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Nomenclature 

 

 

 

x, x1, x2, .... Independent (mathematical) variables that can represent different 

biological variables such as the activation state of a protein or the 

concentration of a chemical species; that can be considered as 

inputs to a gene regulatory function. In most of this work, the 

values of these variables are binary or discrete multiple-valued. 

 

y, y1, y2, .... Dependent (mathematical) variables that can represent different 

biological variables such as the expression level of a gene; that can 

be considered as outputs to a gene regulatory function. In most of 

this work, the values of these variables are binary or discrete 

multiple-valued. 

 In general, letters towards the end of the alphabet e.g. u, v, w, x, y 

and z represent variables. 

 

 a0, a1, a2, ...... Coefficients in an equation. In most of this work, the values of 

these coefficients are binary or discrete multiple-valued.  

 

d0, d1, d2, ..... Truth values of a logic function. In most of this work those values 

are binary or discrete multiple-valued.  

 In general, letters towards the beginning of the alphabet e.g. a b, c, 

d,.. etc. represent variables. 

 

 When there are several equations in several unknowns and several 

coefficients, they are represented in matrix form as is common in 

linear algebra. In such a case vectors and matrices are denoted by 

bold face letters. 

 

i, j, k, ..... Indices, i.e. running values usually ranging from 0 or 1 to some 

positive integer n or m. 

 In general, letters towards the middle of the alphabet represent 

indices. 

 

GF(q) Galois Field (also known as finite field) of order q. It is an 

algebraic structure defined on a set with a finite number of 

elements q. q is either a prime or a positive power integer power of 

a prime. 

 

         Indicates addition on a finite field. 
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Abstract 

An Algebraic Approach to Modelling the Regulation of Gene Expression 

 

Hosam Abdel Aleem 

The University of Manchester 

Doctor of Philosophy 

September 2010 

 

Biotechnology is witnessing a remarkable growth evident both in the types of new 

products and in the innovative new processes developed. More efficient process 

design, optimisation and troubleshooting can be achieved through a better 

understanding of the underlying biological processes inside the cell; a key one of 

which is the regulation of gene expression. For engineers such understanding is 

attained through mathematical modelling, and the most commonly used models of 

gene expression regulation are those based on differential equations, as they give 

quantitative results. However, those results are undermined by several difficulties 

including the large number of parameters some of which, such as kinetic constants, 

are difficult to determine. This prompted the development of qualitative models, most 

notably Boolean models, based on the assumption that biological variables are binary 

in nature, e.g. a gene can be on or off and a chemical species present or absent. There 

are situations however, where different actions take place in the cell at different 

threshold values of the biological variables, and hence the binary assumption no 

longer holds.  

The purpose of this study was to develop a method for modelling gene regulatory 

functions where the variables can be thought of as taking more than two discrete 

values.  

A method was developed, where, with the appropriate assumptions the biological 

variables can be regarded as elements of an algebraic structure known as a finite field, 

in which case the regulatory function can be considered as a function on such a field.  

The formulation was adopted from electronic engineering, and leads to a polynomial 

known as the Reed-Muller expansion of the discrete function.   

The model was first developed for the more familiar binary case. It was given three 

different algebraic interpretations each enabling the study of a different biological 

problem, albeit related to gene regulation.  

The first interpretation is as a function on a Boolean algebra, but using the Exclusive 

OR (XOR) operation instead of the OR operation. The discriminating superiority of 

the XOR allows a more efficient determination of the gene regulatory function from 

the data, a problem known as reverse engineering. 

The second interpretation is as a polynomial on a finite field, where analogy with the 

Taylor series expansion of a real valued function allowed the coefficients of the 

expansion to be thought of as conveying sensitivity information. Furthermore a 

method was devised to detect mutation in the cell by regarding the problem as 

detecting a fault in a digital circuit. 

The third interpretation is as a transform on a discrete function space, which was 

demonstrated to be useful in synthetic biology design.  

The method was then extended to the multiple-valued case and demonstrated with 

modelling the gene regulation of a well known example system, the bacteriophage 

lambda.  
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Chapter 1: Introduction 

 

 

1.1 Background  

Modern Biotechnology can be viewed, from an engineering perspective, as the 

utilisation of living organisms or parts thereof for industrial purposes. As such it is 

the technological application of modern biological sciences such as molecular 

biology and genetic engineering in addition to more traditional ones such as 

biochemistry. Biotechnology has been witnessing a spectacular and steady growth 

that has been coupled with the advancement in those sciences, in particular over the 

past two decades. This growth is evident in the new markets in which biotechnology 

based products and services are being deployed and in the increase of their share in 

the markets in which they already exist. Several recent government and industry 

associations’ reports reflect this fact (BioIndustry Association 2004; European 

Biopharmaceutical Enterprises 2007; Institute for Manufacturing 2007; Zika et al. 

2007). Furthermore, the increase in funding for research and development both in 

industry and academia, and the increase in investment both private and public in 

biotechnology is further evidence of this trend (BioIndustry Association 2004; 

Lahteenmaki and Lawrence 2006). This is further supported by the increase in the 

number of patents awarded in the related biosciences; several times a year the journal 

Nature Biotechnology publishes patent applications in those sciences (Caulfield et al. 

2006).  

 

The industrial application of biotechnology can be classified into, products and 

services. Products refer to the substances produced by the organism; those vary 

widely in the complexity of the molecule from ethanol and simple organic acids to 

complicated antibiotics, enzymes and biopharmaceuticals (Atkinson and Mavituna 

1991; Ratledge and Kristiansen 2006; European Biopharmaceutical Enterprises 2007) 

More recently, the use of renewable resources as feedstock for production processes 

has witnessed increased interest, for sustainability and environmental impact 

considerations (Herrera 2004; Werpy and Petersen 2004; Lorenz and Eck 2005; Patel 

and Crank 2006; Zika et al. 2007). One particular such product that has been the 
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focus of much attention and debate is Biofuels due to the strategic role of energy and 

food supply (Farley and Rouse 2000; Werpy and Petersen 2004; Patel and Crank 

2006; Ragauskas et al. 2006). The organism itself can also be the product of the 

biotechnological process, such as yeast which is utilised extensively in the baking and 

brewing industries. 

 

As for services, they entail the utilisation of biotechnological processes or products 

either for the production of other products that may or may not be biological in nature, 

or to perform a given task which may fall in any of several application domains. 

Applications of industrial relevance include environmental ones such as waste 

treatment (Atkinson and Mavituna 1991; BioIndustry Association 2004; Ratledge and 

Kristiansen 2006; Institute for Manufacturing 2007), and also - of special importance 

to engineers - biocatalysis and biotransformation (Straathof et al. 2002; Herrera 2004; 

Kaul et al. 2004; Werpy and Petersen 2004; Lorenz and Eck 2005; Patel and Crank 

2006), due to the high selectivity of enzymes which enables a more efficient and 

economic production of chiral compounds. In addition to the modern applications of 

biotechnology, there are of course the more traditional ones such as baking, brewing 

and cheese making.  

 

Oftentimes in order to produce the product or perform the task required, the 

metabolism of the organism has to be manipulated for example to block a consuming 

pathway or to enhance the flux of a desired product. This is achieved through 

engineering the metabolic process of the cell, a field of biosciences appropriately 

known as metabolic engineering. It involves manipulating the enzymatic and 

regulatory processes in the cell using recombinant DNA technology in order to 

achieve the desired changes in metabolism (Bailey 1991; Nielsen 2001). Enzymes are 

products of the expression of genes, regulatory processes regulate this expression, 

while recombinant DNA technology is used to insert or delete genes from the genome 

of the organism (these terms and others that appear in the remainder of this chapter 

will be explained later in this report). To be able to do this in a manner that achieves 

the desired results there is a need for understanding how those genes operate, what 

factors control them and how, and also what cellular processes they control.  
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Unlike the industrial applications outlined above, medical applications of modern 

biological sciences have a different focus. They are not concerned with production 

but with understanding, in particular the causes of disease and consequently how to 

cure them, for example through identifying drug targets. Many diseases can be 

attributed to problems in the regulation of gene expression; a prominent example is 

cancer which involves loss of control of the cell division cycle. The number of genes 

involved in cancer development is estimated to be more than eighty and the number is 

continually increasing with new discoveries (Vogelstein and Kinzler 2004). Other 

medical applications include tissue culture and the related area of stem cell research, 

which are intimately related to the regulation of gene expression for cell 

differentiation (Gilbert 2000). In addition there are many applications in the other life 

sciences for example in agriculture related to crops and in breeding of farm animals 

among many others.  

 

One of the underlying commonalities among these different applications, whether 

industrial, medical or other life sciences, is that they all rely on the understanding of 

gene expression and how it is regulated. Such understanding is attained through 

experiments in molecular biology and other related modern biological sciences. The 

development of increasingly advanced analytical technologies coupled with 

sophisticated information technology (IT) and software functionality, resulted in the 

generation of massive amounts of data from these experiments. Indeed, the 

proliferation in the amount and type of information related to gene expression and the 

different functions in a living cell over the last decade has been overwhelming. These 

have been collectively referred to as omics and include information related to the 

genes (genome), the transcription of these genes (transcriptome), the proteins 

resulting from their translation (proteome) and the metabolic activities mediated by 

some of those proteins (metabolome) among other “omes”. These different layers of 

functionality interact to yield the behaviour exhibited by the cell, whether normal or 

anomalous. 

 

A collection of data alone is not sufficient to reveal the underlying causes. In order to 

be able to understand the complex interactions involved in the regulation of gene 

expression and how the different functions are carried out, a systems approach is 

needed that explicitly takes into account such interactions  and integrates this data 
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(Wolkenhauer et al. 2003). Indeed, one of the major endeavours in a systems based 

approach in general is to attempt to understand the interactions of the different 

components of a system and the functionality that emerges from such interactions 

(Doebelin 1980). The main tool utilised in investigating this problem is mathematical 

modelling, which is the topic of this work, namely the mathematical modelling of 

gene expression regulation, in particular using discrete mathematics. 

 

1.2 Mathematical modelling of gene expression regulation 

Mathematical modelling essentially matches a method to a problem; it invents neither. 

For a given problem, there are several modelling methods each employing different 

mathematical formalisms or variations of a given one. Thus for a new method to be 

accepted it has to provide some benefits on existing ones such as computational 

efficiency, different insight into and interpretation of the problem or the capability to 

investigate new functionality that is not easily achievable under the existing methods. 

In this work we introduce a method that provides the last two benefits. In particular 

the method we use is based on abstract algebraic concepts as will be detailed in later 

chapters, and the problem we attack is that of the regulation of gene expression. 

 

The expression of a gene is normally controlled by several factors, some may be 

internal to the cell such as the growth stage the cell is at or the division phase of the 

cell cycle, where in either case different functions are required by the cell. Other 

factors may be external to the cell, for example the available nutrients in the 

surrounding environment or signals from other cells. Hence from a mathematical 

point of view we can represent gene expression as a function of the different factors 

that affect it. 

 

As with any modelling task, there are several mathematical approaches to formulate 

this functional relationship that depend on what we want to study, the data available, 

the level of detail desired,  and indeed the purpose of the modelling exercise to begin 

with. By and large the most common modelling approach uses differential equations 

where the different variables take continuous values; however, it is not the only 

approach. 
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From a systems point of view, there is more than one way to classify a system. One 

classification is into continuous and discrete where the terms refer to the variables 

involved, whether they take continuous or discrete values. In a more abstract sense 

those variables describe the states of the system, and would correspondingly belong 

to either a continuous or a discrete set. Other classification include stochastic versus 

deterministic, static versus dynamic among others.  

 

Differential equation models are easy to understand conceptually as they represent 

rates of change of some variables with respect to time and how they relate to other 

variables, resulting in a system of simultaneous differential equations. Because of 

their dependence on the time element, they can use numerical data representing a time 

course, available from experiments and can also generate similar data. Thus in 

essence the main advantage of differential equation models is that they can produce 

quantitative data. However, there are major problems with those models, for example 

most tend to use linear time invariant representation of systems producing linear 

constant coefficient ordinary differential equations. Those ignore nonlinearities of 

functions, time dependence of parameters and spatial distribution of variables, when 

such effects are taken into account they lead to exceedingly complicated equations 

potentially non-linear time-varying partial differential equation that are difficult to 

solve even for simple special cases. Furthermore, in formulating the model on a 

molecular level, often choices have to be made concerning which molecules and 

which molecular mechanisms to include in the model, for example delays due to 

transport phenomena are often ignored. Differential equations are sometimes based 

on kinetic models of reactions and as is well known kinetic parameters and also 

affinity constants are difficult to measure, hence in many cases they are estimated 

from the data or their values just assumed. Perhaps more importantly is that in some 

cases the assumptions on which the differential equation paradigm is based might not 

be valid to begin with. This is the case when there is a small number of molecules 

present in the cell, in which case the assumption of a continuous change in their 

concentration might not be valid (Vilar et al. 2003). Hence there is a need for other 

types of models that do not involve the complexities and the uncertainties outlined 

above, but need only capture the qualitative behaviour of a system. Clearly this will 

lose the quantitative power of differential equation models but gain simplicity in 

return. 
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One common qualitative approach is that based on the Boolean modelling formalism, 

which assumes that all variables are binary in nature, i.e. they can take only one of 

two values. Thus a gene can be either on or off instead of having different levels of 

expression, a protein can either be activated or de-activated instead of having 

different states of activation, similarly an effector molecule can be either present or 

absent rather than having different concentration values. Whilst this is an extreme 

case of the continuous variation, limiting it to the two extremes of its range of values, 

it does have conceptual, experimental and even mathematical justifications. It should 

be noted that the Boolean approach is used in logic design of electronic circuits; we 

will thus make use of the wealth of knowledge and techniques in this area and apply 

it to the modelling of gene expression regulation. 

 

One of the main drawbacks of the Boolean approach however, is that it restricts the 

number of values of a variable to two only, a situation that is not always realistic in 

the context of the regulation of gene expression. Hence in this work we will present a 

method that is easily extendable to the multiple-valued (yet discrete) case, but more 

importantly provides additional insight into the regulation problem and useful 

functionality that is not easily attainable with the usual Boolean approach.  

 

1.3 Aims and objectives of this work 

To recap the discussion above, we outline the following: 

 The goal of this work is to produce a method for modelling gene regulatory 

functions using a discrete multiple-valued mathematical representation. 

 The motivation behind this work is the desire to optimise biotechnological 

processes through attaining a better understanding of the regulation of gene 

expression underlying them.  

 The specific objectives that contribute towards achieving this goal are to  

o Introduce a method for the qualitative mathematical modelling of 

binary gene regulatory functions.  

o Investigate the new biological perspective of the mathematical 

formulation provided by this method and the potential new biological 

problems that can be studied using it.  
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o Extend the method to the multiple-valued case. 

o Apply the method to an existing problem to demonstrate its utility. 

 The philosophical approach underlying this work is to use abstraction in order 

to separate the details of a problem from its core concepts, thus revealing the 

commonality between it and similar problems in other application domains; 

hence allowing the use of existing methods from such domains. 

 The pedagogical approach (so to speak) is two-fold; to start with concepts the 

reader is already familiar with from which to abstract to the new concepts, and 

to start with simple special cases from which to generalise to the more general 

case. 

 The outcome of this work is a method and not a model. 

 

1.4 Organisation of this report 

Writing a report that spans more than one discipline is not an easy task, in particular 

choosing the appropriate level of detail. Inevitably some readers will find the 

treatment too detailed while others will find it lacking in detail; striking a balance 

between the two is always a challenge for someone writing for readers from different 

backgrounds. Indeed in the preface of their introductory book on gene expression 

Ptashne and Gann (2002) describe this dilemma by stating “We face the strain of 

deciding where details illuminate or obscure the main points”. This work is no 

exception, as it spans both biology and mathematics albeit from an engineering 

perspective. Since this work is presented to an engineering school the reader is more 

likely to be familiar with mathematics than with biology. It was decided to try to give 

as much background in biology as required and at an elementary level, unfortunately 

risking oversimplifying or stating the obvious in some instances. On the other hand it 

was also decided to avoid fine details that would not help in the development of the 

work, effectively “obscuring” rather than “illuminating” the argument. With regard to 

mathematics, some of it will be familiar to all engineers such as differential equations 

and those will be treated rather concisely. Other mathematical tools might not be 

familiar to some engineers and those will be introduced in more detail, but only as 

necessary to elucidate the concepts and not more. This work is rather mathematical in 

nature and hence abstract. It can be considered to fall in the realm of theoretical 
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biology, which is essentially the theoretical study of biology often from a 

mathematical perspective, in some sense similar to theoretical physics (Westerhoff 

2007). Research in biology is normally conducted, and knowledge generated using 

observations and experiments. Theoretical biology on the other hand uses logic and 

reasoning, both tools of mathematics, and indeed mathematics itself, to produce 

models and theories that can interpret or predict observations or generate hypotheses 

that can be tested experimentally.  

  

The purpose of this study is to develop a method for the mathematical modelling of 

the regulation of gene expression based on discrete mathematics, in particular 

adopting techniques and ideas from logic design of electronic circuits. Towards this 

end we chart the following course. 

 

In this chapter, chapter one, we have started by providing the motivation for this work. 

As engineers our first motivation was applied, i.e. the industrial application of 

biotechnology, and we have also touched on other application domains mainly the 

medical one. This has led us to the conclusion that all the applications irrespective of 

their nature require an understanding of the regulation of gene expression. Hence the 

applied has led us to the basic science, which we indicated generates large amounts of 

data. This then led us to the convenience or even the necessity of utilising 

mathematics in order to understand the interactions between the different processes 

generating the data. After briefly discussing differential equation models, the most 

common modelling approach, and outlining its benefits and its shortcomings, we 

proposed discrete models in particular an approach similar to that used in logic design. 

Hence the logical progression of the argument thus far is as follows: Maximising 

applied benefit requires understanding the basic science which requires the use of 

mathematical models and among those discrete models have potential benefits that 

have not been adequately explored.  

 

Chapter two is about what we want to model which is the regulation of gene 

expression. We first introduce some fundamental concepts from molecular biology 

that we then use as a foundation to build upon the main topic namely gene expression 

and how it is regulated. In chapter two we will explain many of the terms encountered 

in section 1.1 above. 
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In chapter three we address the modelling of gene expression regulation. In the 

context of this work, mathematical modelling can be considered as the research 

method, i.e. the tool modellers use to understand gene expression regulation (the 

ultimate goal). Hence it is important to understand some of the implicit assumptions 

associated with mathematical modelling in order to be able to assess the validity of a 

model. In particular we will discuss some notions related to modelling, such as its 

purpose, tools and limitations and some underlying epistemological issues. To use 

engineering analogy, modelling is essentially a process whose inputs are the 

observations and the knowledge of the underlying system being modelled, and whose 

output is the model (figure 1-1). From such a perspective the model produced will not 

only depend on the data and knowledge available about the system but will also 

determined by the limitations of the mathematical machinery used, in a similar way 

as the output of an industrial process is limited by its capability. 

 

 

 

 

 

 

Figure 1-1: Mathematical modelling as an input/output process. 

 

After this introduction we survey some of the common mathematical methods used in 

modelling the regulation of gene expression. Those are mainly based on differential 

equations, but we will also discuss Boolean models found in the literature and their 

limitations, which will lead us to suggest our own method based on concepts from 

abstract algebra. Chapter three is an elaboration on section 3.2 above. 

 

In chapter four we will thus introduce some fundamental concepts from algebra 

which will be used in developing our method. Those are abstractions and 

generalisations of some of the more familiar concepts. There are two main algebraic 

notions that we will want to take forward from that chapter, namely finite fields and 

linear vector spaces. 
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Chapters five and six constitute the main contribution of this work, namely 

representing discrete gene regulatory functions on finite fields and function spaces, 

thus they build on the material in chapter four. In chapter five we will address the 

binary case where we will represent it first as a function on the usual Boolean algebra 

but with a different interpretation, and then as a polynomial on a finite field. We will 

suggest biological problems that can be studied by those techniques, namely reverse 

engineering of gene regulatory functions, and mutation detection. In chapter six we 

will represent the binary case as a transform on a function space, then generalise it to 

the multiple-valued case. In both we will suggest how such a method can be used to 

design biological systems in what is currently known as synthetic biology.  

 

In chapter seven we apply the method developed in chapter five and six to a 

biological example, namely the phage lambda in the bacterium Escherichia coli, 

which is used as a model system for studying gene expression regulation. It is 

important to remember that in this work we develop a method rather than produce a 

model. Hence the example systems are used for demonstrating the method rather than 

for their own right. Simple well studied example cases are used in order not to mask 

the method by the complexity of the system it is applied to. 

 

In the final chapter we will summarise the whole development, point out to the 

limitations of the method and to avenues of research that it opens up both within the 

context of this work and in the wider context. 

 

Each chapter will start with a roadmap of what is going to be covered in it, and will 

end with a short summary and when appropriate conclusion that highlights its main 

points and links it to the chapter that follows it in what is hoped to be a logical 

succession of ideas forming a linked chain. 

 

It is acknowledged that this work might not fit in the standard pattern of presentation 

whereby it would be organised in standard chapter titles such as “introduction, 

literature review, method, results, discussion”. However, all those elements are 

covered here albeit in a different guise. Figure 1-2 depicts a mapping between the 

chapters of this work and the standard topics. 
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Figure 1-2: Correspondence between the contents of this work and the standard topics.  

Vertical arrows do not necessarily indicate dependence. 

 

1.5 Summary 

This chapter provided motivation for the choice of problem and for the choice of 

method for solving this problem. In addition the problem itself was defined namely 

modelling the regulation of gene expression using discrete mathematics. The aims 

and objectives were outlined and the organisation of the report was presented. 
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Chapter 2: The Regulation of Gene Expression 

 

 

2.1 Introduction 

This report is about mathematical modelling of the regulation of gene expression. As 

is common in engineering modelling tasks, one needs to acquire some understanding 

of the main components of a system and how they interact in order to be able to 

capture them in a model. The purpose of this chapter is thus to present the main 

concepts and principles underlying the regulation of gene expression. We do so by 

addressing three main questions namely, what is gene expression? Why does the cell 

need to regulate it? And how does it do that? In order to answer these questions we 

first need to briefly introduce some basic concepts from cell biology. This will also 

help us to set the ground for the rest of this work and outline the terminology used. 

The material will be presented in a way that we hope is amenable to engineers, 

through making analogies to concepts from chemical engineering, in particular 

process control.  

 

2.2 Some basic concepts from cell biology 

A cell is the building block or smallest unit of any living organism. Such organisms 

may consist of one or more cells, up to many millions (Alberts et al. 2004). Survival 

is arguably the ultimate goal of all living beings, thus a cell must have the ability to 

perform the necessary functions required for its own survival, that of the organism it 

is part of (if any), and of its species as a whole. A brief and structured look at the 

cellular functions associated with each of these levels of survival is presented below.  

 

Functions that intrinsically relate to the cell’s own survival include synthesising 

(and/or utilising) the necessary molecules and producing the energy required for this 

and other biological activities. Such activities take place inside the cell and hence 

have to be coordinated both structurally (in terms of space) and functionally (in terms 

of time, i.e. issues of precedence and concurrency). To achieve this, a cell has 

different compartments (known as organelles) in which different functions take place; 
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of special importance among those compartments is the cell nucleus which houses its 

genetic code (DNA). Such cells are termed Eukaryotes and are mainly found in multi-

cellular organisms. On the other hand, some of the organisms made up of a single cell 

do not have this intricate spatial segregation; in particular they lack the cell nucleus 

and are termed Prokaryotes (figure 2-1). In such a case the DNA is present along with 

other molecules in the cell body without being segregated. Indeed, the fact that 

Prokaryotes are made-up of a single cell means that this cell has to perform all the 

functions that would otherwise be distributed over many cells. This requires higher 

efficiency and agility on part of the organism. While all bacteria are Prokaryotes, not 

all single cell organisms are, for example yeast which consists of a single cell is a 

Eukaryote.  

 

Although we will occasionally mention Eukaryotes, our focus here will be on 

Prokaryotes due to several reasons. Firstly, the regulation of gene expression is much 

better studied and understood in bacteria (Prokaryotes) than in Eukaryotes and hence 

Prokaryotes will provide a more reliable test bed for our model. Secondly, due to the 

industrial relevance of bacteria, and finally, for pragmatic reasons and that is the 

simpler nature of Prokaryotes. Since the purpose of this work is to develop a 

mathematical modelling method rather than produce a particular model, using a 

simple and familiar system as a test case to model will avoid masking the merits of 

the method in the details of what is being modelled. 

 

Functions of the cell that relate to the survival of the organism of which it is part, 

include the ability to communicate with other cells within the organism. This 

communication causes the cells - among other things - to aggregate into tissue that 

forms organs which is particularly important in the developmental stages of the 

organism (Gilbert 2000). This communication is also important when the organism is 

under threat from external agents such as pathogens.  

 

To clarify the matter of development, which is essentially the formation of the body 

of the organism, consider a building say an apartment block. The structural units, 

those that carry the load of the building are the columns and beams and are made of 

concrete or steel. Walls are made of bricks or panels, windows from glass, floors 

from wood or tiles and so forth. The point is that the different functional parts of the 
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building are made from units that are suitable for that function. The situation is 

similar for a multi-cellular organism, for example in the human body different organs 

are made from cells that are suitable for the function of that organ, e.g. the liver, 

muscle or blood vessel each has a different type of cell. Given that the whole human 

body starts from one cell which is the fertilised egg, how do the different cell types 

emerge? This process is known as differentiation and involves the specialisation of 

the cells to different functions. Differentiation is also related to and is part of another 

developmental process known as morphogenesis which can be viewed as the 

emergence of the structure and form of the organism (Gilbert 2000).  

 

 

 

Figure 2-1: a - Prokaryotic cell, b - Eukaryotic cell. 

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.) 
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Morphogenesis is one of the major applications of the regulation of gene expression. 

It is worth noting that a stem cell, which is frequently discussed in the media, is a cell 

that can differentiate into any cell type and hence is of great importance in what is 

known as regenerative medicine.  

 

Finally, for the functions of a cell that relate to the survival of the species as a whole, 

the most important is the ability to reproduce. For a single cellular organism, this 

essentially means the ability of the cell to replicate itself, i.e. to divide. The new cells 

must have all the molecules needed or that may be needed for their correct 

functioning and survival. Achieving this is of course impractical as some of those 

molecules may never be used during the lifetime of the cell, such as in the case of the 

response to certain environmental conditions like stress or starvation, or an attack by 

another organism that may never occur. Thus rather than replicate every molecule 

that may potentially be needed, it is more practical to replicate the ability to 

synthesise such molecules, i.e. a form of blueprint. This blueprint is the 

Deoxyribonucleic Acid or DNA molecule of the cell, and it contains all the 

information necessary for survival of the organism, in a coded form often referred to 

as its genetic code (Alberts et al. 2004). 

 

2.2.1 The genetic code 

The DNA molecule is a polymer that consists of a string of units known as 

nucleotides. A nucleotide is formed of three main chemical components namely, a 

pentose sugar known as Deoxyribose sugar, a Phosphate group and an organic base 

(figure 2-2). 

 

There are four types of bases known as Adenine, Guanine, Thymine and Cytosine, 

denoted by A, G, T and C respectively, leading to four corresponding types of 

nucleotides. The DNA molecule has a particular double stranded structure famously 

known as the “double helix” (figure 2-3). Within the limits imposed by this structure, 

only certain combinations of bases can interact with high affinity, these are A-T and 

G-C and are thus referred to as base pairs (figure 2-3) (Nelson and Cox 2000). 
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Figure 2-2: A nucleotide 

 (Source: en.wikipedia.org, under the Creative Common Attribution Share License.) 

 

One of the fundamental molecules that the DNA codes for is a protein which is of 

utmost importance for cellular activities. Proteins have both structural and functional 

roles in the cell. The former involves forming part of some of the structural units in 

the cell such as the cell wall. The functional role of proteins is varied and includes 

acting as receptors on the cell membrane to detect external signals and relay them to 

the appropriate location in the cell, and acting as channels that allow molecules in and 

out of the cell. Proteins also have a crucial regulatory role within the cell as explained 

below.  

 

The backbone of a protein is a chain of amino acids known as a polypeptide, and it 

ranges in length from a few hundred amino acids for small proteins to a few 

thousands for large ones (Alberts et al. 2004). The chain folds in different 

conformations depending on the amino acids present and other factors such as any 

other molecules attached to the chain. There are twenty different types of amino acids 

in the cell. Given that there are only four different types of nucleotides, the minimum 

number of nucleotides needed to code for an amino acid is three. Indeed three 

nucleotides taken together are known as a codon and they code for one amino acid. 

The number three comes from the fact that three nucleotides, each being one of four 

possible types gives four to the power three, i.e. 4
3
 = 64 (sixty four) different code 

words. This means that some of the twenty amino acids will have more than one code, 
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known as synonyms, providing robustness against errors in a sense similar to the 

codes used in communication engineering (May et al. 2004). Also some of the 

additional code words, called stop codons, are used to indicate the end of 

transcription.  

 

Figure 2-3: The double helix of the DNA molecule. 

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.) 

 

The sequence of nucleotides on a DNA molecule that codes for one protein is known 

as a gene. More precisely, genes that code for a protein are known as structural genes, 

and that is because not all genes code for proteins as some code for other molecules 

such as the Ribonucleic Acid (explained below) which forms part of other functional 

units in the cell. The total number of nucleotides in a DNA molecule, which form the 

genome of the organism, can range from a few thousands for some bacteria to billions 

for humans and other primates corresponding to up to tens of thousands of genes 

(Alberts et al. 2004; Davidson 2006).  

 

2.3 What is gene expression? 

In general, gene expression refers to the process by which the information in the 

DNA is transformed into cellular function. This function is often but not always 
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carried out by a protein, hence the process often culminates in the synthesis of a 

protein. Towards this end a series of steps takes place that starts with the transcription 

of the gene from the DNA into another form known as the RNA, followed by the 

translation of the RNA into a protein that is then assembled and processed in the 

necessary way to carry out its ultimate function. This flow of information is 

commonly known as the central dogma of molecular biology and stipulates that 

information flows in one direction only, i.e. DNA  RNA  Protein (figure 2-4). 

     

 

Figure 2-4: Gene expression – the central dogma of molecular biology. 

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.) 

 

RNA which stands for Ribonucleic Acid is also a nucleic acid and like DNA it 

consists of a string of nucleotides, where now the Deoxyribose sugar is replaced by 

Ribose sugar, and the base Thymine is replaced by another base, Uracil (U).  

 

The transcription step is necessary because DNA being the blueprint has to be kept 

intact for future use. Transcription effectively makes a copy of the blueprint for use in 

the “production run” of a protein. The transcribed RNA molecule on the other hand is 

mainly used to take the message from the DNA to the place in the cell where it will 

be translated into an amino acid chain, hence is referred to as the messenger RNA 

(mRNA). Transcription is carried out by a very important enzyme known as RNA 

polymerase together with the aid of other molecules. The translation machinery in the 
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cell is known as the ribosome and consists of a large complex of proteins and another 

RNA molecule known as ribosomal RNA (or rRNA), (figure 2-4). The translation 

process uses a third type of RNA known as transfer RNA (or tRNA) which transfers 

the necessary amino acids to the ribosome to add to the growing polypeptide chain.  

 

Because it is not needed after relaying the message, the mRNA molecule does not 

need to be particularly stable; in fact this is actually desirable in order to get rid of un-

used mRNA molecules, and is one of the tools used by the cell to regulate the rate at 

which a gene is expressed as explained below. The reduced stability of the mRNA 

molecule compared to that of the DNA molecule is achieved by the structural 

difference between the two, (table 2-1). On the other hand, because the DNA 

molecule carries all the information needed for the preservation of the life of the cell 

and the species, it has to be stable as it hands down this information from one 

generation to another through cell division. This stability is achieved by the rigid 

specifity of base pairing imposed by the structure of the molecule, together with the 

components involved in that structure namely the type of sugar and bases involved.  

 

Table 2-1: Comparison of DNA and RNA molecules. 

Comparison criteria DNA RNA 

Sugar Deoxyribose Ribose 

Bases A, C, G & T A, C, G & U 

Structure Double-stranded Single-stranded 

Stability High Lower 

 

2.4 Why does a cell need to regulate the expression of its 

genes? 

As mentioned earlier the cell might not need all the proteins it can produce or the 

functions they perform all the time. Furthermore, for a multi-cellular organism 

different organs will have different types of cells that will express different genes 

depending on the function of that organ. Thus the cell must have a means by which to 

decide when to express a certain gene and when not to, and also the levels to which it 

needs to express it. This is achieved through the regulation of gene expression. Indeed 
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this flexibility leads to one of the remarkable features of a living organism, namely its 

ability to adapt to its environment and to its own varying needs. Consequently the 

decision of which genes to express is based on several factors, some are internal to 

the cell while others are external to it, whether from the environment as in the case of 

single cell organisms, or from other parts of the body for multi-cellular ones. Those 

two classes of factors are briefly described below. 

 

2.4.1 Response to internal cell requirements 

Different molecules are needed by the cell at different points in its lifetime. For 

example for bacteria in a bioreactor, different functions are performed during the 

growth phase than the stationary phase. Another example is with the cell division 

cycle which comprises several phases, each with its own function and hence gene 

expressions. Even when the same molecules are needed for different biological 

processes, their quantities might vary with time and need. On the other hand, for 

multi-cellular organism, for example humans, different cells are specialised to 

perform different functions yet all have the same DNA. Each function may require a 

different set of proteins; hence such cells need to be able to switch on only the genes 

that express the required proteins while switching off the rest of the genes (Alberts et 

al. 2004; Davidson 2006). Furthermore, changes in the genes expressed can be 

triggered by events intrinsic to the cell such as in response to errors in DNA 

replication or DNA damage, where certain molecules are required to fix the damage. 

 

2.4.2 Response to external signals 

Changes in the environment surrounding the cell, especially extreme conditions such 

as starvation or heat shock for bacteria, cause changes in gene expression both 

qualitatively (which genes are expressed) and quantitatively (the level to which they 

are expressed). Less drastic changes in environmental conditions can also be a cause 

of change in gene expression, such as the change in the type of nutrient in the 

environment. Similarly for a multi-cellular organism signals from other parts of the 

organism can trigger changes in gene expression such as in response to hormones or 

to chemical cues causing cell differentiation during development as explained earlier.  
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2.5 How does a cell regulate the expression of its genes? 

Having identified the need to regulate gene expression, we now consider how the cell 

effects this regulation. Similar to an industrial process, different conditions may lead 

to certain decisions being taken by the cell to switch relevant genes on or off in a 

series of events. Regulation can take place at any of the different levels of gene 

expression, from the initiation of transcription to the degradation of proteins which 

are usually the final product of gene expression (figure 2-4). Clearly it would be more 

efficient to control expression at its inception, i.e. at the level of transcription 

initiation as it means that no energy is wasted in transcription or translation before the 

mRNA molecule (the product of transcription) or the protein (the product of 

translation) is degraded. However, as outlined earlier a condition may occur that 

necessitates halting the expression of some genes that is already in progress, or 

expressing others in response to the condition. Depending on such a condition the cell 

can employ either global controls or local ones. Global controls act on most genes at 

the same time, as for example in the case of extreme environmental conditions that 

may require the cell to halt several processes at once and invoke an emergency 

response, similar to a shutdown system in a process plant. Local controls on the other 

hand, act only on those genes involved in the function to be regulated, similar to a 

control loop in a unit operation of a process plant. The ability to exercise global 

control means that the cell can override local controls when necessary. It should also 

be noted that the response to changing conditions may cause some genes to increase 

their expression levels and others to decrease them, similar to direct and reverse 

acting control in industrial processes. The different levels of regulation are briefly 

outlined below without the details of their molecular mechanisms; those will be 

discussed further when dealing with particular applications in later chapters.  

 

2.6 Control of transcription 

In order for the transcription of a gene to start, the enzyme RNA polymerase which 

performs it needs to identify the location at which to start transcription and the 

direction in which to proceed. This information is indicated by a region on the DNA 

molecule upstream of the gene known as the promoter. In addition, it needs an 
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indication of the end of transcription, this is provided by a stop codon as discussed 

above. 

 

The question that arises then is how does RNA polymerase recognise the promoter? 

An ideal promoter has a certain pattern of nucleotides termed the consensus sequence, 

which RNA polymerase recognises, binds to and starts the transcription process. In 

general, the promoter of a gene does not have the exact consensus sequence but will 

deviate from it. The level of transcription will depend on how close the promoter 

sequence is to the consensus one (Ptashne and Gann 2002). If the difference between 

them is large, a protein known as a transcription factor will be needed to facilitate the 

binding of RNA polymerase to the promoter (Ptashne and Gann 2002). Other 

transcription factors may also be involved in the transcription process to regulate 

expression resulting in either gene activation which increases the transcription rate or 

alternatively gene repression which decreases it (Wagner 2000). The transcription 

factors, being proteins, are products of other genes hence leading to genes regulating 

other genes which may feedback to the original ones. The result is an interconnected 

network of genes with feedback and feed forward interactions (Thieffry et al. 1998; 

Davidson 2006). A regulatory protein such as a transcription factor often needs a 

small molecule to activate it, which binds to some domain of the protein. Such 

molecules are known as effector molecules, and often carry information about the 

controlling condition (Alberts et al. 2004).  

 

In summary, the changes in the different conditions affecting the cell are relayed to 

the transcription machinery through a cascade of signalling molecules ending with the 

effector molecule which binds to the transcription factor. This may then either 

increase the rate of expression of the gene or decrease it.  

 

The normal un-regulated state of a gene is called its basal state, and gene regulation 

would then modulate this state in response to the appropriate conditions. For example 

a gene that is normally on would be switched off when the relevant condition occurs. 

Certain genes are on all the time independent of any conditions, and are referred to as 

being constitutively on. Examples of those are the so called housekeeping genes 

which are necessary for the key activities of the cell such as energy production. 
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For the sake of completeness we mention that transcription takes place in three stages, 

namely initiation, elongation and termination. Initiation involves starting the 

transcription process through recruiting the different molecules as described above. 

Elongation involves the addition of the different nucleotides to the growing RNA 

molecule. Finally termination releases the synthesised RNA molecule. 

 

2.7 The lac operon 

We now give an example of transcription regulation that clarifies some of the 

concepts outlined above such as transcription factor, activation, repression, 

constitutive, regulated, effector molecule and global and local controls. We illustrate 

this by a simplified presentation of the lac operon in the bacterium E. coli. 

 

In some cases, a bacterium needs to coordinate the regulation of several genes 

together, for example when the products of those genes are involved in some 

metabolic function. In such a case the concept of an operon is employed, which is 

essentially a group of genes that are transcribed and regulated together. An operon 

consists of two functional regions that may be physically interspersed or overlapping 

on the DNA molecule. One region contains the structural genes, i.e. those that code 

the proteins contributing to the metabolic function. The other region is a regulatory 

region that controls the expression of the structural genes, and hence contains their 

promoter and may also contain other genes that produce transcription factors that 

control the structural genes. There are many operons in E. coli and they can contain 

as little as two or as many as twenty structural genes (Nelson and Cox 2000). 

 

Bacteria prefer glucose as their energy source because of its relatively high potential 

energy. In addition glucose is also a precursor for many metabolic pathways 

synthesising different types of biomolecules. A precursor in this sense is similar to 

the feedstock in a chemical process. Glucose has a straightforward metabolic pathway 

to utilise it known as glycolysis. Other sugars have to be transformed into glucose or 

to one of its derivatives before they can be utilised by the bacteria, hence consuming 

energy in this conversion. Thus when the medium contains several sugars including 

glucose, all sugar metabolising pathways other than glycolysis have to be inhibited, 

i.e. their genes switched off (Nelson and Cox 2000). On the other hand when glucose 
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is not present but another sugar is, then the bacteria have to be able to switch on the 

pathway to metabolise this sugar. One of the well studied cases in E. coli is that of the 

sugar lactose where regulation is achieved through the lac operon (figure 2-5). 

 

 

 

 

 

 

Figure 2-5: Structure of the lac operon. 

 

2.7.1 Structure of the lac operon 

Like other operons, the lac operon consists of a regulatory region and the structural 

genes. The regulatory region contains a gene called LacI that produces a protein 

called the "Lac repressor” which acts as a transcription factor. When this protein 

binds to the operator region on the DNA molecule it represses the structural genes. 

The regulatory region also contains the promoter of the LacI gene, and the promoter 

of the structural genes (all of which are regulated by a single promoter due to the 

nature of an operon), in addition to the operator region just mentioned. The second 

region of the operon contains the structural genes which code the proteins necessary 

for the utilisation of lactose in the absence of glucose. Note that it is a convention in 

the context of the lac operon not to consider the LacI gene as a structural gene even 

though it codes for a protein. Structurally, the lac operon consists of the following 

units on the DNA molecule as depicted in figure 2-5. 

 

Regulatory region 

 pLacI: Promoter for the regulatory gene LacI. 

 LacI: Regulatory gene that encodes a transcription factor known as the “Lac 

repressor”, which as the name indicates, is a repressor protein. 

 pLac: Promoter for the structural genes. 

 O: Operator, a region on the DNA to which the repressor protein binds to 

repress the transcription of the structural genes. 

pLacI  LacI pLac   O      LacZ     LacY 
 

    LacA 
 

Regulatory 

Region 

Structural 

Genes 
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There is another part of the regulatory region that is functionally distinct but 

structurally overlapping with the promoter pLac, and hence not shown in the figure. 

This is a site on the DNA molecule where an activator protein binds to the DNA 

molecule as explained later. Note that by convention, the names of genes are 

italicised. 

 

Structural genes 

 LacZ: Gene encoding the enzyme -galactosidase which cleaves lactose to 

produce glucose and galactose for further metabolism. 

 LacY: Gene encoding the enzyme galactoside permease which transports 

lactose into the cell from the surrounding medium.  

 LacA: Gene encoding the enzyme galactoside transacetylase which takes part 

in lactose metabolism. 

 

2.7.2 Operation of the lac operon 

The gene LacI is constitutively expressed, i.e. it is expressed all the time and its 

product protein, the “Lac repressor” is thus present in the cell all the time. When there 

is no lactose in the medium, Lac repressor binds to the operator region which 

overlaps the promoter of the operon (overlap not shown in figure 2-5), preventing 

RNA polymerase from starting transcription, hence none of the structural genes will 

be expressed. 

 

Normally there is a very small amount of the enzymes -galactosidase and 

galactoside permease in the cell, due to the basal expression level of the operon. 

Hence when lactose is present in the medium (and no glucose is present), a small 

amount permeates into the cell and is isomerised to allolactose. Allolactose acts as an 

effector molecule to the transcription factor protein Lac repressor, it binds to it and 

prevents it from binding to the operator region. Hence RNA polymerase can bind to 

the promoter of the structural genes and start transcribing the genes producing the 

enzymes -galactosidase and galactoside permease allowing more lactose into the cell 

and lactose metabolism carries on. In this role allolactose is known as an inducer of 

the operon.  
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Glucose is the preferred energy source for E. coli, hence when it is present in the 

medium the lac operon should be switched off irrespective of the presence of lactose. 

There is no point expending energy in producing the enzymes necessary for 

metabolising lactose when glucose metabolism is more efficient. Hence glucose 

inhibits the metabolism of lactose; in fact it inhibits the metabolism of all other sugars 

as mentioned above. When glucose is absent however, the metabolism of the other 

sugars should be enabled, this is achieved using a transcription factor known as 

Catabolite Activator Protein (CAP) which as the name indicates, acts as an activator. 

CAP needs the effector molecule cyclic AMP or cAMP to enable it to bind to its 

binding site which overlaps the promoter of the operon (the structural genes). This 

enhances the transcription of the lac genes by RNA polymerase, increasing the 

transcription rate ten folds. Hence there are four possible situations for the lac operon 

summarised in table 2-2. 

 

In summary there are two approaches to controlling the operon, one is used by lactose 

(or the inducer in general) and termed negative control, while the other by cAMP and 

termed positive control. The difference is in the effect of the binding of the effector 

molecule to the transcription factor and consequently on transcription. In the first case, 

when the inducer binds to the repressor protein (Lac repressor) it prevents it from 

binding to the operator region and hence allows transcription to start. On the other 

hand, when cAMP binds to the activator protein (CAP) it enhances transcription. It is 

clear from table 2-2 that in the case of the lac operon, when both controls are acting 

on the operon, repression overcomes activation. 

 

Table 2-2: The different nutrient conditions and their effects on the lac operon. 

Glucose 

concentration 

cAMP 

production 

CAP 

(Bound 

to 

DNA) 

Lactose 

concentration 

Lac 

repressor 

(Bound 

to DNA) 

Operon 

state 

Explanation 

Low High Yes Low Yes OFF Activation & 

repression 

Low High Yes High No ON Activation & 

no repression 

High Low No Low Yes OFF No activation 

&  repression 

High Low No High No OFF No activation 

& no 

repression 
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The production of cAMP is coupled to the presence of glucose, when the 

concentration of glucose is high, production of cAMP is low, hence the transcription 

factor CAP will not be activated and hence the metabolism of all sugars other than 

glucose will be repressed. In such a scenario glucose acts as a global regulator for all 

sugar metabolism via cAMP and CAP. The opposite happens when the concentration 

of glucose is low.  

 

It should be noted that the above presentation of the structure and functional 

operation of the lac operon is highly simplified. For example, structurally the 

operator region O to which the repressor protein binds is not contiguous, but is 

dispersed into three different locations that are interspersed with the structural genes 

and their promoter (figure 2-6). 

 

 

 

 

Figure 2-6: A more detailed view of the structure of the lac operon. 

 

These structural details have an effect on the functioning of the operon and its 

expression levels. As explained in table 2-2 above, there are three different cases in 

which the operon is switched off, however the expression rates in all three, whilst still 

very low compared to the on case, are not equal. This is because the binding of CAP 

to the DNA alters its conformation making the binding of the repressor different than 

when CAP is not present, and both cases are different from the case when neither 

protein is active (corresponding to the case when both nutrients are present). For a 

more in depth discussion of the lac operon with more details of the regulatory 

mechanisms involved, see for example (Ptashne and Gann 2002; Santillan and 

Mackey 2004a), and for a discussion of the metabolism of other sugars and their 

regulation see for example (Kaplan et al. 2008; Kremling et al. 2009).    
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2.8 Other levels of control 

In the previous section we have considered the control of transcription, but what if a 

condition occurs after a gene has already been transcribed, that necessitates regulating 

it either by stopping its expression completely or changing its expression level? The 

cell should have the ability to control this level at later stages after transcription, 

especially in the case of an extreme condition. This is usually done by degrading the 

molecule to be controlled such as mRNA or even the final product of expression 

which is the protein. We briefly outline those controls below.  

 

2.8.1 Post-transcriptional control 

This refers to controls that are exercised after transcription has taken place but before 

translation and hence are performed on the mRNA molecule. For Prokaryotes, 

translation takes place in the cytoplasm which is the free space in the cell. As far as 

gene expression is concerned, regulation at this stage mainly involves preventing the 

mRNA from being translated, for example by degrading it. 

 

2.8.2 Control of translation 

Like transcription, translation also takes place in three stages, initiation, elongation 

and termination, where elongation here is of the polypeptide chain formed. Each of 

these stages is regulated by certain proteins. If translation is allowed to start it can 

still be controlled while in progress using those proteins, either to halt translation 

temporarily and resume it later, or to completely terminate it without producing a 

protein. In the latter case, the resulting polypeptide will eventually degrade.  

 

2.8.3 Post-translational control 

Translation of the mRNA into a protein is not the end of the story as this protein 

needs to be folded in the appropriate conformation and then undergo other chemical 

modifications such as glycosylation before it is ready to perform its intended function. 

Often several such proteins are assembled together to form a larger protein, common 

examples of which are homodimers which consist of two proteins of the same type, 

and heterodimers involving two proteins of different types. There can also be 
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assemblies of more than two proteins. The protein also has to be transported to the 

location in the cell where it will perform its function, a process known as protein 

targeting. Only then gene expression is complete. 

 

Given that the protein has already been produced, post-translational control of gene 

expression involves disrupting any of the above processing steps of the protein (e.g. 

chemical modification or assembly). However, the most important means of post-

translational control is by degrading the protein. Degradation can be left to take place 

naturally which will take a long time, or it can be performed by enzymes that cleave 

proteins, achieving a much faster result. This process is known as protein lysis, or 

proteolysis and the enzymes that lyse the protein are known as proteases. 

 

2.8.4 Further levels of control 

The different stages of regulation of gene expression outlined above culminate in the 

protein being ready to perform its functions, i.e. it is available if needed. There are 

other processes in the cell that may then activate or de-activate the protein in response 

to different stimuli. Those are normally reversible processes, unlike proteolysis. 

Examples of such processes include the binding of an effector molecule to the protein 

as discussed above; a common process among those is phosphorylation which 

involves the binding of phosphate to the protein and its reverse process of 

dephosphorylation.  

 

The above discussion relates to producing a protein and activating or de-activating it 

(effectively switching it on or off), however, if the protein acts as an enzyme, i.e. a 

catalyst (as opposed to a controlling factor) it may have additional controls. For 

example, its activity can be modulated in a kinetic manner through different 

inhibitions by its substrate or product (Fell 1997). 

 

It is obvious that the closer the control action is to the final product of gene 

expression, the faster the response will be. If one switches a gene off through 

transcription control then it will take some time for the actual protein levels that this 

gene codes for to vanish. This is because the mRNA molecules that have already been 

transcribed before the switch off will still be present in the cell, and they will be 
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translated into more proteins. Only when those proteins and the ones that already 

existed in the cell have all been degraded that the complete switch off will be effected. 

Preventing translation on the other hand will have a faster response as only the 

proteins that have already been translated will be in the cell as no further translation 

will be allowed. An even faster response can be achieved by destroying the protein on 

the spot through proteolysis. On the other hand, if only temporary halting of the 

function is required, as for example in response to relatively small changes in 

conditions, then phosphorylation and dephosphorylation result in a faster and more 

efficient response.  

 

Typical time duration of some of these processes in E. coli is as follows: binding of 

an effector molecule to a transcription factor takes a few milliseconds, transcription 

of a gene takes about a minute and translation twice as much. The lifetime of an 

mRNA molecule is a few minutes and of a protein about a couple of hours (Alon 

2007a). 

 

This gradation in speed of response has analogous situations in industrial control 

where the closer the control action is to the process variable the faster is the response. 

Such concepts are utilised in cascade control where a control loop is nested inside 

another. The inner loop has faster dynamics than the outer one and affects the control 

action much more quickly, a strategy often employed in distillation columns control 

(Stephanopoulos 1984).  

 

Speed of response whether in a cell or an industrial process comes at a price, i.e. there 

will always be a trade off. Damaging an mRNA molecule or a protein after going 

through the long process of transcription and/or translation means that large amounts 

of energy have been wasted. However, this is imperative if the fast response is 

required for the very survival of the cell. An analogy in an engineering system would 

be hitting the brakes of a car to prevent it from crashing. The energy of the car is 

wasted as heat energy in the tyres and may even damage the tyres, but this is 

imperative to save the whole car or prevent injury to its passengers.  
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2.9 “Omics” 

The genome of an organism contains all its genes in the DNA, whether expressed or 

not. Some of those genes will be transcribed under the appropriate conditions, while 

others may never be transcribed. The set of all possible transcripts, i.e. mRNA 

molecules generated by the transcription process is referred to as the Transcriptome; 

again not all of those will necessarily be translated into proteins. The set of all 

proteins that can be produced from the mRNA of the organism, irrespective of 

whether they are actually produced or not is known as its Proteome. Some of the 

proteins will act as transcription factors through interacting with other proteins, 

effectively involved in on/off (logic) control, those form the Interactome. Other 

proteins will act as catalysts in the metabolic processes of the organism and will 

contribute to the Metabolome, which is the set of all chemicals that are processed 

inside the cell. Those different layers of cellular functionality and the enormous 

amount of data they produce are collectively referred to as “omics” (figure 2-7). A 

wide array of advanced analytical techniques is used to generate this omics data 

through carefully designed experiments, for an overview of such techniques see 

(Lorkowski and Cullen 2003; Lay et al. 2006).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7:  Omics and their relationships – feedback paths between the different layers not 

shown. 

 

Genome  

Transcriptome  

Proteome  

Metabolome  
Interactome  

Transcriptional Control 

Post-transcriptional 

/Translational/ Post-

translational Controls 

Environmental 

and other factors 



42 

 

The different layers of functionality as depicted in figure 2-4 and the corresponding 

figure 2-7, interact with each other to yield the behaviour exhibited by the cell. For 

example, transcription regulation determines which part of the genome will go into 

the transcriptome, i.e. which genes will be transcribed. From a mathematical 

standpoint, this can be regarded as a mapping from the genome to the transcriptome 

under the transcription regulation function. Similarly, post transcriptional, 

translational and post translational controls specify another mapping, that from the 

transcriptome to the proteome. The conditions in the cell environment, for example 

the concentrations of the different nutrients and other molecules required for 

metabolism, will determine the activity of the different enzymes (part of the 

proteome). This is manifested in the fluxes within the metabolic network (the 

metabolome), and can be viewed as a mapping from the proteome to the metabolome. 

Functionality of another part of the proteome, that which is concerned with regulatory 

proteins is mapped to the interactome. In a mathematical sense, one can think of the 

resultant effect of the interactions at the different layers as a composition of these 

mappings. It should be noted that these different functions are affected by both 

external and internal conditions to the cell. Furthermore, the interactions involve 

feedback both within a layer as in the case of enzyme activity, and between layers as 

in the case of the regulation of gene expression. 

 

The overwhelmingly large amounts of data produced by the omics experiments pose 

a challenge in their analysis and interpretation, requiring mathematical and 

computational tools to undertake this task (Wolkenhauer et al. 2003; Lay et al. 2006; 

Mehta et al. 2006; Selzer et al. 2008). Thus the mathematical view of regulatory 

functions outlined above coupled with the engineering view alluded to several times 

earlier, provide a powerful basis for assimilating and understanding this data. The 

approach often used by engineers in attacking such problems is mathematical 

modelling. There are several modelling approaches employed and we will look at the 

most commonly used ones in the next chapter. 

 

2.10 Summary and Conclusion 

The purpose of this chapter was to introduce the regulation of gene expression to 

engineers as a prelude to developing a mathematical modelling method later in this 
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report. The strategy followed to achieve this was two pronged; firstly to simplify the 

treatment as much as possible, and secondly to use analogies with engineering 

systems.  

 

There are two outcomes from this chapter relating to this strategy, the first is to give 

an overview of the regulation of gene expression, with particular emphasis on 

Prokaryotes (bacteria). To reach this outcome, we first had to provide the foundation 

to build upon, which involved presenting some basic concepts from molecular 

biology. This equipped us with enough knowledge to answer three main questions 

important for the understanding of the regulation of gene expression, namely what is 

gene expression, why does the cell need to regulate it and how does it do that? 

 

It is the last question that we elaborated upon most, indicating the different levels of 

gene regulation, namely transcription, post-transcriptional, translation and post-

translational regulations. We have placed special emphasis on transcription regulation 

because it is the most studied and the best understood. It also makes more sense for 

the cell to control gene expression at its inception rather than at a later stage, hence 

avoiding wasting the energy spent getting to that stage. We also covered the lac 

operon in the bacterium E. coli as an example of transcription regulation. This helped 

us elucidate some of the fundamental concepts in transcription regulation, such as 

gene activation and repression, constitutive and regulated genes and basal expression 

level; and also the main players in this process such as a transcription factor, 

promoter and effector molecule. In covering the above, Prokaryotes were chosen 

rather than Eukaryotes because of their wide use in industry, their simpler 

composition and because they are well studied. It should also be pointed out that the 

treatment was highly simplified, especially with regards to the details of the 

molecular mechanisms such as the binding of RNA polymerase to the DNA and the 

role of transcription factors on a molecular interaction level.  

 

Discussion of the regulation of gene expression at the different levels of cell 

functionality led us to a discussion of the different omics including genomics, 

trancriptomics, proteomics and metabolomics, and the proliferation of the 

corresponding types of data. Such a large amount of data is impossible to make sense 

of intuitively; mathematical and computational tools are needed to assimilate all this 
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data in a meaningful way. Hence this makes a case for the use of mathematical 

modelling to study the regulation of gene expression. 

 

The second outcome from this chapter is to point out throughout the presentation and 

wherever appropriate, the similarity between regulation of gene expression in a cell 

and regulation of an industrial process. Consequently this suggests that the means 

used for the analysis of industrial processes in particular mathematical modelling, can 

be used in studying gene expression, further reinforcing the case for the use of 

mathematics in such an endeavour. So how can we apply mathematics to the 

modelling of the regulation of gene expression? This is the topic of the next chapter. 
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Chapter 3: Modelling the Regulation of Gene 

Expression 

 

 

3.1 Introduction  

The purpose of this chapter is to examine how to build mathematical models of the 

regulation of gene expression and to briefly survey some of the more common 

modelling methods used. Before doing that however, we need to outline some key 

concepts related to modelling. In the previous chapter we have described gene 

expression and how it is regulated, we also made the case for the use of mathematical 

modelling to understand this regulation. In this sense, mathematical modelling is our 

research method, and as with any method, before employing it one has to be aware of 

its limitations and potential pitfalls. Hence we start this chapter with a discussion of 

some of the theoretical issues related to modelling and the underlying concepts. In 

order to build models of real life systems, a modeller needs to make some choices and 

decisions; hence after discussing the theoretical issues we will need to address some 

of the practical issues involved in modelling. Among the decisions a modeller has to 

make is the level of abstraction at which he will consider the phenomena being 

modelled and how much detail he is willing, and able to incorporate into the model. 

Armed with this knowledge, we will then survey some of the common approaches to 

modelling the regulation of gene expression. Rather than derive mathematical 

formulations, we will look at the big picture and classify the models according to 

different criteria, both biological and mathematical. There is a wide choice of 

mathematical formalisms available to the modeller, and amongst those by and large 

the most common is modelling using differential equations which gives quantitative 

models. Hence we will demonstrate how to apply them in a generic way, to the 

modelling of gene expression regulation presenting their advantages and also pointing 

out some of their shortcomings and of quantitative methods in general. This will lead 

us to consider models of a qualitative nature, among which, one of the most widely 

used are Boolean models. Those too have their shortcomings which we will discuss, 

paving the way to proposing our method. 
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3.2 Mathematical modelling concepts and caveats 

The purpose of modelling a given system is to understand how it functions in order to 

be able to predict its behaviour and possibly to ultimately control it. In this section we 

briefly touch on some of the theoretical issues underlying the process of modelling, 

those can be described as meta-modelling issues. The purpose is to point out to some 

of the conceptual limitations of modelling, and hence to set realistic expectations with 

regards to the results the models provide. This reality check is important because of 

the growing role of modelling in modern biology as evident in the proliferation of the 

emerging discipline of Systems Biology, currently a very active area of research.  

 

A model of a system is essentially a representation of our perception of the system 

rather than of the system itself (Casti 1989). This applies to any modelling approach 

but here we are primarily interested in mathematical models whereby systems are 

described by equations and where numerical values may be assigned to some system 

parameters.  

 

We first denote briefly what is meant by a system and the state of a system. The IEEE 

Standard Dictionary of Electrical and Electronic Terms defines a system as “a 

combination of components that act together to perform a function not possible with 

any of the individual parts” (Radatz 1997), such functionality of a system that is not 

present in its components but results from the interaction of those components is 

termed “emergent” functionality (Nagel 1961). Whilst intended for engineering or 

physical systems, the above definition is general enough to encompass other forms of 

“systems” such as biological, economic or even social systems. Hence, a system is 

not necessarily tangible, but it does need to be “observable”, meaning that one should 

be able to make observations about it, whether qualitative or quantitative. The 

observations describe the state of the system, which is the second notion we want to 

discuss. A state is one of those concepts that are usually understood intuitively but are 

hard to articulate in a formal definition. Nonetheless, a state is taken to indicate the 

information about the system at a given time instant that is sufficient to completely 

describe the system at that instant (Cassandras 1993). A familiar example for 

engineers is in thermodynamics where the state of a system is described by various 

state variables such as pressure, volume, temperature and entropy. It should be noted 
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however, that a state need not have a physical interpretation as it is an abstract notion 

(Casti 1989).  

 

The above discussion then implies that the observation mechanism should be able to 

distinguish between different states, if it cannot then the states are considered 

equivalent with respect to this particular observation mechanism, even if they are 

different in reality. This then prompts the question, what is reality and how do we 

know whether the observations do or do not represent it? This raises philosophical 

questions related to acquiring knowledge and representing it, i.e. epistemological and 

ontological issues (Nagel 1961). In summary, we can conjure up a mental image as 

depicted in the Venn diagram in figure 3-1, whereby we have some system whose 

behaviour is described by states. We can then say that reality represents the set of all 

possible states of the system (the universal set U in the diagram), some of which will 

be observable (the set S) and among those, some will be distinguishable from each 

other (the set X). From that last set of states we can use a subset to build a model. All 

those sets are in an inclusion relationship in the set theoretic sense, i.e. each set 

includes the one following it in the above description, as depicted in figure 3-1. 

   

Figure 3-1: Venn diagram depicting sets of states of a given system and their relationships. 
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Different subsets of the overall set of observations represent different aspects of the 

system behaviour and can be used to build different models (the sets M1, M2, .., Mn). 

Note that two (or more) of the observation subsets used for building a model may 

intersect, which means that some aspect of the system behaviour can be described by 

more than one model. On the other hand two such subsets may be mutually exclusive 

indicating that there is no model that can capture both aspects of the system 

behaviour. One such example is in quantum mechanics with the dual particle/wave 

aspect of elementary particles where only one aspect of their behaviour can be 

observed under a given experimental setup. 

 

Of course figure 3-1 can provoke further philosophical questions, for example how do 

we know the boundaries of the universal set U if it is not completely observable? In 

fact how do we know whether anything other than the observable actually exists? As 

we have mentioned, this is a mental image and is based on past human experience. 

For example, according to the theory of evolution bacteria existed long before 

humans did, yet we only became aware of their presence in the seventeenth century 

after the invention of the optical microscope (Porter 1976). Similar arguments hold 

for many other areas of human endeavour. This means that the set of observable 

states grows with the advancement of technology. As with the example of the 

microscope, many other technologies allow us to know things now that we did not 

know in the past such as the different omics information discussed earlier. 

Undoubtedly new technologies will be developed with time that will expand the 

observable set S further within the universal set U. Furthermore, the set of discernable 

states X among those observable, expands with the advancement of technology as 

well. Consider temperature measurement for example, for a thermometer with 

resolution of one tenth of a degree, the two temperatures 25.42
0
C and 25.43

0
C are the 

same, i.e. they are equivalent states with respect to this particular thermometer (or 

observation mechanism in general). With a higher resolution thermometer they 

become two distinct states, hence the set X becomes a larger subset of the set S. Will 

S or indeed X ever reach U? This is an important question that is beyond the scope of 

this work and falls more in the realm of the philosophy of science, for more details 

see for example the work of Karl Popper or Thomas Kuhn (Nagel 1961; Casti 1989; 

Casti and Karlqvist 1990). We will thus cease this line of thought at this point and 

resume our discussion of modelling.  
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Observations tell us what happens but not how it does. Because a collection of data 

does not in itself constitute knowledge (Duncan 2007), there is a need for a means to 

relate the observations in a meaningful relationship. As suggested in the previous 

chapter, this is a role suitable for a mathematical model which can be viewed as a 

representation of the observable reality in some formal mathematical system. In a 

more abstract sense, a model is a mapping from the set of observations to the set of 

states described by the model (Casti 1989). Ideally those two sets should be the same, 

meaning that the model should be able to reproduce the set of observations, i.e. 

describe it as it is (a descriptive model).  However, a model is more useful if it can 

also predict the behaviour of a system in addition to describing it, i.e. a predictive 

model. The predictions produced by the model are the results of derivations and 

mathematical manipulations of the model, which are then translated to expected 

observations. This means that the model should be able to reproduce observations that 

lie outside the set of observations on which it was built. To account for un-modelled 

features, modellers often resort to adding stochastic terms to the mathematical 

description to embody the uncertainty about the knowledge of the system. The 

uncertainty is assumed to be due to either aspects of the system behaviour un-

accounted for in the model, or noise (error) in the observations accounted for 

(Kazakos and Papantoni-Kazakos 1990). Inevitably there will be discrepancies 

between the data produced by the model and those recorded from experiments, 

functions of such discrepancies (usually statistical) can be used to judge the quality of 

the model. It should be pointed out that even a non-predictive model or theory in 

general (i.e. not necessarily mathematical) can still have great explanatory power and 

hence be very useful. A highly celebrated example of such a case in biology is the 

theory of evolution which describes the evolution of the characteristics of a species 

but it does not predict how it will change in the future. In other words, knowing the 

environmental conditions we cannot predict the genetic makeup of the emerging 

species nor even its physiological description. In essence the theory of evolution tells 

us how we got here, but does not tell us where we are heading, thus it describes an 

observation but cannot predict its future course (Casti and Karlqvist 1990). 

  

The above discussion places two types of constraints on the accuracy and hence 

usefulness of a mathematical model, in particular its predictive power. The first type 

of constraints relates to the set of observations because as outlined above, our 
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knowledge of the system is limited by what we can observe of its behaviour. Hence, 

whilst the model is based on a subset of the total observations, it attempts to make 

prediction about aspects of the system behaviour that may not be reflected in these 

observations, potentially undermining the accuracy of the model. The second sort of 

constraints is the mathematics being used, as different modelling formalisms are 

better suited to different investigations of a system’s behaviour, and can support 

different mathematical derivations, leading to different results and predictions some 

of which may be more accurate than others.  

 

Because we can use different subsets of observations in formulating a model (figure 

3-1), there can be more than one model of the same system each describing some 

aspect of its observable behaviour using potentially different mathematical 

formalisms. We will discuss some of these formalisms below and in later chapters. 

Furthermore, once we have chosen a particular subset of observations, we can still 

have more than one model describing the same set, providing different views and 

different inferences. Those are considered equivalent models that are related to each 

other by some form of “transformation”, an example familiar to engineers is time 

domain and frequency domain descriptions of a system, related by the Fourier 

transform. This issue will also be discussed in later chapters.  

 

To give a concrete example of these abstract notions we consider a liquid storage tank. 

We may be interested in the level of the liquid in the tank which is a continuous 

variable taking real values lying between zero and some maximum corresponding to 

the height of the tank. This case can be modelled by a simple differential equation 

relating the rate of change of the level to the inlet and outlet flow rates and 

parameterised by the tank cross sectional area. Such a model is often used in 

regulatory control of the liquid level. Alternatively, we may only be interested in 

whether the liquid level exceeds a certain point in the tank above which there is a 

possibility of spillage and hence a potentially hazardous situation, especially if the 

liquid is flammable or toxic. From such a viewpoint the liquid level can be in one of 

two states, either above or below the hazardous point, a situation that can be 

conveniently described using Boolean algebra. Such a model is used for the design of 

a safety shutdown system that may override the regulatory control of the level. 
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This simple example highlights the ideas discussed above in that different 

observations may require different mathematical tools to develop different models for 

the same physical system. It further illustrates that some of the models may be 

quantitative in nature such as the one modelling the actual liquid level in the tank 

whilst others may be qualitative such as the one describing whether the level is above 

or below a certain value, irrespective of how far it is from that value. 

 

Casti (1989) summarises these ideas in stating that “a model is a mathematical 

representation of the modeller’s reality, a way of capturing some aspects of a given 

reality within the framework of a mathematical apparatus that provides us with a 

means for exploring the properties of that reality mirrored in the model.” Note that as 

mentioned at the end of this quote, only the properties of the system “mirrored in the 

model” can be studied by it, emphasising that investigating different aspects of the 

system behaviour may require different models.  

 

From an application stand point, formulating a mathematical model, i.e. describing 

the (observable) real life system in mathematical terms requires knowledge of the 

system at hand, i.e. domain specific knowledge. Once the system is described 

mathematically however, it becomes a mathematical problem and a battery of 

methods is available for its investigation and manipulation including analysis, 

synthesis and optimisation methods. The results obtained have then to be interpreted 

from a domain specific viewpoint for a sanity check as some results of the analysis 

while mathematically sound, may be physically meaningless such as obtaining 

negative values for parameters (figure 3-2). In this sense mathematics can be thought 

of as a language and modelling as a translation from one language, the domain 

specific knowledge into another, the abstract mathematical knowledge. Indeed, 

modelling is essentially a process of abstraction that divorces the system from its 

domain specific setting and transforms it into a mathematical entity. When doing so 

we find that oftentimes systems that are distinct in real life are modelled by the same 

mathematical description. For example the second order linear differential equation 

with constant coefficients describes both a mechanical system of mass, spring and 

damper, and also an electrical system of inductance, capacitance and resistance. The 

abstractions of those physical elements are the notions of inertia which resists motion, 

stiffness which stores energy and dissipation which dissipates energy (Doebelin 1980; 
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Cha et al. 2000). This proves further that a model is just a mental construct with no 

intrinsic physical significance, only when related to a particular physical system does 

it acquire this significance. 

 

Figure 3-2: Modelling as a process of abstraction. 

 

To summarise the main points raised in this section we state the following 

 A model describes a subset of the observable reality 

 There can be more than one model for a system, each corresponding to a 

particular subset of observations.  

 For a given subset, there can be equivalent models where equivalence is 

meant in the sense that they describe the same set of observations but with 

different mathematical machinery (usually related by transforms).  

 Modelling is an abstraction process which means that different systems when 

abstracted from their implementation details can end up with the same 

mathematical model.  

 The predictive power of a model is limited by both the observations on which 

it is built, and the mathematical formalism used to build it, including any 

assumptions related to both. 
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The essence of this section is captured by a quote attributed to the British statistician 

George Box in which he says “all models are wrong, some are useful”, a rather 

cynical variation of which is given by Wolkenhauer and Ullah (2007) as “all models 

are wrong, some more than others”. 

 

3.3 Model building decisions 

This section addresses issues that mirror the theoretical ones discussed above, 

representing their applied counterparts. Here we consider the decisions a modeller 

needs to make when embarking on a modelling task. For our purpose we will 

consider the model of a system to be a representation of some aspects of the system 

that are of interest to the modeller. Two key concepts are embedded in this statement; 

the first relates to the phrase “some aspects” and the second to the phrase “of interest 

to the modeller”. Those two concepts correspond to similar ones in the theoretical 

discussion above relating to the subset of the set of observations to use and that the 

model investigates aspects of system behaviour that are reflected in the model. 

 

The notion that a model represents “some aspects” of the system implies that the act 

of modelling involves a simplification of the system behaviour. Thus it is not only 

acceptable that a model ignores some aspects of that behaviour, but in fact it is 

expected to do so. It would be impractical to expect a model to represent every 

feature of the system, as in such a case it ceases being a model and becomes a replica 

of the system. From a practical standpoint then, an important decision in the 

modelling process is, which aspects of the system behaviour to ignore and which to 

include in the model. The answer to this question leads us to the second concept and 

that is that the model has to address the issues “of interest to the modeller”, i.e. those 

for which the model is formulated in the first place. Therefore the model should 

ignore aspects of the system behaviour that are believed not to contribute to or at least 

not to strongly influence the function being studied.  

 

To illustrate these concepts let us look at a concrete example. Consider a metal rod 

exposed to heat, this system can be studied from different engineering perspectives. A 

mechanical engineer could be interested in the expansion of the rod. A materials 

engineer may be interested in the effect of heat on its tensile strength, a metallurgist 
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in the molecular structure, an electrical engineer in the effect of heat on its resistance, 

a communication engineer on its electromagnetic properties in case it is being used as 

an antenna. Different equations and hence models relate the different properties 

mentioned above to heat, those range from straight forward linear algebraic equations 

in the case of linear expansion or change in electrical resistance to vector partial 

differential equations in the case of heat transfer and electromagnetism. To attempt to 

formulate a single model that captures all these behaviours of the system is a futile 

endeavour, simply because the “interest” of each of those engineers is different. 

Hence the scope of the model will have to be limited to the features and functions of 

the system relevant to this interest.  

 

Within the scope of the model, the modeller needs to decide on the level of 

abstraction at which the system being modelled will be viewed. Normally the more 

abstract the view is the less detail about the system will be needed, as for example 

with the case of the liquid level in a storage tank mentioned above. Sometimes 

however, it is the nature of the details that changes rather than the amount. For 

example when studying a chemical reaction in a stirred reactor, will the modeller 

investigate the behaviour of the bulk liquid and how the reaction will be affected by 

the mixing speed, or will he study the kinetics of the reaction irrespective of the 

reactor, or possibly only consider a stoichiometric approach? Each of these levels of 

abstraction involves different types of details about the reactants and the vessel. 

Hence, once decided on the level of abstraction, the modeller has to further decide on 

the amount of detail to include in the model.   

 

For example, when considering the bulk liquid we can ask whether it will be 

considered homogeneous or not, if not how will its composition change with location 

in the vessel? Another issue that comes up in some situations is directionality, i.e. is 

some property say viscosity the same in all directions (anisotropic) or does it have 

different values in different directions possibly because of lack of homogeneity of the 

liquid due to inadequate mixing? Furthermore, are the system parameters - such as 

properties of the liquid or the vessel - constant or do they vary with time, and if they 

do, is this variation deterministic or stochastic (random)? Will those parameters be 

treated as lumped or distributed? For example in electrical engineering the resistance 

of a wire is effectively distributed over its length, however, it is often treated as 
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lumped. This treatment may be valid under certain circumstances and invalid under 

others, for example when the wavelength of the current in a wire is of the same order 

of magnitude as the length of the wire, the wire will start to act as an antenna and can 

no longer be treated as a lumped element (Doebelin 1980). These concepts may also 

apply to the variables being investigated and not just the parameters, as for example 

with the case of fluid particles in a pipe where the velocity will depend on their 

distance from the pipe wall.  

 

The exposition above indicates that, depending on the amount of detail included in 

the model, it can become very complicated. Hence the modeller should include only 

the details that serve the purpose of the model, in a sense using Occam’s razor, i.e. 

that one should use the simplest model possible that adequately describes the system 

behaviour (Gershenfeld 1999). Whilst this argument calls for simplifying the model, 

one should be careful not to oversimplify as this may give misleading results. Hence, 

there will always be a trade-off between accuracy attained by including more details 

in the model and simplicity attained by ignoring some details. The modeller has to 

strike a balance between those two objectives. Indeed, when discussing modelling, 

Gershenfeld (1999) indicates that “Many efforts fail because of an unintentional 

attempt to describe either too much or too little”.  

 

Having decided on what to model and the amount of details involved, next the 

modeller has to decide on which modelling method to use. This will not only depend 

on what is being modelled but rather paradoxically on the modelling method itself, 

where sometimes a method is used solely for the sake of mathematical tractability. 

Fitting a system in a given mathematical framework may require many simplifying 

assumptions regarding its behaviour. For example a system may be assumed to be 

linear, primarily to enable benefiting from the wealth of methods available for linear 

systems analysis, as non-linear systems are difficult to analyse. Indeed, Naylor and 

Sell (1982) capture this further trade-off when stating “The formulation then of a 

mathematical model is a compromise between mathematical intractability and 

inadequate description of the system being modelled.”, echoing the earlier quote by 

Gershenfeld albeit from a different perspective, that of mathematical tractability 

rather than of amount of detail.  
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The paradox referred to above comes from the fact that on the one hand choosing a 

method depends on what the modeller wants to investigate, and on the other the 

method chosen constrains what the modeller can investigate. This emphasises again 

the notion of the mathematical formalism constraining the usefulness of a model as 

outlined in the theoretical discussion above (Casti 1989). 

 

There are several mathematical methods that can be used in modelling, we will only 

highlight the main ones, but perhaps more importantly we will classify them. One 

classification is into dynamic versus static models. Models of dynamic behaviour 

describe the change of a given variable normally with respect to time in response to 

change in another one or more variables. Hence they are useful in studying such 

features as speed of response and the related dynamic characteristics such as damping 

and delay. Static models on the other hand describe a relationship between the 

variables that conveys the dependence between them without regard to time. For 

example a stoichiometric equation is a static relationship between the reactants and 

how the products depend on them, but it does not contain any information about 

timing and hence the speed of the reaction. On the other hand, kinetic models contain 

rate and hence timing information and can thus be used to determine quantitative 

information about the concentrations of the reactants and products at different points 

in time and how fast they reach those concentrations. Another example is in networks 

whether road networks, communication networks, piping networks or more relevant 

to our work here, gene regulatory networks. Static information is essentially 

embodied in the network topology, i.e. connectivity, for example the number of 

routes that connect two cities whether directly or indirectly through intermediate 

cities. Dynamic information on the other hand is contained in the traffic patterns on 

the roads between those two cities such as issues of congestion and throughput, which 

will determine how fast it takes to go through each route, i.e. issues of timing. A third 

example is in process control where static information is used in the shutdown system 

(logic control), as for example in the tank liquid level scenario discussed previously 

stipulating that if the level in the tank exceeds a certain point then shutdown this 

particular unit. Dynamic information on the other hand would be used in regulatory 

control where it would help specify the controller gains and timing (integral and 

derivative) to be able to control the speed of response of the change in liquid level 

and how far it can deviate from the desired value. It is clear that whilst dynamic 



57 

 

models provide more information about the system being modelled in particular 

quantitative information, they in return require more information for building a model, 

again quantitative one. This causes two concerns; firstly that often such information is 

very difficult to obtain, such as kinetic parameters for a reaction. Secondly the 

accuracy of the results obtained from the model will be limited by the accuracy of this 

information, in addition of course to the accuracy of the model itself as discussed 

above. Those concerns undermine the advantages of dynamical models or any models 

providing quantitative information in general. 

 

Dynamic behaviour can be modelled using continuous time in which case they are 

formulated using differential equations. Alternatively, values of the variables of 

interest may only be available at discrete points in time, as in the case of sampled 

systems, hence leading to difference equations. The values of the variables being 

investigated can also be assumed to be continuous or discrete, the latter leading to a 

discrete event systems formalism such as finite automata and Petri nets. Another 

classification is into deterministic versus stochastic models, where the latter means 

that the variables are assumed to be random processes, hence characterised by 

probability distributions. A deterministic description on the other hand does not 

contain this probabilistic aspect. The three classifications mentioned above namely 

static v dynamic, continuous v discrete and deterministic v stochastic are orthogonal 

in the sense that a model can belong to either type of each of the three classifications, 

e.g. dynamic discrete deterministic or dynamic continuous stochastic, etc. 

 

We can summarise this section in two main points. The first concerns modelling 

decisions and the second concerns modelling errors, reflecting the choices and 

caveats involved in modelling. 

 

Modelling decisions 

There are three main decisions the modeller needs to make, as depicted in figure 3-3, 

usually in the following order 

 The level of abstraction at which to view the system  

 How much detail to include in the model  

 The mathematical formalism to use  

Each of these decisions can have sub-decisions as outlined above.  
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Modelling errors 

There are two main conceptual sources of error that are a result of simplifications in 

modelling, those are;  

 Simplification due to ignoring some aspects of the system behaviour 

 Simplification for the sake of mathematical tractability  

Those two sources of error are different from errors due to measurement. Modelling 

errors are deliberate in the sense that the modeller consciously chooses to make those 

simplifications, while measurement errors are inevitable as they are ultimately 

governed by the technology available.  

 

 

 

Figure 3-3: Modelling decisions. 

 

3.4 Mathematical modelling in biology – Systems Biology 

Mathematical modelling has been utilised in biology for a long time, at least since the 

early twentieth century in the work of Lotka and Volterra in the 1920’s on modelling 

population dynamics involving prey-predator relationships (Rosen 1970). The 

following decade, the journal “Bulletin of Mathematical Biology” was launched in 

1939. 

 

As the knowledge of biological processes grew, especially at the molecular level 

following the work of Monod and others in the 1960s, there was a surge of interest in 

applying mathematics in biology in particular using a dynamical systems approach. 

Several books appeared at the time that formally applied dynamical systems theory to 

biology, for example the book by Rosen in 1970. This was also evident in the launch 

of several journals devoted to the subject around that time such as Journal of 

Theoretical biology in 1961, Mathematical Biosciences in 1967 and Journal of 
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Mathematical Biology in 1974 among others. With the recent proliferation in the 

quantity and quality of omics data as outlined in the previous chapter, a new wave of 

interest in applying mathematics to biology emerged. What sets this new wave apart 

from earlier ones is that the scope (several sub-cellular processes), the data (vast 

amounts of high quality data) and the mathematical tools utilised have expanded 

greatly (Kitano 2002; Wolkenhauer 2007). But perhaps more important than the 

mathematics is the shift in the underlying conceptual view to modelling, evident in 

the new emphasis on the interconnectivity of systems rather than on an individual 

system, which resulted in some philosophical discussions on “holism” versus 

reductionism (Kell and Oliver 2004; Van Regenmortel 2004; Cornish-Bowden and 

Cardenas 2005; Noble 2008; Gatherer 2010). This holistic view has led to the birth 

(or some would argue reincarnation) of the new interdisciplinary field of Systems 

Biology (Cornish-Bowden 2005; Noble 2008). Like the previous waves of interest in 

applying mathematics to biology, this one has also led to the publication of several 

books and the launching of several journals, for example Systems Biology in 2004 

(later IET Systems Biology), Molecular Systems Biology in 2005 and BMC Systems 

Biology in 2007. From such a perspective, Systems Biology is yet another phase in 

applying mathematics in biological research, with its own scope and tools that match 

the current research questions in biology and reflect the current technology, i.e. the 

availability of omics data. 

 

The above is not meant as an account of the history of mathematics in biology, but 

rather pointing out some of the milestones in this history related to adopting a 

Systems approach. Unsurprisingly there are different views regarding the usefulness 

of such approaches in molecular biology (Cornish-Bowden 2005). Some are so 

sceptical of Systems biology as to state that “Because it is so broad and has few 

recognized boundaries and plenty of funding, it is attractive to anyone who has ever 

thought about life and has some relevant technical expertise.” (Werner 2007). Others 

on the other hand are overly optimistic and view Systems Biology almost as a 

panacea that will usher in a new era of biology, and describe it as a “paradigm shift” 

that will cause us to re-examine the philosophical basis of biology and will eventually 

lead to answering the question “what is life?” (Westerhoff et al. 2009). Our view 

however, is a more pragmatic one; we believe that modelling in its current form is 

just another tool added recently to the biologist’s toolbox borne out of need. Note that 
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here we are talking about biological systems in the sense of cell biology rather than 

population biology and epidemiology which have used mathematical models for 

decades as mentioned above. In cell biology the emphasis of research has changed 

over the years, with each phase necessitating new tools. In the past it was mostly 

about biochemistry and hence the tools used were concerned with chemical 

composition, reaction characteristics and physical properties. Those have led to the 

discovery of the double helix which ushered in the era of genetics and molecular 

biology in general; one strand of this led with time to the change of emphasis from 

metabolites to the genes that code the enzymes catalysing the metabolic reactions. 

This necessitated the development of tools that can deal with genes and DNA such as 

PCR and related techniques. Again research in genetics led to the study of gene 

expression at its different levels, transcription, translation and post translational 

modifications of proteins, which led to the development of all the “omics” tools, as 

discussed in the previous chapter. Those tools generated large amounts of data, but 

because more information does not necessarily mean better understanding, there was 

a need for a means to assimilate all this data, investigate the different levels of 

functionality and how they interact, and interpret the results. Mathematics came as a 

fitting candidate for this job. Of course along all those developments there was a 

development in bioinformatics that matured greatly with the proliferation of the 

“omics” disciplines. Hence in such a context mathematics, in particular from the 

perspective employed in Systems Biology, can be viewed as a tool needed to address 

the recent problems that have arisen in biological research. Again in a sense it is 

merely a phase in the natural progression of biological research; or to use biological 

terms, it was “naturally selected” because it was the “fittest” tool for this particular 

period in the “evolution” of biology.  

 

3.5 Modelling the regulation of gene expression 

In this section we survey the main mathematical approaches used in modelling the 

regulation of gene expression and their conceptual basis. There have been several 

excellent surveys in the literature of this topic over the past few years, for example 

(Smolen et al. 2000; Wessels et al. 2001; De Jong 2002; Ideker and Lauffenburger 

2003; Schlitt and Brazma 2007; Hecker et al. 2009). Hence, rather than simply 

transcribe such sources here, we will instead take a more abstract view whereby we 
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will classify the main modelling approaches and for each we will discuss the 

underlying assumptions, the advantages and limitations of the resulting models and 

their use. This, we believe, is more instructive than the actual mathematical 

formulation and its details which can be pursued in any of the pertinent references 

cited. In presenting the different modelling approaches we will apply the concepts 

discussed above, namely the level of abstraction, the amount of detail and the 

mathematical formalism used. Naturally there are several ways to classify such 

models; we will consider three such classifications, based on scale, function and 

mathematical formalism. 

 

The levels of abstraction adopted in many modelling approaches are based on scale, 

i.e. the number of genes studied and included in the model. We remind ourselves that 

we want to model the regulation of gene expressions, i.e. under what conditions will 

the different genes be expressed and to what level of expression. Those conditions - 

normally conveyed by effector molecules - are mediated to the genes through 

transcription factors, which are in turn products of other genes. Thus the highest level 

of abstraction, i.e. the largest scale, is the one that would include all the regulated and 

regulating genes in the organism’s genome, sometimes referred to as the regulatory 

genome (Davidson 2006). Some of those genes will be producing transcription 

factors in response to external and internal signals as discussed in chapter two, while 

others will be the target of those transcription factors. Oftentimes genes would be 

controlling and being controlled by other genes in positive and negative feedback 

loops, and resulting in an interconnection network of genes. Some genes also regulate 

their own expression in a form of auto-regulation (Alon 2007a). 

 

As an example, the gene regulatory network for yeast contains more than two 

thousand genes and more than a hundred transcription factors. Some genes are 

affected by more than one transcription factors and some transcription factors affect 

more than one gene in a network of interactions (Lee et al. 2002). The association 

between the target genes and the transcription factors is established through 

transcriptome experiments whereby the expression levels of the genes are measured 

and those that are above some threshold are clustered together. A time series of 

measurements is taken at different points in time and these associations are followed; 

persisting ones indicate that the genes in a cluster are co-regulated. Bioinformatics 
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tools and analytical experiments determine which genes produce the transcription 

factors and what their target genes are. There are some pitfalls to be aware of in this 

approach, firstly that the expression threshold used for clustering is often subjective 

in nature and will depend on the researcher and what they are trying to study and their 

own bias. Secondly, co-expression does not necessarily mean dependence or 

causation, it may merely mean correlation or association. It should also be noted that 

transcriptome experiments are performed under specified conditions for the cell, and 

consequently different conditions may lead to different interaction networks. This is 

in contrast with the genome which is static in that it does not normally change 

throughout the lifetime of a given individual of an organism. 

 

So what can be studied at this scale and what mathematical methods can be used? As 

indicated above, on an abstract level, a gene regulatory network is an interconnection 

network, other examples of which have been mentioned above. The method 

commonly used for studying networks is graph theory (Carré 1979). In its most basic 

form, a graph is described mathematically by two sets, a set of vertices - sometimes 

referred to as nodes - and a set of edges connecting those vertices in pairs. The nodes 

can represent any entities the modeller is interested in investigating and the edges 

represent the relationships between those entities. Engineering examples of graphs 

representing networks include railways, piping, electrical distribution and 

computer/communication networks as has been described above. The nodes for those 

can be train stations, pumping stations, electrical substations and servers/switches 

respectively. The edges can be the appropriate corresponding connections between 

those nodes; in the examples above those represent physical connections such as 

railroads, pipes or wires, however, generally speaking this need not be the case. 

Connections can also represent information flow rather than material flow. 

 

In terms of details included in models represented by a graph, the most basic 

information is the network topology, i.e. the connectedness, indicating whether two 

nodes are connected or not. Additional layers of information can be added on top of 

that, for example directionality, such as the direction of traffic on a road network or 

of flow in a piping network, resulting in a directed graph. Furthermore quantitative 

information can be included such as distance between two points on a road network 

and are indicated as weights on the edges connecting two nodes. 



63 

 

When applying the concepts from graph theory to modelling gene regulatory 

networks, we find that nodes can represent genes, and edges represent the regulatory 

relationships between those genes. Directionality would indicate which gene affects 

the other, while a sign on the edge (positive or negative) would indicate whether this 

effect is activating or inhibiting, thus providing further details.  

 

As with other application domains, the graph theory approach allows investigating 

issues of connectedness which in the context of gene regulatory networks indicate 

regulatory effects. For example, analysis by graph theory can reveal whether two 

genes are connected through some regulatory route which may be indirect and hence 

might not have been detected by past experiments. This can serve to generate 

hypotheses that can be tested experimentally. Graph theory can also reveal whether 

there is more than one route connecting two genes hence indicating redundancy that 

may explain why when some genes are knocked out the cell still carries out the 

function believed to be coded by those genes.  

 

Another property of networks that can be investigated using graph theory is the in-

degree and out-degree of a node, which refers to the number of edges with input 

arrows to the node and those with output arrows respectively. In the context of gene 

regulatory networks the in-degree of a gene (node) indicates the number of 

transcription factors regulating it. Similarly the out-degree indicates the number of 

genes regulated by the transcription factor produced by this gene. For regulatory 

genes, the out-degree is often much higher than the in-degree, indicating that such 

genes control many others, while being controlled by a limited number of factors 

themselves (Davidson 2006; Alon 2007a). Genes that control a large number of other 

genes are known as hubs, an example of which is the gene producing the CAP protein 

utilised in sugar metabolism as discussed in the context of the lac operon in the 

previous chapter.  

 

A recent fairly exhaustive (and exhausting) coverage of the application of graph 

theory in biology is given by Lesne (2006). A more readable account is given by 

Alon (2007b), while applications to bacteria and yeast are given by Christensen et al. 

(2007) and Lee et al. (2002) respectively. Note that the same graph theoretic concepts 

are used in modelling metabolic networks and signal transduction networks as well.  
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Further details can be added to the gene network in the form of probabilistic 

information leading to Bayesian networks. The idea is that given the dependency of 

some genes on some other controlling genes, one can establish a directed graph in the 

form of a decision tree, wherein a parent node would represent the controlling gene 

and the children nodes represent the genes controlled by it. The probability of a child 

gene being expressed will clearly depend on the probability of expression of the 

parent gene leading to conditional probabilities for the different genes in the network 

(Friedman et al. 2000; Needham et al. 2006). Note that the terms parent and child in 

this context refer to their position in the tree and not to a biological progeny 

relationship. The Bayesian approach is intuitive and provides further value to the 

graph, but suffers from two main drawbacks. The first is by virtue of its decision tree 

topology a Bayesian network does not allow for feedback paths, and the second is 

that obtaining the probabilistic information required for the network is not easy, 

especially for large networks. 

 

Whilst Bayesian networks do not allow feedback paths between genes, a general 

graph does, and this manifests itself in the presence of cycles in the graph. Normally a 

cycle involves several nodes (genes) connected in such a way as to form a closed path 

in the graph, hence indicating a closed feedback regulatory system. Such cycles or 

repeated patterns in general are known as network motifs and they usually involve a 

few genes. A closed path implies directionality in that it has a start and an end and 

they coincide. It should be emphasised that a motif need not form a closed cycle; it is 

essentially a given pattern of interconnection of nodes that form a subgraph of the 

main graph. Motifs are sometimes referred to as modules since they can be viewed as 

performing separate functions in a modular fashion, as such they represent the next 

level of abstraction in studying gene regulation (figure 3-4). 

 

A motif consists of a small number of genes with a certain interconnection pattern 

that results in specific dynamic behaviour of this small regulatory network. Two 

examples of possible interconnections of three genes are depicted in figure 3-5. 

Among all the possible motifs, only a subset occurs in real life gene networks as 

verified by experimental results. Alon (2007a) provides a comprehensive graphical 

illustration of all possible graphs for three and four genes, and gives in depth analysis 
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of some of the more common ones, in particular the three gene feed forward motifs, 

which can be either coherent or incoherent. 

 

 

Figure 3-4: Levels of abstraction based on network size (hierarchy). 

 

An example of each is depicted in figure 3-5, where the gene a affects both genes b 

and c; its effect on gene c is through two routes, a direct one, and an indirect one 

through gene b. The motif on the left is a coherent feedforward loop where the effect 

of gene a on gene c is the same through either the direct route a-c or the indirect route 

a-b-c, both activating c, hence coherent. The motif on the right is an incoherent 

feedforward loop where the route a-c activates c while the route a-b-c inhibits it. The 

mathematical formalism used for studying the dynamics of motifs is differential 

equations or Boolean networks as will be explained later.  

 

Perhaps the most obvious, possibly controversial, assumption regarding motifs is 

their very existence. To be able to analyse motifs separately means that they are 

assumed not to interact with the rest of the network of which they are part, a notion 

that is questioned by some on the basis of potential cross talk between different 

motifs (Hartwell et al. 1999; Vilar 2006). The argument usually presented in support 

of the existence of motifs is drawn from metabolism where the metabolic network is 
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broken down into independent sub-networks each with a different function, such as 

glycolysis and the other different anabolic and catabolic pathways.  

 

Figure 3-5: Two possible motifs involving three genes a, b and c. 

The + sign indicates activation of the gene at the head of the arrow by the one at its base, while the – 

sign indicates inhibition. 

 

The lowest level of abstraction in the classification based on network size or 

equivalently on number of genes considered, is a single gene or operon. Recall from 

chapter two that an operon is a collection of functionally related genes that are co-

expressed, and are found in bacteria. This level of abstraction is the one most used, 

since it is easier to obtain detailed experimental information and test hypotheses for a 

few genes than for a few hundreds. The related studies aim to understand the 

regulation of gene expression on a molecular level, i.e. how the different molecules 

involved affect expression of the gene investigated. Again the most common 

mathematical approach employed is differential equations for quantitative studies, 

and Boolean algebra for qualitative ones. 

 

The above classification of the modelling approaches of the regulation of gene 

expression is based on network size, and it is clear that the lower the level of 

abstraction, the more detail about the individual genes is needed (figure 3-4). This is 

normally the case with other classifications as well, the more abstract we get the less 

detail we need and vice versa. In this vein, Ideker and Lauffenburger (2003) provide 

another classification that can be considered conceptual in the sense that it is based on 

the type of information utilised. Their classification is summarised in table 3-1 below. 

It should be noted that they are careful to point out that the demarcation lines between 

these levels are somewhat arbitrary in nature.     
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Table 3-1: Classification of gene regulatory models based on information utilised, according to 

Ideker and Lauffenburger (2003). 

Level of 

abstraction 
Information 

Mathematical 

formalism 

Highest 

(Abstracted) 

Components & Connections Statistical mining 

Bayesian networks 

 Influences & Information Bayesian networks 

Boolean models 

 Mechanisms 

 

Markov chains 

Lowest 

(Specified) 

Mechanisms including Structure Differential equations 

 

Schlitt and Brazma (2006, 2007) present yet another classification which is based on 

a mixture of functional and structural features of the regulatory system. Again they 

stress the two points mentioned above, namely the arbitrary nature of the division 

between the different levels of abstraction and that the amount of detail increases the 

less abstract the model becomes. They have suggested four levels of detail for 

modelling gene regulatory processes, summarised in table 3-2 below.  

 

Table 3-2: Classification of gene regulatory models based on structural and functional 

information, according to Schlitt and Brazma (2007). 

Amount 

of detail 
Structure/Function Purpose 

Method/Mathematical 

formalism 

Least  Parts list Identify transcription 

factors and their 

targets 

Bioinformatics and 

experimental   

 Topology  Identify network 

topology or “wiring 

diagram” 

Statistical tools 

 Control logics Identify regulatory 

effects (activation and 

inhibition) 

Linear functions, 

Boolean functions 

Bayesian networks 

Most  Dynamics  Describe and simulate 

dynamic response  

Synchronous Boolean 

networks, Differential & 

difference equations 

 

One can roughly see the correspondence between the concepts in the three 

classifications outlined above as summarised in figure 3-4 and tables 3-1 and 3-2. For 

example, the notions of Parts list and topology in table 3-2, components and 

connections in table 3-1 and network and motif in figure 3-4 are all related and 

convey structural information. Similarly, the concepts of control logics in table 3-2 

and influences and information in table 3-1 relate to the signs and directions of 
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arrows in figure 3-5 (which is an elaboration of the middle tier of figure 3-4). Finally, 

dynamics in table 3-2 and mechanisms in table 3-1 relate to the mathematical 

formulations of regulation at the level of an operon or an individual gene as discussed 

earlier.    

 

There are other classifications that are more or less of the same nature as the ones 

outlined above. Another classification worth mentioning however, because of its 

different perspective and its comprehensive nature is the mathematical classification 

presented by De Jong (2002). He surveys the different mathematical formalisms 

utilised in modelling the regulation of gene expression and what they can be used for. 

The classification criteria and the resulting classification are summarised in table 3-3 

below. Three of those, namely static/dynamic, discrete/continuous and 

deterministic/stochastic have been discussed above. For the two additional 

classifications, qualitative/quantitative is self evident, while coarse/average/fine refers 

to the amount of detail that can be described by the corresponding formalism. 

 

Table 3-3: Classification of gene regulatory models based on mathematical formalisms utilised 

and their properties, according to De Jong (2002). 

 

Mathematical 

formalism 

Properties of mathematical formalism 

Static/ 

Dynamic 

Discrete/ 

Continuous 

Deterministic/ 

Stochastic 

 

Qualitative/ 

Quantitative 

 

Coarse/ 

Average/ 

Fine 

Graphs  Static  N/A Deterministic Qualitative Coarse 

Bayesian 

Networks 

Static Both  Stochastic  Quantitative Coarse 

Boolean 

Networks 

Dynamic Discrete Deterministic Qualitative Coarse 

Generalised 

Logic Nets 

Dynamic Discrete Deterministic Qualitative Average 

Differential 

Equations 

(Linear or 

non-linear) 

Dynamic Continuous 

 

Deterministic Quantitative Average/ 

Fine 

Stochastic 

Master 

Equation 

Dynamic Discrete Stochastic  Quantitative Fine 

 

In table 3-3, Generalised Logic Networks refer to networks where the variables can 

take more than two discrete values, hence they are a generalisation of Boolean 
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Networks where the variables take only two values. How this is done, and also the 

Stochastic Master Equation will be explained below. 

 

Table 3-3 emphasises the point mentioned earlier about how the different features of 

a modelling method are independent of each other (e.g. e.g. dynamic discrete 

deterministic, etc). Perhaps the main drawback of this classification is that it does not 

say much about the situations in which these methods can be used. Granted, table 3-3 

lists the features of each mathematical formalism, but unlike tables 3-1 and 3-2 above, 

it does not contain any information about the biological context. However, a modeller 

is normally expected to be familiar with the process he is planning to model and 

hence should be able to use this table as a guide for choosing the appropriate 

formalism. 

 

We have presented several ways in which mathematical models of the regulation of 

gene expression can be classified. We now look at how the models themselves can be 

formulated. We will consider the two most commonly used formalisms, differential 

equations and Boolean functions. We will also consider them at the level of 

abstraction in which they are most widely applied, namely the modelling of a single 

gene or operon; thus corresponding to the bottom of figure 3-4 and of tables 3-1 and 

3-2. 

 

3.6 Modelling the regulation of gene expression using 

differential equations 

Differential equations represent in general a function of the rate of change of a 

variable, in our context here with respect to time. Most of the models of gene 

expression at this level of abstraction entail modelling transcription regulation. As 

explained in chapter two, transcription of a gene takes place using the enzyme RNA 

polymerase, hence it can be viewed as an enzyme catalysed biochemical reaction in 

which the gene is the substrate and the mRNA molecule is the product. One way to 

study chemical reactions is using rate equations in which the rate of change of 

concentration of the chemical species concerned is studied in response to the 
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concentrations of other chemical species affecting the reaction. In a general form this 

is given by the differential equation 

),....,,...,.( 1 nj
i xxxf

dt

dx
             3-1                                                                             

 

where the xj’s (with i and j = 1,2, ..., n) represent the concentrations of the different 

chemical species and the function f represents the dependence of xi on all the xj’s, and 

is in general a non-linear function. In its simplest form, the reaction involves the 

conversion of one chemical species into another. Hence  

)(xf
dt

dx
                       3-2                                                                                         

 

where x is the substrate, and naturally the rate at which it is consumed is the same as 

the rate the product is produced. For a simple enzyme catalysed reactions, the 

function f can be represented by the Michaelis-Menten kinetics, given by  

xK

xV

dt

dx

m 
 max             3-3 

 

where Vmax is the maximum rate achievable, and it occurs when the enzyme is 

completely saturated with the substrate, i.e. x is very large. Km is the substrate 

concentration at which the reaction rate is half the maximum. Both numbers can be 

verified by substituting in the equation above. 

 

Michaels-Menten kinetics are derived based on the simplifying assumption that the 

enzyme essentially has one binding site and hence binds one molecule of the substrate. 

For an enzyme with more than one binding site, the binding of the substrate to one 

binding site may affect the affinity of the enzyme to the substrate (through the other 

binding sites). It can either increase the affinity to the substrate or decrease it, i.e. 

having either a positive or a negative effect respectively, known as a homotropic 

cooperativity. It may also increase the affinity to another molecule or decrease it, 

known as a heterotropic cooperativity. 

 

For a protein with n binding sites, normally associated with n subunits of the protein, 

and full homotropic cooperativity, i.e. one substrate, the kinetics can be represented 
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by the Hill function. However, in its more general form, the Hill function can be 

formulated in a way that encompasses the more general case with different types of 

cooperativity. 

  
nn

m

n

xK

xV

dt

dx


 max               3-4 

 

where Vmax and Km have similar interpretations as above, and n is known as the Hill 

coefficient, which for the general case can take real values, i.e. not limited to integers. 

It is clear that when n = 1, the Hill kinetics reduces to the Michaels-Menten kinetics. 

The Hill function is depicted in figure 3-6 for different values of n. 

 

 

Figure 3-6: The Hill function for different values of n. 

(Source: en.wikipedia.org, under the Creative Common Attribution Share License.) 

 

When using the Hill function to model the regulation of the expression of a gene by 

an activator x, the left hand side represents the activity of the gene (the rate of its 

expression) in response to the change in concentration of the activator. When x is a 

repressor, the Hill function takes the form 

nn

m

n

xK

xV

dt

dx


 max1         3-5 

 

which after normalisation and algebraic manipulation can be written as 

n

mK

x

V

dt

dx













1

max                3-6 
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In general the expression of a gene can be regulated by more than one molecule in 

particular transcription factors, in which case f becomes a function of more than one 

variable. Furthermore, the different variables relate to different genes, hence we end 

up with a network of genes being regulated by the same molecules, some of which 

are products of some of the genes involved. This situation can be represented by a set 

of coupled differential equations whereby for n variables we get 

),...,,( 211
1

nxxxf
dt

dx
  

),...,,( 212
2

nxxxf
dt

dx
         3-7 

and 

),...,,( 21 nn
n xxxf

dt

dx
  

 

These equations can be written more concisely as a vector differential equation like 

below, where now x indicates a vector of variables and f a vector valued function of 

those variables and vector valued quantities represented in bold face 

)(xf
x


dt

d
              3-8 

 

Which variables to include as factors affecting the expression of a gene will lead to 

different models for the same gene, and the same is true with the way those factors 

are assumed to exert their effects, as manifested in the function f. In effect this means 

that which molecules are included in the model and their assumed mechanisms of 

action will determine the model.  

 

These crucial points can be demonstrated by the case of the lac operon explained in 

chapter two, which in spite of being well studied has a myriad of models describing 

its operation. A basic model would include glucose and lactose, however, the 

realisation that it is not those two molecules per se that effect the regulation, but 

others derived from them or using them, led to more complicated models. For 

example, allolactose - which is obtained by the cleavage of lactose - is the molecule 

that acts as an inducer of the lac operon rather than lactose itself. Similarly the operon 
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is activated by cAMP - which is produced in response to low glucose - rather than by 

glucose itself. 

 

When considering the effect of lactose in the model, the first thing to do then is the 

choice of molecules, as the concentration of lactose outside and inside the cell will 

differ since inside the cell it will be broken down into allolactose. Furthermore, for 

this breakdown to take place we will not only need the enzyme -galactosidase which 

cleaves lactose, but the enzyme galactoside permease as well, which allows lactose 

into the cell in the first place. This idea led to experiments with non-metabolisable 

inducers. For example Tian and Burrage (2005) take the different concentrations of 

the inducer inside and outside the cell into account and produce a model of six 

differential equations some of which are non-linear. A much simpler model of only 

four differential equations is produced by Vilar et al. (2003) again with emphasis on 

the permease. Santillan (2008) developed a comprehensive (and complicated) model 

that treats the operator region as three distinct locations (see chapter two) and 

considers how lactose interacts with them. He also considered the interaction of CAP 

with one of the operator sites, and included in the model the role of the sugars as 

energy sources rather than just inducers. This model has eighteen differential 

equations and twenty five parameters either estimated or obtained from the literature 

and was built on previous work by Ozbudak and others that involved extensive 

experimental investigations (Ozbudak et al. 2004; Santillan et al. 2007). Narang 

(2006) considers mixed substrate growth in a bioreactor, in particular that with 

glucose and lactose, and compares three models that take cell growth into account. A 

different approach is taken by Bintu et al. (2005) who formulate a model using 

statistical thermodynamics to find the probability of binding of RNA polymerase and 

the different transcription factors to the DNA molecule, and of the effector molecules 

to those transcription factors. Stochastic effects are also incorporated explicitly in the 

model by Stamatakis and Mantzaris (2009). The above is a very limited sample of 

models of the lac operon using differential equations, selected to illustrate the 

conceptual differences between them and is not meant to constitute an even limited 

survey of the topic. 

 

Further complications of the modelling task arise in situations where molecules of a 

relevant chemical species are only present in a very low concentration. In such a case 
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the change by only one molecule out of a hand full can cause a large percentage 

change in concentration, hence the assumption of continuity on which differentiation 

is based would no longer be valid. Continuity is premised on the idea of an 

infinitesimal change which does not hold in such a case, and other methods are 

needed. One such method uses what is known as the Chemical Master Equation 

(CME), which like the statistical thermodynamics model mentioned above is based 

on the probabilities of two molecules coming in contact with each other and hence 

reacting. See Erdi and Toth (1989), and Wolkenhauer et al. (2004) for a discussion of 

these topics. Yet another complication comes from the fact that under normal 

conditions the cell is growing, hence effectively the volume in which the molecules 

are contained is increasing which means that the concentrations will be decreasing. 

Furthermore, the spatial distribution of the molecules in the cell is usually ignored, 

where the cell is treated as if it a well-mixed reactor, undermining the accuracy of the 

model further (Vilar et al. 2003). 

 

What we want to demonstrate from this exposition is that a system as well studied 

and characterised as the lac operon, can still have a myriad of models that differ 

greatly in complexity. Even though all of these models are formulated at the same 

level of abstraction, that of the regulation of a single operon, they include different 

details. Such details are associated with the different molecules included in the model 

and the mechanism of their molecular interactions, and also the values of the 

parameters of the models. The fact that there are so many assumptions and 

uncertainties about the model and its parameters greatly undermines its value as a tool 

for quantitative analysis. Indeed, another investigation involving extensive 

experiments under different conditions and using two inducers namely, lactose and a 

non-metabolisable inducer, carried out by Setty et al. (2003) gave drastically different 

values for the two spanning orders of magnitude, but they did give the same trend. 

Hence the qualitative results gained from a model are arguably more reliable and 

consequently more useful than quantitative ones. This rationale is reflected in a quote 

by Fowkes and Mahoney (1994) where they state “It is often the case that the 

qualitative insights gained from modelling are more important than any quantitative 

results obtained.”  
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In this section we have outlined how a quantitative modelling approach, namely 

differential equations can be applied, and demonstrated it conceptually using the lac 

operon. This discussion highlighted the problems with such methods which 

undermine their quantitative power and hence make the case for a simpler albeit only 

qualitative approach to modelling the regulation of gene expression. In the following 

section we will consider one of the most widely used qualitative methods, which is 

based on Boolean functions. 

 

3.7 Modelling the regulation of gene expression using 

Boolean functions 

The Boolean approach entails variables and functions that can take only two values, 

usually indicated by 1 and 0, hence termed binary. When applied to modelling the 

regulation of gene expression, these values can acquire corresponding biological 

interpretations. For example a gene can be either expressed or not expressed, i.e. ON 

or OFF, a regulatory protein (such as a transcription factor) either activated or 

deactivated, and an effector molecule (chemical species) either present or absent. This 

is an abstraction from the continuous case by which we assume that each of these 

biological entities can be in one of two states ignoring intermediate values, and hence 

can be represented by a binary variable. Note that the corresponding binary values do 

not in general refer to the actual physical values. For example when the variable 

representing the effector molecule is 1, this does not necessarily mean that its 

concentration is 1 (of whatever units used), it only means that the concentration is 

above the threshold needed to activate the protein. Similarly a value of 0 means that 

the concentration is below that which is necessary for activation.  

 

Of course this is an approximation of the actual values of the variables, albeit a 

conceptually meaningful one. It can also be considered as a limiting case from a 

mathematical standpoint, where for example the Hill function in figure 3-6 

approaches a Step function when the Hill coefficient n becomes very large. The Step 

function represents a binary variable in that it takes only two values, as evident from 

figure 3-6.     

 



76 

 

The Boolean approach can be used to model both static and dynamic relationships 

between the variables. By static we mean a fixed mapping between the inputs and the 

outputs, in the sense that the same inputs will always give the same outputs 

irrespective of the state the system is in. On the other hand in dynamic behaviour, the 

output will not only depend on the current input but also on the current state of the 

system. Those notions are somewhat different from the ones common in dynamical 

systems theory in which they would be referred to as autonomous or time-invariant, 

and non-autonomous or time varying respectively. The Boolean approach is 

extensively used in the design of digital electronic circuits, also known as logic 

circuits, and this is the point of view we will adopt here. For example the concepts 

raised above relating to static and dynamic behaviours have counterparts in digital 

circuits. Hence it will be helpful to give a brief overview of such circuits on an 

abstract level, i.e. not involving implementation details. This is standard logic design 

material that can be found in many textbooks on the topic, we have used Wakerly 

(2000) and Green (1986) which vary in treatment from the practical (Wakerly) to the 

more abstract (Green). We present the material here in an intuitive rather than a 

formal fashion and give examples that we believe make it more comprehensible to 

those without a background in electronic engineering. 

 

3.7.1 Background on logic design 

The terms Boolean, binary, logic and switching are often used interchangeably in 

electronic engineering, so are the terms circuit and network. The phrase logic circuit 

(or any of its variations from the terms above) normally refers to circuits whose 

elements can be in one of two states, either on or off, i.e. binary, such as switches. 

When expressed numerically as 1 and 0 respectively, such networks can be 

conveniently represented as Boolean functions and analysed using Boolean Algebra, 

whose operations are the well known logic AND, OR and NOT.  

 

One way to classify logic circuits is into combinational and sequential circuits (figure 

3-7). In a combinational logic circuit, the current output of the circuit is determined 

only by the combination of its current inputs.  For a sequential logic circuit on the 

other hand, the current output depends in general on the current inputs and the current 

state of the circuit, which in turn is determined by the past sequence of inputs. Thus, 
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such circuits possess some form of memory functionality that retains previous states. 

They also employ some feedback mechanism to facilitate the utilisation of these 

states in determining the current output. Thus, in comparison with the discussion 

above, combinational circuits represent static behaviour while sequential ones 

represent dynamic behaviour.   

 

 

Figure 3-7: Classification of logic circuits. 

 

We clarify the difference between the two types of circuits (or functions in general) 

by the example of a television remote control. When selecting a channel using the 

numerical keypad we go directly to the selected channel, for example pressing 5 on 

the keypad will take us to channel 5, and this will happen every time we press 5 

irrespective of which channel we are currently watching. Hence the same input will 

always give the same output, thus representing a combinational logic function. Now 

consider pressing the up arrow on the remote control, the channel we go to will 

depend on which channel we are currently watching, which as mentioned above 

depends on how many times we have pressed the up and down arrows before. Hence 

which channel we will end-up at will depend not only on the current input (up arrow), 

but also on the current state (the channel we are currently watching), which in turn is 

determined by the past sequence of inputs, thus representing a sequential logic 

function. In short, the same input may give different outputs depending on the current 

state, and alternatively at a given state different inputs may give different outputs, 

which is the more common view. These concepts apply to the next state as well (not 

Logic Circuits 

Combinational  Sequential  

Synchronous Asynchronous 
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just the current output) meaning that the next state of the circuit will be determined by 

the current input and the current state. Such type of sequential circuits is said to have 

the Markov property. However, in some cases we might need past states in addition 

to the current one to be able to determine the next state. A common example of such a 

sequential circuit is the traffic light controller. When the current state is yellow, 

information about the previous state - whether it was green or red - is needed in order 

to be able to decide on the next state.  

 

It is clear that analysis and design of sequential circuits is more complicated than that 

of combinational ones. An additional layer of complexity is introduced when several 

such elements or circuits are interconnected, as the changes of their states may be 

synchronous (all occurring together) or asynchronous (figure 3-7). Further 

complexity is added when the occurrences of some conditions are random in nature; 

an example is when a car arrives at the sensor at an intersection to trigger the traffic 

light change. Such conditions need to be modelled probabilistically. 

 

In the analysis and design of combinational circuits, the mapping of the inputs to the 

outputs is often represented by a truth table, which lists all the possible input 

combinations and the corresponding outputs. This is then expressed as a Boolean 

function which can be manipulated mathematically using the Boolean algebra rules to 

investigate the circuit behaviour. One of the common ways to express a Boolean 

function is the Disjunctive Normal Form (DNF), more commonly known as the 

canonical Sum of Products (SOP) to engineers. As the name implies, such an 

expression contains the sum of product terms, some of which may have negated 

variables. In Boolean algebra, a product term also known as a conjunction is an AND 

gate (or operator), a sum or disjunctive term is an OR gate and negation is a NOT 

gate. Hence any combinatorial circuit can be represented using those three types of 

gates (Birkhoff and Bartee 1970), the truth table representation of which is given in 

table 3-4 where the first two columns contain all the possible values of the variables 

x2 and x1, and the other columns contain the result of applying the operators to those 

variables.  
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Table 3-4: The logic operators (gates) AND, OR and NOT. 

x2 x1 
x2 x1 

(x2AND x1) 

x2 + x1 

(x2 OR x1) 
2x   

(NOT x2) 
1x  

(NOT x1) 

0 0 0 0 1 1 

0 1 0 1 1 0 

1 0 0 1 0 1 

1 1 1 1 0 0 

 

Sequential circuits on the other hand have more ways of definition and representation 

than combinational ones. Common representations include a state transition table 

which relates the current output and next state to the current input and current state, 

and state transition diagram which is a compact pictorial representation of the state 

transition table. In addition to the logic gates just described, sequential circuits need 

components with memory functionality, those are known as flip-flops. 

 

Given a combinational circuit represented by its truth table, (table 3-5), its canonical 

sum of product expression (or DNF) is given by the sum of all the possible product 

terms (also known as the min terms). Thus for a two variable function, the DNF is 

given by  

12312212112012 ),( xxdxxdxxdxxdxxf      3-9 

 

where the di’s are binary constants taking the values 0 or 1 depending on the function 

specification, and the over-bar on the variables indicates logic negation (NOT). We 

will revisit this expression later in the following chapters. 

 

Table 3-5: Truth table representation of a generic logic function. 

min term 

number 
x2 x1 f (x2, x1) 

0 0 0 d0 

1 0 1 d1 

2 1 0 d2 

3 1 1 d3 

 

The reader might wonder why in the tables and equation we write x2 on the left of x1 

rather than on the right. This is a matter of convention in which the juxtaposition of 

the variables is viewed as a multiple digit number, in our case this is x2x1, and the 
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variable with the smallest subscript (x1 in this case) is placed in the least significant 

digit position followed by the next higher one to its left and so on.  

 

Another matter of convention relates to the presentation of the values of the variables 

in the truth table, those are normally ordered in ascending order of binary count. This 

means that values of the variables when viewed as a multi-digit binary number, count 

in binary with the increasing row number. The equivalent count in decimal is given in 

the “min term number” column of table 3-5. We mention these two conventions here, 

namely order of the variables in the columns and order of their values in the rows, to 

avoid early on any distraction by the notation on the expense of the concepts. 

 

3.7.2 Applying Boolean algebra to modelling the regulation of gene 

expression  

Application of concepts from logic design to the modelling of the regulation of gene 

expression is best illustrated by an example. Consider the lac operon discussed in the 

previous chapter, in particular table 2-2 in chapter two describing its operation. It is 

repeated in table 3-6 below, with the terms High and Low referring to concentration 

substituted for by 1 and 0 respectively, similarly with the terms ON and OFF 

referring to the expression of the operon.  

 

Table 3-6: Truth table representation of the lac operon. 

Glucose 

x2 

Lactose 

x1 

Operon 

expression 

0 0 0 

0 1 1 

1 0 0 

1 1 0 

 

It can be expressed in the disjunctive normal form by a straightforward substitution of 

the values of the di’s in the equation to get  

1212 ),( xxxxf                   3-10 

 

This translates to the logic statement [(NOT glucose) AND lactose], which means 

that for the operon to be turned on (its genes expressed) we must have the condition 
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that there is no glucose and that there is lactose. This agrees with the explanation of 

the lac operon in chapter two. Hence representing gene regulatory functions using 

Boolean functions is a convenient and compact method that faithfully captures its 

behaviour (within the binary assumption of course). 

 

This simple example illustrates a combinational gene regulatory function, sometimes 

referred to in the context of gene regulation as a cis-regulatory function (Yuh et al. 

1998); more complicated functions are also investigated in the literature (Buchler et 

al. 2003). It should be noted that the term “combinatorial” is used in the gene 

regulation literature in place of the term “combinational” which is used in the logic 

design literature. Hence in the rest of this work we will adopt the former.   

 

Sequential logic is used to model gene regulatory functions that involve interactions 

between the different genes forming regulatory networks as discussed above. There is 

a large body of research in this area including the early work of Kauffman and of 

Thomas among others, and is still an active area of research, (Glass and Kauffman 

1973; Thomas 1973, 1991; Kauffman 1993; Faure et al. 2006).  

 

The major advantage of Boolean models is that they are intuitive and are 

straightforward to formulate, especially for combinatorial functions. However, like 

any other modelling approach, they too suffer from some major shortcomings 

(Smolen et al. 2000). The most obvious of course is that they only allow for two 

states for the variables considered. Furthermore sequential logic models usually 

assume that all the states in the system will be updated synchronously, i.e. they will 

all change at the same time, which of course is not realistic. Also the qualitative 

behaviours described by the sequential logic models do not always correspond to the 

ones predicted by continuous models, in particular in the number of steady states 

(Smolen et al. 2000). Allowing more than two states and allowing for asynchronous 

state transitions should provide a better approximation to the continuous case. 

 

Whilst allowing for only two states for a variable or a function might be a reasonable 

approximation in some situations, it is not so in others. One area of gene regulation 

where such an approximation is not accurate is in morphogenesis, which is the 

creation of shape and form in (usually) higher organisms. This is achieved by a 
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concentration gradient of chemicals generically known as morphogens where the 

highest concentration is at its point of generation and gradually decreases with 

distance from that point (Gilbert 2000). At different thresholds of this concentration, 

different genes are expressed. Hence it can be considered as a discrete variable but 

with more than two values, where the number of discrete values corresponds to the 

number of activation thresholds.  

 

Thomas and co-workers addressed this problem by assuming a number of (dummy) 

binary variables that is the same as the number of thresholds, with each being 0 when 

the original variable is below a given threshold, and 1 when it is above it as depicted 

in figure 3-8 adapted from their paper (Snoussi and Thomas 1993). Hence for a 

variable with m thresholds, we get m binary variables dividing the range of that 

variable into m + 1 regions.  

 

Figure 3-8: A multiple-valued discrete variable represented as a number of binary variables. 

 Adapted from Snoussi and Thomas (1993) 

 

In figure 3-8, the continuous variable X has three thresholds denoted by T1, T2 and T3, 

which result in three binary variables denoted X1, X2 and X3 dividing the range of the 

original variable X into four activation regions. When using such an approach in 

modelling combinatorial logic functions, we get an unnecessarily large number of 

awkward variables that do not have intuitive meaning and that make both the 

formulation and analysis more tedious. There are other methods for modelling 

discrete multiple-valued functions that are normally used in the modelling of discrete 

X1 = 0 

X3 = 0 

X2 = 0 

X1 = 1 

X3 = 0 

X2 = 0 

X1 = 1 

X3 = 0 

X2 = 1 X2 = 1 

X3 = 1 
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event systems, and include Petri nets and finite automata among others which are 

mainly applied in computer science rather than engineering (Cassandras 1993). Petri 

nets in particular are gaining wider applicability in modelling gene regulation (Comet 

et al. 2005; Chaouiya et al. 2008), however they get exceedingly complicated with 

scale (Murata 1989).  

 

We will thus develop a multiple-valued state modelling approach that naturally 

extends the use of Boolean models beyond two states, albeit with some minor 

restriction on the number of states.  The method is based on the algebraic structures 

known as finite fields, also known as Galois fields, where the binary representation is 

a special case of the multiple-valued one. We will also give it other mathematical and 

biological interpretations. Hence we first need to introduce some concepts from 

abstract algebra, which is the topic of the next chapter.  

 

Before moving to the next chapter, we need to highlight some caveats common to all 

gene regulatory models whether qualitative or quantitative. Firstly for multi-cellular 

organism (Eukaryotes), most of the models in the past were based on measurements 

in-vitro, i.e. when the cell is not within its organism, yet they are claimed to represent 

the situation in-vivo, i.e. when the cell is within the organism. Recent advances in 

analytical techniques are starting to tackle this anomaly. Secondly for single cell 

organisms (Prokaryotes and Eukaryotes), measurements are made on communities of 

cells, yet they are assumed to represent the situation for each individual cell, an 

assumption that is questionable on the basis that the measurements actually represent 

an ensemble (spatial) average (Vilar et al. 2003; Wolkenhauer et al. 2004). 

Furthermore, when modelling regulation at some level, say transcription, the effect of 

molecules at other regulatory levels e.g. translation is ignored (see figures 2-6 and 2-7 

in chapter two). Whilst sometimes justified by the difference in the speed of response 

of the different molecular processes, known as the quasi-steady state assumption, it 

does nonetheless undermine the accuracy of the models. Indeed there is a growing 

trend towards multi-scale modelling where the effects of the processes at more than 

one scale are integrated in one model (Arnold et al. 2005). 
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3.8 Summary and Conclusion 

This chapter covered two main topics, the first relates to modelling in general and the 

second to the modelling of the regulation of gene expression in particular.  

 

In the first part we introduced some theoretical concepts underlining modelling and 

some practical considerations to take into account when building models. From this 

part we concluded that the accuracy of a model is constrained by both the 

simplifications of the system behaviour in order to build the model and the 

mathematical formalism used to build it. Both of those issues are determined by the 

decisions a modeller makes when building a model, such as deciding on the level of 

abstraction of the treatment and the amount of detail to include in the model in 

addition of course to the mathematical formalism to use. In this part we also briefly 

discussed different classifications of models. We also gave a brief synopsis of the 

evolving role of mathematical modelling in biology. The main points from the first 

part of this chapter are summarised at the end of sections 3.2 and 3.4. 

 

The second part of this chapter was concerned with applying the concepts introduced 

in the first part, to the modelling of the regulation of gene expression. In particular we 

classified models based on different criteria such as the scale of the genetic network 

being modelled, the functions and information involved and other hybrid criteria, and 

demonstrated a loose equivalence between the different classifications. Up to this part 

all the treatment was conceptual in that it did not contain equations, the mathematical 

nuts and bolts. The main ideas are summarised in figure 3-4 and tables 3-1, 3-2 and 3-

3. In the remainder of the second part of this chapter we presented two types of 

models quantitative and qualitative. For each we discussed the most common method, 

namely differential equations and Boolean functions respectively and discussed their 

application to the lac operon, the well studied bacterial regulatory system. This 

demonstrated both the advantages and drawbacks of each method. Differential 

equation models have the advantage of providing quantitative information, however, 

this is undermined by the many uncertainties involved in building the model. These 

include the choice of molecules to include in the model and their mechanisms of 

interactions, and the unavailability of some parameters which thus have to be either 

estimated from the data or assumed. In addition, they often ignore spatial distribution 
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of the molecules and delays in responses. These shortcomings call for the use of 

qualitative models among which Boolean functions are the most popular. However, in 

spite of their simplicity and intuitive appeal Boolean functions also suffer from 

shortcomings, most notably that they are limited to only two values for the variables. 

This has prompted us to develop a method (to be presented in chapter five) for which 

the binary case is a special case of the multiple-valued one.  

 

Thus the outcome to take forward from this chapter is that there is a need for another 

method for modelling gene regulatory functions that can represent them as discrete 

multiple-valued functions. This method is based on concepts from abstract algebra 

and functional analysis. Hence we introduce those in the next chapter. 
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Chapter 4: Algebraic Structures 

 

 

4.1 Introduction 

The purpose of this chapter is to introduce two mathematical concepts that will be 

utilised in later development of a discrete modelling formalism for the regulation of 

gene expression, namely finite fields and vector spaces. We have indicated in the 

previous chapter that the concentration of effector molecules that activate proteins 

and the activation states of those proteins, in addition to the expression levels of 

genes can all be modelled qualitatively by discrete states. The simplest case is two 

states leading to the Boolean formalism, but they can also have more than two states 

requiring a different mathematical approach. In this chapter we introduce the 

mathematical background needed for developing such an approach. 

 

The presentation philosophy here mimics that in chapter two. In chapter two when we 

discussed the regulation of gene expression, we started by introducing some 

fundamental concepts in cell biology and then built the other concepts of the chapter 

on them. Here too, we will start by reviewing some fundamental concepts in algebra 

such as a set and a binary operation with its different properties, which we will then 

use to introduce some of the common algebraic structures. An algebraic structure is 

essentially a set with one or more binary operations defined on it the properties of 

which determine the resulting algebraic structure. We will briefly examine algebraic 

structures with one binary operation and discuss a representative example namely 

groups. We will also consider algebraic structures with two binary operations mainly 

fields, with finite fields as a representative. We will then use fields to introduce 

vector spaces which are abstractions of the familiar Euclidian space; we will abstract 

further by considering function spaces. We are mainly interested in discrete structures 

here, but most of the treatment applies to the continuous case as well.  

 

Many of the concepts discussed in this chapter are already familiar to engineers, 

albeit in a less abstract form. Hence, just as chapter two was an introduction to gene 

expression for the non-biologist, this chapter is an introduction to abstract algebra for 
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the non-mathematician. Since this work is presented to an engineering school, 

engineers are ultimately the intended readership. Consequently our approach in 

presenting the material here will be an intuitive one that demonstrates the concepts by 

concrete examples rather than by theoretical proofs and prolonged derivations 

common in mathematical treatment. Thus most of the sources used for this chapter 

are engineering ones and hence related to applications rather than theory. Among 

those is the book by Davio et al. (1978) which covers most of the material in this 

chapter, but is unfortunately not very readable and does indeed have such a reputation 

in the literature. Another book that has been consulted frequently when writing this 

chapter is that by Gallian (1994). Other books that have also been useful are those by 

Birkhoff and Bartee (1970), Rosenbrock (1970), Naylor and Sell (1982), and Strang 

(1988). It is important to remember that the purpose here is not to present the 

mathematical results for their own sake, but in order to utilise them in later 

development.  

 

4.2 Some fundamental concepts in algebra 

Modern algebra, also known as abstract algebra because of its abstract approach, 

deals with sets of objects and binary operations on those sets, unlike classical algebra 

which is concerned with numbers and formulas and the arithmetic operations on them 

(Birkhoff and Bartee 1970). Modern algebra is also concerned with abstract algebraic 

structures and their properties, both of which are in essence abstractions of the more 

common algebraic notions related to numbers. Hence the concepts presented here are 

abstractions of those that most engineers are already familiar with. 

 

One of the most fundamental concepts in abstract algebra is that of a set, which is 

merely a collection of entities. The members of the set - known as its elements – do 

not necessarily have to represent numbers, as they can indicate any abstract elements 

that usually share some common property. For example the set of genes or proteins or 

regulatory functions and so forth. The elements of a set can be discrete, termed 

countable, such as the set of integers, or may form a continuum and hence 

uncountable, such as the set of real numbers. The number of elements in a set, known 

as its cardinality, can be finite or infinite. Clearly only countable sets can have a finite 

number of elements.    
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A binary operation can be defined on a set, whereby binary means that it acts on two 

elements of the set at the same time. It is essentially a rule that involves the two 

elements to give another element. Examples of binary operations on integers and real 

numbers include addition and multiplication. If the outcome of the binary operation is 

also an element of the set, the set is said to be closed under this operation; such 

property is termed the closure property. As an example, the set of integers is closed 

under multiplication, but not under division because the quotient of the division of 

two integers is not always an integer, and hence will not belong to the original set. It 

is worth mentioning that the notion of closure is often embedded in the definition of a 

binary operation. In such a case a binary operation is defined as a function that 

assigns to each pair of elements of the set an element of the same set. According to 

this definition, addition is considered a binary operation on the integers while division 

is not. In our treatment here, however, we will consider closure as a property rather 

than as part of the definition, as we believe this will make it easier to explain some of 

the algebraic concepts involved.  

 

Depending on the properties that the set has under the given binary operation, one 

gets different algebraic structures (Gallian 1994). Such properties are well known and 

include the associative property, the existence of an identity, the existence of inverses, 

and the commutative property.  As a review of those properties, consider the elements 

a, b and c to be any arbitrary elements belonging to the set of real numbers, and 

consider the binary operation to be normal addition. Then those properties can be 

described as follows 

1. Closure property 

a + b is an element of the set 

2. Associative property 

a + (b +c) = (a + b) + c 

3. Existence of an identity (denoted by 0)  

a + 0 = 0 + a = a 

4. Existence of an inverse for an element a of the set 

There exists an element, often denoted “-a” such that  

a + (-a) = (-a) + a = 0, the identity of addition 

5. Commutative property 

a + b = b + a 
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We have used addition only as an instance of a binary operation and the set of real 

numbers as an example of a set. The properties have the same definitions for other 

binary operations and other sets, although possibly with different notations.  

 

The reader might be tempted to ask “So what? Don’t those properties always hold?” 

It is here where we need to resort to abstraction to appreciate that this is not 

necessarily the case. For example, it was pointed out above that the set of integers is 

not closed under the binary operation of division. Similarly, the associative property 

does not hold for division for the set of real numbers as demonstrated by the quotient 

10/(5/2) = 10/(2.5) = 4, which is different from the quotient of (10/5)/2 = 2/2 = 1. For 

the identity property, consider the set of even numbers under normal multiplications, 

it does not have a multiplicative identity because there is no number in the set that 

satisfies property 3 above (for multiplication). For the existence of an inverse, 

consider the set of say 2 × 2 matrices under matrix multiplication, not all such 

matrices have an inverse as singular matrices will not. Similarly matrix multiplication 

is not commutative. The key point in these counter examples is to consider the idea of 

a set and a binary operation in a wider sense than that of the usual set of real numbers 

under the normal arithmetic operations.  

 

The more properties a set has under the operation considered the progressively richer 

the algebraic structure gets. It is possible to define two binary operations on the same 

set in which case even richer structures emerge. We will consider in the next sections 

structures with one and with two binary operations,  

 

4.3 Groups 

In this section we consider algebraic structures with a single binary operation defined 

on them, in particular structures known as groups, but we will have a brief look at 

simpler structures first.  

 

Among the five properties of a binary operation outlined above, when only the first 

two are met, the algebraic structure is known as a Semigroup (Rosenbrock 1970). 

When the third property is met as well, we get a Semigroup with identity, more 

commonly known as a Monoid (Birkhoff and Bartee 1970), (table 4-1). If the first 
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four properties are all met, the algebraic structure is known as a Group, in such a case 

the identity is unique and furthermore, each element of the Group will have a unique 

inverse. Groups constitute one of the most important algebraic structures and we will 

discuss them further here. It should be noted that when the binary operation is also 

commutative, i.e. property 5 is met, we get commutative versions of each of the 

structures above, namely a commutative semigroup, a commutative monoid and a 

commutative group. The term Abelian is often used interchangeably with the term 

commutative, in which case we say for example an Abelian Group. 

 

Table 4-1: Algebraic structures with one binary operation.  

An x indicates that the property applies. 

Algebraic 

structure 

Property 

Closure Associative Identity Inverse 

Semigroup x x - - 

Monoid x x x - 

Group x x x x 

 

There are myriad examples of groups such as the set of real, rational or complex 

numbers under addition, all of which represent Abelian groups. Those sets are 

continuous; however discrete sets also form groups such as the set of integers under 

addition. Similarly the set of real, rational and complex numbers but without zero 

represent Abelian groups under multiplication whereby the identity is 1, and where 

zero is excluded because it does not have a multiplicative inverse. However, the set of 

integers (excluding zero) is not a group under multiplication because the 

multiplicative inverse of an integer is not an integer (except for 1). If we abstract from 

these common examples, we find that the set of all square matrices of dimension two 

for example form an Abelian group under addition. They do not form a group under 

multiplication however, because singular matrices will not have an inverse (they 

behave like zero does for real numbers). If the set is restricted to non-singular 

matrices then we get a group, but it is not Abelian because matrix multiplication is 

not commutative as has been indicated in the previous section.  

 

The above examples involved number systems or matrices, however, as mentioned 

earlier abstract algebra is not limited to numbers but addresses different types of 

objects. To demonstrate this, we now give an example adapted from Gallian (1994) to 

illustrate the above concepts for a more abstract case. Figure 4-1 depicts a square 
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followed by its clockwise rotation by the angles 0
o
 (i.e. no effect), 90

o
, 180

o
 and 270

o
 

from its original position, as indicated by the positions of the four letters A, B, C and 

D near its corners. Each rotation is denoted by the letter R and the angle of rotation as 

a subscript. Now form the set S = {R0
o
, R90

o
, R180

o
, R270

o
} and define the binary 

operation as the composition of two elements of the set, i.e. the outcome of the binary 

operation of two consecutive rotations is the resultant rotation.  

 

Figure 4-1: A square and the effect of its rotations by the angles 0
o
, 90

o
, 180

o
 and 270

o
 from its 

original orientation. 

 

It is clear from figure 4-1 that the identity of this binary operation is the rotation R0
o
 

as it does not affect the outcome of any other rotation, e.g. R0
o
 R90

o
 = R90

o
. It can also 

be verified from the figure that R90
o
 and R270

o
 are the inverses of each other because 

they cancel out the effect of each other, i.e. the inverse undo what the original 

operation does. So a rotation by 90
o
 followed by a rotation by 270

o
 results in a 

rotation by 360
o
 which is equivalent to the original figure without rotation, i.e. R0

o
, 

the identity of the binary operation. Also each of R0
o
 and R180

o
 is the inverse of itself, 

hence every element of the set has an inverse. The associative property can also be 

verified by inspection. Thus the set S with the binary operation as defined does 

indeed form a group. In fact it is an Abelian group since the resultant of any two 

rotations does not depend on the order they are carried out. This group is known as 

the Cyclic Rotation group of the square in the plane.  

 

The binary operation on the elements of the set is commonly represented in a tabular 

form known as the operation table or Cayley table, where the operation is indicated in 

the top left hand corner of the table and the top row and left column contain the 

elements of the set. The table shows the outcome of the binary operation on the 

elements of row i and column j in the table. The operation table for the example 

above is given by table 4-2, where for example R180
o
 (third row of the rotations) 

R0
o

 

D

#

# 

A B 

C C 

D A 

B B 

C D 

A A 

B C 

D D

#

# 

A B 

C 

R90
o
 R180

o
 R270

o
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followed by R90
o
 (second column of the rotations) yields R270

o
 (the cell at the 

intersection of the relevant row and column). Note that the order is important since 

not all groups are Abelian. For the particular group in the example above, 

examination of table 4-2 demonstrates all the properties of an Abelian group, namely 

properties 1 to 5 in the previous section. 

 

Table 4-2: Operation table for the cyclic rotation group of the square. 

Composition 

of Rotations 
R0

o
 R90

o
 R180

o
 R270

o
 

R0
o
 R0

o
 R90

o
 R180

o
 R270

o
 

R90
o
 R90

o
 R180

o
 R270

o
 R0

o
 

R180
o
 R180

o
 R270

o
 R0

o
 R90

o
 

R270
o
 R270

o
 R0

o
 R90

o
 R180

o
 

  

We can extend the set S to include reflection H around a horizontal axis passing 

through the midpoint of two sides, a similar reflection V around a vertical axis and a 

reflection around each of the diagonals denoted D1 and D2. We again define the 

binary operation as the composition of two operations, any two of the different 

reflections and rotations. We still get a group, known as the Dihedral group of the 

square (also known as its group of symmetry), although now this is not Abelian 

because not all the elements commute. For example a reflection followed by a 

rotation is in general not the same as a rotation followed by a reflection; the reader 

can verify this by attempting such compositions on figure 4-1. The two groups 

described here are instances of a more general class of groups known as the groups of 

symmetry of lattices which are commonly used in crystallography and 

stereochemistry. 

 

This example was particularly chosen to demonstrate several concepts. It is meant as 

an exercise in abstraction, to free the mind from restricting algebraic structures to 

numbers and mathematical operations.  As a consequence, it showed the elements of 

the set as rotations, but they may as well be anything else, for example electronic 

components, genes or proteins, with the binary operation defined according to the 

context. Furthermore, it demonstrates that the set underlying a group can have a finite 

number of elements and not necessarily infinite like the set of integers. This last point 

serves as a motivation for the idea of modular arithmetic discussed next. 
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4.3.1 Modular arithmetic 

Following our presentation philosophy, we will start with a concrete example and use 

it to extract the general ideas. Consider a finite set of integers say the set of four 

integers {0, 1, 2, 3}, if we use ordinary integer addition as the binary operation we 

will get numbers that do not belong to the set, i.e. the set will not be closed under 

normal addition. For example whilst 2 and 3 are elements of the set, their sum 5 is not. 

To overcome this anomalous situation we re-define addition using what is known as 

modular arithmetic. In modular arithmetic an integer is represented by the remainder 

of its division by some number (also an integer), and the normal arithmetic operations 

are performed with respect to that number. In the case of our example here this is 

performed with respect to the number of elements in the set, i.e. four, thus any 

number greater than 3 will be represented by the remainder of its division by 4. For 

example 4 will be represented by 0 because there is no remainder for the division, 5 

will be represented by the remainder 1 since 5/4 = 1 + 1/4, and so on.  

 

Formally an integer a divided by another integer m gives a quotient q and a remainder 

r (we restrict our discussion to positive integers), that is  

m

r
q

m

a
          4-1 

 

where the remainder r will always be less than m. The above equation can be 

rewritten as   

rqma           4-2 

 

This form is used to define the modular representation of integers, which means that 

an integer a modulo another integer m, is represented by an integer r which is the 

remainder (or residue) of the division of a by m and denoted by  

rrqmma )(mod        4-3 

 

 a is said to be congruent to r modulo m. It follows that all integers with the same 

remainder are considered equivalent from the point of view of modular representation.  
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This representation can be used to perform arithmetic operations on finite sets of 

integers, where addition and multiplication are now defined using the modular 

representation of the elements of the set. In such a modular arithmetic we have  

))(mod()(mod)(mod

))(mod()(mod)(mod

mbambma

mbambma




     4-4

  

When we consider the example of the set {0, 1, 2, 3} above, we find that now with 

modular representation 2 + 3 gives 1 (since 2 + 3 = 1 mod 4) which is an element of 

the set. This is indeed the case for all the elements of the set as indicated in table 4-3, 

hence the set is now closed under modular addition.  

 

Note that a similar notion of modularity is used in clock representation whereby the 

hours are calculated from the minutes modulo 60. A demonstration of that is in bus 

schedules where bus arrival times are indicated by a certain minute after the hour, 

irrespective of what the hour is, hence considered equivalent. Note also that the idea 

of re-defining arithmetic operations to suit a different context is not totally alien to 

engineers since it is used in defining the multiplication of complex variables for 

example, where the phase in addition to the magnitude is involved in the 

multiplication. 

 

Table 4-3: Operation table for addition modulo 4 on the set {0, 1, 2, 3}. 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

 

A close inspection of table 4-3 reveals that the set in question, under modular addition 

actually forms an Abelian group. The five necessary conditions are met, closure has 

just been demonstrated, associativity and commutativity are evident by inspection of 

table 4-3, and the identity is 0, only the inverses might not be obvious. To clarify that, 

when we look at every row (or column) of the table we find that the identity 0 appears 

once, the two elements at whose intersection this occurs are inverses of each other. 

From table 4-3 we can see that 1 and 3 are inverses because 1 + 3 = 3 + 1 = 0 mod 4, 

while 2 is its own inverse. Further inspection of table 4-3 indicates that it is identical 
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in structure to table 4-2, the operation table of the cyclic rotation group, except for a 

change of notation, i.e. the elements of the set and the binary operation have different 

names, but same properties. This is a further demonstration of the power of 

abstraction in that it reveals the commonality among markedly different applications.  

 

As a matter of notation, Zm refers to the set of the first m integers {0, 1, …, m-1}, 

with  addition and multiplication defined modulo m. Whilst this set is always a group 

under modular addition, this is not always the case under modular multiplication. For 

example table 4-4 shows the multiplication table for the set {0, 1, 2, 3} discussed 

above. When considering a multiplicative group we always exclude 0 because it has 

no multiplicative inverse. When we consider the rest of the elements of the set we 

find that the multiplicative identity 1 does not appear in the row or column of 2 

indicating that 2 has no multiplicative inverse. Thus the set fails one of the conditions 

for a group, and hence is not a group. The exception for this case is when the number 

m is a prime number (a number divisible only by 1 and itself), in which case the set 

Zm (excluding zero) forms a group under modular multiplication, since in such a case 

every element will have an inverse. We will not go into the details of this here.  

 

Table 4-4: Operation table for multiplication modulo 4 on the set {0, 1, 2, 3}. 

× 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 

 

It is clear from this discussion that the properties relate to the binary operation and are 

not inherent to the set, since the same set may form a group under one operation and 

not under another.  

 

4.4 Finite Fields 

When two binary operations are defined on a set, the above properties will need to 

apply to each of them separately, moreover the relation between the two operations 

introduces an additional level of richness to the algebraic structure. Depending on 
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which properties are met by the binary operations and how they relate to each other 

we get different algebraic structure, just as with the case of a single binary operation.  

Consider a set with two binary operations defined, that we will generically call 

addition and multiplication, bearing in mind that this is only a name and does not 

necessarily mean that they correspond to the usual addition and multiplication. We 

can have several cases regarding the properties of the two operations, however we 

will only consider the two most important ones: a Ring and a Field. 

 

For a set to constitute a ring under the two binary operations addition and 

multiplication - irrespective of how they are defined - the following conditions must 

be fulfilled (recalling that zero is always excluded when considering multiplication) 

 The set forms an Abelian group under addition 

 The set forms a semigroup under multiplication  

 Multiplication is distributive over addition, i.e. for a, b and c elements of the 

set, we have      

a.(b +c) = a.b + a.c 

 

When the semigroup is commutative we get a commutative ring. Examples of rings 

include the set of real, rational and complex numbers under normal addition and 

multiplication. Since a ring does not require a multiplicative inverse for elements of 

the set, it follows that the set of integers under the same operations is a ring, also the 

set of square matrices of a given dimension under matrix addition and multiplication 

is a ring, albeit a non-commutative one. Another very important type of rings is the 

polynomial ring, i.e. the set whose elements are polynomials and where the binary 

operations are polynomial addition and multiplication. The ring of integers and the 

ring of polynomials have corresponding properties and roles especially in building 

finite fields. The examples just mentioned have infinite number of elements, however 

there are rings with a finite number of elements as well, such as the set Zm with 

modular addition and multiplication discussed above. The set Z4 whose operation 

tables are presented in table 4-3 and 4-4 above is an example of the finite case. The 

multiplication table of the set, table 4-4, reveals one of the problems with rings 

namely that they can have a zero divisor. This means that there can be two non-zero 

elements in the set whose product is zero, this is the case with the number 2 as is clear 

from table 4-4. This anomalous situation restricts the usefulness of rings, in particular 
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in solving algebraic equations.  Hence there is a need for a more powerful algebraic 

structure that alleviates this problem, and this is the role of fields. 

 

For a set to constitute a field under addition and multiplication (however we define 

them), the following conditions must be fulfilled:  

 The set forms an Abelian group under addition 

 The set forms an Abelian group under multiplication 

 Multiplication is distributive over addition as explained above  

With their additional properties fields enable solving algebraic equations, and of 

particular importance among those are polynomials. The simplest polynomial is that 

of degree one, i.e. a linear equation given by 

cbax           4-5 

 

where a, b, c and the possible values of x all belong to some field  

 

To be able to solve this equation, we need first to have an additive inverse for b, 

which we will indicate here by (-b), to get 

)()( bcbbax         4-6 

)( bcax           4-7 

 

We then need a multiplicative inverse for a, that we will indicate by a
-1

, to get 

)]([11 bcaaxa           4-8 

               )]([1 bcax           4-9 

 

and hence obtain the value of x. 

 

This simple example demonstrates why fields with their property of the existence of 

both additive and multiplicative inverses for their elements, are needed for the 

solution of linear equations. We have also used the associative property with both 

addition and multiplication. 

 

Note that in the above analysis we did not place any conditions on the field in 

question, hence it applies to any field. Whilst the sets of real, rational and complex 
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numbers under normal addition and multiplication all form fields, the set of integers 

does not as it does not form a group under multiplication as discussed earlier. But 

how about a set with a finite number of integers, for example the set Zm discussed 

above, does it form a field under modulo m addition and multiplication? The answer 

depends on the value of the integer m. We have demonstrated above that Zm is always 

an Abelian group under modular addition so this part of the definition of a field is 

fulfilled. As for multiplication we have indicated that Zm is a group only when m is a 

prime. It can also be proved that modular multiplication is distributive over modular 

addition. Hence we can conclude that a set with a finite number of elements is a field 

under modular addition and multiplication when this number is a prime. Such a field 

is known as a Galois field and denoted by GF(p) where p is a prime number which is 

the number of elements of the field (also known as the order of the field), and where 

the operations on the field are defined modulo p. The definition of a finite field also 

applies when the order of the field is a power of a prime, in which case the field is 

denoted by GF(p
n
) where n is a positive integer. GF(p

n
) is known as the extension 

field of the base field GF(p), but now addition and multiplication for the extension 

field are defined differently from the modular definition of the base field.  

 

In general a finite field is denoted by GF(q) where q can be either a prime or a 

positive integer power of a prime. The elements of the field and the operations on 

them are defined using polynomials on the field, but we will not elaborate on that 

here as the treatment becomes too abstract and bears no direct impact on the 

remainder of this work. Finite fields and polynomials on them are used extensively in 

coding theory, part of communication engineering, we refer the interested reader to 

some of the classic texts in that area which we have used, for example (Berlekamp 

1968; Lin and Costello 1983; McEliece 1987).  

 

We have demonstrated the theoretical importance of fields, in particular their 

fundamental role in algebra and that is in solving equations, but why are they 

important to us here, in the context of this work? There are two reasons for that, both 

relate to our application of modelling the regulation of gene expression. Of special 

interest to us in this context are finite fields and in particular functions defined on 

them. Before we discuss those however, we need to briefly review another 

fundamental concept in mathematics, that of a function. 
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A function in its basic form is a mapping from one set called the domain of the 

function to another set called its codomain, and is denoted by f: A  B, where A is 

the domain and B the codomain. The function assigns to each member of the domain 

a single element in the codomain. The domain and codomain can be the same set, in 

which case we get  f: A  A. Engineers are familiar with the concept of functions 

where the domain and codomain are usually the set of real numbers, so we get 

functions such as f(x) = x
3
, or f(x) = sin x. However, in line with our abstract approach 

in this chapter, the sets need not represent number systems and the function does not 

have to be a mathematical formula. For example consider the set of students in a class 

as the domain of the function; define a function that assigns each student to a gender, 

so the codomain will be the set of two elements {Male, Female}, another function on 

the same set of students can assign to each student a nationality category say {UK, 

EU, International}.  

 

The domain of a function can comprise more than one set, for example we can then 

define a function that determines the funding options for a student based on their 

gender and nationality category. This last function would have those two sets as its 

domain and the set of funding options as its codomain, indicating that the function 

can map the product of several sets, known as the Cartisian product of those sets, to a 

single set. When we map the Cartisian product of two sets X and Y to a third set Z, 

we indicate this by f: X×Y  Z, where members of the domain are represented by (x, 

y) known as an ordered pair. The reader may have deduced where we are heading 

with this line of thought, and that is a binary operation as defined above is essentially 

a mapping from the Cartisian product of a set by itself, to itself (when the operation is 

closed), denoted by f: X
2
  X. The adjective “ordered” in the phrase “ordered pair” 

is important because not all operations are commutative, hence the function may give 

a different value for (x, y) than for (y, x). Note that the notion of a binary operation 

can be generalised to an n-ary operation which is an operation involving n members 

of a set (or in general members from n sets). 

 

Functions can be defined on any algebraic structure including the ones outlined above. 

Furthermore, we can have a set whose elements are functions and whose binary 

operations are defined accordingly. For example we can define the binary operation 

as function composition as we have effectively done with the rotation group of the 
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square above. This is common in mathematics and loosely means that the codomain 

of one function is used as the domain of the other function. It is interesting to note 

that when those functions map a set to itself, then the set of such functions under the 

binary operation of function composition forms a monoid, an algebraic structure 

discussed above. The identity of the monoid in this case is the identity function which 

maps each element of the domain to itself.  

 

Now we return to our motivation for studying fields, and the first reason for 

discussing them here, is restricted to finite fields and relates to functions defined on 

them. One of the powerful properties of a finite field is that any function defined on it 

can be represented by a polynomial on the field of degree less than the order of the 

field. 

 

A polynomial f(x) of degree n over a field F is given by 

k
n

k

k xaxf 
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210                4-11

  

where the coefficients ak and the values that x can take belong to F, hence the values 

of f(x) will also be in F. This is a powerful property that we will use in our 

development of a method for modelling the regulation of gene expression in the next 

chapter. 

 

It is worth mentioning at this stage that Boolean algebra which was discussed in the 

previous chapter in the context of qualitative modelling of the regulation of gene 

expression, is also an abstract algebraic structure consisting of a set with two binary 

operations. Those are the usual AND and OR operators sometimes referred to as 

Boolean product and Boolean sum respectively. One of the properties of these 

operations that may appear unfamiliar to some engineers is that they are both 

distributive over each other thus giving (for a, b and c Boolean values) 

a.(b +c) = a.b + a.c                 4-12 

a + (b.c) = (a + b).(a + c)                4-13 
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Another counterintuitive property is that known as idempotency, given by 

a +a = a                  4-14 

 

In addition Boolean algebra has a unary operation, i.e. an operation acting on only 

one element, which is the operation of complementation denoted by NOT. Such a 

structure is known as a distributive complimented lattice. We will not go through 

further details here, but the interested reader can follow the theoretical aspects of 

Boolean algebra in Birkhoff and Bartee (1970) and the applied aspects, especially to 

logic design in Wakerly (2000). 

 

We have mentioned earlier that there are two reasons why we are interested in fields 

in this work; the first has to do with functions on finite fields. The second reason is 

their role in defining vector spaces, which we explore further in the next section. 

 

4.5 Vector Spaces 

A vector space is a generalisation of the concept of the three dimensional Euclidean 

space, albeit not limited to three dimensions. As is well known to all engineering 

students, a vector has a direction and a length. The direction of the vector is 

determined by its co-ordinates; an n-dimensional vector v will have the co-ordinates 

(a1, a2, ...., an), where the ak’s belong to some field. Note that, as mentioned earlier, 

the order of the ak’s is important, for example the three dimensional vector (a, b, c) 

will in general have a different direction from (a, c, b) even though they will both 

have the same length. The length of a vector can be scaled by a factor, appropriately 

known as a scalar and belongs to the same field as the coordinates. 

 

The key point to note from this description of a vector, which is not normally stressed 

in engineering courses, is that the numbers representing the coordinates and the scalar 

belong to a field in the general sense explained in the previous section. Indeed, this 

field is not limited to the field of real numbers as is commonly practised in 

engineering courses, but can be any field as discussed above including a finite field, 

with the mathematical operations being those of the field considered. This leads us to 

the issue of what sorts of operations can we perform on a vector, and consequently 

what sort of algebraic structure emerges?  
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In line with the abstract approach employed in this chapter, we introduce an algebraic 

structure known as a vector space. As with any other structure it consists of a set with 

binary operations defined on it. In this case we have a set V of vectors, where each 

vector v consists of an n-tuple, i.e. an ordered sequence of n numbers (a1, a2, ...., an) 

from some field F as just mentioned. The elements of F are known as scalars and the 

binary operations of F apply to them. We also define two binary operations on the set 

V 

 Vector addition defined as the component-wise addition of two vectors. This 

binary operation forms an Abelian group on the set V. 

 Scalar multiplication defined as multiplying a scalar by every component of the 

vector, and satisfying the following properties were a and b are scalars and u and 

v are vectors (as a matter of convention, letters at the beginning of the alphabet 

indicate scalars and those towards the end indicate vectors and presented in bold 

face) 

1. a (b v) = (a.b) v 

2. a (u + v) = a u + a v 

3. (a + b) v = a v + b v 

4. 1 v = v 

It should be stressed that this operation involves a scalar and a vector, unlike the 

well known operation of the dot product of two vectors also commonly referred to 

as scalar multiplication.  

 

In an abstract sense, and using the notation introduced earlier, vector addition is a 

mapping f: V×V  V, and scalar multiplication is a mapping g: F×V  V 

Note that in stating the above properties we have ignored some of the subtleties 

involved, where we used the same addition symbol for two different operations, 

namely vector addition of property 2 and addition in the field F of property 3. For 

multiplication we used the dot for the multiplication of two scalars as on the right 

hand side of property 1, and juxtaposition for the multiplication of a scalar and a 

vector as on its left hand side.   

 

Since the vector space is closed under vector addition and scalar multiplication, it 

follows that the sum of any number of (scaled) vectors, known as their linear 

combination, is also a vector in the space. Conversely it can be proved that there is a 
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set of vectors {v1, v2, ...., vn} in the vector space, whereby any vector v in the space 

can be represented as a linear combination of these vectors, i.e. it can be expressed as  

nvvvv nccc  ....21 21                 4-15 

 

where the ck’s are scalars belonging to the field F.  

 

Such a set is said to span the vector space, and when it is the smallest set (i.e. the one 

with the least number of vectors) with this property, it is known as the basis of the 

vector space. An important condition on this set is that its vectors are linearly 

independent, meaning that they can never be linearly combined to give zero. In other 

words, we can not have  

021  nvvv nccc ....21                 4-16 

 

unless all the ck’s are zero 

 

A basis set is the maximal linearly independent set in the space, meaning that any set 

with more vectors will not be linearly independent. It is also the minimal spanning set, 

meaning that any set with fewer vectors will not span the entire vector space. The size 

of the basis set, i.e. its number of elements is the dimension of the vector space. 

 

As an aside, to avoid confusion we highlight a matter of notation in the use of 

brackets. The parentheses or round brackets (, ) are used to enclose the components or 

coordinates of a vector, while the braces or curly brackets {, } are used to enclose 

elements of a set, whatever that set is. So for example, the n-tuple (a1, a2, ...., an) 

represent the components of an n-dimensional vector, while {v1, v2, ...., vm}  

represents a set of m vectors, each consisting of an n-tuple as above. 

 

Recall that any vector in the Euclidean space can be represented as a linear 

combination of its coordinates indicating that they are linearly independent. But they 

also have an additional property and that is they are perpendicular, more formally 

known as orthogonal. It follows that any set of orthogonal vectors is linearly 

independent but not the vice versa. The condition for orthogonality is well known to 
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engineers, basically that any two vectors are orthogonal if their dot product (or more 

generally the inner product) is zero. 

 

The inner product is a binary operation on the set of vectors that assigns a scalar 

value from the underlying field F to the product of two vectors, i.e. it is a function 

given by h: VxV  F. We will not go through the formal properties of the inner 

product. One example of an inner product is the dot product, and for two real valued 

vectors a = (a1, a2, ...., an) and b = (b1, b2, ....,bn) is given by  





n

k

kkba
1
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As with the other algebraic structures discussed above, a vector space is an abstract 

structure as well, i.e. it does not have to correspond to a geometrical space, but can 

represent any other space. For example, consider organic molecules consisting of the 

three elements Carbon, Hydrogen and Oxygen, if we imagine they form a basis set of 

a vector space, then they will span this space as depicted in figure 4-2 (Palsson 2006). 

This means that any compound consisting of those three elements, such as a 

carbohydrate, will fall in this space and will be represented by a linear combination of 

them.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: A vector space of the three elements Carbon, Hydrogen and Oxygen. 

 

Water   

H2O 

 

C 

  H 

O 

Carbon Dioxide 

CO2 

   

Ethane 

C2H6 



105 

 

Note that this space represents the elemental composition only, hence it is known as 

the elemental space (Palsson 2006). It does not provide any information on the 

stereochemical structure of the organic molecules in the space, thus all molecules of 

the same composition will be represented by the same point in this space. We have 

included three elements so that we can visualise it, however, in principle we can 

include more elements in which case we can represent more compounds in such a 

vector space. As an extreme case, the set of all hundred or so elements in nature will 

span the space of all substances in the world! Again this demonstrates the power of 

abstraction in enabling using the same tools for approaching markedly different 

problems. 

 

An excellent source for engineers on vector spaces and linear algebra in general is the 

book by Strang (1988). It should be noted that an inner product is not required for the 

definition of a vector space as outlined above. A vector space is an algebraic concept, 

while the concept of orthogonality which is based on an inner product is a geometric 

one (Naylor and Sell 1982).  

 

We can define functions from one vector space to another as we can do with any 

other algebraic structure, of particular interest is a class of functions known as linear 

transformations. Consider two vector spaces X and Y over some field F, and define a 

function L: X  Y such that for any vectors x1, x2 and x in X, and scalar a in F we 

have 

L(x1 + x2) = L(x1) + L(x2)                 4-18 

      aL(x) = L(a x)                 4-19 

 

this function L is a linear transformation from X to Y. Any linear transformation on a 

vector space can be represented by a matrix. Linear transformations are very 

important in algebra and have many engineering applications especially in functional 

analysis, which we introduce very briefly next. 

 

4.5.1 Functional Analysis 

We have discussed above vector spaces with dimension n wherein a vector can be 

represented by an n-tuple of points from some field F. The question now is what 
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happens if those points become infinite? In this case the vector space is considered 

infinite dimensional and every vector will have an infinite number of points. When 

those points form a continuum, they can be considered as functions and we get a 

function space. These functions can be defined on any set S, the domain, but their 

values will be from the field F of the vector space. So a vector in this space will be 

defined by a function fi: S  F, where S is the domain and F the co-domain of each 

function. 

 

The concepts of linear independence and span and hence the concept of a basis will 

carry over to the infinite dimensional case. We mention two examples of a linear 

combination of vectors on a function space, namely the Taylor series and the Fourier 

series.  

 

A continuous and infinitely differentiable function f(x) can be represented by its 

Taylor series expansion which all engineers are familiar with and is given by 

...
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Or in a concise form   
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where the ck’s are calculated from the derivatives of f(x) and divided by the factorials 

as in the equation above. This is a linear combination of single term polynomials x
k
 

(sometimes referred to as monomials). Those polynomials are linearly independent 

because their linear combination cannot be identically zero (i.e. zero for all values of 

x) unless all the coefficients ck’s are zero. Hence the set of polynomials form a basis 

for functions fulfilling the conditions mentioned. The expansion of course is valid 

only in the region of the definition of the function where the series converges.  

 

The next example is the Fourier series expansion which many engineers are familiar 

with. For a periodic function f(t) with period 0, the Fourier series is given by 

)sincos()( 00
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This can also be expressed in exponential form as  

tjk

k

k ectf 0)(
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where the coefficients ak and bk or alternatively ck are calculated from the well known 

Fourier integrals. 

 

This is a linear combination of the trigonometric functions, or alternatively the 

exponentials. Again those functions are linearly independent, furthermore, they are 

orthogonal because the inner product of any two sines (or cosines) with different 

frequencies is zero. In fact, with the appropriate scaling the functions can be made 

orthonormal, recall that an orthogonal set of vectors where each vector has unit length, 

known as a unit vector, is called an orthonormal set. It should be noted however, that 

now the inner product has to be defined according to the vector space at hand, so in 

this case it is defined using integration.  

 

Many other function spaces can be defined with different domain set and co-domain 

field for the functions involved. In particular, the set on which the functions are 

defined can be a finite set and the field on which it takes its values can be a finite 

field, which is the case we are interested in for the remainder of this report. Of course 

the corresponding basis, inner product and transformations will be specified 

according to the functions involved. The study of such spaces is known as functional 

analysis, more commonly known to engineers are operator theory. An excellent 

source for engineers on this topic is the book by Naylor and Sell (1982). 

 

4.6 Summary and Conclusion 

The treatment in this chapter can be thought of as consisting of two braided strands 

constituting knowledge and skill. The first is the mathematical knowledge presented 

while the skill that we hope we have managed to develop an appreciation for and 

familiarity with is that of abstraction. Admittedly this chapter might be somewhat 

difficult to read. This is probably not as much due to the difficulty of the 

mathematical subject matter, as it is due to the abstract view of the concepts involved.  
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In presenting the mathematical subject matter we started with the very basic concepts 

and moved to more advanced ones. Mathematical concepts are often thought of as 

being built on each other in a tower of Babel fashion, therefore we followed a 

strategy by which each concept was built on the previous ones. So we used the 

concept of a single binary operation on a set to introduce groups, which we then used 

together with two binary operations on a set to introduce fields. Fields were then used 

to introduce vector spaces which were abstracted further to present function spaces. 

  

Some topics might appear not to have direct impact on our work such as groups and 

other concepts. However, groups for example are there for two reasons relating to the 

two strands of our presentation. Firstly they provided an introduction to the other 

algebraic structures that followed them, and secondly as an exercise in abstraction 

that helps to build the intuition into an application.  

It should be noted that the treatment here was very simplified and we consciously 

avoided many of the theoretical details as our purpose in this chapter was the results 

and not how they were arrived at. Consequently we deliberately avoided proofs and 

derivations.  

 

There are two main mathematical concepts that we want to take forward from this 

chapter, namely fields and vector spaces. Among the fields, finite fields are of 

particular interest to us within the context of this work for two reasons. Firstly, 

because of their powerful property by which any function on a finite field can be 

represented by a polynomial on the field. Secondly because they can be used to model 

finite sets and hence are suitable candidates for modelling multiple-valued biological 

variables such as concentrations of molecules, activation states of proteins or 

expression levels of genes. 

 

The second concept is that of a vector space which we have indicated is based on a 

field. Again of particular interest are vector spaces based on finite fields because they 

will be used in our modelling of the regulation of gene expression. Another notion 

related to vector spaces that was introduced here and that will be used in future 

development is the idea of a function space, which is essentially a space whose 

vectors are functions. We will be interested in discrete functions in particular, hence 

weaving the two main topics of this chapter a function on a finite field and a space of 
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such functions into the mathematical fabric of a vector space of functions on a finite 

field. 

 

We will use all these concepts in the next chapter to model the regulation of gene 

expression.   
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Chapter 5:  Algebraic Modelling of 

Combinatorial Gene Regulatory Functions 

 

 

5.1 Introduction 

In this chapter we present another modelling approach for combinatorial gene 

regulatory functions that results in an equation known as the Reed-Muller expansion 

of the function. We have indicated in the introduction to this work in chapter one that 

application of a new method to an existing problem should provide an advantage on 

current methods for investigating the problem. The method mentioned here allows the 

problem to be seen from a different perspective, and allows investigating other related 

problems. Using the concepts introduced in the previous chapter we will give the 

Reed-Muller expansion three different algebraic interpretations, each of which will 

give biological insight and useful tools that enable investigating different problems 

related to gene regulation.  

 

This is the main contribution of this work and it migrates concepts across disciplines 

in such a way that allows posing the problem of one discipline in the form of another 

problem in a different discipline. One of the particularly interesting applications we 

present below is posing the problem of detecting mutations in the genome of an 

organism as the problem of detecting a fault in an electronic circuit. Perhaps the 

intellectual contribution here is in the ability to detect and formulate the commonality 

between the two seemingly different problems. This entails abstracting and detaching 

the domain specific details of a problem from its domain independent core, allowing 

one to see the commonalities between problems across domains.  

 

We have indicated above that we will investigate three algebraic interpretations of the 

Reed-Muller expansion. The first interpretation is to view the Reed-Muller expansion 

as a function on a Boolean algebra, but in a way different from that mentioned in 

chapter three. The second is to view it as a polynomial on a finite field, and the third 

as a transformation on a function space, both of those were introduced in the previous 
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chapter. All three will have different biological interpretations and use. To make the 

material manageable we will cover the first two in this chapter and the third will be 

treated separately in the next chapter.  

  

5.2 The Reed-Muller Expansion 

It has been pointed out in chapter three that the levels of gene expression can be 

abstracted to two states corresponding to maximum and minimum expression or on 

and off; similarly with the different variables involved in gene regulation such as the 

activation states of a protein and the concentrations of effector molecules. Such 

binary (i.e. two valued) variables are normally represented by the values 1 and 0 

respectively, i.e. they belong to the set {0, 1}. Consequently the regulatory functions 

defined on these variables can be modelled using the rules of Boolean algebra.  

 

Here we will take a different approach to modelling these functions, based on the fact 

that the set {0, 1} with the appropriate definition of addition and multiplication 

constitute the finite field GF(2). Given that 2 is a prime number, then addition and 

multiplication can be defined modulo 2, with their operation tables shown in table 5-1. 

The number 2 is actually the smallest prime number (other than unity), consequently 

GF(2) is the smallest finite field. In fact it is the simplest since it consists of only two 

elements, the minimum required of a field, namely the additive identity 0 and the 

multiplicative identity 1. It follows then from the closure requirement of a field that 

the only non-zero element in the field which is 1, is its own additive and 

multiplicative inverse. This makes arithmetic operations on GF(2) particularly simple 

as is evident from table 5-1.  

 

Table 5-1:  Addition and multiplication modulo 2. 

+ 0 1  × 0 1 

0 0 1 0 0 0 

1 1 0 1 0 1 

 

Again as mentioned in chapter three when a binary function f of n binary variables 

denoted by f: {0, 1}
n
  {0, 1} is considered as a function on a Boolean algebra 

(whose operations are the logical AND, OR and NOT), then it can be represented by 



112 

 

the disjunctive normal form (DNF). Recall that the terms binary, Boolean and logic 

are often used interchangeably. 

 

On the other hand when the function f is considered as a function on the finite field 

GF(2) whose operations are addition and multiplication modulo 2, then it can be 

represented by another canonical form known as the Reed-Muller (RM) expansion. 

This representation has its origins in the early work of Reed and of Muller separately, 

on error correcting codes and on Boolean functions (Reed 1954; Muller 1954), 

although there are claims that it had been developed earlier in the former Soviet 

Union and Japan separately (Falkowski 1999; Stankovic and Sasao 2001). As is 

common in our approach throughout this work, we will explain the RM expansion 

using a concrete example then extend it to the general case subsequently.   

 

Consider a two variable function specified by the truth table in table 5-2, repeated 

below from chapter three where the numbering convention and the definition of min 

term were explained. The di’s in the table are binary constants taking the values 0 or 1 

according to the value of the function at the corresponding values of the variables x1 

and x2.  

 

Table 5-2: Truth table representation of a generic logic function. 

min term 

number (m) 
x2 x1 f(x2, x1) 

0 0 0 d0 

1 0 1 d1 

2 1 0 d2 

3 1 1 d3 

 

The RM expansion of this function is given by (Green 1986; Almaini 1994) 

1232211012 ),( xxaxaxaaxxf       5-1 

 

where the encircled sum symbol (also known as the ring sum) denotes modulo 2 

addition and juxtaposition of variables denotes modulo 2 multiplication, as it does in 

other multiplication.  
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There are several algorithms in the literature for computing the coefficients ai’s and 

are primarily concerned with computational efficiency (Habib 1993; McKenzie et al. 

1993; Falkowski and Rahardja 1997). Here however, we are more interested in the 

analytical rather than the numerical side of the problem as it gives interesting insight 

into its biological interpretation. We will thus use a method presented by Green (1986) 

and also by Almaini (1994).  

 

To find the coefficients ai’s, we substitute the different values of the variables x1 and 

x2 and the corresponding values of the function from table 5-2 into equation 5-1 to get  
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This can be put in matrix form to give 
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These equations compute the function values di’s from the coefficients ai’s. Normally 

however, the di’s are given as they define the function, and we want to find the RM 

expansion. Thus rearranging equations 5-2 by merely adding the first equation to the 

second and to the third, and the first three to the fourth, then solving for the ai’s 

bearing in mind that we are using modulo 2 arithmetic, we get the RM coefficients in 

terms of the truth values of the function (Green 1986; Almaini 1994) 

)1,1()0,1()1,0()0,0(
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Or in matrix form as  
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Note that equations 5-4 and 5-5 have the same form as equations 5-2 and 5-3 

respectively. 

 

We have mentioned that the RM expansion, like the DNF is a canonical 

representation of a function. In this context, a canonical representation is one that can 

uniquely express every possible function of the variables. For n binary variables there 

are 2
n
 combinations of values; when those are used as inputs to a binary function, we 

get 
n22 different possible output functions. For n = 2, there are 4 (=2

2
) different 

combinations of the inputs and 16 (=2
4
) possible functions with truth values shown in 

table 5-3.  

 

Table 5-3: All possible binary functions of two binary variables. 

m 
Inputs Outputs 

x2 x1 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

2 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

 

To clarify the numbering notation in table 5-3, we recall from chapter three that the 

order of the inputs x2x1 is chosen such that the variable with the lowest index 

corresponds to the least significant digit of a binary number. We also use the same 

convention when numbering the functions where we arrange them such that the index 

of a function represents the decimal equivalent of a four digit binary number whose 

most significant digit is f (1,1) and least significant digit is f (0,0). Thus the index 

represents the binary number given by f (1,1) f (1,0) f (0,1) f (0,0) which ranges from 

0000 to 1111 with equivalent decimal value ranging from 0 to 15 indicating the 16 

different functions in table 5-3. As an example to clarify this numbering notation, 

consider the function f7, which has the values f (1,1) = 0,  f (1,0) = 1,  f (0,1) = 1,  f 

(0,0) = 1. When written as a single binary number this becomes 0111 which has the 

decimal value 7, the index of the function. 
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We know from equation 5-1 that the RM expansion has four different terms each with 

a coefficient ai that can be either 1 or 0, hence we can have 2
4
 (=16) different 

equations each with a unique combination of coefficients and hence of terms, 

corresponding to one of the sixteen functions in table 5-3. This intuitive argument 

demonstrates that the RM expansion uniquely represents every function on the field, 

and hence is canonical. 

 

5.3 Combinatorial gene regulation as a function on a 

Boolean algebra 

The Reed-Muller expansion of a binary function is expressed in terms of the 

operations of addition and multiplication modulo 2, given in table 5-1 above. A closer 

look at the table reveals that addition modulo 2 is the same as the exclusive OR (or 

XOR) logic operator in table 5-4. XOR gives a value of 1 when only one of its two 

inputs is 1 but not both, unlike the logic OR operator which gives 1 when either or 

both of its inputs are 1 (table 5-4). Hence the relationship between the two operators 

OR and XOR is given by 

122121 xxxxxx         5-6 

 

where the plus sign on the left hand side indicates OR. The last term (x2x1) serves to 

eliminate the case when both variables are 1 simultaneously. Table 5-1 also shows 

that multiplication modulo 2 is equivalent to the logic AND operator. The two logic 

operators AND and XOR are presented in table 5-4 below.  

 

Table 5-4: The logic operators AND, XOR, OR and NOT. 

x2 x1 
x2 x1 

(x2AND x1) 
12 xx   

(x2XOR x1) 

x2 + x1 

(x2OR x1) 
11 x  

(1 XOR x1) 
1x  

(NOT x1) 

0 0 0 0 0 1 1 

0 1 0 1 1 0 0 

1 0 0 1 1 1 1 

1 1 1 0 1 0 0 

 

Comparison of the two tables (5-1 and 5-4) reveals the equivalence between the GF(2) 

operators of addition and multiplication on the one hand, and the Boolean operators 

of XOR and AND on the other. Furthermore, it is well known, and also obvious from 
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table 5-4 that the complement of a logic value can be computed using the XOR 

operator by 

11 1 xx           5-7 

 

As has been mentioned earlier, a binary function can be represented on a Boolean 

algebra by its disjunctive normal form (DNF) given by (see chapter three)  

12312212112012 ),( xxdxxdxxdxxdxxf      5-8 

 

where the di’s are the values of the function as specified by its truth table, table 5-2 

above. Now using equations 5-6 and 5-7 in equation 5-8, and using the distributive 

property of AND over XOR and the Boolean algebra rule stating that the logic 

product (i.e. AND) of a variable by its complement is 0, we get 

12312212112012 )1()1()1)(1(),( xxdxxdxxdxxdxxf    5-9 

 

After simplification this becomes 

123210220110012 )()()(),( xxddddxddxdddxxf           5-10 

 

which is the RM expansion of equation 5-1 with the coefficients given by equation 5-

4. This provides a derivation of the RM expansion without resorting to the finite field 

properties, but only using Boolean algebra; it is actually a canonical representation 

since it is uniquely derived from a canonical representation (the DNF). It also 

demonstrates that the RM expansion can be viewed as a Boolean function that uses 

XOR and AND rather than OR, AND and NOT. As an aside and on a more technical 

note, we do not even need the full properties of a Boolean algebra, a Boolean ring is 

sufficient, hence the term ring sum mentioned above. A discussion of rings is given in 

chapter four, however we will not pursue this line of thought here as it is too technical 

for our purpose, and will not provide any additional insight into the problem. 
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5.4 Biological interpretation of the Reed-Muller expansion 

Representation of binary gene regulatory functions in the literature is mostly based on 

Boolean algebra in particular the disjunctive normal form (DNF) and to a lesser 

extent the related conjunctive normal form (CNF). The biological interpretation of the 

DNF in particular has been studied extensively in the literature. Among the good 

treatments of the topic are the works of Hwa related to generic regulatory functions 

(Buchler et al. 2003), Alon for E.coli, (Setty et al. 2003; Mayo et al. 2006; Kaplan et 

al. 2008) and Davidson for higher organisms (Istrail and Davidson 2005; Oliveri et al. 

2008).  

 

Boolean algebra is based on the logical operators AND, OR and NOT which are 

linguistic based connectors that combine logic statements, hence the terms disjunctive 

and conjunctive. They have their origins in formal logic in particular the so called 

prepositional logic (Rautenberg 2006). A DNF statement essentially lists the set of 

conditions whether positive (asserted) or negative (negated) that has to exist 

simultaneously for an outcome to occur. In chapter three we gave a Boolean 

expression for the lactose operon in the form of the logic statement “Operon 

expression = [(NOT glucose) AND lactose]”, which can have the logic values - also 

known as truth values - of “True” or “False”. Its logical interpretation is that when 

both conditions, the negative one and the positive one are True, then the outcome will 

also be True. In biological terms this means that when (NOT glucose) is True AND 

lactose is True, then the Operon expression is true. In other words when there is no 

glucose and at the same time there is lactose, then the operon genes are expressed. 

This representation and the associated interpretation is intuitive and can be 

manageable for a small number of variables, however, it becomes unwieldy, awkward 

and difficult to interpret when the number of variables is large. Furthermore, it lacks 

the analytical and computational power of the familiar mathematical manipulations 

on fields, even when the truth values of True and False are expressed numerically as 

1 and 0, partly because of some of the unusual mathematical properties of Boolean 

algebra such as idempotency, see chapter four. 

 

We have demonstrated that the RM expansion provides an equivalent mathematical 

representation to the Boolean expressions, in the sense that it can express all the 
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functions that can be represented by the Boolean expressions. We now consider the 

interpretation of the RM expansion in the context of gene expression regulation.   

 

Because the RM expansion (see equation 5-1 above) is formulated in terms of the true 

variables, i.e. does not contain negated variables, the gene expression level can be 

calculated right away by substituting the values of the different variables. 

Consequently, when all the variables are zero, the RM expansion gives the basal 

expression level of the gene. Since a0 is the only coefficient in the expansion that is 

not multiplied by any of the variables (i.e. the xi’s), we can tell right away by 

inspection the normal unregulated (basal) level of expression of the gene, without 

need for substituting any values for the variables. So what sort of biological 

interpretation of the RM expansion do we get when we substitute values for the 

different variables representing the regulatory factors affecting the expression of a 

gene? As usual we will consider concrete cases from which to generalise. 

 

In their preliminary study of the transcription regulatory network of E. coli, Thieffry 

et al. (1998) studied 500 regulated genes from which they found that more than 300 

were regulated by a single transcription factor, about 150 by two factors and the rest 

by three or four factors, with only one regulated by six factors. A more 

comprehensive recent study reflected the same pattern (Martinez-Antonio et al. 2008) 

known as a power law relationship whereby the number of genes regulated is 

inversely proportional to the number of regulating transcription factors (usually raised 

to some power greater than one) (Christensen et al. 2007). This means that the 

number of genes (or operons) regulated by two transcription factors is proportional to 

1/2 while those regulated by three is proportional to 1/3, which is a lower number (of 

course multiplied by some factor), and so on. The situation is even more pronounced 

when those numbers are raised to some power greater than one. The importance of 

regulation by two factors is clear in the study by Kaplan et al. (2008) of nineteen 

sugar metabolism operons in E .coli. In light of this discussion we first consider the 

biological interpretation of the single variable RM expansion which is the most 

common case, and then consider the two variable case which is the second most 

common. It should be noted that the situation in yeast is more complicated and can 

have up to a dozen or more factors regulating a gene (Lee et al. 2002), and even 
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further complicated in higher organisms, in particular in the regulation of 

development (Davidson et al. 2002; Oliveri et al. 2008). 

 

5.4.1 One variable regulatory function 

For a one variable regulatory function the RM expansion is given by 

xaay 10                    5-11 

 

There are four (=
122 ) possible binary functions for one variable obtained by the 

different combinations of the binary values of the coefficients a0 and a1, (table 5-5). 

As explained above, a0 represents the basal transcription level of the gene which is 

then modulated by the regulatory factor x. If a0 is 0 then the gene is normally off (not 

expressed) and x is an activator that when it becomes high (e.g. high concentration) 

turns the gene on. On the other hand if a0 is 1 then the gene is normally on in which 

case x is a repressor that turns the gene off when it (the repressor) becomes high. Note 

that we are mainly interested in non-degenerate functions, i.e. those that depend on all 

the variables, in this case only one variable. The degenerate case occurs when a1 is 0 

leading to two trivial (unregulated) cases. The first case is when a0 is 1 corresponding 

to a constitutive gene which is always expressed, such as housekeeping genes (see 

chapter three). The second case is when a0 is 0 which is meaningless. 

 

Table 5-5: Different biological explanations for the one variable Reed-Muller expansion. 

Note that a0 and a1 are the coefficients in the expansion while x is the input. 

a0 a1 Equation Explanation 

0 1 xy   x is an activator 

1 1 xy 1  x is a repressor 

1 0 1y  Constitutive gene (trivial) 

0 0 0y  Meaningless case (trivial) 

 

This simple example illustrates the benefit of the RM expansion as a modelling 

approach; we were able to infer the behaviour of the regulatory function solely by 

looking at the coefficients of the equation. For the single variable case we do not even 

need to substitute any values for the variable x. The different cases are summarised in 

table 5-5.  
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5.4.2 Two variables regulatory function 

For a two variable regulatory function the RM expansion is given by 

12322110 xxaxaxaay                  5-12 

 

As explained earlier, there are sixteen different binary functions for the two binary 

variables (table 5-3). Two of these functions are trivial, namely f0 and f15 in table 5-3, 

and four functions are degenerate i.e. depend on only one of the two variables; those 

are f3, f5, f10 and f12 in table 5-3. The degenerate cases reduce to the single variable 

case discussed above. The remaining ten functions depend on both variables, and 

those are the ones we are interested in in this section. Again a0 represents the basal 

expression level of the gene (or operon), so we will examine the other three 

coefficients. To avoid degeneracy both variables must appear in the equation, which 

leads to five cases for each of the two values of a0 as analysed below.  

 

Assume that a0 is zero, i.e. the gene is normally unexpressed, then with regard to 

equation 5-12 above, the five cases are as follows 

 

Case 1: a1 = 1, a2 = 1, a3 = 0 

This leads to the following equation  

21 xxy                    5-13 

 

This indicates that either of the two inputs (regulatory variables) can switch the gene 

on, i.e. each is an activator, but when they are both present they counteract each other 

and the gene remains off. This is obvious from the exclusive OR form of the Boolean 

function in equation 5-13. This function has algebraically appealing features as it is a 

linear function, i.e. it does not include products of the variables. 

 

Case 2: a1 = 1, a2 = 0, a3 = 1 

121 xxxy                    5-14 

 

This case indicates that the presence of x1 is necessary for the activation of the gene, 

since the output cannot be 1 unless x1 is also 1. However, it is not sufficient since 

having x1 = 1 on its own does not guarantee that y = 1, because if in addition we have 
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x2 = 1, then y will be 0 in spite of x1 being 1. On the other hand, a similar argument 

reveals that x2 is sufficient on its own for repression (preventing the gene from being 

expressed, i.e. causing y = 0) because when x2 = 1, we have two cases either x1 = 1 

which gives y = 0, or x1 = 0 which also gives y = 0. However, x2 is not necessary for 

repression, since it can be achieved in the absence of x2 if x1 is also absent.  

 

A well known example of this case is the lac operon where x1 represents lactose, as 

the operon cannot be turned on unless lactose is present. However, its presence does 

not guarantee that the operon will be on because if glucose is also present the operon 

will not be turned on. On the other hand, x2 represents glucose as its presence 

guarantees repression, but repression can also occur without it if in addition lactose is 

not present. See chapter two for a detailed discussion of the lac operon. 

 

Case 3: a1 = 0, a2 = 1, a3 = 1 

122 xxxy                    5-15 

 

This case is the same as case 2, except that now x2 is the activator while x1 is the 

repressor. 

 

Case 4: a1 = 0, a2 = 0, a3 = 1 

12xxy                    5-16 

 

This is a synergistic case in which the gene cannot be switched on unless both inputs 

are present. Any one of the regulatory factors on its own is not sufficient to switch the 

gene on, both are necessary. This is essentially an AND gate. 

 

Case 5: a1 = 1, a2 = 1, a3 = 1 

1221 xxxxy                   5-17 

 

This is equivalent to an OR gate (see equation 5-6 above) where any one of the 

regulatory factors on its own is sufficient to turn the gene on. When both factors are 

available then the gene will also be switched on. The different cases are summarised 

in table 5-6. 
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Table 5-6: Different biological explanations for the two variable Reed-Muller expansion with a0 

= 0. Note that the ai’sarethecoefficientsintheexpansionwhilex1 and x2 are the inputs. 

Case a1 a2 a3 Equation Explanation 

1 1 1 0 
21 xxy   Only one or the other on its own (but 

not both together) can switch the gene 

on. 

2 1 0 1 
121 xxxy   x1 is necessary but not sufficient to turn 

the gene on 

x2 is sufficient but not necessary to turn 

the gene off. 

3 0 1 1 
122 xxxy   x2 is necessary but not sufficient to turn 

the gene on 

x1 is sufficient but not necessary to turn 

the gene off. 

4 0 0 1 
12xxy   Both are necessary together to switch 

the gene on. 

5 1 1 1 
1221 xxxxy   One or the other or both together can 

switch the gene on, (i.e. either is 

sufficient). 

 

When a0 is 1 this represents the case where the gene in normally on and the regulatory 

proteins either switch it off or keep it on. From the properties of the XOR operator we 

know that combining 1 with a variable (or a function in general) gives its complement 

as demonstrated by equation 5-7 above. Thus analysis similar to the case of a0 = 0 can 

be carried out to give similar results with the appropriate interpretation, and we get 

the second set of five cases that are counterparts to the five above. As an example, we 

consider the counterpart to case 1 above, namely 

 

Case 6: a1 = 1, a2 = 1, a3 = 0 

This leads to the following equation  

211 xxy                   5-18 

 

This indicates that either of the two inputs on its own can switch the gene off, hence 

acting as a repressor. But when they are both present at the same time they counteract 

each other and the gene remains on. 

 

The argument for a larger number of variables can be extrapolated from that for the 

two variable case as will be discussed in the next chapter. We have demonstrated one 

benefit of the RM expansion, namely that it gives a different biological insight into 
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the equation. However, this is not the only benefit, next we consider how when 

interpreted as a Boolean function with XOR operator it can facilitate the 

identification of the gene regulatory function. 

 

5.5 Application to the reverse engineering of gene 

regulatory functions  

Reverse engineering of gene regulatory function is the process by which the 

dependence of the expression of a gene on the different conditions affecting it is 

determined. The abstract form of this problem is known in the system engineering 

literature as system identification and is part of the modelling process of a system. 

The underlying idea in its basic form is that a description of the system can be 

inferred through exciting it with certain inputs and measuring the corresponding 

outputs.  

 

System identification is essentially the design of an experiment and involves several 

steps, starting with the choice of an appropriate model or equation to fit the 

measurements to, known as the model structure problem. Another step is choosing 

the inputs that will excite (or in layman’s terms, tease out) the different behavioural 

modes of the system. After applying the inputs and measuring the corresponding 

outputs, the parameters are computed using any of a variety of algorithms, each with 

its own merits and drawbacks. After that comes the problem of model validation 

whereby the model is tested against actual measurements and if unsatisfactory 

adjusted, and the process repeated until satisfactory according to preset criteria. There 

are many textbooks that discuss the different aspects of system identification; one of 

the well known ones is that by Ljung (1998).  

 

The same underlying concepts apply when identifying Boolean functions representing 

gene expression regulation (D'Haeseleer et al. 2000; Lahdesmaki et al. 2003). Again 

there are different approaches to the problem surveyed in the literature (Camacho et 

al. 2007; Cho et al. 2007). Normally in reverse engineering studies the measurements 

represent a time course of gene expression, i.e. a time series and hence they represent 

a dynamic process. Recall from chapter three that dynamics in Boolean networks are 
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modelled by sequential circuits while static relationships are modelled by 

combinatorial (combinational) ones. Note that it is the same genetic network being 

identified in either case, and there is a debate as to which is more representative of the 

network, dynamic or static measurement. Dynamic measurements describe a time 

course but of a single biological process under a fixed set of environmental conditions 

and hence the measurements of the different variables will be correlated. Static 

measurements on the other hand describe the outputs corresponding to different input 

conditions and hence can be regarded as more exhaustive in coverage, (Akutsu et al. 

1999; D'Haeseleer et al. 2000; Lahdesmaki et al. 2003). In theory, because the set of 

input combinations is finite, it can be applied exhaustively, however in practice this is 

not always possible. To identify an n variable binary function we need 2
n
 

combinations of the binary inputs, for example when n is two we have four 

combinations as outlined in table 5-2 above, however this number grows 

exponentially with n and quickly becomes impractical. Because of that, there have 

been several attempts to develop methods to reduce the number of data points needed 

while retaining an acceptable accuracy. One such algorithm is developed by Akutsu 

et al. (1999) that significantly reduces the number of data points needed for a large 

network of Boolean nodes, but requires the Boolean function for each node to be 

limited to two inputs, hence emphasising further the special value of the two input 

function. 

 

This work is concerned with combinatorial functions, and hence we will limit our 

discussion to reverse engineering based on measurements representing different input 

conditions. One study of this sort is the extensive one performed by Setty et al. (2003) 

on the lac operon, where different concentrations of the regulatory molecules were 

applied and the corresponding gene expression levels measured. 

 

In the choice of the equation to identify (i.e. the model structure), a canonical form is 

desirable because it gives a unique representation for a given function, meaning that 

different functions will have different equations. We have demonstrated two 

canonical representations for Boolean functions, the DNF and the RM expansion. As 

is clear for the DNF from equation 5-8 above, the connective for the different terms 

in the equation is the OR operator, represented by the + sign. This is why the DNF is 

often referred to in the engineering literature as the canonical sum of products, 
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because it is an “ORing” of AND terms. On the other hand, in the RM expansion the 

connective is the XOR operator as is evident from equation 5-1, and the terms being 

connected are not all AND terms, some of them consist of just a single variable, i.e. 

not a product term.  

 

The logic operator OR has poor discriminating ability which makes the DNF a bad 

choice from an identification viewpoint. On the other hand XOR has a much superior 

discriminating ability. The truth tables for both, together with the NAND operator are 

shown in table 5-7, for three inputs. 

 

Table 5-7: Comparison of the logic operators OR, NAND and XOR. 

Inputs Output 

x3 x2 x1 OR NAND XOR 

0 0 0 0 1 0 

0 0 1 1 1 1 

0 1 0 1 1 1 

0 1 1 1 1 0 

1 0 0 1 1 1 

1 0 1 1 1 0 

1 1 0 1 1 0 

1 1 1 1 0 1 

 

It is clear from table 5-7 that for the OR operator the output is unchanged for seven 

out of the eight inputs. This is a very inefficient representation of the function since it 

is unable to distinguish between seven out of the eight inputs, i.e. inspecting the 

output corresponding to the seven inputs does not reveal any information about which 

of the inputs is applied. On the other hand, the XOR operation maintains a minimum 

Hamming distance of 2 between inputs that give the same output value. Recall that 

the Hamming distance between two binary numbers is the number of digits in which 

they differ, for example 001 and 010 are different at the first two positions from the 

right, while the third digit is the same, hence they have a Hamming distance of two. 

Inspecting table 5-7, we find that for any two outputs with the same value, the 

Hamming distance between the corresponding inputs is 2. For example the inputs that 

give an output of 1 are {001, 010, 100, 111}, and the Hamming distance between any 

two of them is 2; similarly with any inputs causing an output of 0. Thus XOR 

provides a powerful building block for representation of logic functions. 
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Furthermore, the outputs of the OR and NAND operators are identical for six of the 

eight input conditions, as evident from table 5-7. This means that six of the inputs 

cannot discriminate between the two functions. In general, the operators OR, NAND, 

AND and NOR cannot distinguish between 2
n
 – 1 of the 2

n
 input combinations that 

can be applied to them, as such they are the most inefficient of all possibly binary 

operators (Hurst 1978).  

 

This discussion points to a potential benefit of the RM expansion over the DNF with 

regard to system identification, in general leading to more efficient experiments.  

 

As a clarification regarding table 5-7, in computing the truth values of the XOR 

operation the associative property is used. It is clear from the table that XOR is an 

odd parity operation, i.e. it gives a 1 in the output when the number of 1s in the input 

is odd. This applies to any number of input variables. 

 

5.6 Combinatorial gene regulation as a polynomial on a 

finite field 

The Reed-Muller expansion in equation 5-1 is a polynomial in two variables on the 

Galois field GF(2). With the appropriate analogy to real valued polynomials it can be 

given a Taylor series like interpretation, which is an expansion for real valued 

functions. So first let us review some facts about polynomials on the real numbers 

field and about the Taylor series expansion. As usual we will start with the simple 

case to be able to illustrate the concepts more clearly.  

 

The definition of a polynomial familiar to all school students is that it is a function of 

the form  

n

nxaxaxaaxf  ...)( 2

210                5-19 

  

where n is a positive integer and is the degree of the polynomial, provided that an is 

not zero. The coefficients ai, where i = 0, 1, ..., n, and the values that the variable x 

can take are all real numbers, and hence the resulting values of f(x) are also real 

numbers.  More abstractly, the coefficients and the variable can in general belong to 



127 

 

any field including finite fields, with addition and multiplication being the operations 

of that field. Consequently the values of the function will also belong to the same 

field. In fact polynomials have a fundamental role in the construction of finite fields, 

and there are other definitions of a polynomial that relate to that.  

 

Another concept that is familiar to engineering students is that of the Taylor series 

expansion. The idea is that a continuous and infinitely differentiable function f(x) can 

be represented around zero by a power series given by 
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Where f(k)(0) is the k
th

 derivative of the function evaluated at the point x = 0. This 

expansion is also known as the MacLaurin expansion, with the term Taylor expansion 

indicating the general case which includes the expansion around points other than 0 

as well. Of course this representation of the function is valid only for the range of 

values of x where the series converges. In practice only a limited number of terms is 

calculated and higher order terms are ignored which means that the function is 

approximated by a polynomial, say of degree n. 

 

For a function of two variables x and y, the Taylor series expansion around the point 

(0,0) is given by 

...])0,0()0,0(2)0,0([
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where fx and fy are the partial derivatives of the function with respect to x and y 

respectively, and the other subscripts indicate higher order partial derivatives in the 

corresponding orders. 

 

Comparing equation 5-21 with equations 5-1 and 5-4 of the RM expansion, we notice 

some similarity which we will now clarify by introducing the concept of the Boolean 

difference. 
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5.6.1 The Boolean difference 

The concept of the Boolean difference was introduced by Reed in his original paper 

of 1954 (Reed 1954) and was later developed further by him and other authors (Akers 

1959; Reed 1973; Thayse and Davio 1973). It is an adaptation of the usual derivative 

of a function on the real numbers field to the case of the Galois field of order 2, GF(2). 

We will introduce the Boolean difference here in a way that we believe is much 

simpler and more intuitive than the way it is normally introduced in the literature, and 

that is by resorting to concepts the reader is already familiar with.  

Recall that the derivative of a real function f(x) with respect to the real variable x is 

the rate of change in the value of the function corresponding to the change in the 

value of the variable, given by  
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Now on GF(2) the variable x can only take the values 0 and 1, hence the only change 

in x will be by the value of 1 giving x = 1. In this case the limit has no meaning and 

we get the Boolean difference rather than derivative. Note further that on GF(2) 

addition and subtraction are the same since 1 is its own additive inverse. Now 

applying those facts to equation 5-22 and noting that we are using modulo 2 addition, 

we get 

)()1()( xfxfxf                  5-23 

 

Using equation 5-7 above, this can be re-written in the form 

)()()( xfxfxf                   5-24 

 

This is an intuitive result since on GF(2), the variable x can only take two values 

namely a given value and its complement. Hence the Boolean difference of a function 

with respect to its variable is simply given by 

)1()0()( ffxf                   5-25 

 

It should be noted that, unlike derivatives with respect to real variables, the Boolean 

difference does not distinguish the direction of change in the function. So a change in 
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the function value from 0 to 1 cannot be distinguished from a change from 1 to 0, this 

is because as mentioned earlier, on GF(2) 1 and -1 are the same.   

 

In the case of more than one variable, like in the real valued case were we get partial 

derivatives, here we get partial differences with respect to the relevant variables. So 

the Boolean difference of the function of two variables f(x2, x1) with respect to x1 is 

obtained by changing x1 but not x2, this is given by  

)1,()0,(),( 22121
xfxfxxfx                 5-26 

 

Note that this function does not depend on x1 anymore and is only a function of x2 

which means that the second difference of f(x2, x1) with respect to x1 will be zero. It 

also means that the second difference with respect to x2 (of the first difference with 

respect to x1) will now be given by  

)]1([)]0([),( 2212 1112
 xfxfxxf xxxx              5-27 

 

Using equation 5-26 this becomes  
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Note that this function does not depend on x2 nor on x1. Thus any higher order 

differences will be zero.  Now let us look at those differences evaluated at the point 

(0,0), we get from equations 5-26 and 5-28 the following 
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Those together with the value of f (0,0) are exactly the same as equations 5-4 above 

of the coefficients of the Reed-Muller expansion. Hence the Reed-Muller expansion 

can be written as 

122112 )0,0()0,0()0,0()0,0(),(
1221

xxfxfxffxxf xxxx             5-30 

 

This has exactly the same form of the Taylor series expansion around the point (0,0) 

given by equation 5-21, noting that second order differences with respect to the same 
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variable and all higher order differences with respect to all variables are zero. Hence 

the RM expansion can be viewed as a Taylor series expansion on GF(2) taking into 

account the difference in the interpretation of course of some of the mathematical 

concepts involved. Again, strictly speaking, equation 5-30 is the MacLauren series 

expansion. One however, can expand the function around other points to get a Taylor 

series expansion (Akers 1959; Thayse 1974b), although in such a case the coefficients 

will not correspond to those of the RM expansion. Furthermore, the Taylor series 

expansion whether around the point (0,0) or any other point indicates that one can 

construct the function (i.e. identify the parameters or reverse engineer it) solely by 

knowing its Boolean differences around some point, without the need for knowing the 

actual values of the function around a set of different points (Akers 1959). This can 

be verified from equation 5-30 by using a substitution like that used for equations 5-2 

above. 

 

From a biological perspective, this Taylor series interpretation means that the 

coefficients of the RM expansion provide sensitivity information of the gene 

regulatory function with respect to the different regulating variables. More 

interestingly however, the Boolean difference can be used as a tool to detect 

mutations in the DNA that affect the function of a gene. This task can also be 

performed using the RM expansion without resorting to the Boolean difference 

because formulation of a logic function in the form of the RM expansion allows it to 

be easily tested for certain types of faults (Reddy 1972). By placing the problem of 

detecting mutations as a problem of detecting faults in a logic circuit we can utilise 

the methods used for the latter to detect such mutations. To do that we first need to 

introduce fault detection in logic circuits, then introduce mutations and then establish 

the correspondence between them that would allow us to apply the former to the latter.   

 

5.6.2 Fault detection in logic circuits 

Fault detection is a growing area within the field of logic design because of the 

increasing complexity of electronic circuits. We will only present here the concepts 

that will help us migrate some of the techniques of fault detection to the problem of 

mutation detection. No attempt is made here to give an even concise survey of the 
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field, however, certain fundamental concepts need to be introduced irrespective of 

what we will cover.  

 

There are three related concepts underlying fault diagnosis, those are failure, error 

and fault. A failure is said to occur when the circuit, or a system in general, does not 

perform the function it is designed to do. A failure is caused by an error in the 

operation of the circuit or some subpart of it, which means that it will be in a state 

other than the one it should be in. An error is caused by a fault which is a physical 

damage of some sort, such as a short circuit. Those and other concepts are covered in 

the comprehensive text by Jha and Gupta (2003) from which we take the following 

example to clarify them. Consider a motor car; a puncture in a tyre is a physical 

damage resulting in the tyre being deflated, i.e. its pressure having a different value 

(is in a different state) from the correct one, and hence the car cannot travel. By 

analogy to the concepts above, the puncture is the fault, the low pressure in the tyre is 

the error and the inability to travel is the failure. 

 

Note that whilst a failure is caused by an error which in turn is caused by a fault, the 

converse is not necessarily true. In other words, not all faults cause errors and not all 

errors cause failure. This is the principle behind fault tolerant design whose purpose 

is to ensure that the function will not be interrupted when a fault occurs, which is 

crucial in applications where maintenance is very difficult, costly or dangerous. Such 

situations occur for example in the case of a space craft in outer space, or a 

pacemaker inside a patient’s body. 

 

Other concepts related to faults which we will later translate to the context of 

mutation are the cause and effect of faults. In electronic circuits, a fault can be caused 

by problems in manufacturing thus producing a defective circuit, or it can occur 

during operation such as damage due to applying the wrong voltage, environmental 

conditions such as excessive temperature or radiation, or aging of components. 

Normally the ultimate effect of a fault is failure. 

 

Fault diagnosis involves two processes namely fault detection and fault location, i.e. 

locating the point in the circuit where the fault occurred. To be able to detect a fault, 

it must cause an error, otherwise it will not be detectable. Furthermore, faults must be 
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distinguishable from each other otherwise we might detect the occurrence of an error 

but cannot find the fault causing it. The obvious approach to finding a fault is to apply 

all the possible combinations of inputs to the circuit, measure the corresponding 

outputs and compare the results with those of the fault-free circuit to decide on the 

fault. As with the case of system identification discussed above, this approach is not 

practical as it is expensive and time consuming not to mention that applying all inputs 

to a faulty circuit can cause additional problems and faults. Thus there is a need for a 

more rational approach to the problem other than the brute force one, whereby a 

formal process can be followed in a systematic way that will produce a minimum 

number of tests (Lala 1997; Jha and Gupta 2003). There are several such methods and 

they are based on modelling both the errors and the faults. 

 

As is often the case, models can be formulated at different levels of abstraction, as 

was mentioned in chapter three in the context of modelling gene regulatory networks. 

In the case of modelling circuits for the purpose of error and fault detection, the levels 

of abstraction include investigating at the system level, subsystems, gate level (such 

as AND, OR and other gates) or the device level, where devices such as transistors 

are used to implement gates (depending on the technology). Error models are mainly 

probabilistic models concerned with the probability of occurrence of the different 

errors and the correlation between them. Fault models are representations of the 

possible physical problems that can happen on a circuit and include so called stuck-at 

faults and bridging faults among others.  

 

The stuck-at fault model which we will use in our analysis means that the logic value 

at some point or line in the circuit is stuck at some value and does not change 

irrespective of the change of other signals in the circuit affecting that point. For a 

binary circuit the point can be either stuck at 0 or stuck at 1, denoted by s-a-0 and s-a-

1 respectively (Jha and Gupta 2003). 

 

We will consider two methods for fault detection, the first which we will derive and 

discuss in some detail, is based on the Boolean difference. The second method uses 

the RM expansion, and we will only describe the principle behind it without the 

details. Both methods have the same underlying principle namely applying a carefully 

chosen set of inputs to the circuit, observing the output, and in most cases, comparing 
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it with the error free output. As mentioned above, for this approach to work the inputs 

applied have to excite the error in the presence of the fault. For example if one of the 

two inputs to an AND gate is stuck at 0, then of the four possible input combinations 

that can be applied, namely (0,0), (0,1), (1,0) and (1,1), only the  last one will cause 

an error at its output, see table 5-4. Furthermore, it should be possible to detect the 

error at the output. This is important because internal points in the circuits may not be 

accessible, such as in the case of packaged integrated circuits. 

 

Those two concepts, namely exciting the error and detecting it at the output, are 

known as error generation and error propagation respectively. The latter means that if 

the fault causes an error at an internal point in the circuit, the test inputs should be 

chosen to guarantee the propagation of this error to the output. It is worthwhile to 

note that the concepts of error generation and propagation relate to similar concepts in 

control theory known as controllability and observability. Controllability investigates 

whether the system can be forced into a given state by an input, while observability is 

concerned with whether a given state can be detected from the output, both having 

impact on the testability of a system.    

 

To derive the method for fault detection, assume that if a circuit is fault free its output 

will be f(x), and if it has a fault then it will implement a different function, call it fe(x) 

for function with error. To be able to detect the fault, the two functions must be 

different. So for a two variable function for example, we must have  

),(),( 1212 xxfxxf e                  5-31 

 

Since on GF(2) any value is its own inverse, then by adding fe(x2, x1) to both sides we 

get 

0),(),( 1212  xxfxxf e                 5-32 

 

And since on GF(2) the only other value than 0 is 1, we get the condition for 

detecting a fault in a logic circuit as  

1),(),( 1212  xxfxxf e                 5-33 
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This equation tells us the condition for the existence of an error, but this error might 

be caused by one or more faults. Since our purpose here is only to demonstrate the 

method, we will use the simplest fault model, and that is a single fault of the stuck-at 

type and that it occurs at one of the inputs. Let us assume that the fault occurs at the 

input x1 then to detect a stuck-at 0 fault we apply a value of 1 at the x1 input. Now due 

to the fault, the value of 1 will be seen by the circuit as a value of 0 and hence it will 

produce the erroneous output f(x2, 0) instead of the correct output f(x2, 1). Similarly 

for a stuck-at 1 fault we apply the value of 0 at the corresponding input. Thus to 

detect a stuck-at value fault on one of the inputs, we apply the complement of the 

value at that input to invoke an erroneous output. In this case for a stuck-at fault at the 

x1 input, equation 5-33 becomes   

1),(),( 1212  xxfxxf                 5-34 

 

On comparison with equation 5-26 above, we find that the left hand side of equation 

5-34 is the Boolean difference of the function with respect to x1 given by  

),(),(),( 1212121
xxfxxfxxfx                 5-35 

 

Hence the condition for detecting a single stuck-at fault at one of the inputs of a logic 

circuit is that the Boolean difference of the function implemented by the circuit, with 

respect to that input is 1, i.e.  

1),( 121
 xxfx                  5-36 

 

The solution of this equation on GF(2) gives the values of the inputs that will 

guarantee detection of the fault, i.e. its generation and propagation. Reed (1973) gives 

the condition for the existence of a solution to this equation. In fact he applies it to the 

more general case of multiple faults and does not limit his analysis to faults at the 

inputs (Sellers et al. 1968; Reed 1973). In general there can be more than one set of 

values for the variables that satisfies equation 5-36, each set is known as a test vector. 

For a function of many variables this procedure can be repeated for each input and 

will give a number of test vectors for each input, some of which may overlap.  

 

The second method for fault detection uses the Reed-Muller expansion directly 

without the need for resorting to the Boolean difference. As is clear from equation 5-1 
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above, the RM expansion is a modulo 2 sum of modulo 2 product terms. The modulo 

2 sum is an odd parity operation as discussed above where the XOR operation 

implements the modulo 2 addition. Hence the idea behind fault detection using the 

RM expansion is to choose the appropriate pattern of inputs that will give the 

appropriate number of 1s from the product terms that will be propagated to the output. 

This makes it very easy to test for internal faults, in fact an all 0s input and all 1s 

input can detect a fault on any of the modulo 2 adders irrespective of the function 

implemented. Similarly it is very easy to test for faults at the multipliers inputs and 

outputs. Details of the development of the method and examples of its application can 

be found in the literature (Reddy 1972; Akers 1987; Damarla and Karpovsky 1989; 

Gil and Ortega 1998). 

 

5.7 Application to the detection of mutation 

We now turn our attention to the main reason for introducing the material on fault 

detection, and that is to apply it to the detection of mutations in a gene. We will map 

the concepts introduced above in the context of electronic engineering to genetics, 

starting with the cause and effect of mutations.  

 

Recall that a mutation is a change in the DNA sequence of the cell. Generally 

speaking there are two main causes for such change. The first is a spontaneous 

change whereby a nucleotide is erroneously copied during DNA replication which is 

part of the cell division process; and is known as a replication error. The occurrence 

of such an error is very rare and its rate is normally around one base in every 10
10

, i.e. 

one base in every ten billion is miscopied. Whilst replication errors are internally 

caused, change in the DNA sequence can also be caused by external factors, 

collectively known as mutagens, i.e. mutating agents or factors causing mutation. 

This is the second possible cause of a mutation and is an induced mutation, as 

opposed to the spontaneous one caused by replication errors. Mutagens can be 

broadly classified into chemical, physical and biological factors (figure 5-1), all three 

cause either damage or alterations to the DNA. Chemical factors such as carcinogens 

react with the DNA and modify it, while physical factors such as radiation can 

damage the DNA. Biological factors such as retroviruses integrate its own DNA into 

that of the host organism hence altering its genetic makeup (Winter et al. 2002 ).  
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Figure 5-1: Causes of mutations. 

 

On an abstract level one can note a correspondence between the causes of mutations 

in a cell and the causes of faults in a circuit. Spontaneous mutations can be regarded 

as corresponding to faults occurring during manufacturing of a circuit, in the sense 

that they are both less common and occur before the fact. In other words, spontaneous 

mutations occur before the cell even starts its life and gets exposed to the different 

environmental factors. Correspondingly manufacturing defects occur before the 

circuit is even put into operation and gets exposed to adverse operating and 

environmental conditions. On the other hand, induced mutations correspond to faults 

that occur during operation of a circuit in the sense that they are caused by external 

factors.  For a cell those are factors from the environment in which the cell lives, or 

correspondingly for a circuit the conditions in which the circuit is operated. 

 

The effects of mutations will depend on their type. Mutations are broadly classified 

into point mutations and gross mutations. Gross mutations involve the alteration of a 

large chunk of DNA such as deletion or swapping parts of a chromosome with each 

other, and they can cause major problems in the organism. Point mutations on the 

other hand involve the change of a single nucleotide (Winter et al. 2002 ). In analogy 

with fault detection, we can think of point and gross mutations as single and multiple 

faults respectively. Here we will focus on the different types of point mutations and 

their effects.  

 

Mutations 

Spontaneous  Induced  

Chemical 

(e.g. carcinogens)  

Physical 

(e.g. UV radiation)  

Biological 

(e.g. retrovirus)  
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The effect a point mutation will have on the coded protein will depend on the nature 

of the mutation, and there are four major types. Recall from chapter two that a protein 

consists of a string of amino acids, each coded by a three nucleotide (or base) codon. 

Each nucleotide in the DNA can be one of four types A or G (both purines) or T or C 

(both pyrimidines), that correspond to A, G, U or C in the RNA. Let us examine the 

four main types of point mutations by considering how the change in any of the three 

nucleotides of a codon affects the resulting amino acid. We will demonstrate this 

using the amino acid Leucine (table 5-8). 

 

Table 5-8: Examples of mutations in the first, second and third base of the codon for the amino 

acid Leucine. 

1
st
 base 

2
nd

 

base 

3
rd

 

base 
Amino acid Side chain Remark 

U U A Leucine 
Hydrophobic - 

Aliphatic 
 

U U G Leucine  
Same amino 

acid 

U A A STOP codon   

A U A Isoleucine 
Hydrophobic - 

Aliphatic 
Same protein 

 

The code for Leucine is UUA, when the third base (A) changes into G, we still get the 

same amino acid, hence there is no change in the resulting amino acid. This is known 

as a silent mutation. When the second base changes from U to A, we get a STOP 

codon instead of an amino acid, and is known as a nonsense mutation. When the first 

codon changes from U to A, we get the amino acid Isoluecine, and is known as a 

missense mutation (figure 5-2).   

 

Silent mutations do not cause any change in the amino acid, they normally result in a 

synonym of the original amino acid, i.e. a different code for the same amino acid. 

This is normally the case when the mutation is in the third base of the codon. 

Missense mutations result in a different amino acid, which if of similar characteristics 

to the original one will not normally affect the resulting protein, as with the example 

of Leucine and Isoleucine above, and is known as a neutral mutation (Russell 2006). 

Some missense mutations however, may result in a major alteration of the 

conformation and hence the function of the resulting protein. A well known example 

is the mutation of glutamic acid to valine in the protein beta-globin, resulting in sickle 
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cell anaemia. Nonsense mutations result in the early termination of the translation of 

a protein, hence an incomplete protein that will not perform the intended function, 

potentially resulting in a major problem and often a different phenotype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Types of mutations and their effects on protein function. 

 

The fourth type of mutation is called a frame shift mutation, and results from 

inserting or deleting a nucleotide in the sequence of a gene; since each codon 

Mutations 

Insertion/deletion 

of bases 
Change of bases  

Frame-shift Mutation  

No effect on 

protein function  

No effect on 

protein function  

(Neutral mutation) 

Affects protein 

function  

Premature 
termination of 

protein translation 

Silent Mutation  
(no change in  

amino acid)  

Nonsense Mutation  
(change of amino acid to 

STOP codon) 

Missense Mutation  
(change of amino acid to 

another)  

Major effect on 

protein  
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comprises three nucleotides this will cause an error in the resulting sequence of amino 

acids, again leading to a mutant phenotype (Winter et al. 2002 ). 

 

Given the different types of mutations, how can one detect that a mutation actually 

occurred? The common technique is to sequence the genome and compare it with that 

of the “wild type”. Here however, we are interested in the change in function (if any) 

resulting from the mutation, rather than the details of the nucleotide alterations. It 

should be noted that when sequencing a genome for the first time, the functions of 

some genes might not be known, especially in eukaryotes. In such a case the 

sequence of a gene is compared with that of a similar one in another organism whose 

function is known, hence one can assume the function of the gene in question. This 

process is known as homology analysis and relies heavily on computational and 

bioinformatics tools, but it is not always accurate in eukaryotes.   

 

In analogy with faults in electronic circuits, and since we are interested in the 

function performed by a protein rather than its composition, then any mutation that 

does not affect this function will not be detected. Thus silent mutations are analogous 

to faults that do not cause an error. Neutral missense mutations that do not affect the 

function of the resulting protein are analogous to faults that cause an unobservable 

error. Finally any mutation that affects the function of the resulting protein such as 

some missense mutations, most nonsense and frame shift mutations are considered as 

errors causing failure. 

 

Let us now consider a simple example to demonstrate these concepts and tools. Mayo 

et al. (2006) have preformed a detailed study on the lac operon where they made 

several mutations to different sites on the DNA molecule to test how this affects the 

robustness (referred to as plasticity) of the gene regulatory function against such 

mutations. The lac operon was explained in some detail in chapter two; recall that it 

is controlled by two regulatory proteins, Lac repressor and Catabolite Activator 

Protein (CAP). Mayo et al. (2006) made mutations to the sites on the DNA molecule 

where those two proteins bind, hence altering their effect on the regulatory function. 

They made several point mutations to each site and in some experiments to both sites 

simultaneously. Since we are interested in the effect of the mutations on the function, 

the number of point mutations on a given site will not affect our study as long as it is 
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on one site at a time. In their extensive study they obtained up to twelve different 

logic functions, depending on the number and location of the mutations. Recall from 

chapter two that the operator site consists of three non-contiguous regions which 

explains the large number of functions. We will use the results of one of their 

experiments which included mutations to the binding site of Lac repressor but not 

CAP. Table 5-9 below shows the results of both the un-mutated (wild type) case and 

the mutant. In line with our notation above we have called them f(x2, x1) and fe(x2, x1) 

respectively. 

 

Table 5-9: The lac operon regulatory function for the wild type and a mutant. 

Glucose 

x2 

Lactose 

x1 

Wild type 

f(x2, x1) 

Mutant 

fe(x2, x1) 

0 0 0 0 

0 1 1 0 

1 0 0 0 

1 1 0 1 

 

This example will allow us to demonstrate two concepts, firstly how to use the RM 

expansion to model a gene regulatory function, and secondly how to detect mutations 

using the methods above. First let us consider the modelling task. Table 5-9 contains 

the truth vectors for the two regulatory functions; substituting those in equation 5-5 

above we get the coefficients for the polynomial of the RM expansion. Substituting 

the coefficients in equation 5-1, we get the two functions below.  

12112 ),( xxxxxf                   5-37 

1212 ),( xxxxfe                   5-38 

 

We will assume that we do not know which of the two factors the mutation affects. 

So we assume that we performed an experiment where for each of the two factors we 

applied the two limits, namely none and maximum as the authors have done, and 

obtained the results of fe(x2, x1) in table 5-9. Now substituting the two functions of 

equations 5-37 and 5-38 into equation 5-33 above, we get the condition of the 

existence of a mutation is  

1][][ 12121  xxxxx                 5-39 
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Noting that the addition is on GF(2), the condition now becomes 

11 x                    5-40 

 

This indicates that the error occurs only when x1 = 1, i.e. when lactose is applied. 

Indeed this can be verified from table 5-9 by inspection of both cases, the wild type 

and the mutant, where it is clear that the error occurs only when x1 = 1 indicating that 

there has been a mutation in the part responsible for lactose.  

 

Now knowing that the fault is in x1, in order to find the test vector, i.e. the values of 

the inputs that will let us observe the error in the output, we take Boolean difference 

of the original function with respect to the faulty input x1. So using f(x2, 0) and f(x2, 1) 

from equation 5-37 and substituting in equation 5-35 we get  

212 ),(
1

xxxfx                   5-41 

 

Using equation 5-36 we get 

12 x ............................................................................................................5-42 

 

which means that the error will only be observed when x2 = 1, i.e. when glucose is 

applied, which is evident from table 5-9. 

 

Hence equation 5-40 specifies the conditions for error generation, while equation 5-

42 specifies the conditions for error propagation. This is satisfactory from the point of 

view of fault detection, however, from a biological viewpoint it does not tell us much 

about the nature of the mutation. Again in fault detection we can conclude that this is 

a stuck at zero fault because it only happens when x1 = 1, implying that the system 

sees the 1 as a 0, hence stuck at zero. However, the biology is more complicated, we 

know that the mutation is related to the lactose processing but we are not sure what it 

is exactly. The biological equivalent of stuck at zero is that the cell does not effect the 

action of lactose. This can be due to a problem with Lac repressor, either the protein 

itself or the expression of the gene LacI that codes it; it can also be in its binding site 

on the DNA molecule. It so happens that in this particular case we know that the 

problem is in the binding site, but the issue to note here is that whilst mathematics 

gives us the result we need biology to interpret it. This relates to the earlier discussion 
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in chapter three about the need for the domain specific knowledge to interpret the 

mathematical results, (see figure 3-2 in chapter three). 

 

5.8 Summary and Conclusion 

In this chapter we have presented a simple development of the Reed-Muller 

expansion of a logic function. It differs from the disjunctive normal form (DNF) 

commonly used in the analysis and design of logic circuit in that it considers the 

function on the finite field GF(2) rather than on a Boolean algebra. We then gave the 

RM expansion two different interpretations on two algebraic structures. For each 

algebraic interpretation we demonstrated biological insight and functionality. Firstly 

we viewed the RM expansion as a function on Boolean algebra (a ring is actually 

sufficient) that uses AND-XOR rather than the AND-OR-NOT operations. We have 

demonstrated the superiority of the discriminating power of the XOR operation 

compared to OR, and hence its potential value in the reverse engineering of genetic 

networks. We then viewed the RM expansion as a polynomial on the field GF(2) and 

presented a simple development of the Boolean difference which is used in fault 

detection in logic circuits. Hence, we suggested that when a mutation is viewed as a 

logic fault in the combinatorial gene regulatory function, the Boolean difference can 

be used for mutation detection.  

 

This emphasises an important notion in this chapter and indeed in the whole of this 

report, and that is the power of abstraction. Namely that when one detaches the 

underlying concepts from the implementation details, one can glide the methods 

across the boundaries of the disciplines and possibly use methods that have been 

known in one field for decades but not known in the other, even though they are tools 

for investigating the same problems but in different contexts.  

 

Regarding the RM expansion as a polynomial on the field GF(2), and using the 

Boolean difference, we drew an analogy with the Taylor series expansion which is 

also a polynomial on a field. However, the Taylor series expansion can also be 

regarded as an expansion on a function space, where now for the Reed-Muller 

expansion the functions are binary, presenting another analogy between the two that 

we will explore in the next chapter. 
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Chapter 6:  A Transform Approach to 

Modelling Combinatorial Gene Regulatory 

Functions 

 

 

6.1 Introduction 

This chapter constitutes the second part of the main contribution of this work. The 

contribution is the theoretical development of a method for modelling discrete gene 

regulatory functions. In the previous chapter we have introduced the core of this 

development which is the Reed-Muller expansion for the binary case. We gave it two 

algebraic interpretations namely as a function on a Boolean algebra and as a 

polynomial on a finite field, each with a biological meaning and potential use. The 

polynomial mentioned in the second interpretation can be viewed as a Taylor series 

type of expansion, which as was discussed in chapter four can also be viewed as an 

expansion on a function space. We will start this chapter by picking up this thread 

from the last chapter and developing it further, in particular representing this 

expansion as a transform on the function space as is common in functional analysis. 

As with the other two interpretations in the previous chapter we also suggest an 

application for the transform method, namely in the emerging interdisciplinary field 

of synthetic biology. The second part of the development mentioned above builds on 

the core which is the binary case and extends it to the multiple-valued case. In 

analogy with the binary case we will give the development and possible biological 

interpretations. Unlike the binary case however, we will not go into a detailed 

mathematical argument but will only mention the results. We will give more 

emphasis to the transform form of the multiple-valued case, in particular its 

conceptual interpretation.  
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6.2 Combinatorial gene regulation as a linear 

transformation on a function space 

We have shown in the previous chapter that the Reed-Muller expansion can be 

viewed as a Taylor series type of expansion on the field GF(2). We have also seen in 

chapter four in the context of vector spaces that the Taylor series expansion for a real 

function can be regarded as a linear expansion on a function space, where the 

individual functions are given by the different powers of the independent variable x. 

The Taylor series for a real function, repeated here for convenience from the previous 

chapter (equation 5-20) where the notation has been explained, is given by  
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Alternatively it can be written as  
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where gk is the k
th
 power of x 

 

For more than one variable, say n variables, this can be written in the general form  
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where now gk is a monomial, i.e. a single product term of the variables given by  

12

1212 ...),,...,(
kkk

nnk xxxxxxg n       6-4 

 

and the ki’s in the exponent are positive integers. Now the Taylor series becomes a 

linear combination of the functions gk’s rather than a polynomial in x. An example 

with two variables x and y was given in the previous chapter (equation 5-21). With 

more than two variables, the order of the variables in the equation becomes an issue. 
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For example for three variables x, y and z, how can we order the two monomials x
2
yz 

or xy
2
z, given that both have an overall degree of four? The degree of a monomial is 

the sum of the powers of its constituents, so both terms have the same degree. This 

issue is resolved by choosing a particular ordering of the variables in the equation and 

maintaining it throughout the analysis as shall be demonstrated later (Cox et al. 2007).  

 

One should be careful not to confuse these two somewhat subtle aspects of the Taylor 

series, namely that it is both a polynomial and a linear function at the same time. The 

interpretation depends on what the linearity or otherwise is with respect to. So whilst 

equation 6-1 represents a polynomial in x or more generally in several variables, 

equation 6-3 represents a linear combination of functions (the gk’s). Hence the Taylor 

series as expressed in 6-3 is a linear combination of non-linear functions given by 

equation 6-4. Recall from chapter four that those functions are linearly independent, 

and thus they form a basis that spans the whole space of continuous and infinitely 

differentiable functions. Hence any such function can be represented by this linear 

combination, with the appropriate coefficients for the different terms.  

 

We now consider how the Reed-Muller expansion can be viewed as an expansion on 

a function space. We start with the two variable case, which we will later generalise 

to several variables. We have introduced the RM expansion in the previous chapter as 

1232211012 ),( xxaxaxaaxxf       6-5 

 

The coefficients of the RM expansion relate to the truth values of the function by the 

matrix equation (from the previous chapter)  
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which can be rewritten in compact notation as 

Tda           6-7 

 

Where a is the vector of the RM expansion coefficients given by 



146 

 

 3210 aaaaa  

 

(The prime on a indicates the transpose of the vector, this is normally denoted by the 

letter T but we chose to use the apostrophe in this case to avoid confusion with the 

matrix T.) 

 

and d is the vector of truth values of the function 

 3210 ddddd  

 

and T is a transformation matrix given by  
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It is well known from linear algebra that a linear transformation between two vector 

spaces can be represented by a matrix and conversely a matrix can represent a linear 

transformation between two vector spaces (Naylor and Sell 1982). Indeed the matrix 

T transforms the truth values to the coefficients of the RM expansion. Furthermore, 

from the previous chapter (equation 5-3), we have found that the equation that 

computes d from a has the same form as equation 6-6 above, i.e. we have 

Tad           6-9 

 

But from equation 6-7 and noting that the matrix T is invertible on GF(2), we have 

aTd
1                   6-10 

 

Hence we get  

1TT                   6-11 

 

This means that the Reed-Muller expansion can be viewed as a transformation on a 

vector space. In fact it is a transformation on a function space where the functions are 

binary valued as opposed to the real valued functions of the Taylor series expansion 
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in equation 6-1 above.  Furthermore, this transformation is not only invertible but is 

its own inverse as well.  

We can demonstrate that the RM expansion is a linear combination of functions on a 

vector space by examining table 6-1 below with all the possible two variable 

functions on GF(2), repeated from the previous chapter. We note from the table that 

any of the sixteen binary functions can be represented by a linear combination (using 

modulo 2 addition) of the functions f15, f10, f12 and f8. Each of these four functions 

corresponds to a term in the RM expansion of equation 6-5. Furthermore, those 

functions are linearly independent, i.e. none of them can be represented as a 

combination of the other three or of any other functions in the table. Hence the 

functions f15, f10, f12 and f8 span the space of all two variable binary functions, and 

form a basis for this space. Indeed, comparing the truth values of the functions f15, f10, 

f12 and f8 with the columns of the matrix in equation 6-8 reveals that they are the same. 

This is not a surprise since the post multiplication of a matrix by a vector, which is 

the operation in equation 6-6, leads to a linear combination of the columns of the 

matrix with the coefficients being the corresponding elements of the vector (Strang 

1988). It is worth noting from table 6-1 that the DNF of a function is a logic OR 

combination of the functions f1, f2, f4 and f8, which represent the min terms as 

explained in chapters three and five. They also form a basis (under logic OR) for the 

space of all two variable Boolean functions, however, working with matrices on a 

Boolean algebra is not as straightforward as on a field because of the unusual 

properties of the Boolean algebra, see chapter four for more details.  

 

Table 6-1: All possible binary functions of two binary variables. 

m 
Inputs Outputs 

x2 x1 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

2 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

 

So why is considering the RM expansion as a linear transformation on a vector space 

important? We will see shortly that this makes extending the RM expansion to several 

variables much easier, and also gives an intuitive interpretation to synthesising logic 

functions. Biologically and hence more relevant to our work, this will have 

corresponding significance in the context of synthetic biology.  
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Let us now apply these concepts to the Reed-Muller expansion, where for an n 

variable function it is given by a form similar to that of the Taylor series expansion, 

equations 6-3 and 6-4 above. 
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Note that unlike real functions, the second and higher order differences of a Boolean 

function with respect to the same variable is zero and hence we end up with a finite 

sum as opposed to the infinite series for the continuous case.  

 

We will choose a particular ordering of the variable where bkn....bk2bk1 is the n digit 

binary representation of the decimal number k whose values range from 0 to 2
n
-1. 

This is similar to the ordering of the functions above as explained in chapter five, 

table 5-3. For example, for a four variable function, k will range from 0 to (2
4
 – 1) = 

15 and will be represented by a four digit binary number. So for k = 7, its binary 

representation is 0111 and the corresponding term in equation 6-12 will be given by 

1237
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For three variables, equation 6-12 becomes 

12372361353412322110123 ),,( xxxaxxaxxaxaxxaxaxaaxxxf   
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Using the same approach as for the two variable case in the previous chapter, we get 

the corresponding equation for three variables, from which we can compute the 

coefficients ak  
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Where the monomials given by equation 6-12 represent the basis functions that span 

the space of all three variable Boolean functions, and k in the equation ranges from 0 

to 7 ( =  2
3
 - 1). We will denote the basis functions by rk, given by  
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Considering the rk’s as vectors, equation 6-14 can be written as  

 drrrrrrrra 76543210               6-16 

 

where each rk is a function representing the corresponding column vector in the 

matrix of equation 6-14, and they can be plotted against the decimal equivalent of the 

binary values of the inputs as illustrated in figure 6-1. These eight (8 = 2
3
) basis 

functions can be linearly combined to generate any of the 256 ( = 2
8
) possible binary 

functions of three variables.  

 

Note that whilst the Reed-Muller functions are linearly independent, they are not 

orthogonal. This can be verified by inspection of figure 6-1 for the three variable case, 

where the inner product of any two of the functions is not zero. This is true for any 

number of variables. See chapter four for a discussion of orthogonality. 

 

As an aside and from a purely algebraic point of view, it is to be noted that the set of 

basis functions is closed under component-wise multiplication, defined as the 

multiplication of the corresponding components of any two columns, recall that we 

are using modulo 2 multiplication. This closure means that the product of any two (or 

more) functions in this set will also be in the set. Furthermore, r0 acts as an identity 

(unity) for this operation i.e. when multiplied by any of the functions it does not 

change it. This multiplication is also associative and commutative, hence the set 

forms an algebraic structure known as a commutative monoid (see chapter four). In 
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fact the four functions r0, r1, r2 and r4 generate the other functions in the set, for 

example r3 is obtained from the product of r1 and r2 (where 3 = 1 + 2), as can be 

verified by inspection from figure 6-1 or from equation 6-14. Similarly, r5 is the 

product of r1 and r4 (where 5 =1 + 4), and so on. Note that only the functions with 

index 2
k
 where k is from 0 to n-1 generate the other functions, so in the case of n = 3, 

those are r1, r2 and r4 in addition to r0 which acts as the identity. Hence r5 is not 

generated by r2 and r3 (in spite that 5 = 2 + 3). Also note that this numbering holds 

only with that particular ordering of the rk functions, known as the Hadamard 

ordering (Hurst et al. 1985; Beauchamp 1987). For other orderings, the property that 

n+1 functions generate the rest of the 2
n
 functions will still hold but the numbering of 

the functions will be different, i.e. those will no longer be the ones with the 2
k
 index.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: The Reed-Muller functions for three variables. 

    1 

f(x) 

x 

r0 

r7 

r3 

r2 

r5 

r4 

r1 

r6 

0 
  5   6   7    4    3    2     1 



151 

 

In summary, n+1 particular RM functions generate the rest of the 2
n
 ones by 

component-wise multiplication, and the total 2
n
 RM functions generate all 

n22 binary 

functions by linear combination. 

 

We have mentioned earlier that one of the benefits of representing the RM expansion 

as a linear transformation on a vector space is that it makes it easier to extend it to a 

larger number of variables. By comparing equation 6-14 and equation 6-6 we find 

that the transformation matrix for the three variables case (call it T3) relates to that for 

the two variable case (call it T2) by  
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where 0 in the matrix above is a 4 × 4 matrix of zeros. 

 

For the general case of a function of n variables, the transformation matrix can be 

obtained in a recursive manner by (Green 1986; Almaini 1994) 
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where 0 is a matrix of zeros of dimensions (2
n-1

 × 2
n-1

) and T1 is given by 
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In the previous chapter we have considered combinatorial gene regulatory functions 

of one and two regulatory variables. Using equations 6-18 and 6-19 the RM 

expansion (and hence transform) for a larger number of variables can be determined 

directly, which is much easier than the summation of equation 6-12. There are even 

simpler ways to represent this recurrence relation, one method uses what is known as 

the Kronecker matrix product whereby the product of two matrices is defined as the 

multiplication of the second matrix by every element of the first. This means that the 

Kronecker product of an m × n matrix by an r × s matrix is an (mr) × (ns) matrix. 

Using this notion, the transformation matrix Tn for an n variable function is given by 

the Kronecker product of the matrix T1 by itself n times (Green 1990a)   
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1TTn

n

                   6-20 

 

where the encircled multiplication sign indicates the Kronecker product of two 

matrices, and the n indicates how many times the multiplication will be performed. 

Using this notation, equations 6-6 and 6-14 above can be easily reproduced. This is 

an even simpler notation than equation 6-18 and produces faster computational 

algorithms (Green 1990a).   

 

The RM expansion for the general n variable case corresponding to equation 6-18 is 

given by the linear combination of the RM functions rk 
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This equation can be used in the synthesis of logic functions, which constitutes the 

second benefit of the RM transform as alluded to earlier. We will explore this further 

in the context of synthetic biology. 

 

6.3 Application to synthetic biology 

Synthetic biology is a field of research that combines biological knowledge with 

engineering methodologies to produce biologically based systems that implement 

new biological functionalities or improve on existing one, (Endy 2005; 

Andrianantoandro et al. 2006). As an emerging interdisciplinary field it is still 

relatively in flux and has not completely morphed in terms of scope and tools. In such 

situations, it is not uncommon to have different perspectives of the field depending on 

the background of the researchers (Brent 2004; Benner and Sismour 2005; de 

Lorenzo and Danchin 2008; O'Malley et al. 2008). For scientists it is a tool for testing 

biological hypotheses, generating new ones and even attempting to create artificial 

life (Gibson et al. 2010). From an engineering perspective however, synthetic biology 

is another engineering discipline, but that uses biological “technology” for 

implementing the designed systems. Thus it employs biological components rather 

than physical ones such as electronic, mechanical or structural components.  



153 

 

Applying the engineering design methodology to the design of systems using 

biological components has produced several successful biological “devices” some 

with novel functionalities that do not exist in nature, and that may not necessarily be 

biologically useful but nonetheless serve to prove the methodology. Many of the 

devices (we use the term here in a generic sense to mean functional units) developed 

are catalogued in a standard way in an online registry [partregistry.com] that 

resembles the format of the data sheets of electronic components. Some of the notable 

examples of engineered biological systems have been reviewed by several authors 

(Heinemann and Panke 2006; Drubin et al. 2007; Marchisio and Stelling 2008). 

Indeed the design approach in synthetic biology has been particularly influenced by 

that of electronic engineering as evident in adopting such terminology as genetic 

circuits and logic design (Hasty et al. 2002), and where the design of different 

functionalities has mimicked logic design in electronic engineering. 

 

As has been mentioned in chapters three and five, logic design is usually performed 

using the disjunctive normal form (DNF) of a logic function, which leads to 

implementation using the well known logic gates AND, OR and NOT. This is also 

the approach adopted in synthetic biology; indeed by abstracting from the 

implementation technology (electronic vs biological) to the function being 

implemented, one can transfer the methodology across disciplines. In the biological 

domain several authors have suggested implementations of those gates, usually 

employing transcription factors as inputs and mRNA as the output (Guet et al. 2002; 

Dueber et al. 2004; Rodrigo and Jaramillo 2007; van Hijum et al. 2009). In such a 

case the logic gate is effected using the cis-regulatory logic of the gene, see chapter 

three and Istrail and Davidson (2005). One of the problems with the DNF approach 

however, is the so called high fan-in required of the logic gates, meaning that a large 

number of inputs is required to be connected to each gate, especially in the case of  a 

large number of variables. In the biological context this causes a problem of 

molecular overcrowding at the promoter of the gene (Buchler et al. 2003). Hence an 

alternative candidate for the design task in synthetic biology is the Reed-Muller 

expansion, in particular in its transform form. The RM transform in effect automates 

the design task and makes it transparent to the designing biologist who does not need 

to be concerned with the mathematical background involved. In addition the Reed-

Muller formulation of a logic function allows for more implementation architectures 
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than are readily available for the DNF (Green and Edkins 1978). Another feature of 

the RM approach is that it allows for modelling incompletely specified functions, i.e. 

functions for which the outputs are only known for a subset of the possible input 

combinations. Such a situation is conceivable in the context of gene expression 

regulation where some regulatory factors might not have been tested for all their 

possible values (Habib 1993; McKenzie et al. 1993; Debnath and Sasao 2000). It 

should be noted that the DNF approach also allows for modelling such a situation, but 

not in as straightforward a way as it is in the RM approach. 

 

However, the RM design approach is not without drawbacks, the most prominent is 

that it is difficult to obtain a minimal design, i.e. one that fulfils the specifications 

while maintaining a minimum number of components. This, together with the lack of 

development tools and the heavy capital and expertise already invested in the 

traditional design approach are some of the reasons why the RM approach has not 

been widely deployed in the electronics industry. The situation with synthetic biology 

however is different; the small scale of the designs makes it possible to go through an 

exhaustive search for the optimal design, or to utilise some of the somewhat difficult 

optimisation techniques of the RM expansion (Green 1990a; Green and Khuwaja 

1992; Debnath and Sasao 2000; Falkowski and Yan 2004). Furthermore, being a 

nascent industry, there has not been heavy investment yet in productivity tools and 

expertise that would otherwise prohibit exploring alternative design approaches. 

Indeed, it is well recognised in industry that success of a method or a product is not 

always based on technical merit, but often on commercial and economic factors.    

 

As is well known, in any design task, the designer is given a set of specifications and 

is required to produce a physical system that meets them. The specifications are given 

at different levels of abstraction, for example for an electronic circuit they start with 

the function to be performed by the system, but also include limits on power 

consumption, speed of response, size, weight, fault tolerance and so forth. Here we 

will limit our discussion to the functional specifications. Assume we are given the 

specification in the form of the output values desired for the different inputs, this is 

equivalent to being given the truth vector d. Hence all the designer has to do is 

multiply the truth vector by the transformation matrix of the matching dimension as 
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in equation 6-7 to obtain the linear combination as in equation 6-21 which gives the 

weighting on the basis functions needed to construct the desired function.   

 

Let us demonstrate the application of the RM transform method to synthetic biology 

by a fictitious example. Assume that a biologist wants to design a gene regulatory 

system that is controlled by two conditions, whose effects may possibly be mediated 

through transcription factors. It is required that each transcription factor on its own 

represses the gene, thus when neither is present the gene will be expressed. Assume 

further that it is also required that when both conditions are present at the same time, 

the gene is switched on, possibly due to both repressors cancelling each other’s effect. 

Thus we can use the function specifications outlined above to build a truth table for 

this system as in table 6-2 where x1 and x2 represent the transcription factors and f (x2, 

x1) the gene expression level. 

 

Table 6-2:  Specifications of a biological function to be synthesised. 

x2 x1 f (x2, x1) 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

Using the truth values in the table in equation 6-6 above we get the coefficients of the 

RM expansion, substituting those in equation 6-5 we get 

2112 1),( xxxxf                  6-22 

 

Thus the biologist gets the required mathematical function right away, just by a 

simple matrix multiplication on GF(2). Such a procedure can easily be automated to 

become completely transparent to the user, whereby they enter the truth values and 

get the coefficients. In fact there are functions in the mathematical packages 

MATLAB and Mathematica that perform finite field arithmetic. The biological aspect 

of the problem however, is more challenging than the mathematical one, i.e. how can 

one implement this function using biological components. We will discuss this issue 

later in this chapter. 
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6.3.1 The stoichiometric matrix as a linear transformation 

It is worth pointing out at this stage that this linear combination is conceptually 

similar to the stoichiometric matrix used in metabolic engineering for the analysis of 

the fluxes in a given metabolic pathway, or indeed the whole metabolic network. 

Metabolic engineering can be thought of as a precursor to synthetic biology in the 

sense that its purpose was also to alter the genetic make-up of the organism, but to 

achieve changes at the metabolic level to increase the production of certain desirable 

metabolites often by orders of magnitude (Bailey 1991; Nielsen 2001). Which part of 

a pathway to alter is decided based on the flux analysis of the different reactions in 

the pathway and the control analysis of the enzymes catalysing those reactions. The 

analysis often involves a material balance through the pathway to determine the rate 

of concentration change of the different metabolites as the fluxes through the different 

reactions of the pathway change. We review briefly the formulation of the 

stoichiometric matrix to demonstrate how it can be viewed as a linear transformation.     

Assume we have m metabolites involved in n reactions, and that metabolite i is 

involved in reaction j with the stoichiometric coefficient ij, then a straightforward 

material balance of the metabolite i through all the reactions in the pathway gives 

ninjijii
i vvvv

dt

dx
  ...........1111               6-23 

 

Where xi is the concentration of the metabolite i and vj is the flux of reaction j. Of 

course a metabolite will not normally be involved in every reaction of the pathway, so 

some of the ij’s will be zero. The other stoichiometric coefficients will be either 

positive or negative depending on whether the metabolite is a substrate or a product 

of the reaction they relate to. Equation 6-23 indicates that the rate of change of 

metabolite i will be determined by its net flux through all the metabolic reactions in 

which it is involved, whether as a substrate or a product. This same procedure applies 

to all the metabolites in the pathway and hence can be represented in matrix form 

Sv
x


dt

d
                  6-24 

 

Where x is a vector of the concentrations of the m metabolites, hence it is m 

dimensional, v is the vector of fluxes through the n reactions, thus n dimensional and 

S is the m × n matrix of stoichiometric coefficients, given by   
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Each row in the stoichiometric matrix S corresponds to a particular metabolite in the 

pathway, and every column corresponds to a reaction. So row i indicates all the 

reactions in which metabolite i is involved, while column j indicates all the 

metabolites involved in reaction j. Normally the number of reactions is larger than the 

number of metabolites because some metabolites are involved in several reactions, a 

notable example of that are metabolic precursors which are the starting points for 

many pathways. Hence the stoichiometric matrix has more columns than rows, i.e. 

n > m.  

 

We have mentioned earlier the well known algebraic fact that any matrix can 

represent a linear transformation between two vector spaces, and the stoichiometric 

matrix is no exception. It transforms the space of reactions (fluxes) to the space of 

rates of changes of metabolite concentrations, with the transformation given by 

equation 6-24. In analogy with equations 6-14 and 6-16 above, equation 6-24 can be 

written in the form 

 vssss
x

nj ...21
dt

d
                6-26 

 

Where the sj’s are the reaction vectors containing the stoichiometric coefficients of all 

the metabolites involved in the corresponding reactions. Again in analogy with 

equation 6-21, equation 6-26 can be written as  

js
x




n

j
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d

1

                  6-27 

 

Since the space of reactions is m dimensional because each reaction can have a 

maximum of m metabolites, and since we have n reactions where n > m, it follows 

that not all the vectors sj are linearly independent. The maximum possible rank of the 

stoichiometric matrix is m, however this is often not the case and the rank is less than 

m, because some of the reactions are usually linearly dependent, for example having 
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stoichiometric coefficients that are multiples of each others. This means that the basis 

set that spans the reaction space is a subset of the set of reaction vectors. The 

stoichiometric matrix is extensively studied by Palsson (2006) from an algebraic 

viewpoint with interesting metabolic implications.  

 

Our purpose from this discussion of the stoichiometric matrix and the transform form 

of the Reed-Muller expansion is to demonstrate that the concept of a linear 

transformation between two vector spaces is applicable in the biological context with 

the relevant interpretation of the spaces. The two contexts we used here are that of 

gene expression regulation and of metabolic flux analysis. 

 

It is clear from this discussion that a linear transformation can be non-square and 

hence not invertible such as the stoichiometric matrix, or it can be square and 

invertible but non-orthogonal such as the Reed-Muller transformation matrix. A 

further case is when the invertible transformation is also orthogonal. Orthogonal 

transformations have appealing features as their basis functions are intuitively similar 

to the axes of a Euclidean space, but more importantly they have computational 

advantages over non-orthogonal ones. 

 

For a real function, the orthogonal transform most familiar to engineers is the Fourier 

transform, but there are others, depending on the characteristics of the function being 

transformed. There are also several orthogonal transforms for binary functions, the 

most common and arguably intuitive one is the Walsh transform because of its 

simplicity (Beauchamp 1975). The Walsh transform can be applied to binary 

functions but requires first the transformation of the binary set {0, 1} to the binary set 

{1, -1}. Algebraic equivalence between the two under certain binary operations can 

be established, but we will not pursue this further.  

 

6.4 Extension to the multiple-valued case 

Recall that one of the aims of this work is to develop a mathematical modelling 

method to represent discrete gene regulatory function that can take more than two 

values. Toward this end we first addressed the two valued case using the Reed-Muller 

expansion which is essentially an expansion on the two element finite field GF(2). 
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Whilst the simplest finite field, there is nothing fundamentally special about GF(2), 

and hence the method can be applied to any finite field. Consequently, many of the 

concepts introduced in the previous chapter and the earlier sections of this chapter can 

be extended to the multiple-valued case with similar interpretations.  

 

6.4.1 Functions on finite fields 

Let us start by going back to the basic argument behind this work, which might have 

been obscured in the discussion of the binary case. On an abstract level, the main idea 

is that a biomolecular system (or any other system for that matter) that has multiple 

discrete states, when appropriately defined can be described as a mapping from one 

finite set to another, where the number of elements of the set corresponds to the 

number of discrete states of the biomolecular entities involved. This mapping can 

often be represented as a function on some algebraic structure, e.g. a group, a ring or 

a field. Now to move to a more concrete argument, the biomolecular system in our 

case is the regulation of gene expression and the algebraic structure is a finite field. 

 

A powerful property of a finite field is that any function on it can be uniquely 

formulated as a polynomial on the field with coefficients from the field. Furthermore, 

the degree of this polynomial is less than the order of the field, i.e. less than the 

number of discrete values of the variable involved. This has been discussed in chapter 

four where we have indicated that the order q of a finite field must be either a prime 

or a positive integer power of a prime. When the order is a prime p, modular 

arithmetic is used. However when it is a power of a prime p
n
 then modular arithmetic 

can no longer be used and addition and multiplication have to be defined differently 

(Berlekamp 1968; Lin and Costello 1983; McEliece 1987). To see this, consider the 

case of GF(4), where table 6-3 gives the modulo 4 operations while table 6-4 the 

GF(4) operations which are clearly different.  

 

Table 6-3: Addition and multiplication modulo 4. 

+ 0 1 2 3  × 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 2 3 0 1 0 1 2 3 

2 2 3 0 1 2 0 2 0 2 

3 3 0 1 2 3 0 3 2 1 
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Table 6-4: Addition and multiplication on GF(4). 

+ 0 1 2 3  × 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 2 1 0 1 2 3 

2 2 3 0 1 2 0 2 3 1 

3 3 2 1 0 3 0 3 1 2 

 

It is clear from table 6-4 that elements of a finite field can no longer be treated as 

ordinary numbers, rather they are more general mathematical entities, and that is why 

they are often denoted by symbols rather than numbers (in fact they can be regarded 

as polynomials). What matters for a finite field is not the nature of its elements but 

the structure of the field. Indeed all finite fields of a given order are isomorphic 

(mathematically equivalent), irrespective of how the elements and the two binary 

operations are defined. This is a powerful property that allows us to redefine the 

elements to suit whatever context we are using the field to model. See chapter four 

for further discussion of finite fields. 

 

Recall that we are modelling gene regulatory functions as combinatorial logic 

functions, now defined on a general Galois field GF(q) rather than on the two element 

GF(2). The theory of logic functions on finite fields is well developed in electronic 

engineering where it is termed multiple-valued logic, and has been around for some 

time (Menger 1969; Benjauthrit and Reed 1976, 1978; Pradhan 1978). The 

motivation for developing such tools for logic design was the optimisation of several 

cost factors in logic circuit design such as the number of gates, utilisation of 

microchip area, switching speed and testability (Falkowski and Lozano 2005). In 

spite of its potential benefits, multiple-valued logic design did not gain wide 

acceptance in the digital design community due to the lack of efficient design tools 

and implementation technology, among other reasons (McCluskey 1986). However, 

we believe that it can prove valuable in the modelling of multiple-valued discrete 

gene regulatory functions and can be used both as an analysis and a synthesis tool. 
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A q-valued function of a q-valued variable can be modelled as a polynomial on GF(q) 

by  

k
q

k

k xaxf 





1

0

)(  

         1

1

2

210 .... 

 q

q xaxaxaa               6-28 

 

This is sometimes referred to as the multiple-valued Reed-Muller expansion. Note 

that now the ring sum sign denotes addition on GF(q) and all the quantities in the 

equation, whether the coefficient ak or the variable x and its different powers are q-

valued. The proof of this result from an electronic engineering perspective can be 

found in the sources cited above (Menger 1969; Benjauthrit and Reed 1976, 1978; 

Pradhan 1978), and from a mathematical perspective in Lidl (1994). 

 

The counterpart of equation 6-28 in the binary case was given three different 

interpretations namely a function on a Boolean algebra and a polynomial on a finite 

field both covered in the previous chapter, and a transform on a function space 

discussed above. Recall from chapter four that a Boolean algebra is a special case of a 

distributive complemented lattice, hence by posing the multiple-valued case in such a 

framework we can give equation 6-28 a corresponding interpretation, however this 

requires a generalisation of the notions of complement, logic AND and OR. Such 

generalisations do exist (Green 1986) but the mathematics becomes awkward, and 

more importantly there is no obvious benefit from this interpretation. The second 

interpretation, namely as a polynomial on the finite field GF(q) has already been 

covered above. Interestingly, in analogy to the binary case, the concept of a difference 

operator on a finite field, akin to the Boolean difference of the previous chapter has 

been proposed by several authors leading to MacLuaren and Taylor series types of 

expansions for functions of several variables on GF(q), (Thayse 1974; Wesselkamper 

1978; Hwan Mook et al. 1998;  Stankovic et al. 2004). However it is the transform 

view of the expansion that we are interested in in this chapter, and we will introduce 

it next. 

 



162 

 

As usual, let us take a concrete example, say q = 3 known as ternary logic. This 

means that we will use modulo 3 operations as indicated in table 6-5 which makes the 

derivation easier to follow. In such a case, equation 6-28 becomes 

2

210)( xaxaaxf                  6-29 

 

Table 6-5: Addition and multiplication modulo 3. 

+ 0 1 2  × 0 1 2 

0 0 1 2 0 0 0 0 

1 1 2 0 1 0 1 2 

2 2 0 1 2 0 2 1 

 

We follow a derivation similar to the one used in chapter five, but now for a ternary 

function defined by the values of table 6-6, and presented by Green (1989).  

 

Table 6-6: Truth table for a ternary function 

Input x Output f(x) 

0 d0 

1 d1 

2 d2 

 

Substituting the different values of x and the corresponding values of f(x) from table 

6-6 into equation 6-29 and noting that we are using modulo 3 arithmetic, we get 
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or in matrix form  
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By manipulating equations 6-30 or by inverting the matrix in equation 6-31 and again 

remembering that we are using modulo 3 arithmetic, we get 
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 or in compact form 

Tda                    6-33 

 

and correspondingly 

aTd
1                   6-34 

 

It is clear from equations 6-31 and 6-32 that now the transform matrix T and its 

inverse are different, unlike the binary case (see chapter five). 

 

Again following the presentation of the two valued case in chapter five, for a function 

of n variables that are q-valued we get a polynomial on GF(q) with q
n
 terms,  
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This is similar to equation 6-12 above, but now all the coefficients and variables are 

q-valued and the summation is over GF(q). Also now qkn....qk2qk1 is the n digit q-uary 

(i.e. base q) representation of the decimal digit k whose values range from 0 to q
n 
– 1. 

The highest possible power of any particular variable in this polynomial is less than q, 

i.e. it is less than or equal to (q – 1), and consequently the highest possible power of 

any monomial (i.e. product of variables) is n.(q – 1). Again we will be faced with the 

issue of the ordering of the variables, and we will follow the same convention as with 

the binary case above, but now the order will be that of counting in base q. Let us 

take the example of a two variable ternary function, whereby we get 
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We have 9 ( = 3
2
) terms, the highest power of any variable is 2 ( = 3 – 1), and the 

ordering of the powers of the variables correspond to counting in base three as 

explained in table 6-7. 
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Table 6-7: Ordering of the variables for the two variable ternary function of equation 6-36. 

MSD = Most Significant Digit, LSD = Least Significant Digit. 

Term number 

in equation 6-36 

Corresponding ternary no. Term in equation 6-36 

MSD LSD Powers of x Monomial 

0 0 0 x2
0
x1

0
 1 

1 0 1 x2
0
x1

1
 x1 

2 0 2 x2
0
x1

2
 x1

2
 

3 1 0 x2
1
x1

0
 x2 

4 1 1 x2
1
x1

1
 x2 x1 

5 1 2 x2
1
x1

2
 x2 x1

2
 

6 2 0 x2
2
x1

0
 x2

2
 

7 2 1 x2
2
x1

1
 x2

2
x1 

8 2 2 x2
2
x1

2
 x2

2
x1

2
 

 

The two variable ternary transform can be obtained from the one variable one in a 

recursive manner, similar to the binary case (Green 1989), where T1 is the 3 × 3 

matrix in equation 6-32 above. In general for the n variable case we have 
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A readable and fairly comprehensive treatment of the general multiple-valued case 

from an engineering perspective, including the direct and inverse transformation 

matrices, some recursive relations and the arithmetic operations on several finite 

fields is given by Green and Taylor (1974). Computational aspects of the problem of 

determining the coefficients in the expansion have been addressed by several authors, 

for example (Green 1989, 1990b; Jankovic et al. 2002; Falkowski and Lozano 2005; 

Falkowski et al. 2005). Similarly, optimisation of the multiple-valued case including 

incompletely specified functions is addressed by (Green and Edkins 1978; Watanabe 

and Brayton 1993; Yunjian and Brayton 2000).  

 

Note that the matrices discussed above are linear transformations on vector spaces 

where the columns of the matrix are linearly independent vectors, hence leading to 

invertible matrices. We will not derive these results as they are essentially 

mechanistic extensions of the binary case, instead we will discuss later some of the 

conceptual issues underlying transforms and how they can be interpreted in the 
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biological context. First we consider the application of multiple-valued logic to 

synthetic biology design.  

 

6.5 Synthetic biology using multiple-valued logic 

As mentioned earlier design in synthetic biology mimics logic design in electronic 

engineering. Logic design is mostly based on binary logic due to its intuitive 

relationship to the binary states of electronic switches, ON and OFF or abstractly 1 

and 0. The same mind set has been carried over to logic design using biomolecular 

components in spite of them being free from this restriction. However, we believe 

that this need not be the case, and that other forms of logic can be utilised and are in 

fact more suitable for the description of logic systems based on biomolecules. Unlike 

electronic switches, biomolecules and biomolecular components in general can have 

more than two states. Hence, the type of logic employed in formulating the biological 

function will depend on the number of states of the “technology” or biomolecular 

components used to implement it. Working at a mathematical level of abstraction, the 

challenge then would be to formulate the biological function in the framework of 

multiple-valued logic.  

 

In fact because of their inherent multiple state capabilities, biomolecular components 

can even be used to implement non-biological functions such as those in an arithmetic 

logic unit of a microprocessor. This leads to using fewer components and hence less 

delay and routing issues between the components. Furthermore, the same number of 

inputs can produce significantly larger number of functions. For example as outlined 

in table 6-1 above, two binary inputs can produce sixteen (= 
222 ) different binary 

functions; on the other hand two ternary inputs can produce 19683 (= 
233 ) different 

ternary functions. This means that increasing the logic levels by just one, from binary 

to ternary, results in a huge increase in the number of possible functions.  

 

Thus when designing biological systems that implement non-biological functions (as 

opposed to modelling existing biological ones), such as an adder for example, there 

are several challenges faced. First is the choice of the logic levels; this will be 

dictated by the context of the problem and will lead to the mathematical formulation 
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of the required function as mentioned above. Next comes the implementation issues 

such as the choice of biomolecular components with the required number of states 

and the biomolecular mechanisms that will execute the function.  

 

For example if one wants to design a quaternary (radix 4) adder, then the natural 

choice for logic levels is four. Next we need to formulate the function implementing 

the adder, this is straight forward from the truth table of the adder and the Galois field 

approach outlined above, where in this case GF(4) would be used. Then we need to 

choose a biomolecule with four states, a suitable candidate would be a nucleotide, 

which abstractly can be viewed as a variable that can take one of four different values 

namely A, T, C and G. Next we need to identify the different “values” of the 

nucleotide (as a quaternary) variable with elements of the field GF(4); recall the 

discussion above about the abstract nature of the elements of a field. We had 

developed one such mapping, albeit in a different context but is applicable here, see 

Appendix I (Aleem et al. 2009). Perhaps the greatest challenge in this particular 

problem is how to implement the mechanism that will read the strings of nucleotides 

representing the quaternary numbers to be added, perform a bit–wise addition on 

them and give the output. This can involve RNA polymerase to read the strings and 

some other mechanism for addition, and outputting. Such an implementation is at a 

different level of abstraction, mainly closer to the biological level than to the 

mathematical one we are interested in in this work. It can be considered to fall in the 

realm of DNA computing, which is essentially computation using DNA molecules. 

This is a multi-disciplinary field with research relating to both the 

mathematical/computational aspect of DNA computing and the biological aspects. 

The former addresses such issues as the types of problems that can be solved and the 

performance of the algorithms implemented, while the latter considers issues such as 

the design of the DNA sequences involved and the different molecular manipulations 

required for implementing the computations (Amos 2005). In fact the term 

biomolecular computing is starting now to replace the term DNA computing to 

indicate that other biomolecules such as RNA are used. Other examples of 

biomolecules that can have several states include a morphogen which can have 

several concentration thresholds each triggering a different behaviour in a developing 

cell (see chapter three), and a regulatory protein which can have several activation 

states depending on how many activation sites it has. 
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Whilst we do not rule out a binary logic approach to design since many biomolecules 

do act in a binary fashion, we maintain that it is by no means the only or possibly 

even the best option in some cases. Such natural deviation in behaviour from the 

simple ON/OFF switches should be exploited in the design process.  

 

6.6 A conceptual view of transforms 

In this section we want to offer a brief discussion of the idea behind a transform, 

relying on an intuitive argument rather than mathematical derivations. The first 

question that comes to mind concerning transforms is, why do we need them in the 

first place? In other words, what is the benefit we gain from using a transform in 

analysing a problem? Well, the main benefit is that it transforms the information 

about the function from one form into another (technically termed from one domain 

into another), with the hope that the information in the new form will reveal some 

features or characteristics of the function that are difficult to discern in the original 

form. An example familiar to engineers is the Fourier transform which transforms the 

information in a signal from the time domain to the frequency domain, a process 

known as harmonic analysis. This means that the time course of the function reveals 

information about its frequency content. This is very helpful in studying many 

problems in engineering where frequency determines the response of the system. For 

example electronic engineers use harmonic analysis for the analysis and design of 

communication systems and their components such as filters and tuners. Mechanical 

engineers use it for vibration analysis of rotary machinery, and civil engineers use it 

for the analysis of structures under dynamic loads, to name but a few examples.  

 

For a transform to be useful it must retain all the information that is in the original 

function when it transforms it into the new form (or domain), otherwise some of the 

features that we are hoping to detect in the new domain might get lost in the process, 

rendering the exercise useless. Intuitively this means that since all the information is 

intact in the new domain, it should be possible to recover it back to the original 

domain; in a sense reversing the process. Mathematically this means that the 

transformation, which is a matrix in our context here, must be invertible. Now, we 

know from algebra that for a matrix to be invertible it has to have full rank, and this 

only happens when its columns (and rows) are linearly independent, hence our 
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emphasis earlier on linear independence. Note that orthogonality is not necessary for 

linear independence (although it is sufficient). Our interest in orthogonality is mainly 

for convenience since as mentioned earlier, it provides computational advantages and 

gives an intuitive feel to the transform. 

 

There is another interesting facet of invertible transforms that comes from 

information theory. Information theory started as a branch of communication 

engineering that was concerned with the information content in a signal and whether 

it is possible to recover all the original information in the transmitted signal from the 

information in the received signal, given that it had travelled through a noisy 

communication channel and hence corrupted (Shannon 1948; Cover and Thomas 

1991). The noisy channel was characterised by an error probability distribution, 

meaning that different parts of the signal (e.g. frequencies) will have different 

probabilities of error. This characterisation was used to calculate the information 

content of the received signal (which has travelled through the noisy channel) using a 

function that was called the entropy of the signal. This term was used because of the 

similarity in the form of the function to that of entropy in statistical thermodynamics. 

Indeed both entropies in a sense carry information about the reversibility of the 

process. This means that a transform such as the Reed-Muller or Fourier or any 

reversible transform in general, represents a constant entropy process from the point 

of view of information content. This matches perfectly with our earlier argument 

about the reversibility of the transform as a condition for not losing any information, 

i.e. for being able to recover all the original information, hence reversing the process.  

The transform and its inverse are often referred to as the transform pair, and they have 

even more interesting implications. Which one is the direct transform and which is 

the inverse does not matter conceptually since both contain the same information 

albeit in different forms. Nonetheless there are certain conventions, for example in the 

Fourier transform pair, the transform from time to frequency is considered the direct 

transform and from frequency to time is the inverse transform. For the Reed-Muller 

transform we will consider the transform from the truth table domain to the 

polynomial domain as the direct transform, and the reverse direction the inverse one, 

such as in equations 6-33 and 6-34 above. The direct transform of equation 6-33 uses 

the truth values of the function given by the vector d to determine the vector a of the 

coefficients in equation 6-29. This means that it determines the contribution of the 
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different terms (representing the basis functions) to the overall function, i.e. it 

analyses the function to its constituents. This is the same approach of the Fourier 

series where it uses the time function to determine the contributions of the different 

harmonics. Recall that the Fourier series (which is a special case of the Fourier 

transform) is used to breakdown a periodic function into its harmonics and is given 

by (Kraniauskas 1992) 
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Where  is the fundamental frequency of the periodic signal and 0 is its period. The 

different coefficients (the amplitudes of the waves) are given by 
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We have used the Fourier series rather than the more general Fourier transform 

merely for simplicity of presentation, and because it is in the form of a sum like the 

case of the RM expansion. The frequencies are integer multiples of the main 

frequency of the periodic function, i.e. they are its harmonics, hence the term 

harmonic analysis. The function is said to be expanded in terms of the cosines and 

sines (which are the basis functions for this case) where equations 6-39 determine the 

coefficients of the expansion representing the contributions of the different harmonics 

to the overall function as in 6-38. Equations 6-39 represent the direct transform, and 

is known as the analysis transform as it analyses or resolves f (t) to its constituents. 

On the other hand equation 6-38 represents the inverse transform and is known as the 

synthesis transform as it uses the different basis functions to build the time function.  

 

A similar interpretation applies to the Reed-Muller expansion where equation 6-33 

represents the direct or analysis transform as it breaks down the function given by d 

to the contributions from the different powers of x as in equation 6-29. Meanwhile the 

synthesis equation 6-34 or equivalently 6-29, uses the basis functions as specified by 
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the vector a to build the function vector d. So essentially the analysis transform says: 

here is a function, find out what it is made of? In systems biology this is known as a 

top-down approach (Westerhoff et al. 2009). Conversely the inverse transforms says: 

here is a set of functions, if you combine them with the coefficients (weights) given, 

what function do you end up with? Again in systems biology this is known as a 

bottom-up approach (Westerhoff et al. 2009). Hence the transform approach ties very 

elegantly with concepts from systems biology. 

 

One final note we want to make from equation 6-38 and 6-39 above, and that is the 

direct transform of equations 6-39 uses all of the information in the time function to 

determine the contribution of every single harmonic. This is evident from the limits 

of integration which cover the whole period of the function, i.e. it includes all the 

information in the time domain. On the other hand the inverse transform uses all the 

information in the frequency domain to build the function in the time domain as 

evident from the limit of the summation which goes to infinity covering all the 

harmonics. 

 

The situation with the RM expansion is a bit different, in that the direct transform 

uses some but not all the information for a given coefficient, only the last coefficient 

uses all the information as in equation 6-32. Similarly for the inverse transform in 

equation 6-31. It should be noted that there are other discrete transforms with this 

property, for example for the Walsh transform alluded to earlier, every coefficient in 

one domain carries information about the function at all its points in the other domain, 

as in the Fourier transform. 

 

6.7 Summary and Conclusion 

The core idea of this chapter is to apply the concept of transforms on function spaces 

to the case of discrete combinatorial gene regulatory functions. We started with the 

binary case building on the material of the previous chapter, where now we viewed 

the Reed-Muller expansion as a transform on a binary function space. The basis 

functions of this space are the Reed-Muller functions. For n binary variables, there 

are 2
n
 RM functions that span the space of all possible n variable binary functions; 

hence any such function can be constructed using the RM functions.  
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We then extended the concept of a transform on a function space to the multiple-

valued case. This required first defining the functions that constitute this space, and 

for that we used a powerful property of finite fields whereby every function on the 

field can be uniquely represented by a polynomial on the field. Similar to the binary 

case this resulted in a number of functions that span the space and hence can be used 

to build any function on it. For the finite field GF(q), the number of functions is q
n
 

where n is again the number of variables. Of course for both cases, the binary and 

multiple-valued, a set of functions that span a space has to be linearly independent. 

We have also presented an interesting conceptual discussion of transforms in general 

that tied material from different areas of knowledge including information theory, 

statistical thermodynamics, communication engineering and systems biology, thus 

demonstrating the immense power of abstractions and of carrying concepts and tools 

across disciplines. 

 

Interesting as it may be in its own right, a conceptual value is not sufficient to adopt a 

new method; practical benefits have to be accrued as well. The benefit can be in both 

modelling and design of combinatorial gene regulatory functions or biomolecular 

systems in general. The two concepts of modelling and design in the modern 

biological context correspond roughly to systems and synthetic biology respectively. 

We have addressed modelling implicitly in the previous chapter and design more 

explicitly in this one. 

 

Indeed for the case of synthetic biology, using a multiple-valued design approach 

would decrease the number of components required to implement a function and 

consequently the material transport involved and the associated delay. In addition it 

can implement functionalities that may be difficult to achieve using binary logic. 

However, as with any new approach, just as there are opportunities there are 

challenges as well. For a method based on finite fields there are three main challenges. 

The first is the order of the field which has to be either a prime or a power of a prime, 

this is not a major issue since among the first nine integers (1 to 9) only 6 is neither; 

and it is unlikely to design a function with more than ten discrete levels (0 to 9). The 

second challenge is that of identifying members of a finite field with some 

biomolecule or biomolecular component. Again this is not a major issue as 

demonstrated above, as one is bound to find some biomolecule with the necessary 
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number of discrete states. Manipulating such a molecule then becomes the issue, and 

indeed this is the third and major challenge confronting such a design approach. 

There have been suggestions for implementing multiple-valued logic functions in 

electronics, which may be possible to emulate in biomolecular technology. However, 

this remains to be an area of potential future research. 

 

This chapter concludes the development and interpretation of the method, we now 

want to apply it to a real life system in more depth than has been done in this and the 

previous chapter. The reason we did not get into too much detail of the biology in the 

previous chapters is that we did not want the biology to obscure the maths. But now 

that the mathematical formulation is completed we can apply it to a more detailed 

biological system, which we will do in the next chapter. 
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Chapter 7:  Application to the Modelling of 

Phage Lambda 

 

 

7.1 Introduction 

In this chapter we apply the concepts introduced in chapters five and six, to model 

gene regulation in the bacterial virus known as phage lambda. As in any modelling 

endeavour it is important to understand the system being modelled in order to be able 

to both formulate a meaningful model and better interpret the results. Thus we will 

start this chapter by presenting phage lambda and its gene regulation. This 

presentation will be rather biological in nature and builds upon the background 

material introduced in chapter two. Here we will mimic the approach taken in that 

chapter where the material was introduced through a series of questions. We first ask, 

what is phage lambda and what does it do? Answering this question, in particular the 

second part will lead us to expand on the discussion of the regulation of gene 

expression by providing more detail on the molecular interactions involved in this 

process. This will lay the foundation for answering the second question, namely how 

does phage lambda effect its response to the regulating factors? Armed with this 

knowledge we can then attack the modelling problem, where we will develop two 

models, one binary and the other multiple-valued. The difference between the two is 

not merely mathematical, but is also conceptual in nature, an issue that we will 

discuss. 

 

It is important to remember that the purpose of this chapter is not to present phage 

lambda for its own sake, but rather in order to use it as an example for the modelling 

approach discussed in this report. Hence it will not be discussed in any more detail 

than is necessary for this task. Indeed phage lambda was chosen here because it has 

been used in the scientific community as a model system, along with the lac operon, 

for the study of the regulation of gene expression. We have discussed the lac operon 

in some detail in previous chapters and here we introduce phage lambda. It should be 

pointed out that the first part of this chapter is based to a considerable extent on the 
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excellent book by Ptashne and Gann (2004). We will conclude this chapter and 

indeed this work, with a discussion of the merits and drawbacks of our method, in 

light of the application above. 

 

7.2 What is phage lambda and what does it do? 

Phage lambda is a virus that attacks bacteria. Like most viruses it consists of a single 

DNA molecule (a chromosome) encased in a protein “coat”. The phage infects the 

bacterium by injecting its chromosome in the host leaving the protein coat behind. 

The infection causes the bacterium to go into one of two possible regimes known as 

lysis and lysogeny, explained below (figure 7-1). Which regime it will go into will 

depend on the conditions in the surrounding environment. Lambda is known as a 

bacteriophage i.e. bacteria eating, because it eventually destroys the bacterium it 

infects. 

 

Lytic route 

In the lytic response to infection, the lambda chromosome is replicated and the 

protein coat it encodes is synthesised extensively using the host bacterium 

transcription machinery. The bacterium becomes quickly filled with phage lambda 

viruses (DNA enclosed in protein) and after about 45 minutes the bacterium lyses 

(breaks down) and nearly 100 new lambda phages are released. 

 

Lysogenic route 

In the lysogenic regime, the lambda chromosome is integrated into the host bacterium 

DNA and is replicated and distributed passively with it as the bacterium grows and 

divides. In this case the lambda phage is known as a prophage. This is a stable 

situation that can go on for a long time if undisturbed. However, if the bacterium is 

irradiated with ultra violet radiation, it stops growing and about 90 minutes later it 

lyses and lambda phages are released. 

 

The decision by lambda whether to lyse or lysogenise the bacterium depends on 

conditions in the surrounding environment. Normally if the nutrients are scarce, the 

bacterium will be deficient in the components required for the rapid and extensive 

lytic growth in which lambda is synthesised, hence lambda lysogenises the bacterium. 
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Phage lambda is often referred to as a genetic switch as it can switch its effect on the 

host bacterium from lysogeny to lysis in a process known as induction.  

 

 

Figure 7-1: The two possible fates of a bacterium infected by phage lambda. 

 

So how does lambda implement its effects? The answer is through the regulation of 

the right genes in its DNA (not the bacterium’s). Before we explain the details of this 

however, we briefly review the control of gene expression at the molecular level as 

this will help us elucidate how lambda implements its function and consequently help 

us in our modelling task. This review will build on material already covered in 

chapter two, some of which will be repeated here for convenience and to make it self 

contained. 

 

Infected Bacteria 

Lysogenic Lytic 

Lysogenic 

Lambda Phages 

UV Radiation 

Lysis Replication 
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7.2.1 Molecular interactions regulating gene expression 

Recall from chapter two that a gene is a long stretch of DNA that encodes for a 

protein. The expression of a gene starts with its transcription which makes a copy of 

the code in the form of RNA. This process is performed by the enzyme RNA 

polymerase and is often controlled by regulatory proteins. The first step in 

transcription is the identification of the starting site. This is done with the help of the 

promoter, which is a region of the DNA with certain sequence patterns that indicate 

to RNA polymerase that it is a promoter of a gene. It specifies the start site for 

transcription and the direction in which to proceed.  

 

There are two important components involved in the regulation of gene expression, 

DNA sites and proteins. The interaction of proteins with each other and with certain 

DNA sites determines whether the gene will be transcribed or not and the rate of this 

transcription. We can envisage several scenarios for these interactions. 

 

The most straightforward scenario is the interaction of the protein RNA polymerase 

with the promoter DNA site just described. However, the role of RNA polymerase in 

transcription can be facilitated or impeded by regulatory proteins that bind to other 

sites on the DNA called operators. For example a regulatory protein can bind to the 

operator region (which sometimes overlaps with the promoter) to block the access of 

RNA polymerase to the promoter hence preventing transcription, a mechanism 

known as exclusion. An example of this scenario is the lac repressor protein 

described in chapter two. On the other hand the regulatory protein can also bind to the 

operator region to help RNA polymerase bind to the promoter, a mechanism known 

as recruitment. An example of this scenario is the Catabolite Activation Protein (CAP) 

of the lac operon, again mentioned in chapter two although its specific action was not 

detailed there. Another scenario is when a regulatory protein binds to the operator site 

to recruit another regulatory protein that then helps recruit RNA polymerase, a 

mechanism known as cooperativity. Those four scenarios are summarised in table 7-1. 
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Table 7-1: Some scenarios of DNA/protein and protein/protein interactions. 

Scenario Protein DNA site Effect Mechanism 

1 RNA polymerase Promoter Straightforward 

Transcription 

- 

2 Regulatory 
protein 

Operator or promoter Prevent 
transcription 

Exclusion 

3 Regulatory 

protein & RNA 

polymerase 

Operator (for reg. 

Prot), promoter (for 

RNA pol.) 

Help start 

transcription 

Recruitment 

4 Two regulatory 

proteins 

Two operator sites Help recruit 

RNA 

polymerase to 
start 

transcription 

Cooperativity 

 

This discussion raises two questions 

1. What determines whether RNA polymerase needs the help of a regulatory 

protein for recruitment to the promoter, or not? 

2. What determines the binding of a given protein to the operator (whether for 

exclusion, recruitment or cooperativity)?  

 

To answer the first question, we note that the structure of a promoter includes two 

standard sequences, known as consensus sequences, located at positions -10 and -35 

upstream of the transcription starting site of a gene. RNA polymerase identifies those 

two sequences and binds to the promoter accordingly. In some cases the sequences 

deviate from the consensus pattern and hence it becomes difficult for RNA 

polymerase to bind to them. In such a case RNA polymerase will need the help of a 

regulatory protein to aid it in binding to the promoter, i.e. a case of recruitment. The 

closer the sequence of the promoter is to the consensus sequence the less it will need 

a regulatory protein to help bind RNA polymerase. 

 

For the second question, the answer is determined by the affinity of the operator site 

to the protein, which is determined by both the sequence of the site and the shape of 

the protein. Since different operator sites normally have different sequences, they will 

have different affinities to a given protein. 

 

At low concentration, the protein will bind to the site that has the highest affinity to it. 

As the protein concentration increases, it will bind to the site with the next lower 
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affinity, and so on. This type of affinity is known as the intrinsic affinity of the site to 

the protein, in the sense that it is determined by the site and protein structures. 

However, in some cases this intrinsic affinity can be altered with the help of another 

molecule of the same or different protein. For example sometimes when a molecule 

of a protein binds to one operator site it facilitates the binding of another of its 

molecules to another site of a lower affinity, even though the protein  concentration 

may be lower than what would normally be needed for binding to that second site. 

This means that the protein/protein interaction in this case increases the effective 

affinity of the site to the new protein, i.e. a case of cooperativity. 

 

In summary we can state the following: 

a. A protein can bind to more than one operator site (usually not at the same 

time). 

b. An operator site can bind more than one protein (again not at the same time). 

c. Which site the protein will bind to (in either of a or b above) is determined by:  

 affinity of the site to the protein.  

 concentration of the protein. 

 cooperativity with another protein on an adjacent site. 

d. When a protein binds to an operator site that overlaps with a promoter, it 

prevents RNA polymerase from binding to the promoter, hence switching the 

gene off or preventing it from turning on. This is known as negative control, 

and this particular mechanism is known as the principle of exclusion. 

e. When the binding of the protein to the operator site helps RNA polymerase to 

bind to the promoter thus activating the gene, this is known as positive 

control, and this particular mechanism is known as recruitment. 

f. When the binding of a protein molecule to the operator site helps another 

protein molecule to bind to another operator site, this is known as 

cooperativity. 

 

Armed with this review of the molecular interactions involved in regulating 

transcription of a gene, we can now address gene regulation in phage lambda. 
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7.3 How does phage lambda control its course of action? 

The switching of phage lambda from the lysogenic to the lytic route is controlled by 

two regulatory proteins that are encoded by two lambda genes. One protein is simply 

known as “repressor” and is encoded by a gene called cI, and the second is known as 

cro and is encoded by a gene called cro. In order to understand how the two proteins 

control lambda operation we need to consider the construction of the promoters and 

operators of the genes that the two proteins regulate, which are the same genes cI and 

cro.  

 

7.3.1 Construction of the switching region 

The region of the two promoters for the two genes cI and cro on the lambda DNA 

molecule is depicted in figure 7-2. It consists of the following sites: 

1. PRM the promoter for gene cI (shaded area on the left in figure 7-2) 

2. PR the promoter for gene cro (shaded area on the right in figure 7-2) 

3. An operator region that is divided into three sites 

a. OR1 overlapping with the promoter PR 

b. OR2 overlapping with both promoters PR and PRM 

c. OR3 overlapping with the promoter PRM 

 

Figure 7-2: Part of the Lambda DNA molecule depicting the promoters and operator for the 

Lambda genes cI and cro. 

 

The two genes encoding the regulatory proteins are not shown in the figure; only the 

promoters and relevant operator sites are. Note that the two promoters are adjacent, 

which means that the two genes transcribe in different directions as depicted in figure 

OR1 OR2 OR3 

PR PRM 

   DNA molecule 

Transcription of cro Transcription of cI 
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7-2. It may be instructive to compare this figure with figures 2-5 and 2-6 in chapter 

two depicting the detailed construction of the lac operon. 

 

A note on nomenclature 

PR  = Right Promoter, it is the promoter for the cro gene 

OR   = Right Operator 

cro         = control of repressor and other genes, a regulatory protein 

expressed by the gene cro  

PRM                = Promoter for Repressor Maintenance, is the promoter for the 

cI gene which expresses the regulatory protein “repressor” 

repressor = a regulatory protein expressed by the gene cI 

 

As a matter of convention, genes names are italicised while names of the 

corresponding (or other) proteins are not. Also note that the promoter PRM 

“maintains” the level of “repressor” but it does not initiate its expression. This is done 

by another promoter for the same gene, but is not shown in this figure.  

 

In lysogeny, all the lambda genes except cI are turned off to allow the lambda 

chromosome to replicate passively with the host DNA. The regulatory protein 

“repressor” coded by cI is the one that switches all the other lambda genes off, hence 

we will concentrate on studying it in this chapter. This situation means that cI is the 

only gene that remains on during lysogeny. It also autoregulates itself to maintain the 

correct level of the protein under normal lysogenic conditions. It should be noted that 

PRM needs positive control in order to be able to turn the gene cI on, i.e. it needs a 

protein to bind to the DNA molecule to facilitate the binding of RNA polymerase to 

the promoter PRM (by recruitment, scenario 3 in table 7-1). This protein is “repressor” 

hence the autoregulation. 

 

On induction, lytic growth ensues and cI has to be switched off to allow the other 

lambda genes to be expressed. This occurs when the concentration of “repressor” falls 

and cro starts to take over by first turning cI off further decreasing the concentration 

of “repressor”, then turning the other genes on in a specific order. Note that PR does 

not need a regulatory protein to help it bind RNA polymerase, as it is a strong 

promoter. 
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The operator region that overlaps the two promoters plays a crucial role in this 

programme. As depicted in figure 7-2, the operator has three sites of equal length and 

similar nucleotide sequence. Each has a different affinity for “repressor” and for cro, 

this is important because it determines which site fills first as the “repressor” 

concentration rises. It should be noted that both “repressor” and cro normally exist as 

dimers, i.e. two identical molecules (monomers) connected together. Each monomer 

consists of two domains, an Amino domain that contacts the operator sites on the 

DNA molecule, and a Carboxyl domain that interacts with another dimer. See figure 

7-3, adopted from Ptashne and Gann (2004). 

 

The site with the most intrinsic affinity for repressor is OR1, then both OR2 and OR3 

have the same intrinsic affinity. However, because the binding of a “repressor” dimer 

to OR1 aids another “repressor” dimer to bind to OR2 (by cooperativity, scenario 4 in 

table 7-1), this makes the effective affinity of OR2 to repressor much higher than that 

of OR3.  

 

With cro the situation is the opposite, OR3 has more affinity for cro than both OR1 

and OR2 whose affinities are equal. Unlike repressor however, there is no 

cooperativity between proteins occupying adjacent operator sites with regard to 

binding cro, because the promoter of its gene (cro) is strong. The different affinities 

are summarised in table 7-2.  

So how does this arrangement work in controlling lambda gene expression? We 

consider this in the next section. 

 

Table 7-2: Affinities of the three relevant operator sites of phage lambda to the regulatory 

proteins“repressor”andcro.Thenumberof“+”signsindicatesthestrengthoftheaffinity. 

Protein 
Affinity to protein 

Remark 
OR3 OR2 OR1 

Repressor + 
+ (intrinsic) 

++ (effective) 
+++ 

Cooperativity - binding 

of repressor to OR1 

increases the affinity of 

OR2 to repressor 

cro +++ + + 

No cooperativity - 

binding of cro to OR3 

does not affect the 

affinity of OR2 to cro 
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7.3.2 Operation of the lambda switch 

We now examine the operation of the lambda switch by considering the different 

scenarios that can take place with regard to “repressor”, how it binds to the operator 

sites and the effect of that on the expression of the two genes. We present each 

scenario briefly as a series of successive steps each leading to the one following it. 

Figure 7-2 should be referred to at each step to help elucidate the discussion. The 

different scenarios are summarised in table 7-3 at the end of this section.  

 

1. No“repressor”proteinpresent 

 Since there are no “repressor” molecules, which are needed to aid RNA 

polymerase to bind to PRM, then positive control cannot take place.  

 RNA polymerase cannot bind to PRM 

 The gene cI cannot be switched on. 

 

As an aside, we consider the effect of the lack of “repressor” on the gene cro.  

 because PR does not need positive control 

 RNA polymerase will bind to PR 

 The gene cro will be switched on and will start producing the protein cro  

 Because of the high affinity of OR3 to cro, cro will bind to it first 

 Since OR3 overlaps with PRM, hence the binding of cro to OR3 ensures that 

RNA polymerase cannot bind to PRM by exclusion 

 This ensures that the gene cI cannot be switched on. 

 

Since our purpose here is to illustrate the modelling methodology to follow in later 

section rather than explain the details of the lambda operation, we will thus limit our 

discussion to “repressor” and will not follow cro in much detail. 

 

2. Lowconcentrationof“repressor” 

Note that “repressor” will mainly be present in the lysogenic state where no cro is 

present. The first molecules of “repressor” will be synthesised by switching cI using a 

promoter other than PRM which we will not discuss here. Hence we will assume that 

“repressor” is present. 
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Case 2.1 

 Since OR1 has the highest affinity for “repressor”, then the first “repressor” 

molecules will bind to it 

 Since the OR1 region overlaps with the promoter PR, binding “repressor” to 

OR1 will prevent RNA polymerase from binding to PR by exclusion  

 This will switch the gene cro off, or prevent it from turning on. 

 However, because PRM needs positive control to bind RNA polymerase, and 

since OR1 is too far from PRM to effect positive control, then RNA polymerase 

will not  bind to PRM 

 The gene cI cannot be switched on. 

 

Under normal conditions this scenario is not observed because cooperativity between 

“repressor” dimers ensure that once one dimer binds to OR1, almost immediately 

another binds to OR2 making the two sites fill virtually simultaneously, see case 3.1 

below.  

 

For the sake of the modelling exercise that follows, we consider two other cases of 

low “repressor” concentration; namely what happens when “repressor” binds to either 

of OR2 or OR3 on its own. It has to be emphasised that again, under normal conditions 

this situation cannot be observed, but it can be set up experimentally by mutation of 

the operator region. Studying those two situations is instructive in understanding the 

effects of both operator sites (OR2 and OR3) on the molecular interactions between 

the different players involved in regulation.  

 

Case 2.2 

In the case of a mutated lambda chromosome that is missing the operator sites OR1 

and OR3, at low “repressor” concentration, the following scenario will take place 

 “repressor” will bind to OR2, which will cause positive control, 

 thus RNA polymerase will bind to PRM  

 hence switching the gene cI on 

 

It should be noted that since the OR2 site overlaps with the promoter PR, binding 

“repressor” to OR2 will prevent RNA polymerase from binding to PR by exclusion, 
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hence preventing the gene cro from switching on. It should also be noted that because 

OR2 is slightly closer to PR than it is to PRM and because of other molecular 

mechanisms involved, this negative control by exclusion does not occur to the gene cI. 

 

Case 2.3 

In the case of a mutated lambda chromosome that is missing the operator sites OR1 

and OR2, at low “repressor” concentration, the following scenario will take place 

 “repressor” will bind to OR3 which overlaps with PRM 

 Hence RNA polymerase cannot bind to PRM 

 The gene cI cannot be switched on. 

 

However, now because OR3 is too far from the promoter PR of the gene cro, it will 

not exercise negative control on it. Hence RNA polymerase will bind to PR which will 

switch the gene cro on. 

 

3. Mediumconcentrationof“repressor” 

We first consider the normal situation then look into the mutated ones. 

 

Case 3.1 

 “repressor” will bind to OR1 switching cro off as in the preceding case. 

 When a “repressor” dimer binds to OR1 it helps another “repressor” dimer to 

bind to OR2 by cooperativity. This happens almost immediately after the first 

dimer binds to OR1. 

 Once a “repressor” is bound to OR2, it facilitates the binding of RNA 

polymerase to PRM by positive control (figure7-3). 

 This will switch the gene cI on, which will produce more “repressor” in a 

positive feedback loop. 

 

Compare this with the switching on of cI in case 2.2 where positive control existed 

but cooperativity did not. 

 

Again we consider two mutated cases that are not observed under normal conditions. 
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Figure 7-3: Cooperativity betweentwo“repressor”dimersandtherecruitmentofRNA

polymerase. Adopted from Ptashne & Gann (2004) 

Each of the dumbbell shapes represents a “repressor” monomer consisting of two domains. Two 

dumbbells form a dimmer. 

 

 

Case 3.2 

In the case of a mutated lambda chromosome that is missing the operator site OR1, at 

medium “repressor” concentration, the following scenario will take place 

 “repressor” will bind to OR2,  

 By cooperativity, another “repressor” dimer will bind to OR3 which overlaps 

with PRM 

 Hence RNA polymerase cannot bind to PRM  

 The gene cI cannot be switched on. 

 

Case 3.3 

In the case of a mutated lambda chromosome that is missing the operator site OR2, at 

medium “repressor” concentration “repressor” will bind to both OR1 and OR3 

excluding RNA polymerase from either of PR and PRM, thus switching both genes (cI 

and cro) off. 

 

4. Highconcentrationof“repressor” 

When the concentration of “repressor” becomes high due to some possible problem 

with the host cell, like stopping division which accumulates “repressor” dimers; then 

the excess “repressor” dimers will bind to OR3 leading to the following scenario 
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 “repressor” binds to OR3 

 Since OR3 overlaps with PRM, hence the binding of “repressor” to OR3 

prevents RNA polymerase from binding to PRM by exclusion 

 This will switch the gene cI off 

 

This will prevent further synthesis of “repressor” reducing its concentration in a 

negative feedback loop. 

 

In summary, whenever a regulatory protein binds to an operator site that overlaps 

with the promoter of a gene, it prevents RNA polymerase from binding to that 

promoter by exclusion hence preventing transcription of the gene. For the two lambda 

genes cI and cro, this can be stated as follows 

 Whenever a regulatory protein - be it “repressor” or cro - binds to the operator 

site OR3, the gene cI will be switched off. 

 Whenever a regulatory protein - be it “repressor” or cro - binds to either of the 

operator sites OR1 or OR2 (or both), the gene cro will be switched off. 

 

The different scenarios explained above for the effect of the concentration of the 

regulatory protein “repressor” on the expression of the genes cI and cro is 

summarised in table 7-3. A “0” in the column of an operator site indicates that the site 

is not occupied, while a “1” indicates that it is occupied by the regulatory protein 

“repressor”. The first column in the table refers to the case number of the different 

cases discussed in the text above. Note from the table that the two genes cannot be on 

together, although they can be both off at the same time. 

 

Table 7-3:Effectof“repressor”concentrationonthestateofgenescI and cro. 

(Case number refers to the numbers in the text). 

Case 

number 
OR3 OR2 OR1 Gene  cI 

Reason for gene cI 

switch off 
Gene  

cro 

1 0 0 0 Off No +ve control On 

2.1 0 0 1 Off No +ve control Off 

2.2 0 1 0 On - Off 

3.1 0 1 1 On - Off 

2.3 1 0 0 Off -ve control (exclusion) On 

3.3 1 0 1 Off -ve control (exclusion) Off 

3.2 1 1 0 Off -ve control (exclusion) Off 

4 1 1 1 Off -ve control (exclusion) Off 
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Note that only three cases, namely 1, 3.1 and 4 are normally observed; those are the 

ones directly related to “repressor” concentration. The first is observed in the absence 

of repressor, the second at low “repressor” concentration and the third at high 

concentration. This reduces table 7-3 to table 7-4 below. 

 

Table 7-4: Observable states of the genes cI and cro atdifferent“repressor”concentrations. 

Repressor 

concentration 
OR3 OR2 OR1 

Gene  

cI 

Remark on 

gene cI 
Gene  

cro 

None 0 0 0 Off No +ve control On 

Low 0 1 1 On cooperativity Off 

High 1 1 1 Off -ve control Off 

 

Following a similar reasoning as for the case of the regulatory protein “repressor”, 

and noting that cro is not involved in cooperativity or positive control (recruitment), 

the different scenarios for the effect of the concentration of the regulatory protein cro 

on the expression of the genes cI and cro can be worked out. The results are similar to 

those in table 7-3 for the gene cro, although slightly different for the gene cI. As in 

the previous discussion, some of the cases are not observed under normal conditions 

and can only be devised experimentally. The different observable scenarios for the 

gene cro are summarised in table 7-5, where now four different concentrations of the 

protein cro are considered. The lack of cooperativity between cro dimers means that 

single dimer binding can take place, unlike “repressor” where one dimer immediately 

recruits another rendering single dimer binding unobservable under normal conditions. 

Also lack of cooperativity means that at medium cro concentration, two dimers do not 

need to bind to adjacent operator sites. 

 

Table 7-5: Observable states of the gene cro at different concentrations of the protein cro. 

cro 

concentration 
OR3 OR2 OR1 

Gene  

cro 
Remark on gene cro 

None 0 0 0 On No -ve control 

Low 1 0 0 On Affinity of OR3 is highest 

Medium 1 1 0 Off -ve control (exclusion) 

Medium 1 0 1 Off -ve control (exclusion) 

High 1 1 1 Off -ve control (exclusion) 

 

We now have enough details about the construction and operation of the phage 

lambda system that allow us to model it. Further information on phage lambda and on 

the different molecular interactions involved in gene regulation can be found in the 
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two books by Ptashne and Gann (2002, 2004). It is important not to lose track of the 

actual purpose of this chapter and indeed of the whole of this work, and that is to 

introduce a modelling method rather than produce a particular model. Since methods 

for modelling the regulation of gene expression have already been reviewed in 

chapter three we will only mention here how they have been applied to phage lambda, 

without going into the mathematical details of the resulting models. Arguably one of 

the earliest mathematical models for phage lambda was that by Ackers et al. (1982) 

and it used statistical thermodynamics to determine the probabilities of binding of the 

“repressor” and cro proteins to the different operator sites, in essence determining the 

affinities; the model used differential equations. This model was later expanded upon 

by Shea and Ackers (1985) and by Santillan and Mackey (2004b). As has been 

discussed in chapter three, the major problems with such models include their 

complexity, uncertainty of the molecular mechanisms involved and the large number 

of unknown parameters, most of which have to be estimated from the data or assumed. 

Another modelling approach used is the discrete one, and here because of the 

multiple-valued nature of the proteins’ concentrations, generalised Boolean networks 

were used (Thieffry and Thomas 1995), those were also discussed in chapter three 

and their drawbacks were pointed out, in particular the awkward and non-intuitive 

mathematical formulation resulting.  

 

We reiterate that the interest is in the modelling methods and not in the systems being 

modelled, thus in the context of this work, phage lambda is just a vehicle for 

delivering the method.  

 

7.4 A binary model for gene regulation in phage lambda 

It is clear from table 7-3 that the gene regulatory function of phage lambda lends 

itself readily to binary models. The usual practice in applying this modelling 

approach is to consider the binary values to indicate the crossing of some 

concentration or activation threshold by some variable, hence taking a functional 

view. However, the particular case of phage lambda as summarised in table 7-3 

indicates that we can also take a structural view of the situation in the sense that the 

binary values can indicate the presence or absence of a molecule at a certain site. The 

effect on the gene can still be considered in the functional view, i.e. that it is switched 
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on or off. With this in mind, table 7-3 can be reformulated into table 7-6, which now 

represents a logic function where we have associated a binary variable with the state 

of each operator site, and with the expression states of the genes.  

 

Table 7-6: A binary representation of the functions in table 7-3. 

Minterm 

number 

OR3 

(x3) 

OR2 

(x2) 

OR1 

(x1) 

Gene  cI 

(y1) 

Gene  cro 

(y2) 

0 0 0 0 0 1 

1 0 0 1 0 0 

2 0 1 0 1 0 

3 0 1 1 1 0 

4 1 0 0 0 1 

5 1 0 1 0 0 

6 1 1 0 0 0 

7 1 1 1 0 0 

 

Recall from the previous chapter that the Reed-Muller expansion of a three variable 

binary logic function y is given by 

12372361353412322110 xxxaxxaxxaxaxxaxaxaay    7-1 

 

Where the coefficients ai are obtained from the function values di by the 

transformation 
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From table 7-6 the two functions describing the states of the genes cI and cro are 

given by the vectors below representing the functions’ values (the di’s), where the 

prime sign indicates the transpose of a vector. 

 
 00010001'

00001100'

2

1





y

y
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Substituting in equation 7-2 and multiplying the vector by the matrix in GF(2), we get 

the coefficient vectors below 

 

 00001111'

01000100'

2

1





y

y

a

a
 

 

Substituting in equation 7-1 we get the RM expression for both functions  

2321 xxxy           7-3 

12212 1 xxxxy         7-4 

 

Let us examine the gene regulatory function y1 in equation 7-3 modelling the 

response of the gene cI to the different occupation states of the operator sites OR1, 

OR2 and OR3, by the “repressor” protein. We can make the following observations 

(see also figure 7-2): 

 The constant term (a0 in equation 7-1) is zero indicating that the basal state of 

the gene is off, i.e. in the absence of any regulating conditions the gene is off. 

Such conditions would then modulate it in such a way as to either switch it on 

or keep it off. 

 The state of the gene does not depend on x1, which makes biological sense 

since as mentioned in the different scenarios above, OR1 is too far from the 

promoter PRM of the gene to effect any control (positive or negative) on it. 

 x2 is necessary but not sufficient to switch the gene on.  

 The necessary part: Mathematically, this means that we cannot have y1 = 1 

unless we have x2 = 1. Biologically this means that the gene cannot be 

switched on if OR2 is not occupied by “repressor”, which makes sense 

because of the positive control exerted by the “repressor” protein when it 

occupies the operator site OR2.  

 The sufficiency part: Mathematically having x2 = 1 is not a sufficient 

condition to have y1 = 1, since we can have x2 = 1 but still get y1 = 0, and 

that is when we simultaneously have x3 =1. Biologically this means that 

having positive control is not sufficient to turn the gene on if we have 

negative control at the same time (by exclusion when OR3 is occupied).  

 x3 on its own is sufficient to switch the gene off, but it is not necessary. 

Mathematically, this means that if we have x3 = 1 in equation 7-3, then 
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irrespective of the value of x2, we will get y1 = 0 indicating that the gene will 

be switched off. Biologically this means that the gene cannot be switched on 

if OR3 is occupied by “repressor” irrespective of whether OR2 is occupied or 

not, because of the negative control exerted by the “repressor” protein when it 

occupies the operator site OR3 excluding RNA polymerase. A similar 

argument as in the point above demonstrates that x3 is not necessary for 

switching the gene off, since it can be switched off in the absence of 

“repressor” binding to OR3, if it is also not bound to OR2.   

 

The two last points above can be summarised as follows:  

1. x2 is necessary but not sufficient to switch the gene on, i.e. the gene cannot be 

switched on without x2, but x2 on its own is not sufficient to switch it on as we 

also need to ensure that x3 is not present. Biologically this means that positive 

control is necessary to switch the gene on, but it is not sufficient as we need to 

ensure that there is no negative control. In other words, if both controls are 

present then negative control is dominant over positive control. 

2. x3 is sufficient but not necessary to switch the gene off, i.e. x3 on its own is 

enough to switch the gene off, but if it is not present then the switch can still 

be switched off by lack of x2. Biologically this means that negative control is 

sufficient to switch the gene off (because of exclusion of RNA polymerase), 

but it is not necessary, i.e. even if there is no negative control the gene can 

still be switched off if there is no positive control (because RNA polymerase 

will not be able to bind to the promoter site even if it is accessible). 

 

Similarly we can examine y2 in equation 7-4, which models the response of the gene 

cro to the different occupations of the operator sites OR1, OR2 and OR3 by the 

“repressor” protein. We can make the following observations 

 The constant term (a0 in equation 7-1) is now 1 indicating that the basal state 

of the gene is on, i.e. in the absence of any regulating conditions the gene is 

expressed. Such conditions would then modulate it in such a way as to either 

switch it off or keep it on. 

 The state of the gene does not depend on x3, which makes biological sense 

since OR3 is the only one of the operator sites that does not overlap with the 

promoter PR of the gene, and hence cannot effect negative control (by 
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exclusion) on it. Note that unlike the gene cI, the gene cro does not need 

positive control to be switched on; hence the lack of positive control does not 

switch it off. 

 Any one of x1 or x2 on its own is sufficient to switch the gene off, and if they 

both are = 1, then this will also switch the gene off. So effectively the 

outcome of both variables is an OR gate sort of response. This makes sense 

biologically, because if either (or both) operator site OR1 and OR2 is occupied 

it will exert negative control (by exclusion of RNA polymerase) on the 

promoter PR of the gene. Mathematically, if any or both of the variables in 

equation 7-4 is 1 we get y2 = 0 indicating that the gene will be switched off, 

which means that it is necessary to have at least one of them present. 

 

The discussion above demonstrates the power of combining a well grounded 

biological understanding with a mathematically powerful modelling technique. It 

should be noted that other Boolean models such as the Disjunctive Normal Form 

(DNF) will lead to the same results but they lack the elegant interpretive power of the 

Reed-Muller formulation as demonstrated above. In addition the RM formulation can 

be extended to the multiple-valued case in a straightforward manner as demonstrated 

in the next section, hence providing a wider modelling scope. 

 

7.5 A multiple-valued model for gene regulation in phage 

lambda 

It is clear from table 7-4 above relating the concentration of the protein “repressor” to 

the states of the genes, that there are three concentration thresholds that are significant 

in determining the state of the genes, whether on or off. Table 7-4 is repeated below 

in a condensed form as table 7-7 in which the status of the operator sites has been 

removed as they are not relevant to the modelling exercise to follow.  

 

Details of the multiple-valued modelling approach have been presented in the 

previous chapter. The first step in applying it is to choose an appropriate set on which 

to define the functions. It is clear from table 7-7 that there are three significant values 

for the input variable, qualitatively termed None, Low and High, hence a suitable set 
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would be {0, 1, 2}. It should be made clear that the values in the set do not represent 

their numerical values but rather certain thresholds for the concentration. In other 

words, the value 1 does not mean 1 mol/unit volume or any other unit of 

concentration, but means that it is above the first concentration threshold, similarly 

for the other elements of the set. It should further be noted that the differences 

between the concentration thresholds need not be equal, i.e. the range from 0 to 1 is 

not necessarily the same as from 1 to 2. This is the consequence of the abstraction 

process.  

 

Table 7-7:Effectof“repressor”concentrationonthestatesofthegenescI and cro, as presented 

in more detail in table 7-4 above. 

Repressor concentration 

(x) 

Gene  cI 

(y1) 

Gene  cro 

(y2) 

None Off On 

Low On Off 

High Off Off 

 

The situation of the output is not as clear as it is for the input; granted it only takes 

two values but now we have two options. The first is to define the output variables to 

belong to the binary set {0, 1} which is intuitive but will complicate the mathematics. 

The second is to define it on the same set as the input (which has three elements) but 

restrict the values to only two of those three elements. We will choose the second 

option, but this raises another question, which two values of the three available do we 

pick? A common approach is to use the extremes of the set, i.e. the values 0 and 2. 

 

The second option leads to a simpler mathematical formulation, since now both the 

input and outputs are defined on the same set. This means that we can define the 

functions on a finite field and use the formulations presented in the previous chapter. 

In this particular case, the functions can be defined on the finite field GF(3), and 

represented as in table 7-8.  

 

Table 7-8: The functions of table 7-7 represented on the finite field GF(3). 

Repressor concentration 

(x) 

Gene  cI 

(y1) 

Gene  cro 

(y2) 

0 0 2 

1 2 0 

2 0 0 
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A single variable ternary function will have the form 

2

210 xaxaay          7-5 

 

Where the coefficients ai are obtained from the function values di by the 

transformation 
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and all computations are performed using GF(3) arithmetic, i.e. modulo 3, which 

leads to the two functions  

2

1 xxy           7-7 

2

2 2 xy           7-8 

 

In an interpretation similar to that in the previous section, it is clear from substituting 

the different values for x in equations 7-7 and 7-8 that the gene cI is normally off 

(because a0 of equation 7-5 is zero),  and that it is switched on at a low concentration 

of “repressor” and switched back off at high concentration. On the other hand the 

gene cro is normally on (because a0 of equation 7-5 is not zero), and is switched off 

by any presence of repressor whether at a low or a high concentration. 

 

To be able to infer and predict the behaviour of the regulatory function using the 

multiple-valued models, we need to actually substitute values in the equations, unlike 

the binary case where prediction is made simply by inspection. This is because of the 

somewhat counterintuitive nature of non-binary finite fields, where x
2
 is not always 

greater than x but depends on the value substituted (e.g. on GF(3) for x = 2 we have x
2
 

= 1). Note that a different choice of values for the gene expression levels, say 0 and 1 

instead of 0 and 2, will have resulted in a function y1 of a different form than that of 

equation 7-7, but of the same values for the different inputs; similarly for y2. 

 

In the above modelling exercises we have studied the effect of the concentration of 

the protein “repressor” on the two genes cI and cro, the same can be followed for the 

protein cro. Both a binary and a multiple-valued model can be developed in a similar 
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manner, and with a corresponding interpretation of the results. It should be noted that 

for the multiple-valued case, examination of table 7-5 above indicates that there are 

four concentration thresholds of the protein cro that are significant in determining the 

state of the gene cro. Hence this can be considered as a function on the finite field 

GF(4), where now the relevant arithmetic operations (see chapter six) and 

transformation matrices have to be used (Green and Taylor 1974).  

 

In the multiple-valued models for phage lambda developed above, whilst the 

regulatory inputs were multiple-valued, gene expressions were binary, i.e. either 

expressed or not. There are situations however, in which the gene expression levels 

are multiple-valued in nature, such as the case with morphogenesis as explained in 

chapter two. Indeed, we have modelled a regulatory process in the formation of the 

sense organs in the fruit fly Drosophila described by Ghysen and Thomas (2003). 

The process involves a gene controlled by two regulatory signals that take ternary 

values, and that lead to three expression levels for the gene, each triggering a different 

response in the cell. Our model is described in detail elsewhere (Aleem et al. 2008), 

see Appendix II and demonstrates two features of the multiple-valued model that are 

not present in the phage lambda case. Firstly the output can also be multiple-valued, 

not just the input, and secondly a case of two multiple-valued inputs. 

 

7.6 Conceptual differences between the binary and 

multiple-valued models 

We have produced two models for the phage lambda system above, namely a binary 

model and a multiple-valued one. It is fitting at this point to make a conceptual 

comparison between the two. It is obvious that the two models are mathematically 

different, however more important than the difference in the mathematical details, is 

the fact that they reflect different modelling perspectives.  

 

In the particular models above, the binary case provides what can be termed a 

mechanistic model, in the sense that it is developed based on an understanding of the 

molecular mechanisms involved in regulating the genes. These include the order of 

binding of the regulatory protein to the different operator sites and the effect that has 
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on the expression of the genes. On the other hand, the multiple-valued model 

provides what can be considered a phenomenological model, in the sense that it is 

based on external observations (of the phenomena) without necessarily any 

knowledge of the intricate details of how those phenomena take place on a molecular 

level. That is because the observations are made of the different protein 

concentrations and the corresponding gene expression levels, without predetermined 

knowledge of how one affects the other. We stress that this is the situation in this 

particular case and that in general either approach can be used to describe either a 

mechanistic situation or a phenomenological one. In other words a binary approach 

may very well be used to build a phenomenological model in a different context, and 

the multiple-valued approach used for a mechanistic model in another. Thus the 

choice is not about which mathematical tool is used, but what sort and amount of 

information is available about the system to be modelled. This ties back neatly with 

the discussion of the conceptual issues related to modelling in chapter three, in 

particular those concerning modelling decisions.  

 

7.7 Discussion  

In chapter five we have introduced our modelling method for binary gene regulatory 

functions, based on the Reed-Muller expansion, and demonstrated some innovative 

interpretations and applications for it. This was continued in chapter six where we 

then extended it to the multiple-valued case. In this chapter, chapter seven, we applied 

the method to model a gene regulatory system from the literature. We can step back 

now from the technical details involved, mathematical and biological, look at the big 

picture and take stock of the situation, discuss what we have achieved, its advantages 

and disadvantages, and what future directions of research it can spur. 

 

We have developed a method for modelling gene regulatory functions for which only 

a limited number of discrete values are of interest. The more common binary case is a 

special case of this method. The method can be thought of as semi-qualitative, in the 

sense that it gives more than just the on/off information of the Boolean formalism, 

although not the fully quantitative results of the differential equations formalism. 

Hence compared with the Boolean method it provides more information about the 

system and allows building models from more than one perspective, as in the case of 
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the phage lambda above. Also compared to the other multiple-valued method, known 

as generalised Boolean networks, our method is more intuitive, computationally 

easier and makes more sense analytically because all the variables represent actual 

regulatory factors and not meaningless dummy variables.   

 

In terms of the disadvantages of the method, the main issue is the situation when not 

all the variables have the same number of values, i.e. they belong to different sets. In 

this case one is forced to use the set with the largest number of values (largest 

cardinality), which may make the resulting model more complicated than is necessary. 

This however, is not as serious as it may sound because determining the coefficients 

which define the model is a straightforward matrix multiplication operation, albeit on 

a finite field. Commercially available mathematical software packages do implement 

operations on finite fields, in particular MATLAB and Mathematica. Another 

difficulty when implementing our method lies in the optimisation of the resulting 

expression, and by that we mean mathematically manipulating it to obtain the 

expression with the least number of terms. There are techniques for doing that, and 

they involve such approaches as allowing complementation of some of the variables; 

recall that the Reed-Muller expansion in its original form is complement free. 

Optimisation however, is more important in synthesis than in modelling. 

 

So what further avenues of research does our approach open up? There are quite a 

few, perhaps the most beneficial one in the context of gene regulation is to model 

dynamic processes, or sequential networks as they are known in electronic 

engineering. The work of Laubenbacher deserves special mention in this respect, as 

he and co-workers have addressed this problem, although from a mathematical point 

of view (Laubenbacher and Stigler 2004; Jarrah et al. 2007). Their work however, is 

highly abstract and is very difficult to follow; we believe that our approach can be 

extended to the dynamical case in a more intuitive way that relies on an engineering 

rather than a mathematical approach. Another area in which our method can be 

applied is in multi output functions, i.e. the situation where the same inputs affect 

several outputs at the same time. This is similar to the case of phage lambda above 

where the same protein affects two genes. The idea in such a modelling approach is to 

treat the two outputs as one output on a larger finite field. For example two binary 

outputs, such as cl and cro, above can be treated as one output on GF(4), but now this 
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output will not have direct physical significance and any results obtained will have to 

be translated back to the original outputs. So what would be the benefit of such a 

modelling approach? It is to study both outputs together rather than separate functions, 

a situation that can be very helpful in drug design for example, to study the effect of a 

drug, which is essentially a regulatory factor, on more than one process at the same 

time. This would be beneficial in studying side effects of a drug. 

 

Another area that we believe can be very promising in analysing gene regulatory 

functions is to extend the transform approach to orthogonal transforms such as the 

Walsh transform. This we believe, would allow studying certain classes of Boolean 

functions that are becoming increasingly important in biological applications, and are 

known as canalysing functions, where under certain conditions one input dominates 

all the others (Kauffman 1993; Kauffman et al. 2004; Reichhardt and Bassler 2007). 

Finally the method can be applied in different contexts such as in synthetic biology, 

other regulatory functions, or other biological or non-biological contexts in general.    

 

7.8 Summary and conclusion 

This chapter covered three main issues in a particular order reflecting a logical 

progression of ideas whereby each furnishes a basis for the one to follow.  

We started by a review of the molecular interactions between proteins (including 

regulatory proteins and RNA polymerase) and DNA sites (including promoters and 

operators), and between proteins and each other. Those interactions form the basis of 

such concepts as positive and negative controls, and cooperativity all of which affect 

the regulation of a gene. Understanding those interactions and the resulting regulatory 

effects is important in understanding transcription regulation in any system; hence the 

coverage in this part of the report was generic and not related to any particular system 

(organism). 

Next we introduced phage lambda, its structure and function and how it regulates it. 

Here we used the material in the first part, about regulatory mechanisms, to explain 

how phage lambda effects its regulation. Phage lambda was not introduced for its 

own sake but as an instance of a gene regulatory process that is well studied in the 

literature. 
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In the third part we used the detailed explanation of the regulation of the phage 

lambda genes as a case for applying our modelling approach developed in the 

previous chapters. We produced two models a binary and a multiple-valued one.  

We have looked at the binary Reed-Muller expansion of phage lambda in some detail 

where the interpretive power of this approach has been demonstrated by neatly tying 

the mathematical aspect of the model to its biological interpretation. A different 

modelling perspective based on the multiple-valued Reed-Muller expansion was also 

demonstrated and briefly discussed. A conceptual comparison between the two 

models was made.  

 

This chapter is the culmination of this work; it brings together concepts from the 

previous chapters and weaves them together into a single integrated fabric. The 

discussion of the molecular interactions involved in gene regulation builds on the 

material in chapter two concerning gene expression and its regulation. The models 

built here also use the methods developed in chapters five and six on the Reed-Muller 

expansion for the binary and multiple-valued case. But perhaps most importantly, on 

an intellectual level this chapter ties well with the material at the beginning of chapter 

three concerning the conceptual issues underlying modelling. It demonstrates the 

abstract issues discussed there in a concrete way by applying them to an actual 

biological system. Such issues include the importance of understanding the 

underlying biological processes in model building, and how the same data can 

produce different conceptual models; e.g. structural vs functional, or mechanistic vs 

phenomenological, and how the different model building decisions affect the 

resulting model. 

 

We concluded this chapter with a discussion of the merits and drawbacks of our 

method and the potential future research. 
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Chapter 8:  Summary, Conclusion and Future 

Research 

 

 

 

In this chapter I will summarise the work in this report, point out to its contribution 

and the possible areas of application. I will close with a discussion of how this work 

can be taken forward both in the context of the regulation of gene expression and in a 

wider context. I will present the material here as a series of questions, in a logical 

order whereby each question leads to the one that follows. Next to each question, in 

parentheses, is the topic the question relates to. In answering those questions I will 

refer to the relevant sections in the body of this work. I believe this way of presenting 

the material will make the conclusion more concise and focus the attention on the 

pertinent issues. 

 

I will imagine I am being asked these questions by the reader in the form of a 

conversation, hence the presentation will be somewhat informal, which is why I am 

using the first person in this chapter.  

 

 

1. What is the purpose of this work? (Aims) 

The purpose of this work is to develop a method for the mathematical modelling of 

the regulation of gene expression that can accommodate multiple-valued discrete 

expression levels. See chapter 1, section 1.3. 

 

 

2. Why is this a problem worth investigating? (Motivation) 

We can think of the motivation for this work to be at two levels, motivation for the 

method and motivation for the problem the method is investigating. The problem we 

are ultimately helping to investigate is that of the regulation of gene expression. 
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Motivation for the problem: understanding the regulation of gene expression is 

fundamental to understanding many of the biological processes inside the cell and 

ultimately the organism. For life scientists this helps in understanding both the normal 

and some of the anomalous situations in nature such as diseases (e.g. cancer and 

genetic disorders) and other biological phenomena. Attaining such understanding 

would help to cure or prevent diseases or manipulate the underlying biological 

controls in general. For us engineers, understanding such regulatory activities inside 

the cell can help us optimise process design and improve process troubleshooting in 

the biotechnology industry. See chapter 1, section 1.1. 

 

Motivation for the method: The proliferation in the quantity and quality of 

information related to the regulation of gene expression collectively known as omics 

was a boost for the use of mathematical modelling of such regulatory processes. 

Quantitative models suffer from the uncertainty in deciding on the molecules and 

mechanisms involved in the regulation and the values of the parameters used in the 

models. Qualitative models, especially those based on Boolean algebra give a simple 

and intuitive approximation but they fail to capture the case where there are multiple 

discrete values for the different biological variables. This is where our method comes 

in. See chapters 2 and 3. 

 

 

3. If this is such an important problem, surely others must have 

attempted to solve it? (Literature survey) 

Yes of course, there is an extensive literature on mathematical modelling of the 

regulation of gene expression. In fact there are even whole journals exclusively 

dedicated to mathematical, theoretical and systems biology, all of which more or less 

deal with modelling of biological processes in general, including the regulation of 

gene expression. Models in the literature can be broadly classified into those with 

continuous variables and those with discrete variables. The variables involved include 

expression levels of genes and concentrations of different regulatory molecules.  

 

The most common continuous models are based on ordinary linear differential 

equations, less common ones use non-linear and partial differential equations. 
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The most common discrete models are based on Boolean algebra which assumes 

binary values for the discrete variables. Other formalisms for discrete variables also 

exist. 

 

The accuracy of the analysis and prediction provided by quantitative models is 

undermined by the uncertainties involved in building those models, such as which 

molecules are involved in the regulation of gene expression, the mechanisms by 

which they are involved and the values of the different parameters in the model. This 

necessitated the use of qualitative models, which are based on the assumption that the 

different biological values exist in only one of two extreme states, leading to the use 

of the Boolean formalism to build the model. Whilst simple and intuitive, not all gene 

regulatory functions fit in this view, for example in morphogenesis there can be 

multiple threshold levels for the biological variables.  

 

There are other classifications of modelling approaches such as dynamic vs. static and 

deterministic vs. stochastic, with examples in the literature. See chapter 3, sections 

3.5 to 3.7. 

 

 

4. What is the method you are using? (Method) 

The method I am using to model multiple-valued discrete regulatory functions is 

based on finite fields algebra. The core of the method is that any function defined on 

a finite field can be represented as a polynomial on the field with degree less than the 

order of the field. Finite fields are also known as Galois fields and denoted by GF(q) 

where q is the number of elements in the underlying set and is known as the order of 

the field. The trick is then what biological variables to identify with the elements of 

the field, how to do that, and how to formulate the gene regulatory function based on 

that. 

 

In the binary case the finite field reduces to the two element field GF(2) in which case 

the resulting polynomial is known as the Reed-Muller expansion of the function. The 

multiple-valued case is also known in the engineering literature as the multiple-

valued Reed-Muller expansion. See chapters 5 and 6. 
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5. What are the pros and cons of this method? (Critique) 

I like to differentiate between the modelling method (which is based on finite fields 

algebra), and the methodology used to develop the method. A methodology can be 

thought of as a meta-method, i.e. a method or process for developing methods. My 

methodology comprises three stages. Firstly a process of abstraction; secondly is 

mathematical modelling as a tool in general, and thirdly the particular method. Let us 

now look at the pros and cons of each of these levels. 

 

a. Abstraction  

Advantages: Allows for the simplification of the system being considered by 

detaching it from its implementation or domain specific details. This allows for 

identifying the commonalities between the problem at hand and similar ones in other 

domains of knowledge, hence allowing the use of methods already tried and tested in 

those other domains.   

 

Disadvantages: Inevitably and by definition it loses the details of the issue being 

investigated, but this is not a problem as the core issues which are the target of the 

investigation are retained. Furthermore, it requires a high degree of abstract thinking, 

possibly more than is normally employed in engineering. See chapter 1 and chapter 3, 

sections 3.1 to 3.4. 

 

b. Mathematical modelling as a tool 

Advantages: It assimilates and integrates large amounts of data or observations to 

give a concise description of the system or process being modelled. This allows for 

mathematical manipulations and derivations that may give different insights into the 

problem, and that might not be obvious from the data. It can also be used to predict 

un-tested cases, generate hypotheses and run what-if analyses.  

 

Disadvantages: Mathematical modelling is a process with inputs as observed data and 

existing knowledge about the system, and whose output is the model. The resulting 

model is determined by the inputs (observations and knowledge) and the 

mathematical formalism utilised. The observations and knowledge are limited by the 

accuracy of the observation mechanisms, and the mathematical derivation is 
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constrained by the validity and scope of the formalism. Those factors limit the 

validity of the model on the one hand but allow developing several models of the 

same system on the other; hence allowing different descriptions of the system 

depending on what is being investigated. See chapter 3, sections 3.1 to 3.4. 

 

c. Our  method 

Advantages: It allows for modelling of multiple-valued discrete state regulatory 

systems in a way that is straightforward both in its theoretical background and its 

practical application. 

 

The theoretical background is abstract algebra, in particular finite fields and function 

spaces on them. Those are merely abstractions of other algebraic structures very 

familiar to engineers, namely the real numbers field, and Taylor series and Fourier 

series which are expansions on appropriate function spaces defined on the real 

numbers field. See chapter 4. 

 

The application is also straightforward whether in analysis or synthesis of regulatory 

systems as it merely involves matrix multiplication, albeit on a finite field. The 

process is completely transparent to the user in the sense that the user need not 

understand the underlying mathematics in order to use it. This is similar to the 

colloquial saying “you don’t need to understand how a mobile phone works in order 

to use it!”. Furthermore, some of the common mathematical software packages 

implement finite fields arithmetic.  See chapters 5 and 6. 

 

Disadvantages: The mathematics might appear a bit obscure and counterintuitive to 

some, but we have clarified above that this is because of its abstract nature. Also there 

is a difficulty in applying the multiple-valued case when not all the variables have the 

same number of values, for example when some are ternary and others are binary, as 

in the phenomenological model of phage lambda. Thus choices have to be made 

regarding the mathematical values to assign to the biological variables, and even 

though these may lead to different mathematical forms for a given function, the 

biological input/output relationship will not change. Also the multiple-valued case is 

limited to discrete variables whose number of values is a prime or a positive integer 

power of a prime. This should not be a problem however, since of all the numbers 
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from 1 to 9, only the number 6 does not belong to this category. Variables with more 

than 9 values will lead to exceedingly complicated functions even if they fall in this 

category. In spite of its disadvantages it remains more intuitive than similar methods 

in the literature. See chapter 6, section 6.7 and chapter 7, section 7.7. 

 

 

6. How does your approach differ from that of others? (Literature 

survey) 

See questions 3 and 5 above. 

 

 

7. So what is the outcome of your work? (Results) 

The outcome of my work is threefold 

 A method for modelling multiple-valued discrete gene regulatory functions, 

together with an elegant biological interpretation of it. 

 Three different mathematical interpretations of this method namely: a function 

on a Boolean algebra, a polynomial on a finite field and a transform on a 

discrete function space. 

 Three possible biological applications of these mathematical interpretations, 

respectively reverse engineering of gene regulatory functions, detection of 

mutations that affect the function of a protein, and synthesising biological 

regulatory functions. 

 

Therefore the outcome is both theoretical and applied. It is important to note though 

that this work is about developing a method not producing a model, hence the 

systems used to demonstrate the validity of the method were ones that are simple and 

well understood. Realising the rather abstract nature of the work and the possibility of 

losing the big picture in the details (the proverbial forest and trees), I decided to use 

simple systems to avoid masking the method by the fine details of the application. 
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8. Is this stuff applicable or is it only of theoretical interest? 

(Critique) 

Yes this stuff is applicable and we have demonstrated this in the answer to the 

questions above. We have also demonstrated it in the main body of the work by 

modelling phage lambda, and by an example of synthetic biology.  

However, the drive for applicability should not take away from the theoretical aspect 

of the work, since understanding the underlying theoretical issues helps guide the 

application; e.g. which areas it is likely to be useful in, and what are the limitations of 

the resulting application. Note that by emphasising understanding of the theoretical 

issues we do not mean the actual mathematical mechanics (see question 5 above), but 

rather the conceptual issues involved.  

 

For example when we use the method for modelling, understanding both its 

conceptual background and the details of the biological problem being modelled will 

help us decide whether to use a phenomenological model or a mechanistic one. 

Similarly, when using it for mutation detection, the theoretical understanding will 

help us decide which types of mutations can be detected, and that is by making the 

correct analogy with circuit faults. So those are application related issues that are 

guided by the theoretical ones. 

 

 

9. What is your contribution? (Contribution) 

The contributions can be regarded, somewhat in analogy with question 5, as to be at 

three levels namely conceptual, mathematical and applied. 

 

Conceptual: Using abstraction I establish an analogy between some problems in 

biology with others in electronic circuits. Whilst the analogy between the two fields 

in general is not new, the analogy between the specific problems is to the best of my 

knowledge novel. Those specific problems are the correspondence between mutations 

and faults in a circuit, and between linear transformations in engineering and in 

biology. See chapters 5 and 6. 
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Mathematical: The use of the Reed-Muller approach in the context of gene regulatory 

functions and in particular its interpretation as elaborated upon in chapter 5. See 

chapters 5 and 6. 

 

Applied: The formulation of the biological problems below in the form given in the 

main body is novel namely: 

 The use of exclusive OR operator for reverse engineering studies, in particular 

pointing to its superior discriminating ability compared to the common logic 

OR. 

 The use of the Boolean difference in mutation detection. 

 The transform approach whether for the analysis or synthesis of biological 

regulatory functions. Also the intuitive conceptual interpretation of a 

transform and its relation to reversibility in the information theoretic sense.   

See chapters 5 and 6. 

 

 

10. How can this work be taken forward? (Future work) 

I believe that this work opens up several avenues of research that can be pursued both 

within the context of this work and in a wider context. I classify those as fundamental 

and applied, where fundamental here refers to the method and applied to potential 

applications of the method. See chapter 7 section 7.7. 

Fundamental research can be pursued in several directions, for example  

 Computational, such as how to formulate faster and more efficient algorithms 

for computing the Reed-Muller coefficients, especially for the multiple-valued 

case.  

 Analytical, such as how to extend the method to the sequential case where the 

process would be dynamic, i.e. includes a time element, and how to give an 

intuitive interpretation to that. Similar work does exist in the dynamical 

systems literature but is very abstract, tying it to a more familiar and concrete 

area such as logic design would help clarify it and possibly obtain new results. 

Similarly the method can be extended to the multi-output case. 
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 Other analytical research can look into design techniques using the Reed-

Muller formulation, in particular the optimisation of the resulting design such 

as reducing the number of terms in the expansion. 

 

Applied research can also be pursued in several directions for example 

 Apply the method to other discrete regulatory processes in the cell or in 

biology in general, or indeed in any other context.  

 Extend the transform method to the orthogonal case. Orthogonal transforms 

on discrete function spaces do exist, such as the Walsh and Haar transforms 

but have not been applied in the context of gene regulatory functions. It would 

be interesting to see what interpretations emerge from such a view and what 

new problems can be attacked.  

 Apply the sequential view mentioned above to the reverse engineering of 

discrete gene regulatory networks. 

 Apply the multi-output formulation to gene regulatory networks. Multi-output 

refers to the case when the same inputs affect several outputs at the same time. 

This can be very interesting and valuable in drug design where it can be used 

to investigate how the effect of a drug which in this context is a regulatory 

input, affects not only the intended target but other regulatory processes in the 

cell as well. 

 The method can also be used in what-if analyses, to simulate the knockout or 

silencing of genes and determining what the output will be. This would be the 

opposite of the mutation problem mentioned above, where now the mutation 

is intentional and the output function is to be determined.  

 Application in synthetic biology such as determining the optimal design and 

the mapping of the finite field elements to the appropriate biomolecules. 

Related applications to that can be in modelling the genetic code, as presented 

in a paper we have published. 

 

In general, application of multiple-valued logic in biological processes might serve to 

revive this area of research which was highly active in the mid seventies to mid 

eighties in the electronic design domain. This activity has dampened greatly since 
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then because of the lack of a “killer application”, which may very well be provided by 

biology, in particular biomolecular computing and synthetic biology.   

 

 

Final thoughts 

I do recognise that this work is rather abstract compared to engineering work at a 

similar level, however this is the nature of theoretical biology to which this work 

belongs. Because of that, the presentation is somewhat different from the standard 

format, and that is why I have included the diagram in chapter one mapping the 

sections of this work to the corresponding ones in the “standard model” of a thesis. In 

fact in some parts of this work the presentation may even appear somewhat 

unorthodox, as in this chapter. 

 

An even more abstract view of this work would regard the methodology as 

comprising two aspects: analysis and synthesis, essentially deconstructing or 

dismantling the problem in one domain, carry it over across domain boundaries, 

reconstruct it or reassemble it in a different domain and see it in a different light and 

from a different perspective. Indeed, this allows one to ask new questions. In this 

sense and on a fundamental level, one can consider that the outcome of this work is 

effectively to help pose different questions rather than provide answers to existing 

ones. Consequently, I would like to conclude this work with a quotation from a book 

by Stuart Kauffman, who has worked extensively on Boolean networks and covers 

them in part of that book. The book is entitled “The Origin of Order: Self-

Organization and Selection in Evolution” (Kauffman 1993); in the preface, when 

discussing how his research interest in the topic developed, he states :  

“The greater mystery, after all, is not the answers that scientists contrive, but the 

questions they are driven to pose.” 
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Appendix I: Published Paper 1 

 

 

This appendix contains a paper published in the proceedings of the 39th International 

Symposium on Multiple-Valued Logic, 2009 (ISMVL '09), held in Okinawa, Japan 

21-23 May 2009, and organised by the Institute of Electrical and Electronic Engineers 

Inc. (IEEE), (Aleem et al. 2009). 

(Note that the page numbers have been changed from the original source to match 

this report) 

 

 

The paper applies the multiple-valued Reed-Muller expansion to modelling the 

genetic code as a function on a finite field. It is included here as it demonstrates how 

the elements of the field GF(4) can be identified with biomolecules, in this case the 

four nucleotides A, T, C and G. This relates to the material on synthetic biology in 

chapter six. 
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Abstract 

 
The information needed for the biotic activities 

of an organism is stored in a coded form in its DNA. 

This code is universal for all organisms and uses 

three units called nucleotides, each of which can 

take one of four possible values to code for twenty 

different amino acids. Thus it is a mapping from N3 

to P, where N is the set of nucleotides and P is the 

set of Amino acids. The genetic code has been 

studied from the points of view of Coding Theory 

and Information Theory. Here we study it from the 

point of view of Switching Theory where it is 

considered as a logic function on a finite field and 
represented by its Reed-Muller expansion. We first 

present the genetic code, then develop its Reed-

Muller expansion. Potential applications for this 

approach are also discussed. 

 

1. Introduction 

 
For a cell to grow, divide and carry-out its other 

activities it needs the information to guide it 
through these processes. This information is stored 

in the DNA (Deoxyribonucleic Acid) molecule 

which can be considered as a blueprint for life.  

The DNA molecule famously known as the 

double helix because of its specially shaped double 

strands consists of a string of units known as 

nucleotides. A nucleotide consists of three main 

chemical components namely, a sugar known as 

Deoxyribose sugar, a Phosphate group and a base. 

There are four types of bases known as Adenine, 

Guanine, Thymine and Cystocine, denoted by A, G, 
T and C respectively, and leading to four 

nucleotides with the same symbols. A group of 

three nucleotides is known as a codon, i.e. it forms 

a three letter word from a four letter alphabet. Thus 

there are 64 (= 43) possible configurations for a 

codon, each representing a valid code word. Those 

words code for Amino acids, which are the building 

units for proteins. There are twenty amino acids, 

hence some will have more than one code word 

leading to robustness against errors.  

A series of nucleotides chained together and 
coding for a functional unit in the cell is known as a 

gene. Genes normally code for proteins which in 

turn consist of a string of a large number of Amino 

acids. For the information stored in the code to be 

transformed into functions carried out by the 

proteins, it goes through a certain process.  

The information is first copied from the DNA to 

form another molecule known as the messenger 

RNA (Ribonucleic Acid) or mRNA; then it is 

translated by a cell component into the amino acids 

which are then chained together and processed 
further to form the active protein. 

The purpose of the mRNA is to convey the 

information from its store (the DNA) to the 

translation machinery in the cell, akin to a 

communication system as it effectively transfers a 

message. The RNA molecule is similar to the DNA 

except that the sugar is a Ribose sugar and the base 

Thymine is replaced by another called Uracil 

denoted by U. This structural difference causes the 

RNA molecule to be single stranded and much less 

stable than the DNA as it is not needed after 

relaying the message. The process of copying the 
information into the RNA is appropriately known 

as transcription since it is more or less in the same 

language, a four letter (nucleotide) alphabet. 

Converting the code into an amino acid is known as 

translation since it translates from one language 

(four nucleotides) to another, the twenty amino 

acids. 

It should be noted that A and G belong to a 

class of chemicals known as Purines, while C, T 

and U to another class known as Pyrimidines. The 

Purines are structurally and functionally closer to 
each other than to the Pyrimidines, and vice versa. 

When forming the double stranded DNA molecule, 

the Purine A pairs with the Pyrimidine T forming 

what are known as complementary pairs, similarly 

G pairs with C. [1] 
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2. The genetic code 
 

The genetic code is the same in all organisms 

and is thus known as the universal code, Table 1. 

To transcribe the message, the cell needs to know 

where to start, in which direction to read and when 

to stop reading. The first two decisions are 

determined by structural cues on the DNA molecule 

related to the gene being transcribed. Stopping is 

indicated by a stop codon, Table 1. In summary, the 

genetic code assigns to each base triplet (codon) an 

amino acid, as such it is a mapping from N3 to P, 

where N is the set of nucleotides {A, U, C, G}, and 
P is the set of Amino acids. 

 

          Table 1. The Genetic Code 

No. 
Base Amino Acid 

1
st
 2

nd
 3

rd
 Name Symbol 

1 C C C Proline P 

2 C C U Proline P 

3 C C A Proline P 

4 C C G Proline P 

5 C U C Leucine L 

6 C U U Leucine L 

7 C U A Leucine L 

8 C U G Leucine L 

9 C A C Histidine H 

10 C A U Histidine H 

11 C A A Glutamine Q 

12 C A G Glutamine Q 

13 C G C Argenine R 

14 C G U Argenine R 

15 C G A Argenine R 

16 C G G Argenine R 

      

17 U C C Serine S 

18 U C U Serine S 

19 U C A Serine S 

20 U C G Serine S 

21 U U C Phenylalanine F 

22 U U U Phenylalanine F 

23 U U A Leucine L 

24 U U G Leucine L 

25 U A C Tyrosine Y 

26 U A U Tyrosine Y 

27 U A A STOP codon Z 

28 U A G STOP codon Z 

29 U G C Cysteine C 

30 U G U Cysteine C 

31 U G A STOP codon Z 

32 U G G Tryptophan W 

 

The genetic code has been studied from the 

point of view of Coding Theory [2] and 
Information Theory [3] where the emphasis is on 

the representation of the genetic code to investigate 

its robustness against errors, its information content 

and how it may have evolved. More recently, it has 

been viewed as a multiple-valued function on the 

field of complex numbers [4]. Here we approach 

the genetic code from the point of view of 

Switching Theory [5] where it is viewed as a logic 

function on a finite field. From such a perspective, 

Table1 can be viewed as a truth table of a multiple-

valued logic combinational function which maps 

three four-valued variables, (i.e. 64 combinations) 

to a set of 21 values (20 amino acids and the STOP 

value). We have considered the STOP codon as an 
output since it has a functional role which is to 

indicate the end of a gene. We have given it the 

admittedly non-standard symbol Z. The first 

column in Table 1 is meant only to keep track of 

the number of combinations of the three nucleotides, 

and has no mathematical significance. Also the 

words base and nucleotide are often used 

interchangeably within this context.  

 

                  Table 1 continued 

No. 
Base Amino Acid 

1
st
 2

nd
 3

rd
 Name Symbol 

33 A C C Threonine T 

34 A C U Threonine T 

35 A C A Threonine T 

36 A C G Threonine T 

37 A U C Isoleucine I 

38 A U U Isoleucine I 

39 A U A Isoleucine I 

40 A U G Methionine M 

41 A A C Asparagine N 

42 A A U Asparagine N 

43 A A A Lysine K 

44 A A G Lysine K 

45 A G C Serine S 

46 A G U Serine S 

47 A G A Argenine R 

48 A G G Argenine R 

      

49 G C C Alanine A 

50 G C U Alanine A 

51 G C A Alanine A 

52 G C G Alanine A 

53 G U C Valine V 

54 G U U Valine V 

55 G U A Valine V 

56 G U G Valine V 

57 G A C Aspartic D 

58 G A U Aspartic D 

59 G A A Glutamic E 

60 G A G Glutamic E 

61 G G C Glycine G 

62 G G U Glycine G 

63 G G A Glycine G 

64 G G G Glycine G 

 

From a geometrical point of view, each codon 

can be regarded as a point in a three dimensional 

space over GF(4) where each point in the space 

corresponds to an amino acid (or a STOP codon). 

As discussed above some amino acids have more 

than one code word (synonyms), i.e. there is 

redundancy in the code. Thus the amino acids 
partition the set of codons into equivalent classes.  
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3. Reed-Muller expansion of the genetic 

code 

 
For a Galois field GF(q) whose elements are 

{e0 , e1 , …, eq-1}, the Reed-Muller (RM) expansion 

of any function f(x) from GF(q) to GF(q) is a 

polynomial in x with degree less than q given by [6] 
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This can be viewed as a Fourier type of transform. 

It can also be put in the more familiar form [7] 
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which is a truncated power series that can be 

viewed as a Taylor series type of expansion. The 

coefficients ci belong to GF(q) and the operations 
are performed in the GF(q) arithmetic. There are 

several algorithms for computing the coefficients 

with different merits such as improving 

computational efficiency and reducing complexity 

[8, 9].  

For a function of n variables where each 

variable belongs to GF(q), the function f(x) is a 

mapping from [GF(q)] n to GF(q) and the RM 

expansion will have qn terms that include product 

terms of the powers of the different variables [7].  

To represent the genetic code by a Reed-Muller 
expansion, we need to have both the input and the 

output values belong to the same GF(q). Whilst the 

inputs belong to GF(4), the smallest finite field that 

can directly accommodate the outputs is GF(64), 

which is the smallest power of 4 (the number of 

nucleotides) to contain the number 21 (the number 

of amino acids and STOP codon).  This means that 

to be able to formulate an RM expansion for this 

function we will need to extend GF(4) to GF(64). 

There are several ways to construct GF(64), namely 

as GF(26), GF(43) or GF(82). All will give different 

representations for the elements of the field and 
consequently different RM expansions, but the 

same values for the function. 

Before constructing the field however, we first 

need to identify the four nucleotides with the four 

elements of GF(4) to get a finite field. This will 

depend on which construction of GF(64) we are 

going to adopt. We will use GF(26) as it simplifies 

the computations considerably, since on GF(2) and 

its extensions each element is its own additive 

inverse. Each of the four nucleotides has to be 

coded as a binary number, thus two binary digits 

are needed.  

We used an intuitive approach to this coding, 

simply by arranging the nucleotides by their 

molecular weight. We chose the most significant 
binary digit for each nucleotide to code for the 

chemical class with 0 indicating a Pyrimidine 

(because they have lower molecular weights) and 1 

indicating a Purine. Within a chemical class, we 

chose the least significant binary digit such that a 0 

indicates the nucleotide with the lower molecular 

weight. Hence the four nucleotides arranged in 

increasing molecular weight {C, U, A, G} are 

represented by the increasing binary numbers {00, 

01, 10, 11} respectively.  

This has the added benefit of preserving the 

complementary nature of the nucleotides, since the 
sum of any two complementary pair in this code is 

11 (remember from the nature of the genetic code 

that A and U pair together while C and G pair 

together). In general, coding of the nucleotides and 

the resulting coding of the amino acids can be 

selected to reflect the structural and functional 

properties of the amino acids, such as chemical 

groups, bonds, charge, hydrophobic/hydrophilic 

properties; several coding schemes are possible 

[10].  

We will also need to map the 21 values of the 
outputs to 21 of the 64 values of GF(64). For 

simplicity, we chose to assign them in the order 

they appear in the genetic code, Table1. 

To construct GF(64), any of its several primitive 

polynomials can be used. We have 

chosen 1)( 6  xxxf , and constructed the 

field from the powers of the corresponding 

primitive element a [11]. The elements of the field, 

their binary codes and the amino acids (represented 

in GF(64)) corresponding to each element are 

shown in Table 2. Each element in the field is 

represented by the polynomial  

p(a) = b5 a
5 + b4 a

4 + b3 a
3 + b2 a

2 + b1 a
1 + b0 

a0  

where the bis belong to {0,1}, with b0 the least 

significant digit in the “Binary” column of Table 2. 

This is re-arranged in ascending powers of the 

inputs to give the more intuitive Table 3. Using this 

truth table and the summation transform above, the 

RM expansion of the genetic code is obtained in 

Table 4 which shows the powers of x and their 

corresponding coefficients in GF(64) represented as 

powers of a. 
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Table 2. Truth table of the Genetic Code as 
a function on GF(64) 

No. 
Input 

Output 

GF(64) 
Binary GF(64) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 1 0 

3 0 0 0 0 1 0 a 0 

4 0 0 0 0 1 1 a
6
 0 

5 0 0 0 1 0 0 a
2
 1 

6 0 0 0 1 0 1 a
12

 1 

7 0 0 0 1 1 0 a
7
 1 

8 0 0 0 1 1 1 a
26

 1 

9 0 0 1 0 0 0 a
3
 a 

10 0 0 1 0 0 1 a
32

 a 

11 0 0 1 0 1 0 a
13

 a
2
 

12 0 0 1 0 1 1 a
35

 a
2
 

13 0 0 1 1 0 0 a
8
 a

3
 

14 0 0 1 1 0 1 a
48

 a
3
 

15 0 0 1 1 1 0 a
27

 a
3
 

16 0 0 1 1 1 1 a
18

 a
3
 

         

17 0 1 0 0 0 0 a
4
 a

4
 

18 0 1 0 0 0 1 a
24

 a
4
 

19 0 1 0 0 1 0 a
33

 a
4
 

20 0 1 0 0 1 1 a
16

 a
4
 

21 0 1 0 1 0 0 a
14

 a
5
 

22 0 1 0 1 0 1 a
52

 a
5
 

23 0 1 0 1 1 0 a
36

 1 

24 0 1 0 1 1 1 a
54

 1 

25 0 1 1 0 0 0 a
9
 a

6
 

26 0 1 1 0 0 1 a
45

 a
6
 

27 0 1 1 0 1 0 a
49

 a
7
 

28 0 1 1 0 1 1 a
38

 a
7
 

29 0 1 1 1 0 0 a
28

 a
8
 

30 0 1 1 1 0 1 a
41

 a
8
 

31 0 1 1 1 1 0 a
19

 a
7
 

32 0 1 1 1 1 1 a
56

 a
9
 

 

4. Conclusion 

 
The motivation for considering such a modelling 

approach to the genetic code is both theoretic out of 

academic interest, and for potential practical 

applications [12]. Research in molecular biology 

(the study of biology at a molecular level such as 

genes and proteins) is expanding rapidly. This has 

been greatly catalysed by the development in 

advanced analytical instrumentation and algorithms, 

leading to the proliferation of the so called “omics” 
disciplines, including genomics (study of complete 

genomes, which involves sequencing of the 

nucleotides) and proteomics (study of protein 

structure and function, which is dependant on its 

amino acid make-up). This is coupled with 

advancement in algorithms and software, and 

databases for the analysis of such omics data, 

embodied in the field of Bioinformatics. Both of 

those, biological analytical instrumentation and 

Bioinformatics provide potential application  

 

 
Table 2 continued 

No. 
Input 

Output 

GF(64) 
Binary GF(64 

33 1 0 0 0 0 0 a
5
 a

10
 

34 1 0 0 0 0 1 a
62

 a
10

 

35 1 0 0 0 1 0 a
25

 a
10

 

36 1 0 0 0 1 1 a
11

 a
10

 

37 1 0 0 1 0 0 a
34

 a
11

 

38 1 0 0 1 0 1 a
31

 a
11

 

39 1 0 0 1 1 0 a
17

 a
11

 

40 1 0 0 1 1 1 a
47

 a
12

 

41 1 0 1 0 0 0 a
15

 a
13

 

42 1 0 1 0 0 1 a
23

 a
13

 

43 1 0 1 0 1 0 a
53

 a
14

 

44 1 0 1 0 1 1 a
51

 a
14

 

45 1 0 1 1 0 0 a
37

 a
4
 

46 1 0 1 1 0 1 a
44

 a
4
 

47 1 0 1 1 1 0 a
55

 a
3
 

48 1 0 1 1 1 1 a
40

 a
3
 

         

49 1 1 0 0 0 0 a
10

 a
15

 

50 1 1 0 0 0 1 a
61

 a
15

 

51 1 1 0 0 1 0 a
46

 a
15

 

52 1 1 0 0 1 1 a
30

 a
15

 

53 1 1 0 1 0 0 a
50

 a
16

 

54 1 1 0 1 0 1 a
22

 a
16

 

55 1 1 0 1 1 0 a
39

 a
16

 

56 1 1 0 1 1 1 a
43

 a
16

 

57 1 1 1 0 0 0 a
29

 a
17

 

58 1 1 1 0 0 1 a
60

 a
17

 

59 1 1 1 0 1 0 a
42

 a
18

 

60 1 1 1 0 1 1 a
21

 a
18

 

61 1 1 1 1 0 0 a
20

 a
19

 

62 1 1 1 1 0 1 a
59

 a
19

 

63 1 1 1 1 1 0 a
57

 a
19

 

64 1 1 1 1 1 1 a
58

 a
19

 

 
areas for the modelling approach to the genetic 

code outlined above. In particular, the input to such 

a model can be a sequence of nucleotides produced 

by a sequencing instrument. The model would then 

compute the corresponding sequence of amino 

acids that can be outputted into a proteomic device 

or Bioinformatics package giving the final protein 

structure, hence providing an alternative to the 

look-up table approach. This can also be part of a 
more sophisticated information processing system 

that can compare proteins across organisms to try to 

infer the function of one from the other, part of the 

field of functional genomics which is another area 

of active genomic research. The above model can 

be implemented in software, or in hardware either 

embedded in a real time system or on a dedicated 

microchip [13].  
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Table 3. The truth table of Table 2 with the 
input arranged in increasing powers of the 

primitive element a 

Input Output 

 

Input Output 

0 0 a
31

 a
11

 

1 0 a
32

 a 

a 0 a
33

 a
4
 

a
2
 1 a

34
 a

11
 

a
3
 a a

35
 a

2
 

a
4
 a

4
 a

36
 1 

a
5
 a

10
 a

37
 a

4
 

a
6
 0 a

38
 a

7
 

a
7
 1 a

39
 a

16
 

a
8
 a

3
 a

40
 a

3
 

a
9
 a

6
 a

41
 a

8
 

a
10

 a
15

 a
42

 a
18

 

a
11

 a
10

 a
43

 a
16

 

a
12

 1 a
44

 a
4
 

a
13

 a
2
 a

45
 a

6
 

a
14

 a
5
 a

46
 a

15
 

    

a
15

 a
13

 a
47

 a
12

 

a
16

 a
4
 a

48
 a

3
 

a
17

 a
11

 a
49

 a
7
 

a
18

 a
3
 a

50
 a

16
 

a
19

 a
7
 a

51
 a

14
 

a
20

 a
19

 a
52

 a
5
 

a
21

 a
18

 a
53

 a
14

 

a
22

 a
16

 a
54

 1 

a
23

 a
13

 a
55

 a
3
 

a
24

 a
4
 a

56
 a

9
 

a
25

 a
10

 a
57

 a
19

 

a
26

 1 a
58

 a
19

 

a
27

 a
3
 a

59
 a

19
 

a
28

 a
8
 a

60
 a

17
 

a
29

 a
17

 a
61

 a
15

 

a
30

 a
15

 a
62

 a
10

 

 

 

Table 4. Coefficients of the different powers 
of x in the RM expansion of the genetic 

code, as elements in GF(64) 
Power of x x

0
 x x

2
 x

3
 x

4
 x

5
 x

6
 x

7
 

Coefficient 0 a32 0 a2 a38 a33 a60 a62 

Power of x x
8
 x

9
 x

10
 x

11
 x

12
 x

13
 x

14
 x

15
 

Coefficient a11 a34 a2 a26 a10 a22 a11 a56 

Power of x x
16

 x
17

 x
18

 x
19

 x
20

 x
21

 x
22

 x
23

 

Coefficient a50 a43 a43 a42 a6 a11 a4 a36 

Power of x x
24

 x
25

 x
26

 x
27

 x
28

 x
29

 x
30

 x
31

 

 Coefficient  a41 a45 a35 a62 a29 a4 a18 a29 

Power of x x
32

 x
33

 x
34

 x
35

 x
36

 x
37

 x
38

 x
39

 

Coefficient a58 a30 a43 a42 a53 a2 a14 a 

Power of x x
40

 x
41

 x
42

 x 
43

 x
44

 x
45

 x
46

 x
47

 

Coefficient a56 a60 a48 a56 a32 a54 a3 a56 

Power of x x
48

 x
49

 x
50

 x
51

 x
52

 x
53

 x
54

 x
55

 

Coefficient a a7 a14 a36 a9 a49 0 a15 

Power of x x
56

 x
57

 x
58

 x
59

 x
60

 x
61

 x
62

 x
63

 

 Coefficient  a4 a24 a44 a6 a44 a53 0 a29 

 

 

Another area of biology that is gaining 

prominence is synthetic biology which involves 

designing systems using biological components in 

particular biomolecules such as DNA and proteins 

[14]. Yet another area is that of nanobiotechnology, 

again used for analytical or therapeutic purposes, 
e.g.  for drug delivery or for imaging [15]. A 

potential application of the model above when 

coupled with some form of biosensor – another 

active research area - is as an in-situ genomic 

analysis tool.  

In addition to the application, there are 

theoretically interesting issues relating to the 

genetic code that fall more in the realm of 

information theory than of logic design, in 

particular multi-level codes. Thus another purpose 

of this paper – further to the RM formulation of the 

genetic code - is to draw attention to those 
theoretical and practical areas, notably those that 

are interdisciplinary in nature. 
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Appendix II: Published Paper 2 

 

 

This appendix contains a paper presented at the 38th International Symposium on Multiple-

Valued Logic, 2008 (ISMVL '08), held in Houston, Texas in the United States, 22-24 May 

2008, and published in its proceedings. The symposium was organised by the Institute of 

Electrical and Electronic Engineers Inc. (IEEE), (Aleem et al. 2008). 

(Note that the page numbers have been changed from the original source to match this report) 

 

 

The paper provides an example of a multiple-valued gene regulatory function where the gene 

expression levels are multiple-valued as opposed to binary as in the case of phage lambda in 

chapter seven. Such a situation often occurs in morphogenesis (explained in chapter two). 

In the attaché paper we have modelled a regulatory process in the formation of the sense 

organs in the fruit fly Drosophila. This example demonstrates two features of multiple-valued 

models that were not present in the phage lambda case. Firstly that the output can also be 

multiple-valued, not just the input, and secondly it presents a case of two multiple-valued 

inputs. 
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Abstract 

 
Gene expression is the process by which the cell 

transforms the information in the DNA to functions, 

often carried out by proteins. Which genes will be 

expressed, depends on many factors some internal to 

the cell and others from the environment around it. 

This can be considered as a logic function 

prescribing gene expression in response to the 

different conditions. Apart from continuous models, 

the most common formulation of such a function is 

using Boolean logic. This has the major drawback of 

restricting analysis to binary valued variable which 

are not always an appropriate approximation. We 
propose a multiple-valued logic modelling approach 

on a Galois field and formulate the regulatory 

function using the Reed-Muller expansion. Two 

examples are given that illustrate the application of 

this approach  

 

 

1. Introduction  
 

The proliferation in the amount and type of 

information about the processes in a living cell or an 

organism in general, collectively referred to as 

“omics”, necessitates a systems approach to 

understanding such processes. Indeed this has led to 

the development of the discipline of Systems Biology 

which applies concepts from Systems theory, in 

particular modelling, to biology in order to 

comprehend the complex interactions between such 
processes [1]. 

Of particular importance are the different stages 

of gene expression (explained below) and its 

regulation. Those have been modelled using different 

mathematical approaches. One popular approach is 

based on Boolean logic, but it suffers from the 

shortcoming of only allowing two states for a 

variable, which is not adequate for modelling some 

situations. We propose a different approach based on 

multiple-valued logic, and use it to express the 

regulatory function in the form of a Reed-Muller 
expansion. 

We first give some background on gene 

expression, and the current Boolean modelling 

approach, then introduce our method and apply it to 

examples from the literature. 

 

2. Gene expression 
 

In the course of its lifetime, a living cell requires 

the availability of a myriad of substances for both 

structural (from which it is built) and functional (for 

it to carry-out its activities) roles. Some of these 

substances may never be used throughout the lifetime 

of the cell, for example those needed to defend 

against an attack by a pathogen that may never occur. 

Hence, instead of actually synthesising every 

molecule it may need, it is more efficient to just have 

the ability to synthesise them, i.e. a form of blueprint. 
This blueprint is the DNA molecule of the cell, and it 

contains all the necessary information in a coded 

form arranged into genes. Each gene normally codes 

for a protein which can then be used either as part of 

the cell structure, or to perform a function in the cell 

usually regulatory (either to switch genes on or off, 

or to catalyse metabolic reactions) [2]. Regulatory 

proteins often regulate other genes that in turn 

produce other proteins that may also affect back the 

genes that produced the original regulatory protein; 

they may also regulate their own genes (auto-
regulation), leading to a complex network of 

interactions including positive and negative feedback 

loops.  

The process of transforming the information in 

the genetic code into its final form (functional or 

otherwise) is known as gene expression. It starts with 

transcribing the information from DNA to another 

form called RNA, which is then translated into 

proteins that are assembled and processed in the 

necessary way to fulfil their ultimate purpose. Gene 

expression is regulated at its different stages; of 

particular importance is regulation at its inception, i.e. 
transcription regulation, as it determines which genes 
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will be expressed. This will depend on different 

factors, for example in response to internal cell 

requirements, e.g. when a cell is growing it requires 

different activities than when it is dividing. Another 

is in response to external signals such as changes in 

the cell environment, availability of nutrients or in 
response to hormones (in higher organisms). In 

addition, in such organisms, for example in humans, 

the different cells (e.g. muscle, nerve, skin, etc.) 

originate from a single cell, the fertilised egg and 

they all have the same DNA, yet different structures 

and functions. This specialisation is achieved by 

deciding which genes to express in each cell among 

all those available in the DNA.  

Thus the genetic code in the DNA of a cell can be 

thought of as an instruction set, only a subset of 

which will actually be implemented on need basis. In 

a sense this is similar to a conditional function call in 
a program. Transcription regulation selects which 

functions will be implemented in response to the 

different signals outlined above. 

 

3. Modelling gene expression regulation 
 

Different approaches are taken towards modelling 

gene expression [3-5]. Continuous models based on 

differential equations have the benefit of providing 

quantitative information, but this comes at the cost of 

complexity especially when non-linear effects and 

spatial distribution are considered, as such equations 

are solved numerically. In addition they inevitably 

involve assumptions both in terms of mechanisms of 

interaction and in values of parameters that may not 

always be justified [6]. Hence, a simpler albeit 

qualitative modelling approach is desirable, one such 

approach is that based on Boolean logic. 
Boolean models of transcription regulation are 

popular because of their simplicity and intuitive 

appeal. They are based on the assumption that 

variables take binary values [7]. For example a gene 

is either ON or OFF, and a regulatory protein is 

either activated (a process that enables it to perform 

its regulatory action) or deactivated. Similarly for 

effector molecules, i.e. those chemicals that may 

activate proteins or affect other processes, their 

concentration is either above or below a given 

threshold. This assumption however, is one of the 
major drawbacks of the binary approach as it does 

not allow for multiple levels for a variable [5]. For 

example it is not uncommon that different levels of, 

say, concentration of a molecule may trigger 

different processes in the cell or organism. These 

levels may still be discrete in nature, i.e. representing 

different activation thresholds. The current approach 

to overcome this problem is to define for each 

multiple-level variable, a number of dummy binary 

variables that is equal to the number of thresholds of 

the original variable. Each of these binary variables 

would be zero when the original variable is below the 

corresponding threshold, and one when it is above it 

[8]. This leads to an unnecessarily large number of 

variables, and awkward mathematical formulations 
especially when there are several variables with 

several levels. 

The second major shortcoming of the Boolean 

approach is that it assumes that all changes in the 

variables will take place simultaneously, i.e. a 

synchronous system [5]. Given that there are possibly 

thousands of processes taking place in the cell at the 

same time, many of which are interacting, this 

assumption becomes unrealistic. 

   

4. A multiple-valued logic approach 
 

We propose here the use of a multiple-valued 

logic approach to modelling transcription regulation. 

The intricate interactions between the products of the 

different genes in a feedback manner, requires 

modelling the gene regulatory system as a sequential 

network. There are situations however, where only a 
combinational network would suffice for modelling 

transcription regulation. This is especially so in the 

cases of nutrient availability, a common example is 

that of the utilisation of sugar sources by the 

bacterium E. coli,  whereby when glucose is 

available a group of genes known as the lac operon is 

switched off, and when glucose is not available but 

lactose is, the operon is switched on [2]. Such a gene 

regulation mechanism is known as a cis-regulatory 

function and can be modelled by a combinational 

logic function.  

It is well known that when the number of values q 
that a variable can take is a prime or a power of a 

prime, then a finite (Galois) field of order q can be 

constructed for this variable, denoted by GF(q). In 

this modelling approach to transcription regulation, 

the actual value of a variable (say concentration of a 

chemical entity) is not of essence, but rather the 

number of values it can take and their order. This is 

because we are only interested whether a given 

threshold has been crossed, irrespective of its value. 

Any function of a variable x defined on GF(q), 

can be represented by a polynomial of degree up to 
q-1 [9, 10].This is the Reed-Muller (RM) expansion 

of the function, and is given by [11] 
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where the coefficients ai belong to GF(q) and the 

operations are performed in the GF(q) arithmetic. 

There are several methods for computing the 

coefficients [12, 13]. Here we use a simple matrix 

based method that directly utilises the truth values of 

the function. We demonstrate this for the case of 
GF(3) taken form [14], where the RM-expansion is 

given by 
2

210)( xaxaaxf   

 

substituting for the possible values of x (namely 0, 1 

and 2) we get 
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This can be represented in matrix form as  
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or in compact notation, simply as 

aTd   

 

where now the 3x3 matrix T represents the 

transformation from the a or polynomial domain to 

the d or truth value domain. T is invertible, and can 

be inverted in GF(3) to get 

dTa  1
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often expressed as  

dSa   

 

Thus to transform from the truth values domain to 

the polynomial domain we multiply the truth vector d 
by the transformation matrix S, where d is obtained 

from the specification of the function. This can be 

extended to a function of n variables where now the 

transformation matrix is Sn and can be derived in a 

recursive way from the one variable case by  
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where S0  = [1], and calculations are performed using 

GF(3) arithmetic.  

 

5. Example from the development of 

organs 
 

The formation of organs in an organism is part of 

a process known as morphogenesis which is 
essentially the creation of structure and form in the 

organism, and involves the expression of different 

genes as explained above [15]. One method to 

achieve such differences in expression is through the 

concentration gradient of chemicals generically 

known as morphogens. At different distances from its 

source, the morphogen will have different 

concentrations, different thresholds of which will 

trigger the expression of different genes, helping 

form the organ. An example of this concept is in the 

patterns on a butterfly or a zebra. Development in 

general provides a fitting demonstration of the 
multiple-valued logic approach.  

We illustrate the approach by an example from 

the development of sense organs in the fruit fly 

Drosophila. Details of how the regulatory process 

works are given in [16]. We pick one particular 

example from that source concerning the regulation 

of a gene “A” by two mechanisms, self-activation by 

its own product denoted by “a”, and lateral inhibition 

from a neighbouring cell via a membrane receptor 

“B” that produces a signal denoted by “b”. Both 

signals “a” and “b” have three levels; their different 
combinations lead to three different expression levels 

for “A”. Note that here we are only modelling a 

combinational function, not a sequential one, hence 

for the purpose of this example we do not take the 

time course and hence the feedback effects into 

account. We have summarised the information in the 

truth table below, Table 1, paraphrased from [16], 

where we have renamed the variables a, b and A as x1, 

x2 and y respectively to be consistent with our earlier 

presentation. 

Since all the variables take ternary values, y can 
be represented as a function of the two variables x1 

and x2 over GF(3) given by [14] 
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Table 1. Truth table for the regulation of gene 
y by the signals x1 and x2 

 

x1 

 

x2 y 

0 0 1 

0 1 1 

0 2 0 

1 0 2 

1 1 1 

1 2 0 

2 0 2 

2 1 2 

2 2 1 

 
Applying the transformation matrix approach 

outlined above and using the truth table of the 

regulatory function Table 1, we get 
2

2

2

1

2

21

2

22

2

1 21 xxxxxxxy   

 

This equation describes the regulatory function in 

a compact and meaningful way, as the values of the 

variables relate directly to the thresholds of the 

different signals involved unlike the case employing 

dummy variables. In addition, the coefficients and 

the powers of the different variables are an indication 

of their relative contribution to the expression level 

of the gene. This greatly facilitates what-if analysis 

of the genetic regulatory function by substituting 
values for the different variables and directly 

computing the resulting expression levels of the gene, 

which is more efficient than the look-up table 

approach. For example, when a variable is set to zero, 

this can be used to simulate the situation where the 

gene producing the corresponding signal is 

“knocked-out”, i.e. deleted. Similarly, if a variable 

represents the different levels of a given nutrient, 

then this method greatly facilitates the study of 

different nutrient scenarios, especially where several 

nutrients are utilised, as it can be employed to find 

the optimum nutrient composition based on some 
optimality criterion. One should be careful to 

remember that calculations are to be performed in 

GF(q), but those can be automated in a 

straightforward manner, especially in the case where 

q is a prime as this becomes simply modulo q 

arithmetic. 

 

6. Example from the genetic code 
 

The previous example illustrated the application 

of the RM-expansion in formulating a conditional 

function, in the sense that it relates conditions to 

outputs. However, other biological applications are 

conceivable, since it essentially represents a mapping 

between two finite fields. We will briefly outline here 

another application.  As explained above, the genetic 

information is stored in a coded form in the DNA 

(Deoxyribonucleic Acid) molecule, famously known 

as the double helix because of its specially shaped 

double strands. It is made up of a string of units 
known as nucleotides, each of which consists of three 

main components, a sugar known as Deoxyribose, a 

Phosphate group and a base. There are four types of 

bases known as Adenine, Guanine, Thymine and 

Cystocine, indicated by A, G, T and C respectively, 

and leading to four corresponding types of  

nucleotides normally denoted with the same symbols. 

A group of three nucleotides is known as a codon 

which effectively forms a three letter word from a 

four letter alphabet. Thus there are 64 (= 43) possible 

configurations for a codon, each representing a valid 

code word. Those words code for Amino acids, 
which are the building units for proteins. There are 

twenty amino acids, hence some will have more than 

one code leading to robustness against errors. A 

series of nucleotides coding a functional unit in the 

cell is known as a gene. Genes usually code for 

proteins which in turn consists of a string of a large 

number of the twenty possible Amino acids.  

The information is first copied from the DNA to 

form another molecule known as the messenger RNA 

(Ribonucleic Acid) or mRNA, the purpose of which 

is to convey the information from its store (the DNA) 
to the translation machinery in the cell. The RNA 

molecule is similar to the DNA except that the sugar 

is a Ribose and the base Thymine is replaced by 

another called Uracil indicated by U. This structural 

difference causes the RNA molecule to be single 

stranded and much less stable than the DNA as it is 

not needed after relaying the message, and its 

components will be needed to synthesise other 

messengers. 

The process of copying the information into the 

RNA is appropriately known as transcription since it 

is more or less in the same language, a four letter 
(nucleotide) alphabet. Converting the code into an 

amino acid is known as translation since it translates 

from one language (four nucleotides) to another, the 

twenty amino acids. The genetic code is the same in 

all organisms and is consequently known as the 

universal code, presented in Table 2 where each 

amino acid has a standard symbol [2]. It also contains 

STOP codons which indicate the end of a gene. The 

start of a gene is identified by structural cues in the 

DNA molecule.  

Table 2 effectively represents a truth table for a 
multiple-valued logic combinational function where 

the inputs are defined on GF(4) and the output on 

GF(64), thus we can formulate a Reed-Muller 

expansion for this function. Since the output can have 
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any of twenty one values (the twenty amino acid and 

the stop codon), the smallest finite field that can 

directly accommodate both the output and the inputs 

is GF(64). Which means that the inputs have to be 

represented as a variable on GF(64). There are 

several scenarios for doing that e.g. GF(43), GF(82) 
and GF(26), all of which will lead to a polynomial of 

degree up to 63, albeit with different coefficients, 

from the appropriate base field, and computed using 

the relevant 64x64 transformation matrix. This is 

primarily a mechanistic task, and hence will not be 

pursued here. 

 

Table 2a. The Genetic Code 
 

No. 
Base Amino Acid 

1
st
  2

nd
  3

rd
  Name Symbol 

1 U U U Phenylalanine F 

2 U U C Phenylalanine F 

3 U U A  Leucine L 

4 U U G  Leucine L 

5 U C U Serine S 

6 U C C Serine S 

7 U C A Serine S 

8 U C G Serine S 

9 U A U Tyrosine Y 

10 U A C Tyrosine Y 

11 U A A STOP codon - 

12 U A G STOP codon - 

13 U G U Cysteine C 

14 U G C Cysteine C 

15 U G A STOP codon - 

16 U G G Tryptophan W 

      

17 C U U Leucine L 

18 C U C Leucine L 

19 C U A Leucine L 

20 C U G Leucine L 

21 C C U Proline P 

22 C C C Proline P 

23 C C A Proline P 

24 C C G Proline P 

25 C A U Histidine H 

26 C A C Histidine H 

27 C A A Glutamine Q 

28 C A G Glutamine Q 

29 C G U Arginine R 

30 C G C Arginine R 

31 C G A Arginine R 

32 C G G Arginine R 

 
 

This modelling approach can aid in theoretical 

studies of the genetic code by considering it as a 

multi-level (non-binary) code where issues of 

distance between code words, e.g. a Lee type metric 

[17], and other information theoretic issues can be 

explored. Furthermore there are several potential 
practical applications; for example in the areas of 

Bioinformatics and biological instrumentation, where 

it can lead to novel genome analysis approaches. 

Also in the emerging fields of biosensors and bio-

nanotechnology where it can lead to in-situ genomic 

analysis tools. 

 

Table 2b. The Genetic Code (cont’d.) 
 

No. 
Base Amino Acid 

1
st
  2

nd
  3

rd
  Name Symbol 

33 A U U Isoleucine  I 

34 A U C Isoleucine I 

35 A U A Isoleucine I 

36 A U G Methionine M 

37 A C U Threonine T 

38 A C C Threonine T 

39 A C A Threonine T 

40 A C G Threonine T 

41 A A U Asparagine N 

42 A A C Asparagine N 

43 A A A Lysine K 

44 A A G Lysine K 

45 A G U Serine S 

46 A G C Serine S 

47 A G A Arginine R 

48 A G G Arginine R 

      

49 G U U Valine V 

50 G U C Valine V 

51 G U A Valine V 

52 G U G Valine V 

53 G C U Alanine A 

54 G C C Alanine A 

55 G C A Alanine A 

56 G C G Alanine A 

57 G A U Aspartic D 

58 G A C Aspartic D 

59 G A A Glutamic E 

60 G A G Glutamic E 

61 G G U Glycine G 

62 G G C Glycine G 

63 G G A Glycine G 

64 G G G Glycine G 
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7. Conclusion 
 

We have presented a novel approach to modelling 

gene transcription regulation by addressing the more 

realistic multiple-valued case (as opposed to the 

binary one) and expressing the regulatory function as 

a Reed-Muller expansion on a corresponding Galois 

field. This approach has several advantages including  

 Efficiently represents multi-input multiple-

valued gene regulatory functions in a compact 

form. Under the appropriate conditions, it can 

easily be extended to multi-output functions as 

well. 

 Greatly facilitates what-if analysis as outlined 

above. 

 Calculations can be automated as there are 

efficient algorithms for deriving the RM-

coefficients.   

 Because it is employed in logic design, the same 

concepts can be applied in designing control 

schemes to control the expression levels of 

different genes, potentially formalising the 

process of drug design in a mathematical sense. 

 
In addition to gene regulation expression, we 

have also outlined the application of the same 

approach to model the genetic code as a function on a 

Galois field. 

We have restricted the development here to 

combinational logic functions. Work on sequential 

logic which addresses the dynamics of gene 

expression is in progress.  
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