and cro) off.

4. Highconcentrationof“repressor”

When the concentration of “repressor” becomes high due to some possible problem

with the host cell, like stopping division which accumulates “repressor” dimers; then

the excess “repressor” dimers will bind to OR3 leading to the following scenario

186

 “repressor” binds to OR3

 Since OR3 overlaps with PRM, hence the binding of “repressor” to OR3

prevents RNA polymerase from binding to PRM by exclusion

 This will switch the gene cI off

This will prevent further synthesis of “repressor” reducing its concentration in a

negative feedback loop.

In summary, whenever a regulatory protein binds to an operator site that overlaps

with the promoter of a gene, it prevents RNA polymerase from binding to that

promoter by exclusion hence preventing transcription of the gene. For the two lambda

genes cI and cro, this can be stated as follows

 Whenever a regulatory protein - be it “repressor” or cro - binds to the operator

site OR3, the gene cI will be switched off.

 Whenever a regulatory protein - be it “repressor” or cro - binds to either of the

operator sites OR1 or OR2 (or both), the gene cro will be switched off.

The different scenarios explained above for the effect of the concentration of the

regulatory protein “repressor” on the expression of the genes cI and cro is

summarised in table 7-3. A “0” in the column of an operator site indicates that the site

is not occupied, while a “1” indicates that it is occupied by the regulatory protein

“repressor”. The first column in the table refers to the case number of the different

cases discussed in the text above. Note from the table that the two genes cannot be on

together, although they can be both off at the same time.

Table 7-3:Effectof“repressor”concentrationonthestateofgenescI and cro.

(Case number refers to the numbers in the text).

Case

number
OR3 OR2 OR1 Gene cI

Reason for gene cI

switch off
Gene

cro

1 0 0 0 Off No +ve control On

2.1 0 0 1 Off No +ve control Off

2.2 0 1 0 On - Off

3.1 0 1 1 On - Off

2.3 1 0 0 Off -ve control (exclusion) On

3.3 1 0 1 Off -ve control (exclusion) Off

3.2 1 1 0 Off -ve control (exclusion) Off

4 1 1 1 Off -ve control (exclusion) Off

187

Note that only three cases, namely 1, 3.1 and 4 are normally observed; those are the

ones directly related to “repressor” concentration. The first is observed in the absence

of repressor, the second at low “repressor” concentration and the third at high

concentration. This reduces table 7-3 to table 7-4 below.

Table 7-4: Observable states of the genes cI and cro atdifferent“repressor”concentrations.

Repressor

concentration
OR3 OR2 OR1

Gene

cI

Remark on

gene cI
Gene

cro

None 0 0 0 Off No +ve control On

Low 0 1 1 On cooperativity Off

High 1 1 1 Off -ve control Off

Following a similar reasoning as for the case of the regulatory protein “repressor”,

and noting that cro is not involved in cooperativity or positive control (recruitment),

the different scenarios for the effect of the concentration of the regulatory protein cro

on the expression of the genes cI and cro can be worked out. The results are similar to

those in table 7-3 for the gene cro, although slightly different for the gene cI. As in

the previous discussion, some of the cases are not observed under normal conditions

and can only be devised experimentally. The different observable scenarios for the

gene cro are summarised in table 7-5, where now four different concentrations of the

protein cro are considered. The lack of cooperativity between cro dimers means that

single dimer binding can take place, unlike “repressor” where one dimer immediately

recruits another rendering single dimer binding unobservable under normal conditions.

Also lack of cooperativity means that at medium cro concentration, two dimers do not

need to bind to adjacent operator sites.

Table 7-5: Observable states of the gene cro at different concentrations of the protein cro.

cro

concentration
OR3 OR2 OR1

Gene

cro
Remark on gene cro

None 0 0 0 On No -ve control

Low 1 0 0 On Affinity of OR3 is highest

Medium 1 1 0 Off -ve control (exclusion)

Medium 1 0 1 Off -ve control (exclusion)

High 1 1 1 Off -ve control (exclusion)

We now have enough details about the construction and operation of the phage

lambda system that allow us to model it. Further information on phage lambda and on

the different molecular interactions involved in gene regulation can be found in the

188

two books by Ptashne and Gann (2002, 2004). It is important not to lose track of the

actual purpose of this chapter and indeed of the whole of this work, and that is to

introduce a modelling method rather than produce a particular model. Since methods

for modelling the regulation of gene expression have already been reviewed in

chapter three we will only mention here how they have been applied to phage lambda,

without going into the mathematical details of the resulting models. Arguably one of

the earliest mathematical models for phage lambda was that by Ackers et al. (1982)

and it used statistical thermodynamics to determine the probabilities of binding of the

“repressor” and cro proteins to the different operator sites, in essence determining the

affinities; the model used differential equations. This model was later expanded upon

by Shea and Ackers (1985) and by Santillan and Mackey (2004b). As has been

discussed in chapter three, the major problems with such models include their

complexity, uncertainty of the molecular mechanisms involved and the large number

of unknown parameters, most of which have to be estimated from the data or assumed.

Another modelling approach used is the discrete one, and here because of the

multiple-valued nature of the proteins’ concentrations, generalised Boolean networks

were used (Thieffry and Thomas 1995), those were also discussed in chapter three

and their drawbacks were pointed out, in particular the awkward and non-intuitive

mathematical formulation resulting.

We reiterate that the interest is in the modelling methods and not in the systems being

modelled, thus in the context of this work, phage lambda is just a vehicle for

delivering the method.

7.4 A binary model for gene regulation in phage lambda

It is clear from table 7-3 that the gene regulatory function of phage lambda lends

itself readily to binary models. The usual practice in applying this modelling

approach is to consider the binary values to indicate the crossing of some

concentration or activation threshold by some variable, hence taking a functional

view. However, the particular case of phage lambda as summarised in table 7-3

indicates that we can also take a structural view of the situation in the sense that the

binary values can indicate the presence or absence of a molecule at a certain site. The

effect on the gene can still be considered in the functional view, i.e. that it is switched

189

on or off. With this in mind, table 7-3 can be reformulated into table 7-6, which now

represents a logic function where we have associated a binary variable with the state

of each operator site, and with the expression states of the genes.

Table 7-6: A binary representation of the functions in table 7-3.

Minterm

number

OR3

(x3)

OR2

(x2)

OR1

(x1)

Gene cI

(y1)

Gene cro

(y2)

0 0 0 0 0 1

1 0 0 1 0 0

2 0 1 0 1 0

3 0 1 1 1 0

4 1 0 0 0 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 0 0

Recall from the previous chapter that the Reed-Muller expansion of a three variable

binary logic function y is given by

12372361353412322110 xxxaxxaxxaxaxxaxaxaay 7-1

Where the coefficients ai are obtained from the function values di by the

transformation

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

11111111

01010101

00110011

00010001

00001111

00000101

00000011

00000001

d

d

d

d

d

d

d

d

a

a

a

a

a

a

a

a

 7-2

From table 7-6 the two functions describing the states of the genes cI and cro are

given by the vectors below representing the functions’ values (the di’s), where the

prime sign indicates the transpose of a vector.

 00010001'

00001100'

2

1

y

y

190

Substituting in equation 7-2 and multiplying the vector by the matrix in GF(2), we get

the coefficient vectors below

 00001111'

01000100'

2

1

y

y

a

a

Substituting in equation 7-1 we get the RM expression for both functions

2321 xxxy 7-3

12212 1 xxxxy 7-4

Let us examine the gene regulatory function y1 in equation 7-3 modelling the

response of the gene cI to the different occupation states of the operator sites OR1,

OR2 and OR3, by the “repressor” protein. We can make the following observations

(see also figure 7-2):

 The constant term (a0 in equation 7-1) is zero indicating that the basal state of

the gene is off, i.e. in the absence of any regulating conditions the gene is off.

Such conditions would then modulate it in such a way as to either switch it on

or keep it off.

 The state of the gene does not depend on x1, which makes biological sense

since as mentioned in the different scenarios above, OR1 is too far from the

promoter PRM of the gene to effect any control (positive or negative) on it.

 x2 is necessary but not sufficient to switch the gene on.

 The necessary part: Mathematically, this means that we cannot have y1 = 1

unless we have x2 = 1. Biologically this means that the gene cannot be

switched on if OR2 is not occupied by “repressor”, which makes sense

because of the positive control exerted by the “repressor” protein when it

occupies the operator site OR2.

 The sufficiency part: Mathematically having x2 = 1 is not a sufficient

condition to have y1 = 1, since we can have x2 = 1 but still get y1 = 0, and

that is when we simultaneously have x3 =1. Biologically this means that

having positive control is not sufficient to turn the gene on if we have

negative control at the same time (by exclusion when OR3 is occupied).

 x3 on its own is sufficient to switch the gene off, but it is not necessary.

Mathematically, this means that if we have x3 = 1 in equation 7-3, then

191

irrespective of the value of x2, we will get y1 = 0 indicating that the gene will

be switched off. Biologically this means that the gene cannot be switched on

if OR3 is occupied by “repressor” irrespective of whether OR2 is occupied or

not, because of the negative control exerted by the “repressor” protein when it

occupies the operator site OR3 excluding RNA polymerase. A similar

argument as in the point above demonstrates that x3 is not necessary for

switching the gene off, since it can be switched off in the absence of

“repressor” binding to OR3, if it is also not bound to OR2.

The two last points above can be summarised as follows:

1. x2 is necessary but not sufficient to switch the gene on, i.e. the gene cannot be

switched on without x2, but x2 on its own is not sufficient to switch it on as we

also need to ensure that x3 is not present. Biologically this means that positive

control is necessary to switch the gene on, but it is not sufficient as we need to

ensure that there is no negative control. In other words, if both controls are

present then negative control is dominant over positive control.

2. x3 is sufficient but not necessary to switch the gene off, i.e. x3 on its own is

enough to switch the gene off, but if it is not present then the switch can still

be switched off by lack of x2. Biologically this means that negative control is

sufficient to switch the gene off (because of exclusion of RNA polymerase),

but it is not necessary, i.e. even if there is no negative control the gene can

still be switched off if there is no positive control (because RNA polymerase

will not be able to bind to the promoter site even if it is accessible).

Similarly we can examine y2 in equation 7-4, which models the response of the gene

cro to the different occupations of the operator sites OR1, OR2 and OR3 by the

“repressor” protein. We can make the following observations

 The constant term (a0 in equation 7-1) is now 1 indicating that the basal state

of the gene is on, i.e. in the absence of any regulating conditions the gene is

expressed. Such conditions would then modulate it in such a way as to either

switch it off or keep it on.

 The state of the gene does not depend on x3, which makes biological sense

since OR3 is the only one of the operator sites that does not overlap with the

promoter PR of the gene, and hence cannot effect negative control (by

192

exclusion) on it. Note that unlike the gene cI, the gene cro does not need

positive control to be switched on; hence the lack of positive control does not

switch it off.

 Any one of x1 or x2 on its own is sufficient to switch the gene off, and if they

both are = 1, then this will also switch the gene off. So effectively the

outcome of both variables is an OR gate sort of response. This makes sense

biologically, because if either (or both) operator site OR1 and OR2 is occupied

it will exert negative control (by exclusion of RNA polymerase) on the

promoter PR of the gene. Mathematically, if any or both of the variables in

equation 7-4 is 1 we get y2 = 0 indicating that the gene will be switched off,

which means that it is necessary to have at least one of them present.

The discussion above demonstrates the power of combining a well grounded

biological understanding with a mathematically powerful modelling technique. It

should be noted that other Boolean models such as the Disjunctive Normal Form

(DNF) will lead to the same results but they lack the elegant interpretive power of the

Reed-Muller formulation as demonstrated above. In addition the RM formulation can

be extended to the multiple-valued case in a straightforward manner as demonstrated

in the next section, hence providing a wider modelling scope.

7.5 A multiple-valued model for gene regulation in phage

lambda

It is clear from table 7-4 above relating the concentration of the protein “repressor” to

the states of the genes, that there are three concentration thresholds that are significant

in determining the state of the genes, whether on or off. Table 7-4 is repeated below

in a condensed form as table 7-7 in which the status of the operator sites has been

removed as they are not relevant to the modelling exercise to follow.

Details of the multiple-valued modelling approach have been presented in the

previous chapter. The first step in applying it is to choose an appropriate set on which

to define the functions. It is clear from table 7-7 that there are three significant values

for the input variable, qualitatively termed None, Low and High, hence a suitable set

193

would be {0, 1, 2}. It should be made clear that the values in the set do not represent

their numerical values but rather certain thresholds for the concentration. In other

words, the value 1 does not mean 1 mol/unit volume or any other unit of

concentration, but means that it is above the first concentration threshold, similarly

for the other elements of the set. It should further be noted that the differences

between the concentration thresholds need not be equal, i.e. the range from 0 to 1 is

not necessarily the same as from 1 to 2. This is the consequence of the abstraction

process.

Table 7-7:Effectof“repressor”concentrationonthestatesofthegenescI and cro, as presented

in more detail in table 7-4 above.

Repressor concentration

(x)

Gene cI

(y1)

Gene cro

(y2)

None Off On

Low On Off

High Off Off

The situation of the output is not as clear as it is for the input; granted it only takes

two values but now we have two options. The first is to define the output variables to

belong to the binary set {0, 1} which is intuitive but will complicate the mathematics.

The second is to define it on the same set as the input (which has three elements) but

restrict the values to only two of those three elements. We will choose the second

option, but this raises another question, which two values of the three available do we

pick? A common approach is to use the extremes of the set, i.e. the values 0 and 2.

The second option leads to a simpler mathematical formulation, since now both the

input and outputs are defined on the same set. This means that we can define the

functions on a finite field and use the formulations presented in the previous chapter.

In this particular case, the functions can be defined on the finite field GF(3), and

represented as in table 7-8.

Table 7-8: The functions of table 7-7 represented on the finite field GF(3).

Repressor concentration

(x)

Gene cI

(y1)

Gene cro

(y2)

0 0 2

1 2 0

2 0 0

194

A single variable ternary function will have the form

2

210 xaxaay 7-5

Where the coefficients ai are obtained from the function values di by the

transformation

2

1

0

2

1

0

222

120

001

d

d

d

a

a

a

 7-6

and all computations are performed using GF(3) arithmetic, i.e. modulo 3, which

leads to the two functions

2

1 xxy 7-7

2

2 2 xy 7-8

In an interpretation similar to that in the previous section, it is clear from substituting

the different values for x in equations 7-7 and 7-8 that the gene cI is normally off

(because a0 of equation 7-5 is zero), and that it is switched on at a low concentration

of “repressor” and switched back off at high concentration. On the other hand the

gene cro is normally on (because a0 of equation 7-5 is not zero), and is switched off

by any presence of repressor whether at a low or a high concentration.

To be able to infer and predict the behaviour of the regulatory function using the

multiple-valued models, we need to actually substitute values in the equations, unlike

the binary case where prediction is made simply by inspection. This is because of the

somewhat counterintuitive nature of non-binary finite fields, where x
2
 is not always

greater than x but depends on the value substituted (e.g. on GF(3) for x = 2 we have x
2

= 1). Note that a different choice of values for the gene expression levels, say 0 and 1

instead of 0 and 2, will have resulted in a function y1 of a different form than that of

equation 7-7, but of the same values for the different inputs; similarly for y2.

In the above modelling exercises we have studied the effect of the concentration of

the protein “repressor” on the two genes cI and cro, the same can be followed for the

protein cro. Both a binary and a multiple-valued model can be developed in a similar

195

manner, and with a corresponding interpretation of the results. It should be noted that

for the multiple-valued case, examination of table 7-5 above indicates that there are

four concentration thresholds of the protein cro that are significant in determining the

state of the gene cro. Hence this can be considered as a function on the finite field

GF(4), where now the relevant arithmetic operations (see chapter six) and

transformation matrices have to be used (Green and Taylor 1974).

In the multiple-valued models for phage lambda developed above, whilst the

regulatory inputs were multiple-valued, gene expressions were binary, i.e. either

expressed or not. There are situations however, in which the gene expression levels

are multiple-valued in nature, such as the case with morphogenesis as explained in

chapter two. Indeed, we have modelled a regulatory process in the formation of the

sense organs in the fruit fly Drosophila described by Ghysen and Thomas (2003).

The process involves a gene controlled by two regulatory signals that take ternary

values, and that lead to three expression levels for the gene, each triggering a different

response in the cell. Our model is described in detail elsewhere (Aleem et al. 2008),

see Appendix II and demonstrates two features of the multiple-valued model that are

not present in the phage lambda case. Firstly the output can also be multiple-valued,

not just the input, and secondly a case of two multiple-valued inputs.

7.6 Conceptual differences between the binary and

multiple-valued models

We have produced two models for the phage lambda system above, namely a binary

model and a multiple-valued one. It is fitting at this point to make a conceptual

comparison between the two. It is obvious that the two models are mathematically

different, however more important than the difference in the mathematical details, is

the fact that they reflect different modelling perspectives.

In the particular models above, the binary case provides what can be termed a

mechanistic model, in the sense that it is developed based on an understanding of the

molecular mechanisms involved in regulating the genes. These include the order of

binding of the regulatory protein to the different operator sites and the effect that has

196

on the expression of the genes. On the other hand, the multiple-valued model

provides what can be considered a phenomenological model, in the sense that it is

based on external observations (of the phenomena) without necessarily any

knowledge of the intricate details of how those phenomena take place on a molecular

level. That is because the observations are made of the different protein

concentrations and the corresponding gene expression levels, without predetermined

knowledge of how one affects the other. We stress that this is the situation in this

particular case and that in general either approach can be used to describe either a

mechanistic situation or a phenomenological one. In other words a binary approach

may very well be used to build a phenomenological model in a different context, and

the multiple-valued approach used for a mechanistic model in another. Thus the

choice is not about which mathematical tool is used, but what sort and amount of

information is available about the system to be modelled. This ties back neatly with

the discussion of the conceptual issues related to modelling in chapter three, in

particular those concerning modelling decisions.

7.7 Discussion

In chapter five we have introduced our modelling method for binary gene regulatory

functions, based on the Reed-Muller expansion, and demonstrated some innovative

interpretations and applications for it. This was continued in chapter six where we

then extended it to the multiple-valued case. In this chapter, chapter seven, we applied

the method to model a gene regulatory system from the literature. We can step back

now from the technical details involved, mathematical and biological, look at the big

picture and take stock of the situation, discuss what we have achieved, its advantages

and disadvantages, and what future directions of research it can spur.

We have developed a method for modelling gene regulatory functions for which only

a limited number of discrete values are of interest. The more common binary case is a

special case of this method. The method can be thought of as semi-qualitative, in the

sense that it gives more than just the on/off information of the Boolean formalism,

although not the fully quantitative results of the differential equations formalism.

Hence compared with the Boolean method it provides more information about the

system and allows building models from more than one perspective, as in the case of

197

the phage lambda above. Also compared to the other multiple-valued method, known

as generalised Boolean networks, our method is more intuitive, computationally

easier and makes more sense analytically because all the variables represent actual

regulatory factors and not meaningless dummy variables.

In terms of the disadvantages of the method, the main issue is the situation when not

all the variables have the same number of values, i.e. they belong to different sets. In

this case one is forced to use the set with the largest number of values (largest

cardinality), which may make the resulting model more complicated than is necessary.

This however, is not as serious as it may sound because determining the coefficients

which define the model is a straightforward matrix multiplication operation, albeit on

a finite field. Commercially available mathematical software packages do implement

operations on finite fields, in particular MATLAB and Mathematica. Another

difficulty when implementing our method lies in the optimisation of the resulting

expression, and by that we mean mathematically manipulating it to obtain the

expression with the least number of terms. There are techniques for doing that, and

they involve such approaches as allowing complementation of some of the variables;

recall that the Reed-Muller expansion in its original form is complement free.

Optimisation however, is more important in synthesis than in modelling.

So what further avenues of research does our approach open up? There are quite a

few, perhaps the most beneficial one in the context of gene regulation is to model

dynamic processes, or sequential networks as they are known in electronic

engineering. The work of Laubenbacher deserves special mention in this respect, as

he and co-workers have addressed this problem, although from a mathematical point

of view (Laubenbacher and Stigler 2004; Jarrah et al. 2007). Their work however, is

highly abstract and is very difficult to follow; we believe that our approach can be

extended to the dynamical case in a more intuitive way that relies on an engineering

rather than a mathematical approach. Another area in which our method can be

applied is in multi output functions, i.e. the situation where the same inputs affect

several outputs at the same time. This is similar to the case of phage lambda above

where the same protein affects two genes. The idea in such a modelling approach is to

treat the two outputs as one output on a larger finite field. For example two binary

outputs, such as cl and cro, above can be treated as one output on GF(4), but now this

198

output will not have direct physical significance and any results obtained will have to

be translated back to the original outputs. So what would be the benefit of such a

modelling approach? It is to study both outputs together rather than separate functions,

a situation that can be very helpful in drug design for example, to study the effect of a

drug, which is essentially a regulatory factor, on more than one process at the same

time. This would be beneficial in studying side effects of a drug.

Another area that we believe can be very promising in analysing gene regulatory

functions is to extend the transform approach to orthogonal transforms such as the

Walsh transform. This we believe, would allow studying certain classes of Boolean

functions that are becoming increasingly important in biological applications, and are

known as canalysing functions, where under certain conditions one input dominates

all the others (Kauffman 1993; Kauffman et al. 2004; Reichhardt and Bassler 2007).

Finally the method can be applied in different contexts such as in synthetic biology,

other regulatory functions, or other biological or non-biological contexts in general.

7.8 Summary and conclusion

This chapter covered three main issues in a particular order reflecting a logical

progression of ideas whereby each furnishes a basis for the one to follow.

We started by a review of the molecular interactions between proteins (including

regulatory proteins and RNA polymerase) and DNA sites (including promoters and

operators), and between proteins and each other. Those interactions form the basis of

such concepts as positive and negative controls, and cooperativity all of which affect

the regulation of a gene. Understanding those interactions and the resulting regulatory

effects is important in understanding transcription regulation in any system; hence the

coverage in this part of the report was generic and not related to any particular system

(organism).

Next we introduced phage lambda, its structure and function and how it regulates it.

Here we used the material in the first part, about regulatory mechanisms, to explain

how phage lambda effects its regulation. Phage lambda was not introduced for its

own sake but as an instance of a gene regulatory process that is well studied in the

literature.

199

In the third part we used the detailed explanation of the regulation of the phage

lambda genes as a case for applying our modelling approach developed in the

previous chapters. We produced two models a binary and a multiple-valued one.

We have looked at the binary Reed-Muller expansion of phage lambda in some detail

where the interpretive power of this approach has been demonstrated by neatly tying

the mathematical aspect of the model to its biological interpretation. A different

modelling perspective based on the multiple-valued Reed-Muller expansion was also

demonstrated and briefly discussed. A conceptual comparison between the two

models was made.

This chapter is the culmination of this work; it brings together concepts from the

previous chapters and weaves them together into a single integrated fabric. The

discussion of the molecular interactions involved in gene regulation builds on the

material in chapter two concerning gene expression and its regulation. The models

built here also use the methods developed in chapters five and six on the Reed-Muller

expansion for the binary and multiple-valued case. But perhaps most importantly, on

an intellectual level this chapter ties well with the material at the beginning of chapter

three concerning the conceptual issues underlying modelling. It demonstrates the

abstract issues discussed there in a concrete way by applying them to an actual

biological system. Such issues include the importance of understanding the

underlying biological processes in model building, and how the same data can

produce different conceptual models; e.g. structural vs functional, or mechanistic vs

phenomenological, and how the different model building decisions affect the

resulting model.

We concluded this chapter with a discussion of the merits and drawbacks of our

method and the potential future research.

200

Chapter 8: Summary, Conclusion and Future

Research

In this chapter I will summarise the work in this report, point out to its contribution

and the possible areas of application. I will close with a discussion of how this work

can be taken forward both in the context of the regulation of gene expression and in a

wider context. I will present the material here as a series of questions, in a logical

order whereby each question leads to the one that follows. Next to each question, in

parentheses, is the topic the question relates to. In answering those questions I will

refer to the relevant sections in the body of this work. I believe this way of presenting

the material will make the conclusion more concise and focus the attention on the

pertinent issues.

I will imagine I am being asked these questions by the reader in the form of a

conversation, hence the presentation will be somewhat informal, which is why I am

using the first person in this chapter.

1. What is the purpose of this work? (Aims)

The purpose of this work is to develop a method for the mathematical modelling of

the regulation of gene expression that can accommodate multiple-valued discrete

expression levels. See chapter 1, section 1.3.

2. Why is this a problem worth investigating? (Motivation)

We can think of the motivation for this work to be at two levels, motivation for the

method and motivation for the problem the method is investigating. The problem we

are ultimately helping to investigate is that of the regulation of gene expression.

201

Motivation for the problem: understanding the regulation of gene expression is

fundamental to understanding many of the biological processes inside the cell and

ultimately the organism. For life scientists this helps in understanding both the normal

and some of the anomalous situations in nature such as diseases (e.g. cancer and

genetic disorders) and other biological phenomena. Attaining such understanding

would help to cure or prevent diseases or manipulate the underlying biological

controls in general. For us engineers, understanding such regulatory activities inside

the cell can help us optimise process design and improve process troubleshooting in

the biotechnology industry. See chapter 1, section 1.1.

Motivation for the method: The proliferation in the quantity and quality of

information related to the regulation of gene expression collectively known as omics

was a boost for the use of mathematical modelling of such regulatory processes.

Quantitative models suffer from the uncertainty in deciding on the molecules and

mechanisms involved in the regulation and the values of the parameters used in the

models. Qualitative models, especially those based on Boolean algebra give a simple

and intuitive approximation but they fail to capture the case where there are multiple

discrete values for the different biological variables. This is where our method comes

in. See chapters 2 and 3.

3. If this is such an important problem, surely others must have

attempted to solve it? (Literature survey)

Yes of course, there is an extensive literature on mathematical modelling of the

regulation of gene expression. In fact there are even whole journals exclusively

dedicated to mathematical, theoretical and systems biology, all of which more or less

deal with modelling of biological processes in general, including the regulation of

gene expression. Models in the literature can be broadly classified into those with

continuous variables and those with discrete variables. The variables involved include

expression levels of genes and concentrations of different regulatory molecules.

The most common continuous models are based on ordinary linear differential

equations, less common ones use non-linear and partial differential equations.

202

The most common discrete models are based on Boolean algebra which assumes

binary values for the discrete variables. Other formalisms for discrete variables also

exist.

The accuracy of the analysis and prediction provided by quantitative models is

undermined by the uncertainties involved in building those models, such as which

molecules are involved in the regulation of gene expression, the mechanisms by

which they are involved and the values of the different parameters in the model. This

necessitated the use of qualitative models, which are based on the assumption that the

different biological values exist in only one of two extreme states, leading to the use

of the Boolean formalism to build the model. Whilst simple and intuitive, not all gene

regulatory functions fit in this view, for example in morphogenesis there can be

multiple threshold levels for the biological variables.

There are other classifications of modelling approaches such as dynamic vs. static and

deterministic vs. stochastic, with examples in the literature. See chapter 3, sections

3.5 to 3.7.

4. What is the method you are using? (Method)

The method I am using to model multiple-valued discrete regulatory functions is

based on finite fields algebra. The core of the method is that any function defined on

a finite field can be represented as a polynomial on the field with degree less than the

order of the field. Finite fields are also known as Galois fields and denoted by GF(q)

where q is the number of elements in the underlying set and is known as the order of

the field. The trick is then what biological variables to identify with the elements of

the field, how to do that, and how to formulate the gene regulatory function based on

that.

In the binary case the finite field reduces to the two element field GF(2) in which case

the resulting polynomial is known as the Reed-Muller expansion of the function. The

multiple-valued case is also known in the engineering literature as the multiple-

valued Reed-Muller expansion. See chapters 5 and 6.

203

5. What are the pros and cons of this method? (Critique)

I like to differentiate between the modelling method (which is based on finite fields

algebra), and the methodology used to develop the method. A methodology can be

thought of as a meta-method, i.e. a method or process for developing methods. My

methodology comprises three stages. Firstly a process of abstraction; secondly is

mathematical modelling as a tool in general, and thirdly the particular method. Let us

now look at the pros and cons of each of these levels.

a. Abstraction

Advantages: Allows for the simplification of the system being considered by

detaching it from its implementation or domain specific details. This allows for

identifying the commonalities between the problem at hand and similar ones in other

domains of knowledge, hence allowing the use of methods already tried and tested in

those other domains.

Disadvantages: Inevitably and by definition it loses the details of the issue being

investigated, but this is not a problem as the core issues which are the target of the

investigation are retained. Furthermore, it requires a high degree of abstract thinking,

possibly more than is normally employed in engineering. See chapter 1 and chapter 3,

sections 3.1 to 3.4.

b. Mathematical modelling as a tool

Advantages: It assimilates and integrates large amounts of data or observations to

give a concise description of the system or process being modelled. This allows for

mathematical manipulations and derivations that may give different insights into the

problem, and that might not be obvious from the data. It can also be used to predict

un-tested cases, generate hypotheses and run what-if analyses.

Disadvantages: Mathematical modelling is a process with inputs as observed data and

existing knowledge about the system, and whose output is the model. The resulting

model is determined by the inputs (observations and knowledge) and the

mathematical formalism utilised. The observations and knowledge are limited by the

accuracy of the observation mechanisms, and the mathematical derivation is

204

constrained by the validity and scope of the formalism. Those factors limit the

validity of the model on the one hand but allow developing several models of the

same system on the other; hence allowing different descriptions of the system

depending on what is being investigated. See chapter 3, sections 3.1 to 3.4.

c. Our method

Advantages: It allows for modelling of multiple-valued discrete state regulatory

systems in a way that is straightforward both in its theoretical background and its

practical application.

The theoretical background is abstract algebra, in particular finite fields and function

spaces on them. Those are merely abstractions of other algebraic structures very

familiar to engineers, namely the real numbers field, and Taylor series and Fourier

series which are expansions on appropriate function spaces defined on the real

numbers field. See chapter 4.

The application is also straightforward whether in analysis or synthesis of regulatory

systems as it merely involves matrix multiplication, albeit on a finite field. The

process is completely transparent to the user in the sense that the user need not

understand the underlying mathematics in order to use it. This is similar to the

colloquial saying “you don’t need to understand how a mobile phone works in order

to use it!”. Furthermore, some of the common mathematical software packages

implement finite fields arithmetic. See chapters 5 and 6.

Disadvantages: The mathematics might appear a bit obscure and counterintuitive to

some, but we have clarified above that this is because of its abstract nature. Also there

is a difficulty in applying the multiple-valued case when not all the variables have the

same number of values, for example when some are ternary and others are binary, as

in the phenomenological model of phage lambda. Thus choices have to be made

regarding the mathematical values to assign to the biological variables, and even

though these may lead to different mathematical forms for a given function, the

biological input/output relationship will not change. Also the multiple-valued case is

limited to discrete variables whose number of values is a prime or a positive integer

power of a prime. This should not be a problem however, since of all the numbers

205

from 1 to 9, only the number 6 does not belong to this category. Variables with more

than 9 values will lead to exceedingly complicated functions even if they fall in this

category. In spite of its disadvantages it remains more intuitive than similar methods

in the literature. See chapter 6, section 6.7 and chapter 7, section 7.7.

6. How does your approach differ from that of others? (Literature

survey)

See questions 3 and 5 above.

7. So what is the outcome of your work? (Results)

The outcome of my work is threefold

 A method for modelling multiple-valued discrete gene regulatory functions,

together with an elegant biological interpretation of it.

 Three different mathematical interpretations of this method namely: a function

on a Boolean algebra, a polynomial on a finite field and a transform on a

discrete function space.

 Three possible biological applications of these mathematical interpretations,

respectively reverse engineering of gene regulatory functions, detection of

mutations that affect the function of a protein, and synthesising biological

regulatory functions.

Therefore the outcome is both theoretical and applied. It is important to note though

that this work is about developing a method not producing a model, hence the

systems used to demonstrate the validity of the method were ones that are simple and

well understood. Realising the rather abstract nature of the work and the possibility of

losing the big picture in the details (the proverbial forest and trees), I decided to use

simple systems to avoid masking the method by the fine details of the application.

206

8. Is this stuff applicable or is it only of theoretical interest?

(Critique)

Yes this stuff is applicable and we have demonstrated this in the answer to the

questions above. We have also demonstrated it in the main body of the work by

modelling phage lambda, and by an example of synthetic biology.

However, the drive for applicability should not take away from the theoretical aspect

of the work, since understanding the underlying theoretical issues helps guide the

application; e.g. which areas it is likely to be useful in, and what are the limitations of

the resulting application. Note that by emphasising understanding of the theoretical

issues we do not mean the actual mathematical mechanics (see question 5 above), but

rather the conceptual issues involved.

For example when we use the method for modelling, understanding both its

conceptual background and the details of the biological problem being modelled will

help us decide whether to use a phenomenological model or a mechanistic one.

Similarly, when using it for mutation detection, the theoretical understanding will

help us decide which types of mutations can be detected, and that is by making the

correct analogy with circuit faults. So those are application related issues that are

guided by the theoretical ones.

9. What is your contribution? (Contribution)

The contributions can be regarded, somewhat in analogy with question 5, as to be at

three levels namely conceptual, mathematical and applied.

Conceptual: Using abstraction I establish an analogy between some problems in

biology with others in electronic circuits. Whilst the analogy between the two fields

in general is not new, the analogy between the specific problems is to the best of my

knowledge novel. Those specific problems are the correspondence between mutations

and faults in a circuit, and between linear transformations in engineering and in

biology. See chapters 5 and 6.

207

Mathematical: The use of the Reed-Muller approach in the context of gene regulatory

functions and in particular its interpretation as elaborated upon in chapter 5. See

chapters 5 and 6.

Applied: The formulation of the biological problems below in the form given in the

main body is novel namely:

 The use of exclusive OR operator for reverse engineering studies, in particular

pointing to its superior discriminating ability compared to the common logic

OR.

 The use of the Boolean difference in mutation detection.

 The transform approach whether for the analysis or synthesis of biological

regulatory functions. Also the intuitive conceptual interpretation of a

transform and its relation to reversibility in the information theoretic sense.

See chapters 5 and 6.

10. How can this work be taken forward? (Future work)

I believe that this work opens up several avenues of research that can be pursued both

within the context of this work and in a wider context. I classify those as fundamental

and applied, where fundamental here refers to the method and applied to potential

applications of the method. See chapter 7 section 7.7.

Fundamental research can be pursued in several directions, for example

 Computational, such as how to formulate faster and more efficient algorithms

for computing the Reed-Muller coefficients, especially for the multiple-valued

case.

 Analytical, such as how to extend the method to the sequential case where the

process would be dynamic, i.e. includes a time element, and how to give an

intuitive interpretation to that. Similar work does exist in the dynamical

systems literature but is very abstract, tying it to a more familiar and concrete

area such as logic design would help clarify it and possibly obtain new results.

Similarly the method can be extended to the multi-output case.

208

 Other analytical research can look into design techniques using the Reed-

Muller formulation, in particular the optimisation of the resulting design such

as reducing the number of terms in the expansion.

Applied research can also be pursued in several directions for example

 Apply the method to other discrete regulatory processes in the cell or in

biology in general, or indeed in any other context.

 Extend the transform method to the orthogonal case. Orthogonal transforms

on discrete function spaces do exist, such as the Walsh and Haar transforms

but have not been applied in the context of gene regulatory functions. It would

be interesting to see what interpretations emerge from such a view and what

new problems can be attacked.

 Apply the sequential view mentioned above to the reverse engineering of

discrete gene regulatory networks.

 Apply the multi-output formulation to gene regulatory networks. Multi-output

refers to the case when the same inputs affect several outputs at the same time.

This can be very interesting and valuable in drug design where it can be used

to investigate how the effect of a drug which in this context is a regulatory

input, affects not only the intended target but other regulatory processes in the

cell as well.

 The method can also be used in what-if analyses, to simulate the knockout or

silencing of genes and determining what the output will be. This would be the

opposite of the mutation problem mentioned above, where now the mutation

is intentional and the output function is to be determined.

 Application in synthetic biology such as determining the optimal design and

the mapping of the finite field elements to the appropriate biomolecules.

Related applications to that can be in modelling the genetic code, as presented

in a paper we have published.

In general, application of multiple-valued logic in biological processes might serve to

revive this area of research which was highly active in the mid seventies to mid

eighties in the electronic design domain. This activity has dampened greatly since

209

then because of the lack of a “killer application”, which may very well be provided by

biology, in particular biomolecular computing and synthetic biology.

Final thoughts

I do recognise that this work is rather abstract compared to engineering work at a

similar level, however this is the nature of theoretical biology to which this work

belongs. Because of that, the presentation is somewhat different from the standard

format, and that is why I have included the diagram in chapter one mapping the

sections of this work to the corresponding ones in the “standard model” of a thesis. In

fact in some parts of this work the presentation may even appear somewhat

unorthodox, as in this chapter.

An even more abstract view of this work would regard the methodology as

comprising two aspects: analysis and synthesis, essentially deconstructing or

dismantling the problem in one domain, carry it over across domain boundaries,

reconstruct it or reassemble it in a different domain and see it in a different light and

from a different perspective. Indeed, this allows one to ask new questions. In this

sense and on a fundamental level, one can consider that the outcome of this work is

effectively to help pose different questions rather than provide answers to existing

ones. Consequently, I would like to conclude this work with a quotation from a book

by Stuart Kauffman, who has worked extensively on Boolean networks and covers

them in part of that book. The book is entitled “The Origin of Order: Self-

Organization and Selection in Evolution” (Kauffman 1993); in the preface, when

discussing how his research interest in the topic developed, he states :

“The greater mystery, after all, is not the answers that scientists contrive, but the

questions they are driven to pose.”

210

Appendix I: Published Paper 1

This appendix contains a paper published in the proceedings of the 39th International

Symposium on Multiple-Valued Logic, 2009 (ISMVL '09), held in Okinawa, Japan

21-23 May 2009, and organised by the Institute of Electrical and Electronic Engineers

Inc. (IEEE), (Aleem et al. 2009).

(Note that the page numbers have been changed from the original source to match

this report)

The paper applies the multiple-valued Reed-Muller expansion to modelling the

genetic code as a function on a finite field. It is included here as it demonstrates how

the elements of the field GF(4) can be identified with biomolecules, in this case the

four nucleotides A, T, C and G. This relates to the material on synthetic biology in

chapter six.

211

Representing the Genetic Code as a Function on a Galois Field Using

the Reed-Muller Expansion

H. A. Aleem

School of Chemical

Engineering & Analytical

Science, University of

Manchester, P.O. Box 88,

Manchester, M60 1QD,

UK

D. H. Green

School of Electrical &

Electronic Engineering,

University of Manchester,

P.O. Box 88, Manchester,

M60 1QD, UK

F. Mavituna

School of Chemical

Engineering & Analytical

Science, University of

Manchester, P.O. Box 88,

Manchester, M60 1QD,

UK

Abstract

The information needed for the biotic activities

of an organism is stored in a coded form in its DNA.

This code is universal for all organisms and uses

three units called nucleotides, each of which can

take one of four possible values to code for twenty

different amino acids. Thus it is a mapping from N3

to P, where N is the set of nucleotides and P is the

set of Amino acids. The genetic code has been

studied from the points of view of Coding Theory

and Information Theory. Here we study it from the

point of view of Switching Theory where it is

considered as a logic function on a finite field and
represented by its Reed-Muller expansion. We first

present the genetic code, then develop its Reed-

Muller expansion. Potential applications for this

approach are also discussed.

1. Introduction

For a cell to grow, divide and carry-out its other

activities it needs the information to guide it
through these processes. This information is stored

in the DNA (Deoxyribonucleic Acid) molecule

which can be considered as a blueprint for life.

The DNA molecule famously known as the

double helix because of its specially shaped double

strands consists of a string of units known as

nucleotides. A nucleotide consists of three main

chemical components namely, a sugar known as

Deoxyribose sugar, a Phosphate group and a base.

There are four types of bases known as Adenine,

Guanine, Thymine and Cystocine, denoted by A, G,
T and C respectively, and leading to four

nucleotides with the same symbols. A group of

three nucleotides is known as a codon, i.e. it forms

a three letter word from a four letter alphabet. Thus

there are 64 (= 43) possible configurations for a

codon, each representing a valid code word. Those

words code for Amino acids, which are the building

units for proteins. There are twenty amino acids,

hence some will have more than one code word

leading to robustness against errors.

A series of nucleotides chained together and
coding for a functional unit in the cell is known as a

gene. Genes normally code for proteins which in

turn consist of a string of a large number of Amino

acids. For the information stored in the code to be

transformed into functions carried out by the

proteins, it goes through a certain process.

The information is first copied from the DNA to

form another molecule known as the messenger

RNA (Ribonucleic Acid) or mRNA; then it is

translated by a cell component into the amino acids

which are then chained together and processed
further to form the active protein.

The purpose of the mRNA is to convey the

information from its store (the DNA) to the

translation machinery in the cell, akin to a

communication system as it effectively transfers a

message. The RNA molecule is similar to the DNA

except that the sugar is a Ribose sugar and the base

Thymine is replaced by another called Uracil

denoted by U. This structural difference causes the

RNA molecule to be single stranded and much less

stable than the DNA as it is not needed after

relaying the message. The process of copying the
information into the RNA is appropriately known

as transcription since it is more or less in the same

language, a four letter (nucleotide) alphabet.

Converting the code into an amino acid is known as

translation since it translates from one language

(four nucleotides) to another, the twenty amino

acids.

It should be noted that A and G belong to a

class of chemicals known as Purines, while C, T

and U to another class known as Pyrimidines. The

Purines are structurally and functionally closer to
each other than to the Pyrimidines, and vice versa.

When forming the double stranded DNA molecule,

the Purine A pairs with the Pyrimidine T forming

what are known as complementary pairs, similarly

G pairs with C. [1]

212

2. The genetic code

The genetic code is the same in all organisms

and is thus known as the universal code, Table 1.

To transcribe the message, the cell needs to know

where to start, in which direction to read and when

to stop reading. The first two decisions are

determined by structural cues on the DNA molecule

related to the gene being transcribed. Stopping is

indicated by a stop codon, Table 1. In summary, the

genetic code assigns to each base triplet (codon) an

amino acid, as such it is a mapping from N3 to P,

where N is the set of nucleotides {A, U, C, G}, and
P is the set of Amino acids.

 Table 1. The Genetic Code

No.
Base Amino Acid

1
st
 2

nd
 3

rd
 Name Symbol

1 C C C Proline P

2 C C U Proline P

3 C C A Proline P

4 C C G Proline P

5 C U C Leucine L

6 C U U Leucine L

7 C U A Leucine L

8 C U G Leucine L

9 C A C Histidine H

10 C A U Histidine H

11 C A A Glutamine Q

12 C A G Glutamine Q

13 C G C Argenine R

14 C G U Argenine R

15 C G A Argenine R

16 C G G Argenine R

17 U C C Serine S

18 U C U Serine S

19 U C A Serine S

20 U C G Serine S

21 U U C Phenylalanine F

22 U U U Phenylalanine F

23 U U A Leucine L

24 U U G Leucine L

25 U A C Tyrosine Y

26 U A U Tyrosine Y

27 U A A STOP codon Z

28 U A G STOP codon Z

29 U G C Cysteine C

30 U G U Cysteine C

31 U G A STOP codon Z

32 U G G Tryptophan W

The genetic code has been studied from the

point of view of Coding Theory [2] and
Information Theory [3] where the emphasis is on

the representation of the genetic code to investigate

its robustness against errors, its information content

and how it may have evolved. More recently, it has

been viewed as a multiple-valued function on the

field of complex numbers [4]. Here we approach

the genetic code from the point of view of

Switching Theory [5] where it is viewed as a logic

function on a finite field. From such a perspective,

Table1 can be viewed as a truth table of a multiple-

valued logic combinational function which maps

three four-valued variables, (i.e. 64 combinations)

to a set of 21 values (20 amino acids and the STOP

value). We have considered the STOP codon as an
output since it has a functional role which is to

indicate the end of a gene. We have given it the

admittedly non-standard symbol Z. The first

column in Table 1 is meant only to keep track of

the number of combinations of the three nucleotides,

and has no mathematical significance. Also the

words base and nucleotide are often used

interchangeably within this context.

 Table 1 continued

No.
Base Amino Acid

1
st
 2

nd
 3

rd
 Name Symbol

33 A C C Threonine T

34 A C U Threonine T

35 A C A Threonine T

36 A C G Threonine T

37 A U C Isoleucine I

38 A U U Isoleucine I

39 A U A Isoleucine I

40 A U G Methionine M

41 A A C Asparagine N

42 A A U Asparagine N

43 A A A Lysine K

44 A A G Lysine K

45 A G C Serine S

46 A G U Serine S

47 A G A Argenine R

48 A G G Argenine R

49 G C C Alanine A

50 G C U Alanine A

51 G C A Alanine A

52 G C G Alanine A

53 G U C Valine V

54 G U U Valine V

55 G U A Valine V

56 G U G Valine V

57 G A C Aspartic D

58 G A U Aspartic D

59 G A A Glutamic E

60 G A G Glutamic E

61 G G C Glycine G

62 G G U Glycine G

63 G G A Glycine G

64 G G G Glycine G

From a geometrical point of view, each codon

can be regarded as a point in a three dimensional

space over GF(4) where each point in the space

corresponds to an amino acid (or a STOP codon).

As discussed above some amino acids have more

than one code word (synonyms), i.e. there is

redundancy in the code. Thus the amino acids
partition the set of codons into equivalent classes.

213

3. Reed-Muller expansion of the genetic

code

For a Galois field GF(q) whose elements are

{e0 , e1 , …, eq-1}, the Reed-Muller (RM) expansion

of any function f(x) from GF(q) to GF(q) is a

polynomial in x with degree less than q given by [6]

i
q

i

xiFxf

1

0

)()(

where F(i) is given by

)()0(0efF

)]()([)(0

1

1

k

i

k

q

k

efefeiF

This can be viewed as a Fourier type of transform.

It can also be put in the more familiar form [7]

i
q

i

i xcxf

1

0

)(

1

1

2

210 ...

 q

q xcxcxcc

which is a truncated power series that can be

viewed as a Taylor series type of expansion. The

coefficients ci belong to GF(q) and the operations
are performed in the GF(q) arithmetic. There are

several algorithms for computing the coefficients

with different merits such as improving

computational efficiency and reducing complexity

[8, 9].

For a function of n variables where each

variable belongs to GF(q), the function f(x) is a

mapping from [GF(q)] n to GF(q) and the RM

expansion will have qn terms that include product

terms of the powers of the different variables [7].

To represent the genetic code by a Reed-Muller
expansion, we need to have both the input and the

output values belong to the same GF(q). Whilst the

inputs belong to GF(4), the smallest finite field that

can directly accommodate the outputs is GF(64),

which is the smallest power of 4 (the number of

nucleotides) to contain the number 21 (the number

of amino acids and STOP codon). This means that

to be able to formulate an RM expansion for this

function we will need to extend GF(4) to GF(64).

There are several ways to construct GF(64), namely

as GF(26), GF(43) or GF(82). All will give different

representations for the elements of the field and
consequently different RM expansions, but the

same values for the function.

Before constructing the field however, we first

need to identify the four nucleotides with the four

elements of GF(4) to get a finite field. This will

depend on which construction of GF(64) we are

going to adopt. We will use GF(26) as it simplifies

the computations considerably, since on GF(2) and

its extensions each element is its own additive

inverse. Each of the four nucleotides has to be

coded as a binary number, thus two binary digits

are needed.

We used an intuitive approach to this coding,

simply by arranging the nucleotides by their

molecular weight. We chose the most significant
binary digit for each nucleotide to code for the

chemical class with 0 indicating a Pyrimidine

(because they have lower molecular weights) and 1

indicating a Purine. Within a chemical class, we

chose the least significant binary digit such that a 0

indicates the nucleotide with the lower molecular

weight. Hence the four nucleotides arranged in

increasing molecular weight {C, U, A, G} are

represented by the increasing binary numbers {00,

01, 10, 11} respectively.

This has the added benefit of preserving the

complementary nature of the nucleotides, since the
sum of any two complementary pair in this code is

11 (remember from the nature of the genetic code

that A and U pair together while C and G pair

together). In general, coding of the nucleotides and

the resulting coding of the amino acids can be

selected to reflect the structural and functional

properties of the amino acids, such as chemical

groups, bonds, charge, hydrophobic/hydrophilic

properties; several coding schemes are possible

[10].

We will also need to map the 21 values of the
outputs to 21 of the 64 values of GF(64). For

simplicity, we chose to assign them in the order

they appear in the genetic code, Table1.

To construct GF(64), any of its several primitive

polynomials can be used. We have

chosen 1)(6 xxxf , and constructed the

field from the powers of the corresponding

primitive element a [11]. The elements of the field,

their binary codes and the amino acids (represented

in GF(64)) corresponding to each element are

shown in Table 2. Each element in the field is

represented by the polynomial

p(a) = b5 a
5 + b4 a

4 + b3 a
3 + b2 a

2 + b1 a
1 + b0

a0

where the bis belong to {0,1}, with b0 the least

significant digit in the “Binary” column of Table 2.

This is re-arranged in ascending powers of the

inputs to give the more intuitive Table 3. Using this

truth table and the summation transform above, the

RM expansion of the genetic code is obtained in

Table 4 which shows the powers of x and their

corresponding coefficients in GF(64) represented as

powers of a.

214

Table 2. Truth table of the Genetic Code as
a function on GF(64)

No.
Input

Output

GF(64)
Binary GF(64)

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 1 0

3 0 0 0 0 1 0 a 0

4 0 0 0 0 1 1 a
6
 0

5 0 0 0 1 0 0 a
2
 1

6 0 0 0 1 0 1 a
12

 1

7 0 0 0 1 1 0 a
7
 1

8 0 0 0 1 1 1 a
26

 1

9 0 0 1 0 0 0 a
3
 a

10 0 0 1 0 0 1 a
32

 a

11 0 0 1 0 1 0 a
13

 a
2

12 0 0 1 0 1 1 a
35

 a
2

13 0 0 1 1 0 0 a
8
 a

3

14 0 0 1 1 0 1 a
48

 a
3

15 0 0 1 1 1 0 a
27

 a
3

16 0 0 1 1 1 1 a
18

 a
3

17 0 1 0 0 0 0 a
4
 a

4

18 0 1 0 0 0 1 a
24

 a
4

19 0 1 0 0 1 0 a
33

 a
4

20 0 1 0 0 1 1 a
16

 a
4

21 0 1 0 1 0 0 a
14

 a
5

22 0 1 0 1 0 1 a
52

 a
5

23 0 1 0 1 1 0 a
36

 1

24 0 1 0 1 1 1 a
54

 1

25 0 1 1 0 0 0 a
9
 a

6

26 0 1 1 0 0 1 a
45

 a
6

27 0 1 1 0 1 0 a
49

 a
7

28 0 1 1 0 1 1 a
38

 a
7

29 0 1 1 1 0 0 a
28

 a
8

30 0 1 1 1 0 1 a
41

 a
8

31 0 1 1 1 1 0 a
19

 a
7

32 0 1 1 1 1 1 a
56

 a
9

4. Conclusion

The motivation for considering such a modelling

approach to the genetic code is both theoretic out of

academic interest, and for potential practical

applications [12]. Research in molecular biology

(the study of biology at a molecular level such as

genes and proteins) is expanding rapidly. This has

been greatly catalysed by the development in

advanced analytical instrumentation and algorithms,

leading to the proliferation of the so called “omics”
disciplines, including genomics (study of complete

genomes, which involves sequencing of the

nucleotides) and proteomics (study of protein

structure and function, which is dependant on its

amino acid make-up). This is coupled with

advancement in algorithms and software, and

databases for the analysis of such omics data,

embodied in the field of Bioinformatics. Both of

those, biological analytical instrumentation and

Bioinformatics provide potential application

Table 2 continued

No.
Input

Output

GF(64)
Binary GF(64

33 1 0 0 0 0 0 a
5
 a

10

34 1 0 0 0 0 1 a
62

 a
10

35 1 0 0 0 1 0 a
25

 a
10

36 1 0 0 0 1 1 a
11

 a
10

37 1 0 0 1 0 0 a
34

 a
11

38 1 0 0 1 0 1 a
31

 a
11

39 1 0 0 1 1 0 a
17

 a
11

40 1 0 0 1 1 1 a
47

 a
12

41 1 0 1 0 0 0 a
15

 a
13

42 1 0 1 0 0 1 a
23

 a
13

43 1 0 1 0 1 0 a
53

 a
14

44 1 0 1 0 1 1 a
51

 a
14

45 1 0 1 1 0 0 a
37

 a
4

46 1 0 1 1 0 1 a
44

 a
4

47 1 0 1 1 1 0 a
55

 a
3

48 1 0 1 1 1 1 a
40

 a
3

49 1 1 0 0 0 0 a
10

 a
15

50 1 1 0 0 0 1 a
61

 a
15

51 1 1 0 0 1 0 a
46

 a
15

52 1 1 0 0 1 1 a
30

 a
15

53 1 1 0 1 0 0 a
50

 a
16

54 1 1 0 1 0 1 a
22

 a
16

55 1 1 0 1 1 0 a
39

 a
16

56 1 1 0 1 1 1 a
43

 a
16

57 1 1 1 0 0 0 a
29

 a
17

58 1 1 1 0 0 1 a
60

 a
17

59 1 1 1 0 1 0 a
42

 a
18

60 1 1 1 0 1 1 a
21

 a
18

61 1 1 1 1 0 0 a
20

 a
19

62 1 1 1 1 0 1 a
59

 a
19

63 1 1 1 1 1 0 a
57

 a
19

64 1 1 1 1 1 1 a
58

 a
19

areas for the modelling approach to the genetic

code outlined above. In particular, the input to such

a model can be a sequence of nucleotides produced

by a sequencing instrument. The model would then

compute the corresponding sequence of amino

acids that can be outputted into a proteomic device

or Bioinformatics package giving the final protein

structure, hence providing an alternative to the

look-up table approach. This can also be part of a
more sophisticated information processing system

that can compare proteins across organisms to try to

infer the function of one from the other, part of the

field of functional genomics which is another area

of active genomic research. The above model can

be implemented in software, or in hardware either

embedded in a real time system or on a dedicated

microchip [13].

215

Table 3. The truth table of Table 2 with the
input arranged in increasing powers of the

primitive element a

Input Output

Input Output

0 0 a
31

 a
11

1 0 a
32

 a

a 0 a
33

 a
4

a
2
 1 a

34
 a

11

a
3
 a a

35
 a

2

a
4
 a

4
 a

36
 1

a
5
 a

10
 a

37
 a

4

a
6
 0 a

38
 a

7

a
7
 1 a

39
 a

16

a
8
 a

3
 a

40
 a

3

a
9
 a

6
 a

41
 a

8

a
10

 a
15

 a
42

 a
18

a
11

 a
10

 a
43

 a
16

a
12

 1 a
44

 a
4

a
13

 a
2
 a

45
 a

6

a
14

 a
5
 a

46
 a

15

a
15

 a
13

 a
47

 a
12

a
16

 a
4
 a

48
 a

3

a
17

 a
11

 a
49

 a
7

a
18

 a
3
 a

50
 a

16

a
19

 a
7
 a

51
 a

14

a
20

 a
19

 a
52

 a
5

a
21

 a
18

 a
53

 a
14

a
22

 a
16

 a
54

 1

a
23

 a
13

 a
55

 a
3

a
24

 a
4
 a

56
 a

9

a
25

 a
10

 a
57

 a
19

a
26

 1 a
58

 a
19

a
27

 a
3
 a

59
 a

19

a
28

 a
8
 a

60
 a

17

a
29

 a
17

 a
61

 a
15

a
30

 a
15

 a
62

 a
10

Table 4. Coefficients of the different powers
of x in the RM expansion of the genetic

code, as elements in GF(64)
Power of x x

0
 x x

2
 x

3
 x

4
 x

5
 x

6
 x

7

Coefficient 0 a32 0 a2 a38 a33 a60 a62

Power of x x
8
 x

9
 x

10
 x

11
 x

12
 x

13
 x

14
 x

15

Coefficient a11 a34 a2 a26 a10 a22 a11 a56

Power of x x
16

 x
17

 x
18

 x
19

 x
20

 x
21

 x
22

 x
23

Coefficient a50 a43 a43 a42 a6 a11 a4 a36

Power of x x
24

 x
25

 x
26

 x
27

 x
28

 x
29

 x
30

 x
31

 Coefficient a41 a45 a35 a62 a29 a4 a18 a29

Power of x x
32

 x
33

 x
34

 x
35

 x
36

 x
37

 x
38

 x
39

Coefficient a58 a30 a43 a42 a53 a2 a14 a

Power of x x
40

 x
41

 x
42

 x
43

 x
44

 x
45

 x
46

 x
47

Coefficient a56 a60 a48 a56 a32 a54 a3 a56

Power of x x
48

 x
49

 x
50

 x
51

 x
52

 x
53

 x
54

 x
55

Coefficient a a7 a14 a36 a9 a49 0 a15

Power of x x
56

 x
57

 x
58

 x
59

 x
60

 x
61

 x
62

 x
63

 Coefficient a4 a24 a44 a6 a44 a53 0 a29

Another area of biology that is gaining

prominence is synthetic biology which involves

designing systems using biological components in

particular biomolecules such as DNA and proteins

[14]. Yet another area is that of nanobiotechnology,

again used for analytical or therapeutic purposes,
e.g. for drug delivery or for imaging [15]. A

potential application of the model above when

coupled with some form of biosensor – another

active research area - is as an in-situ genomic

analysis tool.

In addition to the application, there are

theoretically interesting issues relating to the

genetic code that fall more in the realm of

information theory than of logic design, in

particular multi-level codes. Thus another purpose

of this paper – further to the RM formulation of the

genetic code - is to draw attention to those
theoretical and practical areas, notably those that

are interdisciplinary in nature.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, D.

Bray, K. Hopkin, K. Roberts, and P. Walter,
Essential cell biology, 2 ed. New York:
Garland Science, 2004.

[2] E. E. May, M. A. Vouk, D. L. Bitzer, and D. I.
Rosnick, "An error-correcting code framework
for genetic sequence analysis," Journal of the

Franklin Institute, vol. 341, pp. 89-109, 2004.
[3] H. P. Yockey, Information theory, evolution,

and the origin of life. Cambridge: Cambridge
University Press, 2005.

[4] I. Aizenberg and C. Moraga, "The Genetic
Code as a Multiple-Valued Function and Its
Implementation Using Multilayer Neural
Network Based on Multi-Valued Neurons,"

Proceedings 37th IEEE International
Symposium on Multiple-Valued Logic, ISMVL
2007, pp. 2007.

[5] T. Sasao, Switching theory for logic synthesis
Boston, Mass. ; London: Kluwer Academic
Publishers, 1999.

[6] K. S. Menger, "A Transform for Logic
Networks," IEEE Transactions on Computers,

vol. C 18, pp. 241-250, 1969.
[7] D. H. Green and I. S. Taylor, " Modular

Representation of Multiple-Valued Logic
Systems," Proceedings of the Institution of
Electrical Engineers (London), vol. 121, pp.
409-418, 1974.

[8] D. Jankovic, R. S. Stankovic, and R. Drechsler,
"Efficient calculation of fixed-polarity
polynomial expressions for multiple-valued

logic functions," Proceedings 32nd IEEE
International Symposium on Multiple-Valued
Logic, ISMVL 2002, pp. 76-82, 2002.

[9] B. Harking and C. Moraga, "Efficient
derivation of Reed-Muller expansions in
multiple-valued logic systems," Proceedings

216

22nd IEEE International Symposium on
Multiple-Valued Logic, ISMVL 1992, pp. 436-
441, 1992.

[10] S. Morimoto, "A periodic table for genetic
codes," Journal of Mathematical Chemistry,

vol. 32, pp. 159-200, 2002.
[11] S. Lin and D. J. Costello, Error control coding :

fundamentals and applications. Englewood
Cliffs, N.J.; London Prentice-Hall, 1983.

[12] R. S. Stankovic, C. Moraga, and J. Astola,
"Derivatives for multiple-valued functions
induced by Galois field and Reed-Muller-
Fourier expressions," Proceedings 34th IEEE

International Symposium on Multiple-Valued
Logic, ISMVL 2004, pp. 184-189, 2004.

[13] V. A. Kalinnikov, "Application of multiple-
valued logic in digital technology (review),"
Instruments and Experimental Techniques, vol.

49, pp. 743-751, 2006.
[14] S. A. Benner and A. M. Sismour, "Synthetic

biology," Nature Reviews Genetics, vol. 6, pp.
533-543, 2005.

[15] R. S. Kane and A. D. Stroock,
"Nanobiotechnology: Protein-nanomaterial
interactions," Biotechnology Progress, vol. 23,
pp. 316-319, 2007.

217

Appendix II: Published Paper 2

This appendix contains a paper presented at the 38th International Symposium on Multiple-

Valued Logic, 2008 (ISMVL '08), held in Houston, Texas in the United States, 22-24 May

2008, and published in its proceedings. The symposium was organised by the Institute of

Electrical and Electronic Engineers Inc. (IEEE), (Aleem et al. 2008).

(Note that the page numbers have been changed from the original source to match this report)

The paper provides an example of a multiple-valued gene regulatory function where the gene

expression levels are multiple-valued as opposed to binary as in the case of phage lambda in

chapter seven. Such a situation often occurs in morphogenesis (explained in chapter two).

In the attaché paper we have modelled a regulatory process in the formation of the sense

organs in the fruit fly Drosophila. This example demonstrates two features of multiple-valued

models that were not present in the phage lambda case. Firstly that the output can also be

multiple-valued, not just the input, and secondly it presents a case of two multiple-valued

inputs.

218

A Galois Field Approach to Modelling Gene Expression Regulation

H. A. Aleem

School of Chemical

Engineering & Analytical

Science, University of

Manchester, P.O. Box 88,

Manchester, M60 1QD,

UK

F. Mavituna

School of Chemical

Engineering & Analytical

Science, University of

Manchester, P.O. Box 88,

Manchester, M60 1QD,

UK

D. H. Green

School of Electrical &

Electronic Engineering,

University of Manchester,

P.O. Box 88, Manchester,

M60 1QD, UK

Abstract

Gene expression is the process by which the cell

transforms the information in the DNA to functions,

often carried out by proteins. Which genes will be

expressed, depends on many factors some internal to

the cell and others from the environment around it.

This can be considered as a logic function

prescribing gene expression in response to the

different conditions. Apart from continuous models,

the most common formulation of such a function is

using Boolean logic. This has the major drawback of

restricting analysis to binary valued variable which

are not always an appropriate approximation. We
propose a multiple-valued logic modelling approach

on a Galois field and formulate the regulatory

function using the Reed-Muller expansion. Two

examples are given that illustrate the application of

this approach

1. Introduction

The proliferation in the amount and type of

information about the processes in a living cell or an

organism in general, collectively referred to as

“omics”, necessitates a systems approach to

understanding such processes. Indeed this has led to

the development of the discipline of Systems Biology

which applies concepts from Systems theory, in

particular modelling, to biology in order to

comprehend the complex interactions between such
processes [1].

Of particular importance are the different stages

of gene expression (explained below) and its

regulation. Those have been modelled using different

mathematical approaches. One popular approach is

based on Boolean logic, but it suffers from the

shortcoming of only allowing two states for a

variable, which is not adequate for modelling some

situations. We propose a different approach based on

multiple-valued logic, and use it to express the

regulatory function in the form of a Reed-Muller
expansion.

We first give some background on gene

expression, and the current Boolean modelling

approach, then introduce our method and apply it to

examples from the literature.

2. Gene expression

In the course of its lifetime, a living cell requires

the availability of a myriad of substances for both

structural (from which it is built) and functional (for

it to carry-out its activities) roles. Some of these

substances may never be used throughout the lifetime

of the cell, for example those needed to defend

against an attack by a pathogen that may never occur.

Hence, instead of actually synthesising every

molecule it may need, it is more efficient to just have

the ability to synthesise them, i.e. a form of blueprint.
This blueprint is the DNA molecule of the cell, and it

contains all the necessary information in a coded

form arranged into genes. Each gene normally codes

for a protein which can then be used either as part of

the cell structure, or to perform a function in the cell

usually regulatory (either to switch genes on or off,

or to catalyse metabolic reactions) [2]. Regulatory

proteins often regulate other genes that in turn

produce other proteins that may also affect back the

genes that produced the original regulatory protein;

they may also regulate their own genes (auto-
regulation), leading to a complex network of

interactions including positive and negative feedback

loops.

The process of transforming the information in

the genetic code into its final form (functional or

otherwise) is known as gene expression. It starts with

transcribing the information from DNA to another

form called RNA, which is then translated into

proteins that are assembled and processed in the

necessary way to fulfil their ultimate purpose. Gene

expression is regulated at its different stages; of

particular importance is regulation at its inception, i.e.
transcription regulation, as it determines which genes

219

will be expressed. This will depend on different

factors, for example in response to internal cell

requirements, e.g. when a cell is growing it requires

different activities than when it is dividing. Another

is in response to external signals such as changes in

the cell environment, availability of nutrients or in
response to hormones (in higher organisms). In

addition, in such organisms, for example in humans,

the different cells (e.g. muscle, nerve, skin, etc.)

originate from a single cell, the fertilised egg and

they all have the same DNA, yet different structures

and functions. This specialisation is achieved by

deciding which genes to express in each cell among

all those available in the DNA.

Thus the genetic code in the DNA of a cell can be

thought of as an instruction set, only a subset of

which will actually be implemented on need basis. In

a sense this is similar to a conditional function call in
a program. Transcription regulation selects which

functions will be implemented in response to the

different signals outlined above.

3. Modelling gene expression regulation

Different approaches are taken towards modelling

gene expression [3-5]. Continuous models based on

differential equations have the benefit of providing

quantitative information, but this comes at the cost of

complexity especially when non-linear effects and

spatial distribution are considered, as such equations

are solved numerically. In addition they inevitably

involve assumptions both in terms of mechanisms of

interaction and in values of parameters that may not

always be justified [6]. Hence, a simpler albeit

qualitative modelling approach is desirable, one such

approach is that based on Boolean logic.
Boolean models of transcription regulation are

popular because of their simplicity and intuitive

appeal. They are based on the assumption that

variables take binary values [7]. For example a gene

is either ON or OFF, and a regulatory protein is

either activated (a process that enables it to perform

its regulatory action) or deactivated. Similarly for

effector molecules, i.e. those chemicals that may

activate proteins or affect other processes, their

concentration is either above or below a given

threshold. This assumption however, is one of the
major drawbacks of the binary approach as it does

not allow for multiple levels for a variable [5]. For

example it is not uncommon that different levels of,

say, concentration of a molecule may trigger

different processes in the cell or organism. These

levels may still be discrete in nature, i.e. representing

different activation thresholds. The current approach

to overcome this problem is to define for each

multiple-level variable, a number of dummy binary

variables that is equal to the number of thresholds of

the original variable. Each of these binary variables

would be zero when the original variable is below the

corresponding threshold, and one when it is above it

[8]. This leads to an unnecessarily large number of

variables, and awkward mathematical formulations
especially when there are several variables with

several levels.

The second major shortcoming of the Boolean

approach is that it assumes that all changes in the

variables will take place simultaneously, i.e. a

synchronous system [5]. Given that there are possibly

thousands of processes taking place in the cell at the

same time, many of which are interacting, this

assumption becomes unrealistic.

4. A multiple-valued logic approach

We propose here the use of a multiple-valued

logic approach to modelling transcription regulation.

The intricate interactions between the products of the

different genes in a feedback manner, requires

modelling the gene regulatory system as a sequential

network. There are situations however, where only a
combinational network would suffice for modelling

transcription regulation. This is especially so in the

cases of nutrient availability, a common example is

that of the utilisation of sugar sources by the

bacterium E. coli, whereby when glucose is

available a group of genes known as the lac operon is

switched off, and when glucose is not available but

lactose is, the operon is switched on [2]. Such a gene

regulation mechanism is known as a cis-regulatory

function and can be modelled by a combinational

logic function.

It is well known that when the number of values q
that a variable can take is a prime or a power of a

prime, then a finite (Galois) field of order q can be

constructed for this variable, denoted by GF(q). In

this modelling approach to transcription regulation,

the actual value of a variable (say concentration of a

chemical entity) is not of essence, but rather the

number of values it can take and their order. This is

because we are only interested whether a given

threshold has been crossed, irrespective of its value.

Any function of a variable x defined on GF(q),

can be represented by a polynomial of degree up to
q-1 [9, 10].This is the Reed-Muller (RM) expansion

of the function, and is given by [11]

i

q

i

i xaxf

1

0

)(

1

1

2

210 ...

 q

q xaxaxaa

220

where the coefficients ai belong to GF(q) and the

operations are performed in the GF(q) arithmetic.

There are several methods for computing the

coefficients [12, 13]. Here we use a simple matrix

based method that directly utilises the truth values of

the function. We demonstrate this for the case of
GF(3) taken form [14], where the RM-expansion is

given by
2

210)(xaxaaxf

substituting for the possible values of x (namely 0, 1

and 2) we get

2102

2101

00

2)2(

)1(

)0(

aaafd

aaafd

afd

This can be represented in matrix form as

2

1

0

2

1

0

121

111

001

a

a

a

d

d

d

or in compact notation, simply as

aTd

where now the 3x3 matrix T represents the

transformation from the a or polynomial domain to

the d or truth value domain. T is invertible, and can

be inverted in GF(3) to get

dTa 1

2

1

0

2

1

0

222

120

001

d

d

d

a

a

a

often expressed as

dSa

Thus to transform from the truth values domain to

the polynomial domain we multiply the truth vector d
by the transformation matrix S, where d is obtained

from the specification of the function. This can be

extended to a function of n variables where now the

transformation matrix is Sn and can be derived in a

recursive way from the one variable case by

111

11

1

222

20

00

nnn

nn

n

n

SSS

SS

S

S

where S0 = [1], and calculations are performed using

GF(3) arithmetic.

5. Example from the development of

organs

The formation of organs in an organism is part of

a process known as morphogenesis which is
essentially the creation of structure and form in the

organism, and involves the expression of different

genes as explained above [15]. One method to

achieve such differences in expression is through the

concentration gradient of chemicals generically

known as morphogens. At different distances from its

source, the morphogen will have different

concentrations, different thresholds of which will

trigger the expression of different genes, helping

form the organ. An example of this concept is in the

patterns on a butterfly or a zebra. Development in

general provides a fitting demonstration of the
multiple-valued logic approach.

We illustrate the approach by an example from

the development of sense organs in the fruit fly

Drosophila. Details of how the regulatory process

works are given in [16]. We pick one particular

example from that source concerning the regulation

of a gene “A” by two mechanisms, self-activation by

its own product denoted by “a”, and lateral inhibition

from a neighbouring cell via a membrane receptor

“B” that produces a signal denoted by “b”. Both

signals “a” and “b” have three levels; their different
combinations lead to three different expression levels

for “A”. Note that here we are only modelling a

combinational function, not a sequential one, hence

for the purpose of this example we do not take the

time course and hence the feedback effects into

account. We have summarised the information in the

truth table below, Table 1, paraphrased from [16],

where we have renamed the variables a, b and A as x1,

x2 and y respectively to be consistent with our earlier

presentation.

Since all the variables take ternary values, y can
be represented as a function of the two variables x1

and x2 over GF(3) given by [14]

2

2

2

18

2

217

2

262

2

15

21423

2

1211021),(

xxaxxaxaxxa

xxaxaxaxaaxxf

221

Table 1. Truth table for the regulation of gene
y by the signals x1 and x2

x1

x2 y

0 0 1

0 1 1

0 2 0

1 0 2

1 1 1

1 2 0

2 0 2

2 1 2

2 2 1

Applying the transformation matrix approach

outlined above and using the truth table of the

regulatory function Table 1, we get
2

2

2

1

2

21

2

22

2

1 21 xxxxxxxy

This equation describes the regulatory function in

a compact and meaningful way, as the values of the

variables relate directly to the thresholds of the

different signals involved unlike the case employing

dummy variables. In addition, the coefficients and

the powers of the different variables are an indication

of their relative contribution to the expression level

of the gene. This greatly facilitates what-if analysis

of the genetic regulatory function by substituting
values for the different variables and directly

computing the resulting expression levels of the gene,

which is more efficient than the look-up table

approach. For example, when a variable is set to zero,

this can be used to simulate the situation where the

gene producing the corresponding signal is

“knocked-out”, i.e. deleted. Similarly, if a variable

represents the different levels of a given nutrient,

then this method greatly facilitates the study of

different nutrient scenarios, especially where several

nutrients are utilised, as it can be employed to find

the optimum nutrient composition based on some
optimality criterion. One should be careful to

remember that calculations are to be performed in

GF(q), but those can be automated in a

straightforward manner, especially in the case where

q is a prime as this becomes simply modulo q

arithmetic.

6. Example from the genetic code

The previous example illustrated the application

of the RM-expansion in formulating a conditional

function, in the sense that it relates conditions to

outputs. However, other biological applications are

conceivable, since it essentially represents a mapping

between two finite fields. We will briefly outline here

another application. As explained above, the genetic

information is stored in a coded form in the DNA

(Deoxyribonucleic Acid) molecule, famously known

as the double helix because of its specially shaped

double strands. It is made up of a string of units
known as nucleotides, each of which consists of three

main components, a sugar known as Deoxyribose, a

Phosphate group and a base. There are four types of

bases known as Adenine, Guanine, Thymine and

Cystocine, indicated by A, G, T and C respectively,

and leading to four corresponding types of

nucleotides normally denoted with the same symbols.

A group of three nucleotides is known as a codon

which effectively forms a three letter word from a

four letter alphabet. Thus there are 64 (= 43) possible

configurations for a codon, each representing a valid

code word. Those words code for Amino acids,
which are the building units for proteins. There are

twenty amino acids, hence some will have more than

one code leading to robustness against errors. A

series of nucleotides coding a functional unit in the

cell is known as a gene. Genes usually code for

proteins which in turn consists of a string of a large

number of the twenty possible Amino acids.

The information is first copied from the DNA to

form another molecule known as the messenger RNA

(Ribonucleic Acid) or mRNA, the purpose of which

is to convey the information from its store (the DNA)
to the translation machinery in the cell. The RNA

molecule is similar to the DNA except that the sugar

is a Ribose and the base Thymine is replaced by

another called Uracil indicated by U. This structural

difference causes the RNA molecule to be single

stranded and much less stable than the DNA as it is

not needed after relaying the message, and its

components will be needed to synthesise other

messengers.

The process of copying the information into the

RNA is appropriately known as transcription since it

is more or less in the same language, a four letter
(nucleotide) alphabet. Converting the code into an

amino acid is known as translation since it translates

from one language (four nucleotides) to another, the

twenty amino acids. The genetic code is the same in

all organisms and is consequently known as the

universal code, presented in Table 2 where each

amino acid has a standard symbol [2]. It also contains

STOP codons which indicate the end of a gene. The

start of a gene is identified by structural cues in the

DNA molecule.

Table 2 effectively represents a truth table for a
multiple-valued logic combinational function where

the inputs are defined on GF(4) and the output on

GF(64), thus we can formulate a Reed-Muller

expansion for this function. Since the output can have

222

any of twenty one values (the twenty amino acid and

the stop codon), the smallest finite field that can

directly accommodate both the output and the inputs

is GF(64). Which means that the inputs have to be

represented as a variable on GF(64). There are

several scenarios for doing that e.g. GF(43), GF(82)
and GF(26), all of which will lead to a polynomial of

degree up to 63, albeit with different coefficients,

from the appropriate base field, and computed using

the relevant 64x64 transformation matrix. This is

primarily a mechanistic task, and hence will not be

pursued here.

Table 2a. The Genetic Code

No.
Base Amino Acid

1
st
 2

nd
 3

rd
 Name Symbol

1 U U U Phenylalanine F

2 U U C Phenylalanine F

3 U U A Leucine L

4 U U G Leucine L

5 U C U Serine S

6 U C C Serine S

7 U C A Serine S

8 U C G Serine S

9 U A U Tyrosine Y

10 U A C Tyrosine Y

11 U A A STOP codon -

12 U A G STOP codon -

13 U G U Cysteine C

14 U G C Cysteine C

15 U G A STOP codon -

16 U G G Tryptophan W

17 C U U Leucine L

18 C U C Leucine L

19 C U A Leucine L

20 C U G Leucine L

21 C C U Proline P

22 C C C Proline P

23 C C A Proline P

24 C C G Proline P

25 C A U Histidine H

26 C A C Histidine H

27 C A A Glutamine Q

28 C A G Glutamine Q

29 C G U Arginine R

30 C G C Arginine R

31 C G A Arginine R

32 C G G Arginine R

This modelling approach can aid in theoretical

studies of the genetic code by considering it as a

multi-level (non-binary) code where issues of

distance between code words, e.g. a Lee type metric

[17], and other information theoretic issues can be

explored. Furthermore there are several potential
practical applications; for example in the areas of

Bioinformatics and biological instrumentation, where

it can lead to novel genome analysis approaches.

Also in the emerging fields of biosensors and bio-

nanotechnology where it can lead to in-situ genomic

analysis tools.

Table 2b. The Genetic Code (cont’d.)

No.
Base Amino Acid

1
st
 2

nd
 3

rd
 Name Symbol

33 A U U Isoleucine I

34 A U C Isoleucine I

35 A U A Isoleucine I

36 A U G Methionine M

37 A C U Threonine T

38 A C C Threonine T

39 A C A Threonine T

40 A C G Threonine T

41 A A U Asparagine N

42 A A C Asparagine N

43 A A A Lysine K

44 A A G Lysine K

45 A G U Serine S

46 A G C Serine S

47 A G A Arginine R

48 A G G Arginine R

49 G U U Valine V

50 G U C Valine V

51 G U A Valine V

52 G U G Valine V

53 G C U Alanine A

54 G C C Alanine A

55 G C A Alanine A

56 G C G Alanine A

57 G A U Aspartic D

58 G A C Aspartic D

59 G A A Glutamic E

60 G A G Glutamic E

61 G G U Glycine G

62 G G C Glycine G

63 G G A Glycine G

64 G G G Glycine G

223

7. Conclusion

We have presented a novel approach to modelling

gene transcription regulation by addressing the more

realistic multiple-valued case (as opposed to the

binary one) and expressing the regulatory function as

a Reed-Muller expansion on a corresponding Galois

field. This approach has several advantages including

 Efficiently represents multi-input multiple-

valued gene regulatory functions in a compact

form. Under the appropriate conditions, it can

easily be extended to multi-output functions as

well.

 Greatly facilitates what-if analysis as outlined

above.

 Calculations can be automated as there are

efficient algorithms for deriving the RM-

coefficients.

 Because it is employed in logic design, the same

concepts can be applied in designing control

schemes to control the expression levels of

different genes, potentially formalising the

process of drug design in a mathematical sense.

In addition to gene regulation expression, we

have also outlined the application of the same

approach to model the genetic code as a function on a

Galois field.

We have restricted the development here to

combinational logic functions. Work on sequential

logic which addresses the dynamics of gene

expression is in progress.

Reference

[1] O. Wolkenhauer, H. Kitano, and K. H. Cho,

"Systems biology," IEEE Control Systems
Magazine, vol. 23, pp. 38-48, 2003.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, D.
Bray, K. Hopkin, K. Roberts, and P. Walter,
Essential cell biology, 2 ed. New York: Garland
Science, 2004.

[3] H. de Jong, C. Chaouiya, and D. Thieffry,
"Dynamical modeling of biological regulatory

networks," Biosystems, vol. 84, pp. 77-80, 2006.
[4] L. F. A. Wessels, E. P. Van Someren, and M. J. T.

Reinders, "A comparison of genetic network
models," presented at Pacific Symposium on
Biocomputing, 6:508 - 519, 2001.

[5] P. Smolen, D. A. Baxter, and J. H. Byrne,
"Modeling transcriptional control in gene
networks - Methods, recent results, and future

directions," Bulletin of Mathematical Biology,
vol. 62, pp. 247-292, 2000.

[6] J. M. G. Vilar, C. C. Guet, and S. Leibler,
"Modeling network dynamics: the lac operon, a
case study," Journal of Cell Biology, vol. 161, pp.
471-476, 2003.

[7] R. Thomas, "Regulatory Networks Seen as
Asynchronous Automata - a Logical
Description," Journal of Theoretical Biology, vol.
153, pp. 1-23, 1991.

[8] E. Snoussi and R. Thomas, "Logical

Identification of All Steady-States - the Concept
of Feedback Loop Characteristic States," Bulletin
of Mathematical Biology, vol. 55, pp. 973-991,
1993.

[9] K. S. Menger, "A Transform for Logic
Networks," IEEE Transactions on Computers,
vol. C 18, pp. 241-250, 1969.

[10] D. K. Pradhan, "Theory of Galois Switching

Functions," IEEE Transactions on Computers,
vol. 27, pp. 239-248, 1978.

[11] D. H. Green and I. S. Taylor, "Modular
Representation of Multiple-Valued Logic
Systems," Proceedings of the Institution of
Electrical Engineers (London), vol. 121, pp. 409-
418, 1974.

[12] D. Jankovic, R. S. Stankovic, and R. Drechsler,

"Efficient calculation of fixed-polarity
polynomial expressions for multiple-valued logic
functions," ISMVL 2002. Proceedings 32nd
IEEE International Symposium on Multiple-
Valued Logic , 2002.

[13] B. Harking and C. Moraga, "Efficient derivation
of Reed-Muller expansions in multiple-valued
logic systems," ISMVL 1992. Proceedings 22nd

IEEE International Symposium on Multiple-
Valued Logic , 1992.

[14] D. H. Green, "Ternary Reed-Muller Switching-
Functions with Fixed and Mixed Polarities,"
International Journal of Electronics, vol. 67, pp.
761-775, 1989.

[15] S. F. Gilbert, Developmental biology, 6 ed.
Sunderland, Mass.: Sinauer Associates, 2000.

[16] A. Ghysen and R. Thomas, "The formation of

sense organs in Drosophila: a logical approach,"
Bioessays, vol. 25, pp. 802-807, 2003.

[17] E. R. Berlekamp, Algebraic coding theory. New
York ; London (etc.) McGraw-Hill, 1968.

224

References

Ackers, G. K., Johnson, A. D. & Shea, M. A. (1982). Qunatitative Model for Gene

Regluation by Lambda Phabe Repressor. Proceedings of the National

Academy of Sciences of the United States of America-Biological Sciences,

79(4), 1129-1133.

Akers, S. B. (1959). On a Theory of Boolean Functions. Journal of the Society for

Industrial and Applied Mathematics, 7(4), 487-498.

Akers, S. B. (1987). The Use of Linear Sums in Exhaustive Testing. Computers &

Mathematics with Applications, 13(5-6), 475-483.

Akutsu, T., Miyano, S. & Kuhara, S. (1999). Identification of genetic networks from

a small number of gene expression patterns under the Boolean network model.

Pac Symp Biocomput, 17-28.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Bray, D., Hopkin, K., Roberts, K. &

Walter, P. (2004). Essential cell biology (2 ed.). New York: Garland Science.

Aleem, H. A., Green, D. H. & Mavituna, F. (2009). Representing the Genetic Code as

a Function on a Galois Field Using the Reed-Muller Expansion. In:

Proceedings 39th International Symposium on Multiple-Valued Logic, 2009.

ISMVL '09. , 2009. 356-361.

Aleem, H. A., Mavituna, F. & Green, D. H. (2008). A Galois Field Approach to

Modelling Gene Expression Regulation. In: Proceedings 38th International

Symposium on Multiple Valued Logic, 2008. ISMVL 2008. , 2008. 88-93.

Almaini, A. E. A. (1994). Electronic Logic Systems (3rd ed.): Prentice Hall.

Alon, U. (2007a). An introduction to systems biology: design principles of biological

circuit. Boca Raton, Fla: Chapman & Hall/CRC.

Alon, U. (2007b). Network motifs: theory and experimental approaches. Nature

Reviews Genetics, 8(6), 450-461.

Amos, M. (2005). Theoretical and Experimental DNA Computation. Berlin

Heidelberg: Springer.

Andrianantoandro, E., Basu, S., Karig, D. K. & Weiss, R. (2006). Synthetic biology:

new engineering rules for an emerging discipline. Molecular Systems Biology,

2.

Arnold, S., Siemann-Herzberg, M., Schmid, J. & Reuss, M. (2005). Model-based

inference of gene expression dynamics from sequence information.

Biotechnology for the Future, 100, 89-179.

Atkinson, B. & Mavituna, F. (1991). Biochemical engineering and biotechnology

handbook (2 ed.). Basingstoke: Macmillan.

Bailey, J. E. (1991). Toward a Science of Metabolic Engineering. Science, 252(5013),

1668-1675.

Beauchamp, K. G. (1975). Walsh functions and their applications. London:

Academic Press.

Beauchamp, K. G. (1987). Transforms for engineers : a guide to signal processing.

Oxford: Clarendon.

Benjauthrit, B. & Reed, I. S. (1976). Galois Switching Functions and Their

Applications. IEEE Transactions on Computers, C-25(1), 78-86.

Benjauthrit, B. & Reed, I. S. (1978). Fundamental Structure of Galois Switching

Functions. IEEE Transactions on Computers, 27(8), 757-762.

Benner, S. A. & Sismour, A. M. (2005). Synthetic biology. Nature Reviews Genetics,

6(7), 533-543.

225

Berlekamp, E. R. (1968). Algebraic coding theory. New York ; London (etc.)

McGraw-Hill.

Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J. & Phillips,

R. (2005). Transcriptional regulation by the numbers: models. Current

Opinion in Genetics & Development, 15(2), 116-124.

BioIndustry Association (2004). Bioscience 2015. UK Department of Trade and

Industry and Department of Health, available at

www.bioindustry.org/bigtreport.

Birkhoff, G. & Bartee, T. C. (1970). Modern applied algebra. New York: McGraw-

Hill.

Brent, R. (2004). A partnership between biology and engineering. Nature

Biotechnology, 22(10), 1211-1214.

Buchler, N. E., Gerland, U. & Hwa, T. (2003). On schemes of combinatorial

transcription logic. Proceedings of the National Academy of Sciences of the

United States of America, 100(9), 5136-5141.

Camacho, D., Licona, P. V., Mendes, P. & Laubenbacher, R. (2007). Comparison of

reverse-engineering methods using an in Silico network. Reverse Engineering

Biological Networks, 1115, 73-89.

Carré, B. (1979). Graphs and networks. Oxford: Clarendon Press.

Cassandras, C. G. (1993). Discrete Event Systems: Modelling and Performance

Analysis: Irwin Inc.

Casti, J. L. (1989). Alternate realities : mathematical models of nature and man New

York ; Chichester Wiley.

Casti, J. L. & Karlqvist, A. (eds.) (1990). Beyond belief: randomness, prediction, and

explanation in science, Boca Raton, Fla.: CRC Press.

Caulfield, T., Einsiedel, E., Merz, J. F. & Nicol, D. (2006). Trust, patents and public

perceptions: the governance of controversial biotechnology research. Nature

Biotechnology, 24, 1352-1354.

Cha, P. D., Rosenberg, J. J. & Dym, C. L. (2000). Fundamentals of Modeling and

Analyzing Engineering Systems: Cambridge University Press.

Chaouiya, C., Remy, E. & Thieffry, D. (2008). Petri net modelling of biological

regulatory networks. Journal of Discrete Algorithms, 6(2), 165-177.

Cho, K. H., Choo, S. M., Jung, S. H., Kim, J. R., Choi, H. S. & Kim, J. (2007).

Reverse engineering of gene regulatory networks. IET Systems Biology, 1(3),

149-163.

Christensen, C., Gupta, A., Maranas, C. D. & Albert, R. (2007). Large-scale inference

and graph-theoretical analysis of gene-regulatory networks in B-Subtilis.

Physica A-Statistical Mechanics and Its Applications, 373, 796-810.

Comet, J. P., Klaudel, H. & Liauzu, S. (2005). Modeling multi-valued genetic

regulatory networks using high-level Petri Nets. Applications and Theory of

Petri Nets 2005, Proceedings. Berlin: Springer-Verlag Berlin.

Cornish-Bowden, A. (2005). Making systems biology work in the 21st century.

Genome Biol, 6(4), 317.

Cornish-Bowden, A. & Cardenas, M. L. (2005). Systems biology may work when we

learn to understand the parts in terms of the whole. Biochemical Society

Transactions, 33, 516-519.

Cover, T. M. & Thomas, J. A. (1991). Elements of information theory. New York:

Wiley.

Cox, D., Little, J. & O’Shea, D. (2007). Ideals, Varieties, and Algorithms (3rd ed.):

Springer

226

D'Haeseleer, P., Liang, S. D. & Somogyi, R. (2000). Genetic network inference: from

co-expression clustering to reverse engineering. Bioinformatics, 16(8), 707-

726.

Damarla, T. R. & Karpovsky, M. (1989). Fault detection in combinational networks

by Reed-Muller transforms. IEEE Transactions on Computers, 38(6), 788-

797.

Davidson, E. H. (2006). The regulatory genome : gene regulatory networks in

development and evolution. Burlington, Mass: Academic Press/Elsevier.

Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H.,

Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown,

C. T., Livi, C. B., Lee, P. Y., Revilla, R., Rust, A. G., Pan, Z. J., Schilstra, M.

J., Clarke, P. J. C., Arnone, M. I., Rowen, L., Cameron, R. A., McClay, D. R.,

Hood, L. & Bolouri, H. (2002). A genomic regulatory network for

development. Science, 295(5560), 1669-1678.

Davio, M., Deschamps, J. & Thayse, A. (1978). Discrete and Switching Functions:

McGraw-Hill.

De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: A

literature review. Journal of Computational Biology, 9(1), 67-103.

de Lorenzo, V. & Danchin, A. (2008). Synthetic biology: discovering new worlds and

new words - The new and not so new aspects of this emerging research field.

Embo Reports, 9(9), 822-827.

Debnath, D. & Sasao, T. (2000). Exact minimization of fixed polarity Reed-Muller

expressions for incompletely specified functions. In: Proceedings of the ASP-

DAC 2000. Asia and South Pacific Design Automation Conference, 2000. ,

2000. 247-252.

Doebelin, E. O. (1980). System Modeling And Response: Theoretical and

Experimental Approaches: John Wiley & Sons.

Drubin, D. A., Way, J. C. & Silver, P. A. (2007). Designing biological systems.

Genes & Development, 21(3), 242-254.

Dueber, J. E., Yeh, B. J., Bhattacharyya, R. P. & Lim, W. A. (2004). Rewiring cell

signaling: the logic and plasticity of eukaryotic protein circuitry. Current

Opinion in Structural Biology, 14(6), 690-699.

Duncan, M. W. (2007). Omics and its 15 minutes. Experimental Biology and

Medicine, 232(4), 471-472.

Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453.

Erdi, P. & Toth, J. (1989). Mathematical models of the chemical reaction:

Manchester University Press.

European Biopharmaceutical Enterprises (2007). EBE Annual Highlights 2007/ 2008.

European Biopharmaceutical Enterprises available at www.ebe-

biopharma.org.

Falkowski, B. J. (1999). A note on the polynomial form of Boolean functions and

related topics. IEEE Transactions on Computers, 48(8), 860-864.

Falkowski, B. J. & Lozano, C. C. (2005). Quaternary Fixed-Polarity Reed-Muller

expansion computation through operations on disjoint cubes and its

comparison with other methods. Computers & Electrical Engineering, 31(2),

112-131.

Falkowski, B. J., Lozano, C. C. & Rahardja, S. (2005). Recursive algorithm for

generation of fixed polarity reed-muller expansions over GF(5). In: The 2005

48th Midwest Symposium on Circuits and Systems, 2005. MWSCAS '05.,

2005. 191-194.

227

Falkowski, B. J. & Rahardja, S. (1997). Classification and properties of fast linearly

independent logic transformations. IEEE Transactions on Circuits and

Systems II-Analog and Digital Signal Processing, 44(8), 646-655.

Falkowski, B. J. & Yan, S. (2004). Walsh-Hadamard spectral minimization of fixed

polarity Reed-Muller expansions. In: The 2004 47th Midwest Symposium on

Circuits and Systems, 2004. MWSCAS '04. , 2004. I-509-12 vol.1.

Farley, M. S. & Rouse, W. B. (2000). Technology Challenges \& Opportunities in the

Biotechnology, Pharmaceutical \& Medical Device Industries. Inf. Knowl.

Syst. Manag., 2(2), 133-141.

Faure, A., Naldi, A., Chaouiya, C. & Thieffry, D. (2006). Dynamical analysis of a

generic Boolean model for the control of the mammalian cell cycle.

Bioinformatics, 22(14), E124-E131.

Fell, D. (1997). Understanding the Control of Metabolism: Portland Press.

Fowkes, N. D. & Mahony, J. J. (1994). An Introduction to Mathematical Modelling:

John Wiley & Sons.

Friedman, N., Linial, M., Nachman, I. & Pe'er, D. (2000). Using Bayesian networks

to analyze expression data. Journal of Computational Biology, 7(3-4), 601-

620.

Gallian, J. A. (1994). Contemporary abstract algebra (3 ed.). Lexington, Mass: D.C.

Heath.

Gatherer, D. (2010). So what do we really mean when we say that systems biology is

holistic? BMC Systems Biology, 4.

Gershenfeld, N. A. (1999). The nature of mathematical modeling Cambridge:

Cambridge University Press.

Ghysen, A. & Thomas, R. (2003). The formation of sense organs in Drosophila: a

logical approach. Bioessays, 25(8), 802-807.

Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A.,

Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., Merryman, C.,

Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C.,

Denisova, E. A., Young, L., Qi, Z. Q., Segall-Shapiro, T. H., Calvey, C. H.,

Parmar, P. P., Hutchison, C. A., Smith, H. O. & Venter, J. C. (2010). Creation

of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science,

329(5987), 52-56.

Gil, C. & Ortega, J. (1998). Algebraic test-pattern generation based on the Reed-

Muller spectrum. IEE Proceedings: Computers and Digital Techniques,

145(4), 308-316.

Gilbert, S. F. (2000). Developmental biology (6 ed.). Sunderland, Mass.: Sinauer

Associates.

Glass, L. & Kauffman, S. A. (1973). Logical Analysis of Continuous, Nonlinear

Biochemical Control Networks. Journal of Theoretical Biology, 39(1), 103-

129.

Green, D. (1986). Modern logic design. Wokingham: Addison-Wesley.

Green, D. H. (1989). Ternary Reed-Muller switching functions with fixed and mixed

polarities. International Journal of Electronics, 67(5), 761-775.

Green, D. H. (1990a). Reed-Muller canonical forms with mixed polarity and their

manipulations. IEE Proceedings, Part E: Computers and Digital Techniques,

137(1), 103-113.

Green, D. H. (1990b). Reed-Muller expansions with fixed and mixed polarities over

GF(4). IEE Proceedings, Part E: Computers and Digital Techniques, 137(5),

380-388.

228

Green, D. H. & Edkins, M. (1978). Synthesis Procedures for Switching Circuits

Represented in Generalised Reed-Muller form over a Finite Field. IEE

Journal on Computers and Digital Techniques, 1(1), 27-35.

Green, D. H. & Khuwaja, G. A. (1992). Simplification of switching functions

expressed in Reed-Muller algebraic form. IEE Proceedings, Part E:

Computers and Digital Techniques, 139(6), 511-518.

Green, D. H. & Taylor, I. S. (1974). Modular Rerpesentation of Multiple-Valued

Logic Systems. Proceedings of the Institution of Electrical Engineers

(London), 121(6), 409-418.

Guet, C. C., Elowitz, M. B., Hsing, W. H. & Leibler, S. (2002). Combinatorial

synthesis of genetic networks. Science, 296(5572), 1466-1470.

Habib, M. K. (1993). Efficient and Fast Algorithm to Generate Minimal Reed Muller

Exclusive-or Expansions with Mixed Polarity for Completely and

Incompletely Specified Functions and Its Computer Implementation.

Computers & Electrical Engineering, 19(3), 193-211.

Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999). From molecular

to modular cell biology. Nature, 402(6761), C47-C52.

Hasty, J., McMillen, D. & Collins, J. J. (2002). Engineered gene circuits. Nature,

420(6912), 224-230.

Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & Guthke, R. (2009). Gene

regulatory network inference: Data integration in dynamic models-A review.

Biosystems, 96(1), 86-103.

Heinemann, M. & Panke, S. (2006). Synthetic biology - putting engineering into

biology. Bioinformatics, 22(22), 2790-2799.

Herrera, S. (2004). Industrial biotechnology - a chance at redemption. Nature

Biotechnology, 22(6), 671-675.

Hurst, S. L. (1978). The Logical Processing of Digital Signals: Crane, Russak &

Company Inc., .

Hurst, S. L., Miller, D. M. & Muzio, J. C. (1985). Spectral Techniques in Digital

Logic: Academic Press.

Hwan Mook, C., Su Young, P. & Rey, S. (1998). The MacLaurin's and Taylor's series

expansions of the symbolic multiple valued logic functions. In: Proceedings

28th IEEE International Symposium on Multiple-Valued Logic, 1998.

ISMVL 1998 1998. 65-70.

Ideker, T. & Lauffenburger, D. (2003). Building with a scaffold: emerging strategies

for high- to low-level cellular modeling. Trends in Biotechnology, 21(6), 255-

262.

Institute for Manufacturing (2007). bioProcessUK roadmap. University of Cambridge

available at www.bioprocessuk-website.org/documents.

Istrail, S. & Davidson, E. H. (2005). Logic functions of the genomic cis-regulatory

code. Proceedings of the National Academy of Sciences of the United States of

America, 102(14), 4954-4959.

Jankovic, D., Stankovic, R. S. & Drechsler, R. (2000). Efficient calculation of fixed-

polarity polynomial expressions for multiple-valued logic functions. In:

Proceedings 32nd IEEE International Symposium on Multiple-Valued Logic,

2002. ISMVL 2002. , 2002. 76-82.

Jarrah, A. S., Laubenbacher, R., Stigler, B. & Stillman, M. (2007). Reverse-

engineering of polynomial dynamical systems. Advances in Applied

Mathematics, 39, 477-489.

Jha, N. & Gupta, S. (2003). Testing of Digital Systems: Cambridge University Press.

229

Kaplan, S., Bren, A., Zaslaver, A., Dekel, E. & Alon, U. (2008). Diverse two-

dimensional input functions control bacterial sugar genes. Molecular Cell,

29(6), 786-792.

Kauffman, S., Peterson, C., Samuelsson, B. & Troein, C. (2004). Genetic networks

with canalyzing Boolean rules are always stable. Proceedings of the National

Academy of Sciences of the United States of America, 101(49), 17102-17107.

Kauffman, S. A. (1993). The Origins of Order: Self-organization and Selection in

Evolution. New York: Oxford University Press.

Kaul, P., Banerjee, A. & U.C.Banerjee. (2004). Opportunities for the pharmaceutical

industry: key biotransformation technologies for the future. In: Drug

Discovery World spring conference, 2004. 80-86.

Kazakos, D. & Papantoni-Kazakos, P. (1990). Detection and Estimation, . New York

Computer Science Press.

Kell, D. B. & Oliver, S. G. (2004). Here is the evidence, now what is the hypothesis?

The complementary roles of inductive and hypothesis-driven science in the

post-genomic era. Bioessays, 26(1), 99-105.

Kitano, H. (2002). Computational systems biology. Nature, 420(6912), 206-210.

Kraniauskas, P. (1992). Transforms in Signals and Systems: Pearson.

Kremling, A., Kremling, S. & Bettenbrock, K. (2009). Catabolite repression in

Escherichia coli- a comparison of modelling approaches. FEBS Journal,

276(2), 594-602.

Lahdesmaki, H., Shmulevich, I. & Yli-Harja, O. (2003). On learning gene regulatory

networks under the Boolean network model. Machine Learning, 52(1-2), 147-

167.

Lahteenmaki, R. & Lawrence, S. (2006). Public biotechnology 2005 - the numbers.

Nature Biotechnology, 24(6), 625-634.

Lala, P. K. (1997). Digital circuit testing and testability. London Academic Press.

Laubenbacher, R. & Stigler, B. (2004). A computational algebra approach to the

reverse engineering of gene regulatory networks. Journal of Theoretical

Biology, 229(4), 523-537.

Lay, J. O., Borgmann, S., Liyanage, R. & Wilkins, C. L. (2006). Problems with the

"omics". Trac-Trends in Analytical Chemistry, 25(11), 1046-1056.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K.,

Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I., Zeitlinger, J.,

Jennings, E. G., Murray, H. L., Gordon, D. B., Ren, B., Wyrick, J. J., Tagne,

J. B., Volkert, T. L., Fraenkel, E., Gifford, D. K. & Young, R. A. (2002).

Transcriptional regulatory networks in Saccharomyces cerevisiae. Science,

298(5594), 799-804.

Lesne, A. (2006). Complex networks: From graph theory to biology. Letters in

Mathematical Physics, 78(3), 235-262.

Lidl, R. (1994). Introduction to finite fields and their applications: Cambridge

University Press.

Lin, S. & Costello, D. J. (1983). Error control coding : fundamentals and

applications. Englewood Cliffs, N.J.; London Prentice-Hall.

Ljung, L. (1998). System Identification: Theory for the User Prentice Hall.

Lorenz, P. & Eck, J. (2005). Metagenomics and industrial applications. Nature

Reviews Microbiology, 3(6), 510-516.

Lorkowski, S. & Cullen, P. (eds.) (2003). Analysing Gene Expression: A Handbook

of Methods: Possibilities and Pitfalls Wiley-VCH Verlag GmbH & Co.

230

Marchisio, M. A. & Stelling, J. (2008). Computational design of synthetic gene

circuits with composable parts. Bioinformatics, 24(17), 1903-1910.

Martinez-Antonio, A., Janga, S. C. & Thieffry, D. (2008). Functional organisation of

Escherichia coli transcriptional regulatory network. Journal of Molecular

Biology, 381(1), 238-247.

May, E. E., Vouk, M. A., Bitzer, D. L. & Rosnick, D. I. (2004). An error-correcting

code framework for genetic sequence analysis. Journal of the Franklin

Institute, 341(1-2), 89-109.

Mayo, A. E., Setty, Y., Shavit, S., Zaslaver, A. & Alon, U. (2006). Plasticity of the

cis-regulatory input function of a gene. PLoS Biology, 4(4), 555-561.

McCluskey, E. J. (1986). Logic Design Principles: Prentice Hall.

McEliece, R. J. (1987). Finite fields for computer scientists and engineers (Vol. 23).

Boston, Mass. ; Lancaster Kluwer.

McKenzie, L., Almaini, A. E. A., Miller, J. F. & Thomson, P. (1993). Optimization of

Reed-Muller Logic Functions. International Journal of Electronics, 75(3),

451-466.

Mehta, T. S., Zakharkin, S. O., Gadbury, G. L. & Allison, D. B. (2006).

Epistemological issues in omics and high-dimensional biology: give the

people what they want. Physiological Genomics, 28(1), 24-32.

Menger, K. S. (1969). A Transform for Logic Networks. IEEE Transactions on

Computers, C 18(3), 241-250.

Muller, D. E. (1954). Application of Boolean algebra to switching circuit design and

to error detection. Institute of Radio Engineers -- Transactions of Professional

Group on Electronic Computers, EC-3(3), 6-12.

Murata, T. (1989). Petrinets - Properties, Analaysis and Applications. Proceedings of

the IEEE, 77(4), 541-580.

Nagel, E. (1961). The structure of science: problems in the logic of scientific

explanation. London: Routledge and Kegan Paul.

Narang, A. (2006). Comparative analysis of some models of gene regulation in

mixed-substrate microbial growth. Journal of Theoretical Biology, 242(2),

489-501.

Naylor, A. W. & Sell, G. R. (1982). Linear Operator Theory in Engineering and

Science: Springer-Verlag.

Needham, C. J., Bradford, J. R., Bulpitt, A. J. & Westhead, D. R. (2006). Inference in

Bayesian networks. Nature Biotechnology, 24(1), 51-53.

Nelson, D. L. & Cox, M. M. (2000). Lehninger principles of biochemistry (3rd ed.).

New York Worth.

Nielsen, J. (2001). Metabolic engineering. Applied Microbiology and Biotechnology,

55(3), 263-283.

Noble, D. (2008). Claude Bernard, the first systems biologist, and the future of

physiology. Experimental Physiology, 93(1), 16-26.

O'Malley, M. A., Powell, A., Davies, J. F. & Calvert, J. (2008). Knowledge-making

distinctions in synthetic biology. Bioessays, 30(1), 57-65.

Oliveri, P., Tu, Q. & Davidson, E. H. (2008). Global regulatory logic for specification

of an embryonic cell lineage. Proceedings of the National Academy of

Sciences of the United States of America, 105(16), 5955-5962.

Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & van Oudenaarden, A.

(2004). Multistability in the lactose utilization network of Escherichia coli.

Nature, 427(6976), 737-740.

231

Palsson, B. (2006). Systems biology: properties of reconstructed networks:

Cambridge University Press.

Patel, M. & Crank, M. (2006). Medium and long-term opportunities and risks of the

biotechnological production of bulk chemicals from renewable resources. The

BREW Project final report. European Commission, GROWTH Programme

available at www.chem.uu.nl/brew.

Porter, J. R. (1976). VANLEEUWENHOEK,A - TERCENTENARY OF HIS

DISCOVERY OF BACTERIA. Bacteriological Reviews, 40(2), 260-269.

Pradhan, D. K. (1978). Theory of Galois Switching Functions. IEEE Transactions on

Computers, 27(3), 239-248.

Ptashne, M. & Gann, A. (2002). Genes & Signals New York: Cold Spring Harbor

Laboratory Press.

Ptashne, M. & Gann, A. (2004). A genetic switch : phage lambda revisited (3 ed.).

New York: Cold Spring Harbor Laboratory Press.

Radatz, J. (1997). IEEE Standard Dictionary of Electrical and Electronic Terms (6

ed.): IEEE.

Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert,

C. A., Frederick Jr, W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J.

R., Murphy, R., Templer, R. & Tschaplinski, T. (2006). The path forward for

biofuels and biomaterials. Science, 311(5760), 484-489.

Ratledge, C. & Kristiansen, B. (2006). Basic biotechnology (3 ed.). Cambridge:

Cambridge University Press.

Rautenberg, W. (2006). A Concise Introduction to Mathematical Logic: Springer

Verlag.

Reddy, S. M. (1972). Easily Testable Realizations for Logic Functions. IEEE

Transactions on Computers, C-21(11), 1183-1188.

Reed, I. S. (1954). A Class of Multiple-Error-Correcting Codes and the Decoding

Scheme. IRE Transactions on Information Theory, (4), 38-49.

Reed, I. S. (1973). Boolean Difference Calculus and Fault Finding. SIAM Journal on

Applied Mathematics, 24(1), 134-143.

Reichhardt, C. J. O. & Bassler, K. E. (2007). Canalization and symmetry in Boolean

models for genetic regulatory networks. Journal of Physics A-Mathematical

and Theoretical, 40(16), 4339-4350.

Rodrigo, G. & Jaramillo, A. (2007). Computational design of digital and memory

biological devices. Syst Synth Biol, 1(4), 183-95.

Rosen, R. (1970). Dynamical System Theory in Biology - Volume 1: Stability Theory

and its Applications: Wiley-Interscience.

Rosenbrock, H. H. (1970). Mathematics of dynamical systems: Nelson.

Russell, P. J. (2006). Genetics, a molecular approach. San Francisco

Pearson/Benjamin Cummings

Santillan, M. (2008). Bistable behavior in a model of the lac operon in Escherichia

coli with variable growth rate. Biophysical Journal, 94(6), 2065-2081.

Santillan, M. & Mackey, M. C. (2004a). Influence of catabolite repression and

inducer exclusion on the bistable behavior of the lac operon. Biophysical

Journal, 86(3), 1282-1292.

Santillan, M. & Mackey, M. C. (2004b). Why the lysogenic state of phage lambda is

so stable: A mathematical modeling approach. Biophysical Journal, 86(1), 75-

84.

Santillan, M., Mackey, M. C. & Zeron, E. S. (2007). Origin of bistability in the lac

operon. Biophysical Journal, 92(11), 3830-3842.

232

Schlitt, T. & Brazma, A. (2006). Modelling in molecular biology: describing

transcription regulatory networks at different scales. Philosophical

Transactions of the Royal Society B-Biological Sciences, 361(1467), 483-494.

Schlitt, T. & Brazma, A. (2007). Current approaches to gene regulatory network

modelling. BMC Bioinformatics, 8.

Sellers, J. F. F., Hsiao, M. Y. & Bearnson, L. W. (1968). Analyzing errors with

Boolean difference. IEEE Transactions on Computers, C-17(7), 676-683.

Selzer, P. M., Marhöfer, R. J. & Rohwer, A. (2008). Applied Bioinformatics: An

Introduction, . Berlin Heidelberg: Springer-Verlag

Setty, Y., Mayo, A. E., Surette, M. G. & Alon, U. (2003). Detailed map of a cis-

regulatory input function. Proceedings of the National Academy of Sciences of

the United States of America, 100(13), 7702-7707.

Shannon, C. E. (1948). Mathematical theory of communication. Bell System

Technical Journal, 27(3-4).

Shea, M. A. & Ackers, G. K. (1985). The OR Control System of Bacteriophage

Lambda - A Physical-Chemical Model for Gene Regulation. Journal of

Molecular Biology, 181(2), 211-230.

Smolen, P., Baxter, D. A. & Byrne, J. H. (2000). Modeling transcriptional control in

gene networks - Methods, recent results, and future directions. Bulletin of

Mathematical Biology, 62(2), 247-292.

Snoussi, E. & Thomas, R. (1993). Logical Identification of All Steady-States - the

Concept of Feedback Loop Characteristic States. Bulletin of Mathematical

Biology, 55(5), 973-991.

Stamatakis, M. & Mantzaris, N. V. (2009). Comparison of Deterministic and

Stochastic Models of the lac Operon Genetic Network. Biophysical Journal,

96(3), 887-906.

Stankovic, R. S., Moraga, C. & Astola, J. (2004). Derivatives for multiple-valued

functions induced by Galois field and Reed-Muller-Fourier expressions. In:

Proceedings 34th International Symposium on Multiple-Valued Logic, 2004.

ISMVL 2004., 2004. 184-189.

Stankovic, R. S. & Sasao, T. (2001). A discussion on the history of research in

arithmetic and Reed-Muller expressions. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 20(9), 1177-1179.

Stephanopoulos, G. (1984). Chemical process control : an introduction to theory and

practice. London: Prentice-Hall.

Straathof, A. J. J., Panke, S. & Schmid, A. (2002). The production of fine chemicals

by biotransformations. Current Opinion in Biotechnology, 13(6), 548-556.

Strang, G. (1988). Linear Algebra and its Applications (3 ed.): Saunders HBJ.

Thayse, A. (1974a). Differential Calculus for Functions from (GF(p))n into GF(p).

Philips Research Report, 29(6), 560-586.

Thayse, A. (1974b). New Method for Obtaining the Optimal Taylor Expansions of a

Boolean Function. Electronics Letters, 10(25-26), 543-544.

Thayse, A. & Davio, M. (1973). Boolean Differential Calculus and its Application to

Switching Theory. IEEE Transactions on Computers, C-22(4), 409-420.

Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. (1998). From

specific gene regulation to genomic networks: a global analysis of

transcriptional regulation in Escherichia coli. Bioessays, 20(5), 433-440.

Thieffry, D. & Thomas, R. (1995). Dynamical Behavior of Biological Regulatory

Networks .2. Immunity Control in Bacteriophage-Lambda. Bulletin of

Mathematical Biology, 57(2), 277-297.

233

Thomas, R. (1973). Boolean Formalization of Genetic-Control Circuits. Journal of

Theoretical Biology, 42(3), 563-585.

Thomas, R. (1991). Regulatory Networks Seen as Asynchronous Automata - a

Logical Description. Journal of Theoretical Biology, 153(1), 1-23.

Tian, T. H. & Burrage, K. (2005). A mathematical model for genetic regulation of the

lactose operon. Computational Science and Its Applications - Iccsa 2005, Pt

2. Berlin: Springer-Verlag Berlin.

van Hijum, S., Medema, M. H. & Kuipers, O. P. (2009). Mechanisms and Evolution

of Control Logic in Prokaryotic Transcriptional Regulation. Microbiology and

Molecular Biology Reviews, 73(3), 481-+.

Van Regenmortel, M. H. V. (2004). Reductionism and complexity in molecular

biology. EMBO Reports, 5(11), 1016-1020.

Vilar, J. M. G. (2006). Modularizing gene regulation. Molecular Systems Biology, 2.

Vilar, J. M. G., Guet, C. C. & Leibler, S. (2003). Modeling network dynamics: the lac

operon, a case study. Journal of Cell Biology, 161(3), 471-476.

Vogelstein, B. & Kinzler, K. W. (2004). Cancer genes and the pathways they control.

Nature Medicine, 10(8), 789-799.

Wagner, R. (2000). Transcription Regulation in Prokaryotes: Oxford University

Press.

Wakerly, J. F. (2000). Digital design : principles and practices (3 ed.). Upper Saddle

River, N.J. ; London Prentice Hall.

Watanabe, Y. & Brayton, R. K. (1993). Heuristic minimization of multiple-valued

relations. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 12(10), 1458-1472.

Werner, E. (2007). All systems go. Nature, 446(7135), 493-494.

Werpy, T. & Petersen, G. (2004). Top Value Added Chemicals from Biomass. US

Department of Energy available at www.osti.gov/bridge.

Wesselkamper, T. C. (1978). Divided Difference Methods for Galois Switching

Functions. IEEE Transactions on Computers, 27(3), 232-238.

Wessels, L. F., van Someren, E. P. & Reinders, M. J. (2001). A comparison of

genetic network models. Pac Symp Biocomput, 508-19.

Westerhoff, H. V. (2007). Mathematical and theoretical biology for systems biology,

and then ... vice versa. Journal of Mathematical Biology, 54(1), 147-150.

Westerhoff, H. V., Winder, C., Messiha, H., Simeonidis, E., Adamczyk, M., Verma,

M., Bruggeman, F. J. & Dunn, W. (2009). Systems Biology: The elements

and principles of Life. FEBS Letters, 583(24), 3882-3890.

Winter, P. C., Fletcher, H. L. & Hickey, G. I. (2002). Genetics (2 ed.). Oxford Bios.

Wolkenhauer, O. (2007). Defining Systems Biology: An Engineering Perspective.

Systems Biology, IET, 1(4), 204-206.

Wolkenhauer, O., Kitano, H. & Cho, K. H. (2003). Systems biology. IEEE Control

Systems Magazine, 23(4), 38-48.

Wolkenhauer, O. & Ullah, M. (2007). All models are wrong…. some more than

others. In: Boogerd, F., Bruggeman, F. J., Hofmeyr, J.-H. S. & Westerhoff, H.

V. (eds.) Systems Biology: Philosophical Foundations. Elsevier.

Wolkenhauer, O., Ullah, M., Kolch, W. & Cho, K. H. (2004). Modeling and

simulation of intracellular dynamics: Choosing an appropriate framework.

IEEE Transactions on Nanobioscience, 3(3), 200-207.

Yuh, C. H., Bolouri, H. & Davidson, E. H. (1998). Genomic cis-regulatory logic:

Experimental and computational analysis of a sea urchin gene. Science,

279(5358), 1896-1902.

234

Yunjian, J. & Brayton, R. K. (2000). Don't cares and multi-valued logic network

minimization. In: Brayton, R. K., ed. IEEE/ACM International Conference on

Computer Aided Design, 2000. ICCAD-2000. , 2000. 520-525.

Zika, E., Papatryfon, I., Wolf, O., Gomez-Barbero, M., Stein, A. J. & Bock, A.

(2007). Consequences, Opportunities and Challenges of Modern

Biotechnology for Europe. European Commission, Joint Research Centre

available at www.jrc.ec.europa.eu.

