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In Markov chain models in finance and healthcare a transition matrix over a certain
time interval is needed but only a transition matrix over a longer time interval may
be available. The problem arises of determining a stochastic pth root of a stochastic
matrix (the given transition matrix). By exploiting the theory of functions of matri-
ces, we develop results on the existence and characterization of stochastic pth roots.
Our contributions include characterization of when a real matrix has a real pth root,
a classification of pth roots of a possibly singular matrix, a sufficient condition for a
pth root of a stochastic matrix to have unit row sums, and the identification of two
classes of stochastic matrices that have stochastic pth roots for all p. We also delin-
eate a wide variety of possible configurations as regards existence, nature (primary
or nonprimary), and number of stochastic roots, and develop a necessary condition
for existence of a stochastic root in terms of the spectrum of the given matrix.

On the computational side, we emphasize finding an approximate stochastic root:
perturb the principal root A1/p or the principal logarithm log(A) to the nearest
stochastic matrix or the nearest intensity matrix, respectively, if they are not valid
ones; minimize the residual ‖Xp − A‖F over all stochastic matrices X and also over
stochastic matrices that are primary functions of A. For the first two nearness prob-
lems, the global minimizers are found in the Frobenius norm. For the last two nonlin-
ear programming problems, we derive explicit formulae for the gradient and Hessian
of the objective function ‖Xp−A‖2F and investigate Newton’s method, a spectral pro-
jected gradient method (SPGM) and the sequential quadratic programming method
to solve the problem as well as various matrices to start the iteration. Numerical ex-
periments show that SPGM starting with the perturbed A1/p to minimize ‖Xp−A‖F
over all stochastic matrices is method of choice.

Finally, a new algorithm is developed for computing arbitrary real powers Aα

of a matrix A ∈ Cn×n. The algorithm starts with a Schur decomposition, takes k
square roots of the triangular factor T , evaluates an [m/m] Padé approximant of
(1 − x)α at I − T 1/2k , and squares the result k times. The parameters k and m
are chosen to minimize the cost subject to achieving double precision accuracy in
the evaluation of the Padé approximant, making use of a result that bounds the
error in the matrix Padé approximant by the error in the scalar Padé approximant
with argument the norm of the matrix. The Padé approximant is evaluated from
the continued fraction representation in bottom-up fashion, which is shown to be
numerically stable. In the squaring phase the diagonal and first superdiagonal are
computed from explicit formulae for T α/2j , yielding increased accuracy. Since the
basic algorithm is designed for α ∈ (−1, 1), a criterion for reducing an arbitrary real
α to this range is developed, making use of bounds for the condition number of the
Aα problem. How best to compute Ak for a negative integer k is also investigated.
In numerical experiments the new algorithm is found to be superior in accuracy and
stability to several alternatives, including the use of an eigendecomposition, a method
based on the Schur–Parlett algorithm with our new algorithm applied to the diagonal
blocks and approaches based on the formula Aα = exp(α log(A)).
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to Rüdiger Borsdorf for his unfailing enthusiasm and helpful discussions on SPGM
and generously sharing his MATLAB codes; to Chris Munro who always does exactly
what he plans to, for useful technical discussions, proofreading my documents and
introducing me to the South Manchester Parkrun.

I would like to acknowledge the financial support from the Secretary of State for
Education and Science of the United Kingdom, and the School of Mathematics at
the University of Manchester under the Overseas Research Students Awards Scheme
(ORSAS) during the last three years. The travel support from the School of Math-
ematics at the University of Manchester to attend the 23rd Biennial Conference on
Numerical Analysis in 2009 and the Gene Golub SIAM Summer School in 2010 is
gratefully acknowledged.

Last but by no means least, for many reasons, thanks to my parents.

11



Dedication

To My Parents

12



Chapter 1

Introduction

The history of matrix functions dates back to 1858 when Cayley in his A Memoir on
the Theory of Matrices treated the square roots of 2 × 2 and 3 × 3 matrices. Some
remarkable time points in this long history are: Sylvester first stated the definition
of f(A) for general f via the interpolating polynomial in 1883 [126]; the first book
on matrix functions was written by Schwerdtfeger and published in 1938 [116]; in the
same year, Frazer, Duncan and Collar published the book Elementary Matrices and
Some Applications to Dynamics and Differential Equations which was “the first book
to treat matrices as a branch of applied mathematics” [30], [72]. For a brief history of
matrix functions, we can do no better than refer the reader to [72, sec. 1.10]. Over the
past 100 years, matrix functions have developed from their origin in pure mathematics
into a flourishing subject of study in applied mathematics, with a growing number
of applications ranging from natural science, engineering to social science. Such
applications include, to name a few, differential equations, nuclear magnetic resonance
and social networks; for more applications, see [72, Chap. 2]. New applications are
regularly being found.

A major theme of this thesis is functions of structured matrices. The problem
of computing a function of a structured matrix is of growing importance and what
makes it a deep and fascinating subject is the new applications appearing and the
many open questions remaining in it. This thesis is concerned with this very active
area of research.

One issue involved in structured f(A) problems is whether or not f(A) will pre-
serve the structure of A or, more generally, how f(A) inherits structure from A
(possibly with different, but related structures). Simple but not trivial examples are
that, the square root function preserves the property of being unitary while the ex-
ponential function maps a skew-Hermitian matrix into a unitary matrix. However,
based on a more general setting of matrix automorphism groups and the Lie algebra,
more general results can be found: the square root function preserves matrix auto-
morphism groups; the exponential map takes the Lie algebra into the corresponding
Lie group. For details in the square root function and other structure preserving
functions for matrix automorphism groups, see [77]. The exponential mapping on
the Lie algebra is important in the numerical solution of ODEs on Lie groups by
geometric integration methods. For details, see [61], [83], [84].

The other important issue is: assuming we know that A and f(A) are both struc-
tured, can we exploit the structure? For example, can we by any means derive a

13



CHAPTER 1. INTRODUCTION 14

structure-preserving iteration to get the structured f(A), in the presence of rounding
and truncation errors? The potential benefits to accrue from exploiting the structure
include faster and more accurate algorithms and reduced storage, and a possibly more
physically meaningful solution. Take again the matrix square root function of A in
an automorphism group for example, in which case a family of coupled iterations
that preserve the automorphism group is derived in [77] by exploiting the matrix
sign function. Methods for computing square roots of some other special classes of
matrices of practical importance, including matrices close to the identity or with
“large diagonal”, M-matrices, H-matrices, and Hermitian positive definite matrices
are investigated in [72, sec. 6.8].

We address both main issues in this thesis. Motivated by its widespread applica-
tions, our work starts with this simply stated problem: determine a stochastic root of
a stochastic matrix. A stochastic matrix, also known as transition matrix in Markov
models, is a square matrix with nonnegative entries and row sums equal to 1. For
a time-homogeneous discrete-time Markov model in which individuals move among
n states, the transition matrix A ∈ Rn×n has (i, j) entry equal to the probability of
transition from state i to state j over a time interval. In credit risk, for example, a
transition matrix records the probabilities of a firm’s transition from one credit rating
to another. Often in practice, the shortest period over which a transition matrix can
be estimated is one year. However, for valuation purposes, a transition matrix for
a period shorter than one year is usually needed. A short term transition matrix
can be obtained by computing a root of an annual transition matrix. This requires
a stochastic root of a given stochastic matrix A, that is, a stochastic matrix X such
that Xp = A, where p is typically an integer, but could be rational.

A number of questions arise: does such a root exist; if so, how can one be com-
puted; and what kind of approximation should be used if a stochastic root does not
exist. The first question about the existence of stochastic root has not previously
been investigated in any depth. A quick answer is: a stochastic root of a stochastic
does not always exist. In other words, the matrix pth root function does not preserve
the structure of being stochastic. This is illustrated by the following example. Let

A =

[
0 1
1 0

]
. It is easy to check that there are four matrices satisfying X2 = A

which are given by ±1
2

[
1 + i 1− i
1− i 1 + i

]
and ±1

2

[
1− i 1 + i
1 + i 1− i

]
, neither of which is

real, let alone stochastic. We go beyond this point and in Chapter 2, by exploiting
the theory of functions of matrices, we develop results on the existence and character-
ization of matrix pth roots, and in particular on the existence of stochastic pth roots
of stochastic matrices. Regarding the second question, various methods are available
for computing matrix pth roots, based on the Schur decomposition and appropriate
recurrences [57], [120], Newton or inverse Newton iterations [60], [79], Padé iterations
[80], [98], or a variety of other techniques [14], [59]; see [72, Chap. 7] and [74] for
surveys. However, there are currently no methods tailored to finding a stochastic
root. Current approaches are based on computing some pth root and perturbing it
to be stochastic [26], [85], [95]. We consider more computational matters as well as
some popular techniques used in statistics in Chapter 3.
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More generally, matrix powers Aα with a real α arise in, for example, fractional dif-
ferential equations [81], discrete representations of norms corresponding to finite ele-
ment discretizations of fractional Sobolev spaces [8], and the computation of geodesic-
midpoints in neural networks [46]. Here, α is an arbitrary real number, not necessarily
rational. In the case where α is the reciprocal of an integer p, X = Aα = A1/p is a pth
root of A. As we mentioned before, various methods are available for the pth root
problem. However, none of these methods is applicable for Aα with arbitrary real α.
MATLAB is capable of computing arbitrary matrix powers, which are specified with
the syntax A^t. However, in versions up to MATLAB R2010b (the latest version at
the time of writing), the computed results can be very inaccurate, as the following
example shows:

>> A = [1 1e-8; 0 1];

>> A^0.1

ans =

1 0

0 1

>> expm(0.1*logm(A))

ans =

1.0000e+000 1.0000e-009

0 1.0000e+000

Here, the second evaluation, via expm and logm, produces the exact answer. The first
evaluation is inaccurate because the algorithm used to compute A^t when t is not an
integer apparently employs an eigenvalue decomposition and so cannot cope reliably
with defective (as here) or “nearly” defective matrices.

The aim of our work in Chapter 4 is to devise a reliable algorithm for computing Aα

for arbitrary A and α—one that, in particular, could be used by the MATLAB mpower

function, which is the underlying function invoked by the A^t syntax in MATLAB.
Some numerical experiments illustrating the superiority of the new algorithm over
several alternatives in accuracy and stability are presented. In the rest of this chapter,
we establish some of the basic definitions and properties for matrix theories and
matrix functions, which will be used throughout this thesis.

1.1 Functions of matrices

We are concerned with functions mapping C
n×n to C

n×n that are defined in terms of
an underlying scalar function f . There are various equivalent ways to define a matrix
function. We give the following two definitions of f(A), one by Jordan canonical
form and the other by polynomial interpolation, both of which are very useful in
developing the theory.

It is a standard result that any matrix A ∈ Cn×n can be expressed in the Jordan
canonical form

Z−1AZ = J = diag(J1, J2, . . . , Jp), (1.1a)
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Jk = Jk(λk) =




λk 1

λk
. . .
. . . 1

λk


 ∈ C

mk×mk , (1.1b)

where Z is nonsingular and m1 + m2 + · · · + mp = n. Denote by λ1, . . . , λs the
distinct eigenvalues of A and let ni be the order of the largest Jordan block in which
λi appears, which is called the index of λi. We call the function f being defined on
the spectrum of A if the values f (j)(λi), j = 0 : ni − 1, i = 1 : s exist. We now give
the definition of f(A) via Jordan canonical form.

Definition 1.1 (matrix function via Jordan canonical form). Let f be defined on the
spectrum of A ∈ Cn×n and let A have the Jordan canonical form (1.1). Then

f(A) := Zf(J)Z−1 = Zdiag(f(Jk))Z
−1, (1.2)

where

f(Jk) :=




f(λk) f ′(λk) · · · f (mk−1)(λk)

(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)



. (1.3)

Some comments on Definition 1.1 are made in order. First, the definition yields
an f(A) that can be shown to be independent of the particular Jordan canonical
form. Second, in the case of multivalued functions such as

√
t and log t it is implicit

that a single branch has been chosen in (1.3). Moreover, this definition yields a
primary matrix function which requires that if an eigenvalue occurs in more than
one Jordan block then the same choice of branch must be made in each block. If
the latter requirement is violated then a nonprimary matrix function is obtained.
We are mainly concerned with primary matrix functions in developing the theory
while nonprimary functions are sometimes of practical importance in applications,
as discussed in Chapter 2. For more about nonprimary matrix functions, see [72,
sec. 1.4].

Before giving the second definition, we recall some background on polynomials
at matrix argument. The minimal polynomial of A ∈ Cn×n is defined to be the
unique monic polynomial φ of lowest degree such that φ(A) = 0. The existence
and uniqueness of the minimal polynomial can be found in most textbooks on linear
algebra. By considering the Jordan canonical form it is not hard to see that φ(t) =∏s

i=1(t− λi)ni , where λ1, . . . , λs are the distinct eigenvalues of A and ni is the index
of λi. It follows immediately that φ is zero on the spectrum of A. Now given any
polynomial p(t) and any matrix A ∈ C

n×n, it is obvious that p(A) is defined and that
p(t) is defined on the spectrum of A. For polynomials p and q, p(A) = q(A) if and
only if p and q take the same values on the spectrum (see [72, Thm. 1.3]). Thus the
matrix p(A) is completely determined by the values of p on the spectrum of A. The
following definition gives a way to generalize this property of polynomials to arbitrary
functions and define f(A) completely by the values of f on the spectrum of A.
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Definition 1.2 (matrix function via Hermite interpolation). Let f be defined on the
spectrum of A ∈ C

n×n. Then f(A) := p(A), where p is the polynomial of degree
less than

∑s
i=1 ni (namely the degree of the minimal polynomial) that satisfies the

interpolation conditions

p(j)(λi) = f (j)(λi), j = 0 : ni − 1, i = 1 : s. (1.4)

There is a unique such p and it is known as the Hermite interpolating polynomial.

Definition 1.1 and Definition 1.2 are equivalent [72, Thm. 1.12]. One of the most
important basic properties of f(A) is that f(A) is a polynomial in A ∈ Cn×n, which
is immediate from Definition 1.2. Some other important properties are collected in
the following theorem.

Theorem 1.3 ([72, Thm. 1.13]). Let A ∈ Cn×n and let f be defined on the spectrum
of A. Then

(a) f(A) commutes with A;

(b) f(AT ) = f(A)T ;

(c) f(XAX−1) = Xf(A)X−1;

(d) the eigenvalues of f(A) are f(λi), where the λi are the eigenvalues of A;

(e) if X commutes with A then X commutes with f(A);

(f) if A = (Aij) is block triangular then F = f(A) is block triangular with the
same block structure as A, and Fii = f(Aii);

(g) if A = diag(A11, A22, . . . , Amm) is block diagonal then

f(A) = diag(f(A11), f(A22), . . . , f(Amm)).

Proof. The proof is straightforward from Definition 1.1 and 1.2; see [72, Thm. 1.13].

The Taylor series is a basic tool for approximating matrix functions applicable to
general functions. Before giving a theorem that guarantees the validity of a matrix
Taylor series, we explain first how f(Jk) in (1.3) can be obtained from Taylor series
considerations. In (1.1b) write Jk = λkI +Nk ∈ Cmk×mk , where Nk is zero except for
a superdiagonal of 1s. For example, for mk = 3 we have

Nk =



0 1 0
0 0 1
0 0 0


 , N2

k =



0 0 1
0 0 0
0 0 0


 , N3

k = 0.

In general, powering Nk causes the superdiagonal of 1s to move a diagonal at a time
towards the top right-hand corner, until at the mkth power it disappears: Nmk

k = 0.
Assume that f has a convergent Taylor series expansion

f(t) = f(λk) + f ′(λk)(t− λk) + · · ·+
f (j)(λk)(t− λk)j

j!
+ · · · .
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On substituting Jk ∈ Cmk×mk for t we have the finite series

f(Jk) = f(λk)I + f ′(λk)Nk + · · ·+
f (j)(λk)N

mk−1
k

j!
,

since all powers of Nk from the mkth onwards are zero. This expression is easily seen
to agree with (1.3). A more general result is given in the following theorem.

Theorem 1.4 (convergence of matrix Taylor series). Suppose f has a Taylor series
expansion

f(z) =

∞∑

k=0

ak(z − α)k
(
ak =

f (k)(α)

k!

)
(1.5)

with radius of convergence r. If A ∈ Cn×n then f(A) is defined and is given by

f(A) =

∞∑

k=0

ak(A− αI)k (1.6)

if and only if each of the distinct eigenvalues λ1, . . . , λs of A satisfies one of the
conditions

(a) |λi − α| < r,

(b) |λi − α| = r and the series for f (ni−1)(λ) (where ni is the index of λi) is
convergent at the point λ = λi, i = 1 : s.

Proof. See [72, Thm. 4.7].

A very important issue involved in the computation of matrix functions is the con-
ditioning. Due to the inexactness and uncertainty of the data and rounding errors
from finite precision computations, the latter of which can often be interpreted as
being equivalent to perturbations in the data, it is important to understand the sen-
sitivity of f(A) to perturbations in A. Sensitivity is measured by condition numbers
defined as follows.

Definition 1.5. Let f : Cn×n → Cn×n be a matrix function. The relative condition
number of f is defined as

cond(f, A) := lim
ǫ→0

sup
‖E‖≤ǫ‖A‖

‖f(A+ E)− f(A)‖
ǫ‖f(A)‖ , (1.7)

where the norm is any matrix norm.

To obtain explicit expressions for cond(f, A), we need an appropriate notion of
derivative for matrix functions. The Fréchet derivative of a matrix function f :
Cn×n → Cn×n at a point A ∈ Cn×n is a linear mapping

C
n×n Lf (A)

−→ C
n×n

E 7→ Lf (A,E)

such that for all E ∈ Cn×n

f(A+ E) = f(A) + Lf (A,E) + o(‖E‖).
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Therefore, the condition number cond(f, A) can be characterized as

cond(f, A) =
‖Lf(A)‖‖A‖
‖f(A)‖ , (1.8)

where

‖Lf(X)‖ := max
Z 6=0

‖Lf (X,Z)‖
‖Z‖ . (1.9)

We now define the eigenvalues of the Fréchet derivative. An eigenpair (λ, V ) of
Lf (A) comprises a scalar λ, the eigenvalue, and a nonzero matrix V ∈ C

n×n, the
eigenvector, such that Lf(A, V ) = λV . Since Lf is a linear operator

vec(Lf (A,E)) = K(A)vec(E) (1.10)

for some K(A) ∈ Cn2×n2
that is independent of E. We refer to K(A) as the Kronecker

form of the Fréchet derivative. Recall that if we take a = vec(A), y = vec(f(A)) and
f : a 7→ y as a map from Cn2

to itself, then K(A) is the Jacobian matrix of f with
(i, j) entry equal to (∂f(a)/∂aij).

If (λ, V ) is an eigenpair of Lf(A) then K(A)v = λv, where v = vec(V ), so (λ, v) is
an eigenpair of K(A) in the usual matrix sense. For the rest of this section D denotes
an open subset of R or C. We now identify eigenpairs of Lf (A).

Theorem 1.6 (eigenvalues of Fréchet derivative). Let f be 2n−1 times continuously
differentiable on D and let A ∈ Cn×n have spectrum in D. The eigenvalues of the
Fréchet derivative of f at A are f [λi, λj], i, j = 1 : n, where the λi are the eigenvalues
of A and the divided difference f [λ, µ] is defined by

f [λ, µ] =





f(λ)− f(µ)
λ− µ , λ 6= µ,

f ′(λ), λ = µ.

If ui and vj are nonzero vectors such that Aui = λiui and v
T
j A = λjv

T
j , then uiv

T
j is

an eigenvector of Lf (A) corresponding to f [λi, λj].

Proof. See [72, Thm. 3.9].

Theorem 1.6 enables us to deduce when the Fréchet derivative is nonsingular.

Corollary 1.7 ([72, Cor. 3.10]). Let f be 2n− 1 times continuously differentiable on
D. The Fréchet derivative L of f at a matrix A ∈ Cn×n with eigenvalues λi ∈ D is
nonsingular when f ′(λi) 6= 0 for all i and f(λi) = f(λj)⇒ λi = λj.

1.2 Nonnegative matrices

We recall some background results from the theory of nonnegative matrices, which
will be needed in Chapter 2. Recall that A ∈ Rn×n, n ≥ 2, is reducible if there is a
permutation matrix P such that

P TAP =

[
A11 A12

0 A22

]
, (1.11)
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where A11 and A22 are square, nonempty submatrices. A is irreducible if it is not
reducible. We write X ≥ 0 (X > 0) to denote that the elements of X are all
nonnegative (positive), and denote by ρ(A) the spectral radius of A, e = [1, 1, . . . , 1]T

the vector of 1s, and ek the unit vector with 1 in the kth position and zeros elsewhere.
In the next theorem we recall some key facts from Perron–Frobenius theory [12,

Chap. 2], [78, Chap. 8], [96, Chap. 15].

Theorem 1.8 (Perron–Frobenius). If A ∈ R
n×n is nonnegative then ρ(A) is an

eigenvalue of A with a corresponding nonnegative eigenvector. If, in addition, A is
irreducible then

(a) ρ(A) > 0;

(b) there is an x > 0 such that Ax = ρ(A)x;

(c) ρ(A) is a simple eigenvalue of A (that is, it has algebraic multiplicity 1).

Let A be an irreducible nonnegative matrix and suppose that A has exactly h
eigenvalues of modulus ρ(A). The number h is called the index of imprimitivity of A.
If h = 1, then the matrix A is said to be primitive; otherwise, it is imprimitive (we
will investigate this particular structure in Section 2.6.7). For more background on
the theory of nonnegative matrices, see Berman and Plemmons [12] and Minc [106].



Chapter 2

On pth Roots of Stochastic
Matrices

2.1 Introduction

Discrete-time Markov chains are in widespread use for modelling processes that evolve
with time. Such processes include the variations of credit risk in the finance industry
and the progress of a chronic disease in healthcare, and in both cases the particular
problem considered here arises.

In credit risk, a transition matrix records the probabilities of a firm’s transition
from one credit rating to another over a given time interval [114]. The shortest pe-
riod over which a transition matrix can be estimated is typically one year, and annual
transition matrices can be obtained from rating agencies such as Moody’s Investors
Service and Standard & Poor’s. However, for valuation purposes, a transition matrix
for a period shorter than one year is usually needed. A short term transition matrix
can be obtained by computing a root of an annual transition matrix. A six-month
transition matrix, for example, is a square root of the annual transition matrix. This
property has led to interest in the finance literature in the computation or approx-
imation of roots of transition matrices [85], [95]. Exactly the same mathematical
problem arises in Markov models of chronic diseases, where the transition matrix is
built from observations of the progression in patients of a disease through different
severity states. Again, the observations are at an interval longer than the short time
intervals required for study and the need for a matrix root arises [26]. An early dis-
cussion of this problem, which identifies the need for roots of transition matrices in
models of business and trade, is that of Waugh and Abel [130].

A transition matrix is a stochastic matrix: a square matrix with nonnegative
entries and row sums equal to 1. The applications we have described require a
stochastic root of a given stochastic matrix A, that is, a stochastic matrix X such
that Xp = A, where p is typically a positive integer. Mathematically, there are three
main questions.

1. Under what conditions does a given stochastic matrix A have a stochastic pth
root, and how many roots are there?

2. If a stochastic root exists, how can it be computed?

21
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3. If a stochastic root does not exist, what is an appropriate approximate stochas-
tic root to use in its place?

The focus of this chapter is on the first question, which has not previously been
investigated in any depth. In Section 2.2 we recall known results on the existence
of matrix pth roots and derive a new characterization of when a real matrix has a
real pth root. With the aid of a lemma describing the pth roots of block triangular
matrices whose diagonal blocks have distinct spectra, we obtain a classification of pth
roots of possibly singular matrices. In Section 2.3 we derive a sufficient condition for
a pth root of a stochastic matrix A to have unit row sums; we show that this condition
is necessary for primary roots and that a nonnegative pth root always has unit row
sums when A is irreducible. We use the latter result to connect the stochastic root
problem with the problem of finding nonnegative roots of nonnegative matrices. Two
classes of stochastic matrices are identified that have stochastic principal pth roots
for all p: one is the inverse M-matrices and the other is a class of symmetric positive
semidefinite matrices explicitly obtained from a construction of Soules. In Section 2.4
we demonstrate a wide variety of possible scenarios for the existence and uniqueness
of stochastic roots of a stochastic matrix—in particular, with respect to whether a
stochastic root is principal, primary, or nonprimary. Conditions for the existence of
stochastic roots are investigated in Section 2.5. Given p, we denote by P ≡ P(p)
the set of stochastic matrices that have stochastic pth roots. The geometry of P is
analyzed in Section 2.5.1, where we show that P is relative closed as a subset of all
stochastic matrices and its relative interior is nonempty. In Section 2.5.2 we exploit
results for the inverse eigenvalue problem for stochastic matrices in order to obtain
necessary conditions that the spectrum of a stochastic matrix must satisfy in order
for the matrix to have a stochastic pth root. Section 2.6 provides some results on the
existence of stochastic roots for 2×2 and 3×3 matrices and stochastic matrices with
certain structures.

The stochastic root problem is intimately related to the embeddability problem in
discrete-time Markov chains, which asks when a nonsingular stochastic matrix A can
be written A = eQ for some Q with qij ≥ 0 for i 6= j and

∑
j qij = 0, i = 1:n. (For

background on the embeddability problem see Davies [36] or Higham [72, sec. 2.3]
and the references therein.) In Section 2.7 we give a collection of known results in
the literature on this problem and explore some facts on its relation to our stochastic
roots problem. Finally, some conclusions are given in Section 2.8.

2.2 Theory of matrix pth roots

We are interested in the nonlinear equation Xp = A, where p is assumed to be a
positive integer. In practice, p might be rational—for example if a transition matrix
is observed for a five year time interval but the interval of interest is two years. If
p = r/s for positive integer r and s then the problem is to solve the equation Xr = As,
and this reduces to the original problem with p← r and A← As, since any positive
integer power of a stochastic matrix is stochastic.

We can understand the nonlinear equationXp = A through the theory of functions
of matrices. The following theorem classifies all pth roots of a nonsingular matrix
[72, Thm. 7.1], [120] and will be exploited below.
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Theorem 2.1 (classification of pth roots of nonsingular matrices). Let the nonsingu-
lar matrix A ∈ C

n×n have the Jordan canonical form Z−1AZ = J = diag(J1, J2, . . . , Jm),
with Jordan blocks Jk = Jk(λk) ∈ Cmk×mk , and let s ≤ m be the number of distinct

eigenvalues of A. Let L
(jk)
k = L

(jk)
k (λk), k = 1:m, denote the p pth roots of Jk given

by

L
(jk)
k (λk) :=




fjk(λk) f ′
jk
(λk) · · ·

f
(mk−1)
jk

(λk)

(mk − 1)!

fjk(λk)
. . .

...
. . . f ′

jk
(λk)

fjk(λk)



, (2.1)

where jk ∈ {1, 2, . . . , p} denotes the branch of the pth root function f(z) = p
√
z. Then

A has precisely ps pth roots that are expressible as polynomials in A, given by

Xj = Zdiag(L
(j1)
1 , L

(j2)
2 , . . . , L(jm)

m )Z−1, j = 1: ps, (2.2)

corresponding to all possible choices of j1, . . . , jm, subject to the constraint that ji = jk
whenever λi = λk. If s < m then A has additional pth roots that form parametrized
families

Xj(U) = ZUdiag(L
(j1)
1 , L

(j2)
2 , . . . , L(jm)

m )U−1Z−1, j = ps + 1: pm, (2.3)

where jk ∈ {1, 2, . . . , p}, U is an arbitrary nonsingular matrix that commutes with J ,
and for each j there exist i and k, depending on j, such that λi = λk while ji 6= jk.

In the theory of matrix functions the roots (2.2) are called primary functions
of A, and the roots in (2.3), which exist only if A is derogatory (that is, if some
eigenvalue appears in more than one Jordan block), are called nonprimary functions
[72, Chap. 1]. A distinguishing feature of the primary roots (2.2) is that they are
expressible as polynomials in A, whereas the nonprimary roots are not, as discussed
in Section 1.1. To give some insight into the theorem and the nature of nonprimary
roots, we consider

A =



1 1 0
0 1 0
0 0 1


 ,

which is already in Jordan form, and for which m = 2, s = 1. All square roots are
given by

±



1 1

2
0

0 1 0
0 0 1


 , ±U



1 1

2
0

0 1 0
0 0 −1


U−1,

where from the standard characterization of commuting matrices [72, Thm. 1.25] we
find that U is an arbitrary nonsingular matrix of the form

U =



a b d
0 a 0
0 e c


 .
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While a nonsingular matrix always has a pth root, the situation is more compli-
cated for singular matrices, as the following result of Psarrakos [113] shows.

Theorem 2.2 (existence of pth root). A ∈ Cn×n has a pth root if and only if the
“ascent sequence” of integers d1, d2, . . . defined by

di = dim(null(Ai))− dim(null(Ai−1)) (2.4)

has the property that for every integer ν ≥ 0 no more than one element of the sequence
lies strictly between pν and p(ν + 1).

For real A, the above theorems do not distinguish between real and complex roots.
The next theorem provides a necessary and sufficient condition for the existence of a
real pth root of a real A; it generalizes [78, Thm. 6.4.14], which covers the case p = 2,
and [128, Cor. to Thm. 1], which applies to nonsingular A.

Theorem 2.3 (existence of real pth root). A ∈ R
n×n has a real pth root if and only

if it satisfies the ascent sequence condition (2.4) and, if p is even, A has an even
number of Jordan blocks of each size for every negative eigenvalue.

Proof. First, we note that a given Jordan canonical form J is that of some real
matrix if and only if for every nonreal eigenvalue λ occurring in r Jordan blocks of
size q there are also r Jordan blocks of size q corresponding to λ; in other words, the
Jordan blocks of each size for nonreal eigenvalues come in complex conjugate pairs.
This property is a consequence of the real Jordan form and its relation to the complex
Jordan form [78, sec. 3.4], [96, sec. 6.7].

(⇒) If A has a real pth root then by Theorem 2.2 it must satisfy (2.4). Suppose
that p is even, that A has an odd number, 2k+1, of Jordan blocks of size m for some
m and some eigenvalue λ < 0, and that there exists a real X with Xp = A. Since a
nonsingular Jordan block does not split into smaller Jordan blocks when raised to a
positive integer power [72, Thm. 1.36], the Jordan form of X must contain exactly
2k + 1 Jordan blocks of size m corresponding to eigenvalues µj with µp

j = λ, which
implies that each µj is nonreal since λ < 0 and p is even. In order for X to be real
these Jordan blocks must occur in complex conjugate pairs, but this is impossible
since there is an odd number of them. Hence we have a contradiction, so A must
have an even number of Jordan blocks of size m for λ.

(⇐) A has a Jordan canonical form Z−1AZ = J = diag(J0, J1), where J0 collects
together all the Jordan blocks corresponding to the eigenvalue 0 and J1 contains the
remaining Jordan blocks. Since (2.4) holds for A it also holds for J0, so J0 has a pth
root W0, and W0 can be taken real in view of the construction given in [113, sec. 3].
Form a pth root W1 of J1 by taking a pth root of each constituent Jordan block in
such a way that every nonreal root has a matching complex conjugate—something
that is possible because if p is even, the Jordan blocks of A for negative eigenvalues
occur in pairs, by assumption, while the Jordan blocks for nonreal eigenvalues occur
in complex conjugate pairs since A is real. Then, with W = diag(W0,W1), we have
W p = J . Since the Jordan blocks of W occur in complex conjugate pairs it is similar
to a real matrix, Y . With ∼ denoting similarity, we have Y p ∼ W p = J ∼ A. Since
Y p and A are real and similar, they are similar via a real similarity [78, sec. 3.4].
Thus A = GY pG−1 for some real, nonsingular G, which can be rewritten as A =
(GYG−1)p = Xp, where X is real.
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The next theorem identifies the number of real primary pth roots of a real matrix.

Theorem 2.4. Let the nonsingular matrix A ∈ Rn×n have r1 distinct positive real
eigenvalues, r2 distinct negative real eigenvalues, and c distinct complex conjugate
pairs of eigenvalues. If p is even there are (a) 2r1pc real primary pth roots if r2 = 0
and (b) no real primary pth roots if r2 > 0. If p is odd there are pc real primary pth
roots.

Proof. By transforming A to real Schur form1 R our task reduces to counting the
number of real pth roots of the diagonal blocks, since a primary pth root of R has
the same quasitriangular structure as R and its off-diagonal blocks are uniquely de-
termined by the diagonal blocks [72, sec. 7.2], [120]. Consider a 2× 2 diagonal block
C, which contains a complex conjugate pair of eigenvalues. Let

Z−1CZ = diag(λ, λ) = θI + iµK, K =

[
1 0
0 −1

]
.

Then C = θI + µW , where W = iZKZ−1, and since θ, µ ∈ R it follows that
W ∈ R2×2. The real primary pth roots of C are X = ZDZ−1 = Zdiag(α + iβ, α −
iβ)Z−1 = αI + βW , where (α + iβ)p = θ + iµ, since the eigenvalues must occur in
complex conjugate pairs. There are p such choices, giving pc choices in total.

Every real eigenvalue must be mapped to a real pth root, and the count depends
on the parity of p. There is obviously no real primary pth root if r2 > 0 and p is
even, while for odd p any negative eigenvalue −λ must be mapped to −λ1/p, which
gives no freedom. Each positive eigenvalue λ yields two choices ±λ1/p for even p, but
only one choice λ1/p for odd p. This completes the proof.

The next lemma enables us to extend the characterization of pth roots in Theo-
rem 2.1 to singular A. We denote by Λ(A) the spectrum of A.

Lemma 2.5. Let

A =

[
A11 A12

0 A22

]
∈ C

n×n,

where Λ(A11) ∩ Λ(A22) = ∅. Then any pth root of A has the form

X =

[
X11 X12

0 X22

]
,

where Xp
ii = Aii, i = 1, 2 and X12 is the unique solution of the Sylvester equation

A11X12 −X12A22 = X11A12 − A12X22.

Proof. It is well known (see, e.g., [72, Prob. 4.3]) that if W satisfies the Sylvester
equation A11W −WA22 = A12 then

D =

[
A11 0
0 A22

]
=

[
I −W
0 I

]−1 [
A11 A12

0 A22

] [
I −W
0 I

]
≡ R−1AR.

The Sylvester equation has a unique solution since A11 and A22 have no eigenvalue in
common. It is easy to see that any pth root of A = RDR−1 has the formX = RY R−1,

1Here, R is block upper triangular with diagonal blocks either 1 × 1 or 2 × 2, and any 2 × 2
diagonal blocks have complex conjugate eigenvalues.



CHAPTER 2. ON PTH ROOTS OF STOCHASTIC MATRICES 26

where Y p = D. To characterize all such Y we partition Y conformably with D and
equate the off-diagonal blocks in Y D = DY to obtain the nonsingular Sylvester
equations Y12A22 − A11Y12 = 0 and Y21A11 − A22Y21 = 0, which yield Y12 = 0 and
Y21 = 0, from which Y p

ii = Aii, i = 1, 2, follows. Therefore

X = RY R−1 =

[
I −W
0 I

]
diag(Y11, Y22)

[
I −W
0 I

]−1

=

[
Y11 Y11W −WY22
0 Y22

]
.

The Sylvester equation for X12 follows by equating the off-diagonal blocks in XA =
AX , and again this equation is nonsingular.

We can now extend Theorem 2.1 to possibly singular matrices.

Theorem 2.6 (classification of pth roots). Let A ∈ C
n×n have the Jordan canonical

form Z−1AZ = J = diag(J0, J1), where J0 collects together all the Jordan blocks
corresponding to the eigenvalue 0 and J1 contains the remaining Jordan blocks. As-
sume that A satisfies the condition of Theorem 2.2. All pth roots of A are given by
A = Zdiag(X0, X1)Z

−1, where X1 is any pth root of J1, characterized by Theorem 2.1,
and X0 is any pth root of J0.

Proof. Since A satisfies the condition of Theorem 2.2, J0 does as well. It suffices to
note that by Lemma 2.5 any pth root of J has the form diag(X0, X1), where X

p
0 = J0

and Xp
1 = J1.

Among all pth roots the principal pth root is the most used in theory and in
practice. For A ∈ Cn×n with no eigenvalues on R−, the closed negative real axis, the
principal pth root, written A1/p, is the unique pth root of A all of whose eigenvalues
lie in the segment { z : −π/p < arg(z) < π/p } [72, Thm. 7.2]. It is a primary matrix
function and it is real when A is real.

2.3 pth roots of stochastic matrices

We now focus on pth roots of stochastic matrices, and in particular the question of
the existence of stochastic roots. We will need to exploit some standard properties
of stochastic matrices contained in the following result. Recall that e = [1, 1, . . . , 1]T

is the vector of 1s.

Theorem 2.7. Let A ∈ Rn×n be stochastic. Then

(a) ρ(A) = 1;

(b) 1 is a semisimple eigenvalue of A (that is, it appears only in 1 × 1 Jordan
blocks in the Jordan canonical form of A) and has a corresponding eigenvector e;

(c) if A is irreducible, then 1 is a simple eigenvalue of A.

Proof. The first part is straightforward. The semisimplicity of the eigenvalue 1 is
proved by Minc [106, Chap. 6, Thm. 1.3], while the last part follows from Theo-
rem 1.8.

For a pth root X of a stochastic A to be stochastic there are two requirements:
that X is nonnegative and that Xe = e. While Xp = A and X ≥ 0 together imply
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that ρ(X) = 1 is an eigenvalue of X with a corresponding nonnegative eigenvector v
(by Theorem 1.8), it does not follow that v = e. The matrices A and X in Fact 2.24
below provide an example, with v = [1, 1, 21/2]T . The next result shows that a
sufficient condition for a pth root of a stochastic matrix to have unit row sums is that
every copy of the eigenvalue 1 of A is mapped to an eigenvalue 1 of X .

Lemma 2.8. Let A ∈ Rn×n be stochastic and let Xp = A, where for any eigenvalue
µ of X with µp = 1 it holds that µ = 1. Then Xe = e.

Proof. Since A is stochastic and so has 1 as a semisimple eigenvalue with corre-
sponding eigenvector e, it has the Jordan canonical form A = ZJZ−1 with J =
diag(I, J2, J0), where 1 6∈ Λ(J2), J0 ∈ Ck×k contains all the Jordan blocks corre-
sponding to zero eigenvalues, and Ze1 = e. By Theorem 2.6 any pth root X of
A satisfying the assumption of the lemma has the form X = ZULU−1Z−1, where
L = diag(I, L2, Y0) with Y p

0 = J0, and where U = diag(Ũ , Ik) with Ũ an arbi-
trary nonsingular matrix that commutes with diag(I, J2) and hence is of the form

Ũ = diag(Ũ1, Ũ2). Then

Xe = ZULU−1Z−1e = ZULU−1e1 = Zdiag(I, Ũ2L2Ũ
−1
2 , Y0)e1 = Ze1 = e,

as required.

The sufficient condition of the lemma forX to have unit row sums is not necessary,
as the example A =

[
1
0
0
1

]
, X =

[
0
1
1
0

]
, p = 2, shows. However, for primary roots the

condition is necessary, since every copy of the eigenvalue 1 is mapped to the same root
ξ, and Xe = ξe (which can be proved using the property f(ZJZ−1) = Zf(J)Z−1 of
primary matrix functions f ; see Theorem 1.3), so we need ξ = 1. The condition is
also necessary when A is irreducible, as the next corollary shows.

Corollary 2.9. Let A ∈ Rn×n be an irreducible stochastic matrix. Then for any
nonnegative X with Xp = A, Xe = e.

Proof. Since A is stochastic and irreducible, 1 is a simple eigenvalue of A, by Theo-
rem 2.7. As noted just before Lemma 2.8, Xp = A and X ≥ 0 imply that ρ(X) = 1
is an eigenvalue of X , and this is the only eigenvalue µ of X with µp = 1, since 1 is
a simple eigenvalue of A. Therefore the condition of Lemma 2.8 is satisfied.

The next result shows an important connection between stochastic roots of stochas-
tic matrices and nonnegative roots of irreducible nonnegative matrices.

Theorem 2.10. Suppose C is an irreducible nonnegative matrix with positive eigen-
vector x corresponding to the eigenvalue ρ(C). Then A = ρ(C)−1D−1CD is stochas-
tic, where D = diag(x). Moreover, if C = Y p with Y nonnegative then A = Xp,
where X = ρ(C)−1/pD−1Y D is stochastic.

Proof. The eigenvector x necessarily has positive elements in view of the fact that C
is irreducible and nonnegative, by Theorem 1.8. The stochasticity of A is standard
(see [106, Chap. 6, Thm. 1.2], for example), and can be seen from the observation
that, since De = x, Ae = ρ(C)−1D−1Cx = ρ(C)−1D−1ρ(C)x = e. We have Xp =
ρ(C)−1D−1Y pD = ρ(C)−1D−1CD = A. Finally, the irreducibility of C implies that
of A, and hence the nonnegative matrix X has unit row sums, by Corollary 2.9.
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We can identify an interesting class of stochastic matrices for which a stochastic
pth root exists for all p. Recall that A ∈ R

n×n is a nonsingularM-matrix if A = sI−B
with B ≥ 0 and s > ρ(B). It is a standard property that the inverse of a nonsingular
M-matrix is nonnegative [12, Chap. 6].

Theorem 2.11. If the stochastic matrix A ∈ Rn×n is the inverse of an M-matrix
then A1/p exists and is stochastic for all p.

Proof. Since M = A−1 is an M-matrix, the eigenvalues of M all have positive real
part and hence M1/p exists. Furthermore, M1/p is also an M-matrix for all p, by
a result of Fiedler and Schneider [45]. Thus A1/p = (M1/p)−1 ≥ 0 for all p, and
A1/pe = e follows from the comments following Lemma 2.8, so A1/p is stochastic.

If A ≥ 0 and we can compute B = A−1 then it is straightforward to check whether
B is an M-matrix: we just have to check whether bij ≤ 0 for all i 6= j [12, Chap. 6].
An example of a stochastic inverse M-matrix is given in Fact 2.21 below. Another
example is the lower triangular matrix

A =




1
1
2

1
2

...
...

. . .
1
n

1
n
· · · 1

n


 , (2.5)

for which

A−1 =




1
−1 2
0 −2 3
...

...
. . .

. . .

0 0 · · · −(n− 1) n



.

Clearly, A−1 is an M-matrix and hence from Theorem 2.11, A1/p is stochastic for any
positive integer p.

A particular class of inverseM-matrices is the strictly ultrametric matrices, which
are the symmetric positive semidefinite matrices for which aij ≥ min(aik, akj) for all
i, j, k and aii > min{ aik : k 6= i } (or, if n = 1, a11 > 0). The inverse of such a matrix
is a strictly diagonally dominant M-matrix [102], [107].

Using a construction of Soules [122] (also given in a different form by Perfect and
Mirsky [112, Thm. 8]), a class of symmetric positive semidefinite stochastic matrices
with stochastic roots can be built explicitly.

Theorem 2.12. Let Q ∈ Rn×n be an orthogonal matrix with first column n−1/2e,
qij > 0 for i+ j < n + 2, qij < 0 for i+ j = n + 2, and qij = 0 for i+ j > n + 2. If
λ1 ≥ λ2 ≥ · · · ≥ λn, λ1 > 0, and

1

n
λ1 +

1

n(n− 1)
λ2 +

1

(n− 1)(n− 2)
λ3 + · · ·+

1

1 · 2λn ≥ 0 (2.6)

then

(a) A = λ−1
1 Qdiag(λ1, . . . , λn)Q

T is a symmetric stochastic matrix;
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(b) if λ1 > λ2 then A > 0;

(c) if λn ≥ 0 then A1/p is stochastic for all p.

Proof. (a) is proved by Soules [122, Cor. 2.4]. (b) is shown by Elsner, Nabben, and

Neumann [44, p. 327]. To show (c), if λn ≥ 0 then λ
1/p
1 ≥ λ

1/p
2 ≥ · · · ≥ λ

1/p
n holds and

(2.6) trivially remains true with λi replaced by λ
1/p
i for all i and so A1/p is stochastic

by (a).

A family of matrices Q of the form specified in the theorem can be constructed as
a product of Givens rotations Gij , where Gij is a rotation in the (i, j) plane designed
to zero the jth element of the vector it premultiplies and produce a nonnegative ith
element. Choose rotations Gij so that

Ge := G12G23 . . . Gn−1,ne = n1/2e1.

Then G has positive elements on and above the diagonal, negative elements on the
first subdiagonal, and zeros everywhere else. We have GT e1 = n−1/2e, and defining Q
as GT with the order of its rows reversed yields a Q of the desired form. For example,
for n = 4,

Q =




0.5000 0.2887 0.4082 0.7071
0.5000 0.2887 0.4082 −0.7071
0.5000 0.2887 −0.8165 0
0.5000 −0.8660 0 0


 .

There is a close relation between Theorems 2.11 and 2.12. If λ1 ≥ λ2 ≥ · · · ≥
λn > 0 in Theorem 2.12 then A in Theorem 2.12 has the property that A−1 is an
M-matrix and, moreover, A−k is anM-matrix for all positive integers k [44, Cor. 2.4].

It is possible to generalize Theorem 2.12 to nonsymmetric stochastic matrices
with positive real eigenvalues (using [27, sec. 3], for example) but we will not pursue
this here.

Finally, we note a more specific result. Marcus and Minc [101] give a sufficient
condition for the principal square root of a symmetric positive semidefinite matrix to
be stochastic. We will discuss more about this in Section 2.6.

Theorem 2.13. Let A ∈ Rn×n be a symmetric positive semidefinite stochastic matrix
with aii ≤ 1/(n− 1), i = 1:n. Then A1/2 is stochastic.

Proof. See [101, Thm. 2] or [106, Chap. 5, Thm. 4.2].

2.4 Scenarios for existence and uniqueness of stochas-

tic roots

Existence and uniqueness of pth roots under the requirement of preserving stochas-
tic structure is not a straightforward matter. We present a sequence of facts that
demonstrate the wide variety of possible scenarios. In particular, we show that if
the principal pth root is not stochastic there may still be a primary stochastic pth
root, and if there is no primary stochastic pth root there may still be a nonprimary
stochastic pth root.
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Fact 2.14. A stochastic matrix may have no pth root for any p. Consider the stochas-
tic matrix A = Jn(0) + ene

T
n ∈ R

n×n, where Jn(0), n > 2, is an n × n Jordan block
with eigenvalue 0. The ascent sequence (2.4) is easily seen to be n− 1 1s followed by
zeros. Hence by Theorem 2.2, A has no pth root for any p > 1.

Fact 2.15. A stochastic matrix may have pth roots but no stochastic pth root. This
is true for even p because if A is nonsingular and has some negative eigenvalues
then it has pth roots but may have no real pth roots, by Theorem 2.3. An example
illustrating this fact is the stochastic matrix

A =



0.5000 0.3750 0.1250
0.7500 0.1250 0.1250
0.0833 0.0417 0.8750


 , Λ(A) = {1, 3/4,−1/4},

which has pth roots for all p but no real pth roots for any even p.

Fact 2.16. A stochastic matrix may have a stochastic principal pth root as well as a
stochastic nonprimary pth root. Consider the family of 3× 3 stochastic matrices [95]

X(p, x) =




0 p 1− p
x 0 1− x
0 0 1


 ,

where 0 < p < 1 and 0 < x < 1, and let a = px. The eigenvalues of X(p, x) are 1,
a1/2, and −a1/2. The matrix

A = X(p, x)2 =



a 0 1− a
0 a 1− a
0 0 1




is stochastic. But there is another stochastic matrix X̃ that is also a square root
of A:

X̃ =



a1/2 0 1− a1/2
0 a1/2 1− a1/2
0 0 1


 .

Note that X̃ is the principal square root of A (and hence a primary square root)
while all members of the family X(p, x) are nonprimary, since A is upper triangular
but the X(p, x) are not.

Fact 2.17. A stochastic matrix may have a stochastic principal pth root but no other
stochastic pth root.

The matrix (2.5) provides an example.

Fact 2.18. The principal pth root of a stochastic matrix with distinct, real, positive
eigenvalues is not necessarily stochastic.

This fact is easily verified experimentally. For a parametrized example, let

D =



1 0 0
0 α 0
0 0 β


 , P =



1 1 1
1 1 −1
1 −1 0


 , 0 < α, β < 1.
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Then the matrix

X = PDP−1 =
1

4



1 + α + 2β 1 + α− 2β 2− 2α
1 + α− 2β 1 + α + 2β 2− 2α

1− α 1− α 2 + 2α


 (2.7)

has unit row sums, and A = PD2P−1 can be obtained by replacing α, β in (2.7) with
α2, β2, respectively. Clearly, X is nonnegative if and only if β ≤ (1+α)/2 while A is
nonnegative if and only if β ≤ ((1+α2)/2)1/2. If we let (1+α)/2 < β ≤ ((1+α2)/2)1/2

then A is stochastic and its principal square root X = A1/2 is not nonnegative;
moreover, for α = 0.5, β = 0.751 (for example) it can be verified that none of the
eight square roots of A is stochastic.

Fact 2.19. A (row) diagonally dominant stochastic matrix (one for which aii ≥∑
j 6=i aij for all i) may not have a stochastic principal pth root.

The matrix A of the previous example serves to illustrate this fact. For α = 0.99,
β = 0.9501,

A =



9.9005× 10−1 9.9005× 10−7 9.9500× 10−3

9.9005× 10−7 9.9005× 10−1 9.9500× 10−3

4.9750× 10−3 4.9750× 10−3 9.9005× 10−1


 , (2.8)

which has strongly dominant diagonal. Yet none of the eight square roots of A is
nonnegative.

Fact 2.20. A stochastic matrix whose principal pth root is not stochastic may still
have a primary stochastic pth root. This fact can be seen from the permutation
matrices

X =




0 0 1
1 0 0
0 1 0


 , A =




0 1 0
0 0 1
1 0 0


 = X2. (2.9)

The eigenvalues of A are distinct (they are −1
2
±

√
3
2
i and 1), so all roots are primary.

The matrix X , which is not the principal square root (X has the same eigenvalues
as A), is easily checked to be the only stochastic square root of A.

Fact 2.21. A stochastic matrix with distinct eigenvalues may have a stochastic prin-
cipal pth root and a different stochastic primary pth root. As noted in [72, Prob. 1.31],
the symmetric positive definite matrix M with mij = min(i, j) has a square root Y
with

yij =

{
0, i+ j ≤ n,
1, i+ j > n.

For example, 


0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1




2

=




1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4


 .

It is also known that the eigenvalues ofM are λk = (1/4) sec(kπ/(2n+1))2, k = 1:n,
so ρ(M) = (1/4) sec(nπ/(2n + 1))2 =: rn [47]. Since M has all positive elements
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it has a positive eigenvector x corresponding to ρ(M) (the Perron vector), and so
we can apply Theorem 2.10 to deduce that the stochastic matrix A = r−1

n D−1MD,

where D = diag(x), has stochastic square root X = r
−1/2
n D−1Y D, and X obviously

has the same anti-triangular structure as Y . Since X is clearly indefinite, it is not the
principal square root. However, since the eigenvalues ofM , and hence A, are distinct,
all the square roots of A are primary square roots. The stochastic square root X has
⌈n/2⌉ positive eigenvalues and ⌊n/2⌋ negative eigenvalues, which follows from the
inertia properties of a 2× 2 block symmetric matrix—see, for example, Higham and
Cheng [75, Thm. 2.1]. However, X is not the only stochastic square root of A, as we
now show.

Lemma 2.22. The principal pth root of A = r−1
n D−1MD is stochastic for all p.

Proof. Because the row sums are preserved by the principal pth root, we just have to
show that A1/p is nonnegative, or equivalently that M1/p is nonnegative. It is known
that M−1 is the tridiagonal second difference matrix with typical row [−1 2 − 1],
except that the (n, n) element is 1. Since M−1 has nonpositive off-diagonal elements
and M is nonnegative, M−1 is an M-matrix and it follows from Theorem 2.11 that
M1/p is stochastic for all p.

For n = 4, A and its two stochastic square roots are




0.1206 0.2267 0.3054 0.3473
0.0642 0.2412 0.3250 0.3696
0.0476 0.1790 0.3618 0.4115
0.0419 0.1575 0.3182 0.4825


 =




0 0 0 1.0000
0 0 0.4679 0.5321
0 0.2578 0.3473 0.3949

0.1206 0.2267 0.3054 0.3473




2

=




0.2994 0.2397 0.2315 0.2294
0.0679 0.3908 0.2792 0.2621
0.0361 0.1538 0.4705 0.3396
0.0277 0.1117 0.2626 0.5980




2

.

Fact 2.23. A stochastic matrix without primary stochastic pth roots may have non-
primary stochastic pth roots. Consider the circulant stochastic matrix

A =
1

3




1− 2a 1 + a 1 + a
1 + a 1− 2a 1 + a
1 + a 1 + a 1− 2a


 , 0 < a ≤ 1

3
.

The eigenvalues of A are 1,−a,−a. The four primary square roots X of A are all non-
real, because in each case the two negative eigenvalues −a and −a are mapped to the
same square root, which means that X cannot have complex conjugate eigenvalues.
With ω = e−2πi/3, we have

A = Q−1DQ, Q =



1 1 1
1 ω ω2

1 ω2 ω


 , D = diag(1,−a,−a).
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Let X = Q−1diag(1, ia1/2,−ia1/2)Q. Then

X =
1

3




1 1 + (3a)1/2 1− (3a)1/2

1− (3a)1/2 1 1 + (3a)1/2

1 + (3a)1/2 1− (3a)1/2 1


 ,

which is a stochastic, nonprimary square root of A.

Fact 2.24. A nonnegative pth root of a stochastic matrix is not necessarily stochastic.
Consider the nonnegative but non-stochastic matrix [99]

X =




0 0 2−1/2

0 0 2−1/2

2−1/2 2−1/2 0


 , Λ(X) = {1, 0,−1},

for which

A = X2k ≡



1/2 1/2 0
1/2 1/2 0
0 0 1


 , Λ(A) = {1, 1, 0}

is stochastic. Note that A is its own stochastic pth root for any integer p.

Fact 2.25. A stochastic matrix may have a stochastic pth root for some, but not all,
p.

Consider again the matrix

A =



0 1 0
0 0 1
1 0 0




appearing in Fact 2.20. We have A3 = I, which implies A3k+1 = A and (A2)3k+2 =
A4 = A for all nonnegative integers k. Hence A is its own stochastic pth root
for p = 3k + 1 and A2 is a stochastic pth root of A for p = 3k + 2. However,
Λ(A) = {1, ω, ω} with ω = e−2πi/3, and the arguments in Section 2.5.2 show that A
has no stochastic cube root (since ω lies outside the region Θ3

3 in Figure 2.2). Hence
A does not have a stochastic root for p = 3k. Note that A is irreducible and all three
eigenvalues of A have modulus one, so A is an imprimitive stochastic matrix. We will
deal further with examples of this type in Section 2.6.7.

2.5 A necessary condition for the existence of stochas-

tic roots

2.5.1 The geometry of Xp

To investigate the conditions under which a stochastic matrix has stochastic roots,
an intuitive, though not simple, method is to study the geometry of the set of all
stochastic matrices that have stochastic pth roots. We begin our analysis with some
definitions which will be needed in this section.
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Definition 2.26. Let S be a subset of Rn. The affine hull of S, denoted by aff(S),
is the set of all affine combinations of elements of S

aff(S) =

{
k∑

i=1

αixi : xi ∈ S, αi ∈ R,

k∑

i=1

αi = 1, k = 1, 2, . . .

}
.

The convex hull of S, denoted by conv(S), is the set of all convex combinations of
elements of S that requires in the formula above that all αi be nonnegative. The
relative interior of S, denoted by ri(S), is the interior of S considered as a subset of
aff(S). S is said to be relatively open if S = ri(S). S is said to be relatively closed if
its complement Rn\S is relatively open.

We denote by S the set of all n × n stochastic matrices and N the set of all
n × n nonnegative matrices. It is known that S is the convex hull of the set of nn

elementary stochastic matrices consisting of zeros and ones [63]. Thus, S is bounded,
closed and hence compact in N . Denote by P ≡ P(p) the set of stochastic matrices
which have stochastic pth roots. Here, we do not require the root to be unique. Since
any positive integer power of a stochastic matrix is still stochastic, P is a subset of
S given by

P = {Xp : X ∈ S} .
We have the following proposition.

Proposition 2.27. P is relatively closed as a subset of S.

Proof. Assume we have a sequence {Ai} with Ai ∈ P, i = 1, 2, . . .. We only need
to show that, if Ai → A as i → ∞ then A ∈ P. For each Ai ∈ P, there exists
some Xi ∈ S such that Xp

i = Ai. Since S is closed and bounded in the set of
all nonnegative matrices, the matrix sequence Xi is bounded and hence Xi has a
convergent subsequence Xik with a limit X in S. Since f(X) = Xp is a continuous
matrix function on S [72, Theorem 1.19], we have f(Xik)→ f(X) and hence Aik →
Xp = A which gives A ∈ P. This proves our proposition.

Since S is a convex set in N , it is natural to ask whether P, the image of S under
the map f(X) = Xp is also convex. For a 2×2 matrix A and even p, the answer is yes
since in this situation the necessary and sufficient condition for A ∈ P is trace(A) ≥ 1
[64]. But even for odd p in the 2 × 2 case, P is not necessarily convex. To see this,
let

X1 = A1 =

[
0 1
0 1

]

and

X2 = A2 =

[
0 1
1 0

]
.

Since X3
1 = A1 and X3

2 = A2, we have A1, A2 ∈ P. Thus if P were convex in this
case, it would contain

A =
1

2
(A1 + A2) =

[
0 1
1
2

1
2

]
.
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However, the only real cube root of A is

X =
1

3

[
1− 22/3 2 + 22/3

1 + 22/3 2− 22/3

]

which has a negative entry, so that A /∈ P.
We now consider the interior of P as a subset of S. We will show that the interior

of P is not empty by exploiting the fact that a homeomorphism maps an open set to
an open set. Consider a map F : RN → R

N . It is a standard property that F is locally
homeomorphic at x ∈ RN if the corresponding Jacobian matrix is nonsingular [20,
Thm. 3]. Now we consider the local homeomorphism of matrix functions. Recall the
background knowledge in Section 1.1 on the Fréchet derivative of matrix functions.
For a matrix function f to be locally homeomorphic at X , it is sufficient that the
Fréchet derivative of f at X is nonsingular. We narrow the case to our functions of
matrix powers.

Theorem 2.28. The map f : f(X) = Xp from Rn×n into itself is locally homeomor-
phic except possibly when X has a zero eigenvalue, or a pair of eigenvalues differing
by a nonzero multiple of ω where ω is a pth root of 1.

Proof. As discussed before, f is a local homeomorphism at X if the Fréchet derivative
of f at X is nonsingular. From Corollary 1.7, Lf(X) is singular when there exists an
eigenvalue λ of X such that f ′(λ) = pλp−1 = 0, or when there exists a pair of distinct
eigenvalues λ1, λ2 with λp1 = λp2. A simple calculation yields the result.

Remark 2.29. Let

S0 = {X ∈ S : X = (xij), xii > 1/(1 + sin(π/p)), i = 1, 2, . . . , n} .

From Gershgorin’s disk theorem, for any eigenvalue λ = reiα of X ∈ S0, we have
|λ − xii| ≤

∑
j 6=i xij = 1 − xii. It follows that | sinα| ≤ (1 − xii)/xii < sin(π/p)

and then −π/p < α < π/p. Hence, for any X ∈ S0, X is nonsingular and no two
distinct eigenvalues of X will differ by a multiple of w, where wp = 1. Therefore,
when restricted to the set S0, the map f(X) = Xp is a local homeomorphism.

Proposition 2.30. The relative interior of P as a subset of all stochastic matrices
S is nonempty.

Proof. Let P0 be the image of S0 under the map f : X 7→ Xp. Since f is a local
homeomorphism on S0 and S0 is relatively open as a subset of S, P0 is relatively open
in P, which implies the relative interior of P as a subset of S is nonempty.

The content above in this section is of more theoretical interest than numerical
interest. The idea here can nevertheless be applied to investigating eigenvalues of
the stochastic matrices that have stochastic pth roots and a necessary condition can
thus be obtained for the existence of stochastic roots. This will be shown in the next
section.
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2.5.2 Necessary conditions based on inverse eigenvalue prob-

lem

Karpelevič [90] has determined the set Θn of all eigenvalues of all stochastic n ×
n matrices. This set provides the solution to the inverse eigenvalue problem for
stochastic matrices, which asks when a given complex scalar is the eigenvalue of
some n×n stochastic matrix. (Note the distinction with the problem of determining
conditions under which a set of n complex numbers comprises the eigenvalues of some
n×n stochastic matrix, which is called the inverse spectrum problem by Minc [106].)

The following theorem gives the main points of Karpelevič’s theorem on the char-
acterization of Θn; full details on the “specific rules” mentioned therein can be found
in [90] and [106, Chap. 7, Thm. 1.8].

Theorem 2.31. The set Θn is contained in the unit disk and is symmetric with
respect to the real axis. It intersects the unit circle at points e2iπa/b where a and b
range over all integers such that 0 ≤ a < b ≤ n. For n > 3, the boundary of Θn

consists of curvilinear arcs connecting these points in circular order. Any point λ on
these arcs must satisfy one of the parametric equations

λq(λs − t)r = (1− t)r, (2.10)

(λb − t)d = (1− t)dλq, (2.11)

where 0 ≤ t ≤ 1, and b, d, q, s, r are positive integers determined from certain
specific rules.

The set Θ3 of eigenvalues of 3 × 3 stochastic matrices consists of points in the
interior and on the boundary of an equilateral triangle of maximal size inscribed in
the unit circle with one of its vertices at the point (1, 0), as well as all points on
the segment [−1, 1]; see Figure 2.1. The boundary of Θ4 consists of curvilinear arcs
determined by the parametric equations λ3+λ2+λ+t = 0 and λ3+λ2−(2t−1)λ−t2 =
0, 0 ≤ t ≤ 1, together with line segments linking (1, 0) with (0, 1), and (1, 0) with
(0,−1), respectively, as can also be seen in Figure 2.1.

Denote by Θp
n the set of pth powers of points in Θn, i.e., Θ

p
n = {λp : λ ∈ Θn}. If

A and X are stochastic n×n matrices such that Xp = A then for any eigenvalue λ of
X , λp is an eigenvalue of A. Hence, a necessary condition for A to have a stochastic
pth root is that all the eigenvalues of A are in the set Θp

n. It can be shown that Θp
n is

a closed set within the unit disk with boundary ∂Θp
n ⊆ {λp : λ ∈ ∂Θn}, where ∂Θn

is the boundary of Θn, the points on which satisfy the parametric equation (2.10) or
(2.11). Figure 2.2 shows the second to fifth powers of Θ3 and Θ4.

This approach provides necessary conditions for A to have a stochastic pth root.
The conditions are not sufficient, because we are checking whether each eigenvalue
of A is the eigenvalue of some pth power of a stochastic matrix, and not that every
eigenvalue of A is an eigenvalue of the pth power of the same stochastic matrix.

To illustrate, consider the stochastic matrix

A =




1/3 1/3 0 1/3
1/2 0 1/2 0
10/11 0 0 1/11
1/4 1/4 1/4 1/4


 . (2.12)
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Figure 2.1: The sets Θ3 and Θ4 of all eigenvalues of 3×3 and 4×4 stochastic matrices,
respectively.
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Figure 2.2: Regions obtained by raising the points in Θ3 (left) and Θ4 (right) to the
powers 2, 3, 4, and 5.

From Figure 2.3 we see that A cannot have a stochastic 12th root, but may have a
stochastic 52nd root. In fact, both A1/12 and A1/52 have negative elements and none
of the 52nd roots is stochastic.

If A ∈ Rn×n is stochastic then so is the matrix diag(A, 1) of order n + 1, and
it follows that Θ3 ⊆ Θ4 ⊆ Θ5 ⊆ . . .. Moreover, the number of points at which the
region Θn intersects the unit circle increases rapidly with n; for example, there are
23 intersection points for Θ8 and 80 for Θ16. As n increases the region Θn and its
powers tend to fill the unit circle, so the necessary conditions given in this section
are most useful for small dimensions. We emphasize, however, that small matrices
do arise in practice; for example, in the model in [26] describing the progression to
AIDS in an HIV-infected population the transition matrix2 is of dimension 5.

2This matrix has one negative eigenvalue and a square root is required; that no exact stochastic
square root exists follows from Theorem 2.3.
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Figure 2.3: Θp
4 for p = 12 and p = 52 and the spectrum (shown as dots) of A in

(2.12).

2.6 Conditions for structural stochastic matrices

We start this section with general 2 × 2 and 3 × 3 stochastic matrices and then
proceed to the stochastic matrices with particular structures, including rank 1 matri-
ces, Pei matrix, circulant matrices, upper triangular matrices, irreducible imprimitive
stochastic matrices, and symmetric positive definite matrices.

2.6.1 2 × 2 case.

He and Gunn [64] give all stochastic roots of 2 × 2 stochastic matrices explicitly.
The results shown here are the same as in [64] but stated in a simpler way. A 2 × 2
stochastic matrix is of the form

A =

[
a 1− a

1− b b

]
,

where 0 ≤ a, b ≤ 1. If a = b = 1 then A is an identity matrix and A itself is a
stochastic pth root for any integer p. Thus we assume further that there is at most
one of a and b equal to 1. Hence, A has the following Jordan decomposition

A =

[
1 a− 1
1 1− b

] [
1 0
0 a+ b− 1

] [
1−b

2−a−b
1−a

2−a−b

− 1
2−a−b

1
2−a−b

]
.

Let xp = a+b−1. The pth roots X of A that satisfy Xe = e, can be written explicitly

X =

[
1 a− 1
1 1− b

] [
1 0
0 x

] [
1−b

2−a−b
1−a

2−a−b

− 1
2−a−b

1
2−a−b

]

=
1

2− a− b

[
1− b+ (1− a)x (1− a)(1− x)
(1− b)(1 − x) 1− a+ (1− b)x

]
. (2.13)

Obviously, a necessary condition for X to be stochastic is that t ≡ a + b− 1 has
a real pth root. If p is even, then the necessary condition is a + b − 1 ≥ 0. Let
x = (a + b − 1)1/p be the principal pth root of a + b − 1. Since 0 ≤ a, b ≤ 1 implies
a + b − 1 < 1, we have x < 1 and hence X in (2.13) is nonnegative. Therefore, if
p is even, the necessary and sufficient condition for A to have a stochastic root is
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a + b− 1 ≥ 0, i.e., trace(A) ≥ 1.
If p is odd, take x the real pth root of a + b − 1. The pth root X in (2.13) is

nonnegative if and only if

{
1− b+ (1− a)x ≥ 0,
1− a+ (1− b)x ≥ 0,

which is equivalent to {
a+ b− 1 ≥ −

(
1−b
1−a

)p
,

a+ b− 1 ≥ −
(
1−a
1−b

)p
.

Hence, A has a stochastic root if and only if

a+ b− 1 ≥ max

{
−
(
1− b
1− a

)p

,−
(
1− a
1− b

)p}
,

i.e., trace(A) ≥ max
{
−
(
1−b
1−a

)p
,−
(
1−a
1−b

)p}
+ 1.

2.6.2 3 × 3 case.

Though all stochastic roots of 2×2 stochastic matrices can be found explicitly, there
is no similar result for 3×3 stochastic matrices due to the existence of infinitely many
nonprimary roots. He and Gunn [64] investigate the primary roots for the 3× 3 case
where they drop the nonnegativity constraint of the original problem, express the
primary pth roots as polynomials of A via the Hermite interpolating polynomial (see
Definition 1.2) and identify the existence and number of the real primary pth roots
with unit row sums. Let A be a 3 × 3 stochastic matrix with eigenvalues 1, λ2 and
λ3 and B be a real matrix such that

A = Bp, Be = e. (2.14)

We summarize the results from [64] as follows. We make some corrections here and
also comment on the existence of real nonprimary roots.

• In the case where (trace(A) − 1)2 < 4 det (A), namely λ2 and λ3 are a pair
of complex conjugates, there are in total p real (primary) pth roots B of A
satisfying (2.14).

• In the case where (trace(A) − 1)2 > 4 det (A), namely λ2 and λ3 are real and
λ2 6= λ3:

– If p is odd, there is a unique real (primary) pth root B of A satisfying
(2.14);

– If p is even and det(A) < 0, there is no real (primary) pth root B of A
satisfying (2.14);

– If p is even, det(A) ≥ 0 and trace(A) < 1, there is no real (primary) pth
root B of A satisfying (2.14);

– If p is even, det(A) ≥ 0 and trace(A) ≥ 1, there are four real (primary)
pth roots B of A satisfying (2.14).
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• In the case where (trace(A)− 1)2 = 4det (A), namely λ2 = λ3 = α:

– If λ2 = λ3 = 1, the only real primary pth root of A is A = I itself; there
are infinitely many real nonprimary pth roots B of A satisfying (2.14);

– If A2− (1+α)A+αI 6= 0, namely A is non-diagonalizable, and λ2 = λ3 =
α = 0, then there is no pth root of A;

– If A2 − (1 + α)A + αI 6= 0, 1 > λ2 = λ3 = α 6= 0 and p is odd, there is a
unique real (primary) pth root B of A satisfying (2.14);

– If A2 − (1 + α)A + αI 6= 0, 1 > λ2 = λ3 = α > 0 and p is even, there are
two real (primary) pth roots B of A satisfying (2.14);

– If A2− (1 +α)A+αI 6= 0, λ2 = λ3 = α < 0 and p is even, there is no real
(primary) pth root B of A satisfying (2.14);

– If A2 − (1 + α)A + αI = 0, namely A is diagonalizable, and 1 > λ2 =
λ3 = α = 0, then the only real primary pth root B of A satisfying (2.14)
is B = A; we point out that there are infinitely many real nonprimary pth
roots B of A satisfying (2.14);

We mention in passing that, in the case where A2 − (1 + α)A + αI = 0 and
1 > λ2 = λ3 = α 6= 0, [64] wrongly states that, for either odd or even p, there
are possibly p real primary pth roots B of A satisfying (2.14). We correct their
results as follows.

– If A2 − (1 + α)A + αI = 0, 1 > λ2 = λ3 = α > 0 and p is even, there
are two real primary pth roots B of A satisfying (2.14); there are infinitely
many real nonprimary pth roots B of A satisfying (2.14);

– If A2 − (1 + α)A + αI = 0, 1 > λ2 = λ3 = α > 0 and p is odd, there is a
unique real primary pth roots B of A satisfying (2.14); there are infinitely
many real nonprimary pth roots B of A satisfying (2.14);

– If A2− (1 + α)A+ αI = 0, 1 > λ2 = λ3 = α < 0 and p is even, there is no
real primary pth root B of A satisfying (2.14); there are infinitely many
real nonprimary pth roots B of A satisfying (2.14);

– If A2−(1+α)A+αI = 0, 1 > λ2 = λ3 = α < 0 and p is odd, there are two
real primary pth roots B of A satisfying (2.14); there are infinitely many
real nonprimary pth roots B of A satisfying (2.14).

2.6.3 Rank 1 matrices

Let A = eyT , where y ≥ 0 and yTe = 1. Then A is a stochastic rank 1 matrix. For
any positive integer p, Ap = A, which means A is a stochastic pth root of itself.
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2.6.4 Pei matrix

For the study of matrix inversion, Pei [111] provided a test matrix T = J + δI, where
J = eeT and δ is a nonzero parameter. The Pei matrix can be generalized to

A =




α+ β β · · · β
β α + β · · · β
...

...
. . .

...
β β · · · α + β


 = αI + βJ, (2.15)

where α 6= 0 and β 6= 0. If we assume further that β > 0 and α + nβ = 1, then A is
a stochastic matrix. We summarize some properties of a stochastic Pei matrix which
follow immediately from its definition:

(a) A is symmetric and thus diagonalizable;

(b) A is a circulant matrix;

(c) A is positive definite if and only if α > 0;

(d) α is an eigenvalue of multiplicity n − 1 whose corresponding eigenvector is any
vector whose entries sum to 0; the remaining eigenvalue is 1 with the corresponding
eigenvector e.

We first show that if α > 0, then the principal pth root of A is stochastic. Since
the definition of the primary function of a matrix is independent of the particular
Jordan canonical form that is used, we choose the following Jordan decomposition
for A in the light of the properties of A’s eigenvectors:

A =

[
1 eT

e −I

] [
1 0
0 αI

] [
1 eT

e −I

]−1

=
1

n

[
1 eT

e −I

] [
1 0
0 αI

] [
1 eT

e −nI + eeT

]
. (2.16)

Then the principal pth root of A is

A1/p =

[
1 eT

e −I

] [
1 0

0 α1/pI

] [
1 eT

e −I

]−1

=
1

n

[
1 + (n− 1)α1/p (1− α1/p)eT

(1− α1/p)e nα1/pI + (1− α1/p)eeT

]
(2.17)

Since 0 < α < 1, 0 < α1/p < 1 and thus A1/p is nonnegative. Together with A1/pe = e,
this implies that A1/p is a stochastic pth root of A.

If α < 0, then (2.17) shows that the primary pth roots of A is nonreal for all even
p, and hence not stochastic. However, when the multiplicity of the eigenvalue α is
even, there may exist nonprimary stochastic pth roots, as can be seen from Fact 2.23.
Unfortunately we can not get all the nonprimary roots by simply taking different
branches of pth roots of α in (2.16) because the nonprimary pth roots are dependent
on the Jordan canonical form (see Theorem 2.1).

If α < 0 and p is odd, we can determine a condition under which A has a primary
stochastic pth root. Let α1/p be the real pth root of α in (2.17). Then A1/p is a real
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matrix with row sums 1. To have a stochastic A1/p we need A1/p to be nonnegative,
that is,

{
1 + (n− 1)α1/p ≥ 0,
1− α1/p ≥ 0.

The second inequality is guaranteed by the assumption that α < 0. For the first
inequality, we have

α ≥ −
(

1

n− 1

)p

.

Thus we get the condition for A to have a primary stochastic pth root. This condition
is nontrivial since the conditions for A to be stochastic only imply α > − 1

n−1
.

2.6.5 Circulant stochastic matrices

We start with a Toeplitz matrix




a0 a−1 a−2 · · · a−(n−1)

a1 a0 a−1 · · · a−(n−2)

a2 a1 a0 · · · a−(n−3)
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0



,

where, to get a stochastic matrix, we assume





a0 + a−1 + a−2 + · · ·+ a−(n−1) = 1
a1 + a0 + a−1 + · · ·+ a−(n−2) = 1
a2 + a1 + a0 + · · ·+ a−(n−3) = 1
· · · · · · · · · · · · · · · · · ·
an−1 + an−2 + an−3 + · · ·+ a0 = 1
ai ≥ 0 i = 0, 1, . . . , n− 1
a−i ≥ 0 i = 1, . . . , n− 1

.

By subtracting every two successive equalities we have ai = a−(n−i) for i = 1, 2, . . . , n−
1, which implies that any Toeplitz stochastic matrix is indeed a circulant matrix de-
termined by a nonnegative vector a = [a0, a1, . . . , an−1]

T , namely

A =




a0 an−1 an−2 · · · a1
a1 a0 an−1 · · · a2
a2 a1 a0 · · · a3
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0



, a ≥ 0, , eTa = 1. (2.18)
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Let Fn be the n× n discrete Fourier transform (DFT) matrix

Fn =
(
ω(r−1)(s−1)

)n
r,s=1

=




1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω



,

where ω = e−2πi/n. It is well-known that circulant matrices can be diagonalized by
the DFT matrix Fn [38, sec. 3.2], [70, sec. 23.2]

A = F−1
n DFn, (2.19)

where D = diag(d) with [d0, . . . , dn−1]
T = Fna, i.e.,

{
d0 = 1

dk =
∑n−1

j=0 ω
kjaj , k = 1, 2, . . . , n− 1.

(2.20)

Therefore the problem of computing pth roots of A reduces to computing pth roots
of the diagonal matrix D. It can be verified that any primary pth root of A is still a
circulant matrix. More generally, a primary matrix function of a circulant matrix is
circulant. This follows from the fact that f(A) = F−1

n f(D)Fn.
Due to the infinite number of nonprimary roots, we restrict our discussion to the

primary pth root X of A. Note that the eigenvalues of X is

σk = f (jk)(dk), k = 0, 1, . . . , n− 1, (2.21)

where jk ∈ {1, 2, . . . , p} and f (jk)(·) denotes the jkth branch of the pth root func-
tion. Since X is circulant, it is determined by its first column x = F−1

n σ with
σ = [σ0, . . . , σn−1]

T . With a little algebraic manipulation, we have the elements of
x = [x0, . . . , xn−1]

T given by

xℓ =
1

n

(
1 +

n−1∑

k=1

ω−ℓkf (jk)

(
n−1∑

j=0

ωkjaj

))
, ℓ = 0, 1, . . . , n− 1.

Therefore, if there exists a choice of the set {j1, j2, . . . , jn−1}, jk ∈ {1, 2, . . . , p} such
that xℓ ≥ 0 for all ℓ = 0, 1, . . . , n − 1 and

∑n−1
ℓ=0 xℓ = 1, then A has a stochastic pth

root. We make some further discussion on the choices of jk. First, to have unit row
sums in X , we should take pth root of 1 to be 1, namely σ0 = 1. Note that the
eigenvalues dk (2.20) of A satisfy dk = dn−k, k = 1, 2, . . . , n− 1, so for X to be a real

matrix, jk should be chosen such that f (jk)(dk) = f (jn−k)(dn−k), namely σk = σn−k,
k = 1, 2, . . . , n− 1. Then X is stochastic if and only if X is nonnegative.

2.6.6 Upper triangular matrices

Triangular matrices arise in Markov models of progressive diseases [32], where the
health state of a patient can never improve. Consider a transition matrix for the
progression of a progressive disease with five health states ordered from least to most
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severe

A =




a11 a12 a13 a14 a15
0 a22 a23 a24 a25
0 0 a33 a34 a35
0 0 0 a44 a45
0 0 0 0 1



. (2.22)

Since any primary root of an upper triangular matrix is still upper triangular, in
order to have a nonnegative primary root of A, one needs to choose the nonnegative
branch of roots of the diagonal. It is clear that the only possible stochastic primary
root of A is the principal root. However, it is not just the diagonal elements that
determine whether there exits a primary stochastic root, as can be shown in the
following example. The matrices

A =




0.4276 0.0843 0.4269 0.0148 0.0464
0 0.0075 0.3689 0.3942 0.2294
0 0 0.3691 0.3382 0.2927
0 0 0 0.3618 0.6382
0 0 0 0 1




and

B =




0.4276 0.0319 0.1945 0.0836 0.2620
0 0.0075 0.2947 0.2955 0.4023
0 0 0.3691 0.4655 0.1654
0 0 0 0.3618 0.6382
0 0 0 0 1




are stochastic matrices with the same diagonal. It can be verified that A has a
stochastic principal square root while B does not. Since the diagonal elements are
distinct, all the roots of A and B are primary. The situation is nevertheless more com-
plicated when the matrix has nonprimary roots. As shown in Fact 2.16, a triangular
stochastic matrix may have more than one stochastic nonprimary pth root.

2.6.7 Irreducible imprimitive stochastic matrices

The content in this section is from an unpublished note from Steve Kirkland [94].
Recall the background knowledge in Section 1.2. A primitive stochastic matrix is an
irreducible stochastic matrix that has only one eigenvalue of modulus 1; otherwise it
is called imprimitive (or cyclic [106, Chap. 3, Def.1.1]) and the number of eigenvalues
with modulus 1 is called the index of A. Let A be an irreducible stochastic matrix
with index k ≥ 2. Then there exists a permutation matrix P such that PAP T is of
the form [106, Chap. 3, Thm. 3.1]




0 A1 0 · · · 0 0
0 0 A2 · · · 0 0
...

. . .
. . .

...
0 0 · · · 0 Ak−1

A1 0 · · · 0



, (2.23)
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where the zeros blocks along the main diagonal are square (not necessarily with
the same size). To be exact, for each i = 1 : k, we take Ai to be mi × mi+1 with
mk+1 ≡ m1. If we partition the index set {1, . . . , n} as S1 ∪ · · · ∪ Sk with Sj ={∑j−1

ℓ=1mℓ + 1, . . . ,
∑j

ℓ=1mℓ

}
, j = 1 : k and let Sk+1 ≡ S1, then A has a nonzero

entry in the (i, j) position only if there is some index ℓ such that i ∈ Sℓ, j ∈ Sℓ+1.
Markov chains with transition matrices of the form (2.23) possess the property

that the minimum number of transitions that must be made on leaving any state
to return that state, is a multiple of k. These models are called periodic Markov
chains of period k [123]. Periodic Markov chains arise in a range of applications such
as computer communication networks [21], [50, Chap. 6], economic fluctuations and
business-cycle analysis [51].

The aim of this section is to investigate conditions on the existence of stochastic
pth roots for irreducible imprimitive stochastic matrices. Without loss of generality
we assume that stochastic matrix A is of the form (2.23) with k ≥ 2. Assuming X
is a stochastic pth root of A, we have the following facts and observations (we omit
their proofs from here).

1. X is irreducible and periodic with period k and the eigenvalues of X of modulus
1 are e2πjp/k, j = 0 : k − 1.

2. gcd(p, k) = 1.

3. We can partition the index set {1, . . . , n} as T1 ∪ · · · ∪ Tk such that, for some
permutation σ of {1, . . . , k}, for any indices i, j such that if X has a positive
entry in the (i, j) position then necessarily there is an index ℓ such that i ∈ Tσ(ℓ),
j ∈ Tσ(ℓ+1). We conclude that in fact the sets S1, . . . , Sk and T1, . . . , Tk yield the
same partitioning of 1, . . . , n, i.e., the partitioning of X afforded by T1, . . . , Tk
coincides with the partitioning of A in (2.23). Moreover, together with the fact
that gcd(p, k) = 1, it follows that the partitioned form for X is given by

X =




0 0 · · · 0 Xt+1 0 · · · 0
0 0 · · · 0 0 Xt+2 · · · 0
...

... · · · 0 0 · · · . . .

0 0 · · · 0 0 · · · 0 Xk

X1 0 · · · 0 0 · · · · · · 0
0 X2 · · · 0 0 · · · · · · 0
...

. . .
...

...
0 0 · · · Xt 0 · · · · · · 0




(2.24)

Here, for each j = 1, . . . , k, the submatrix Xj lies in the columns corresponding
to the indices in Sj.

4. It follows from (2.24) that Xp can be written as




0 Xt+1X2t+1 · · ·Xpt+1 0 · · · 0
0 0 Xt+2X2t+2 · · ·Xpt+2 · · · 0

.

.

.
.
.
.

.

.

.
0 0 · · · 0 Xt+k−1X2t+k−1 · · ·Xpt+k−1

Xt+kX2t+k · · ·Xpt+k 0 0 · · · 0


 ,

(2.25)
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where the subscripts on the Xj are to be taken modulo k. Hence, finding a
stochastic pth root of A is equivalent to finding matrices X1, . . . , Xk that are
nonnegative with row sums 1 such that for each j = 1 : k, Aj = Xt+jX2t+j · · ·Xpt+j .

5. Since gcd(p, k) = 1, there is a unique pair of smallest positive integers t and
s such that tp − sk = 1. We assume further that Ai, i = 1 : k is square and
invertible. Then there exists a pth root M of (A−1

k A−1
k−1 · · ·A−1

1 )s and hence

X1 = Ak−t+1 · · ·AkM, (2.26)

Xj = Ak−t+j · · ·AkMA1 · · ·Aj−1, j = 2 : t, (2.27)

Xt+1 = MA1 · · ·At, (2.28)

Xt+j+1 = A−1
j · · ·A−1

1 MA1 · · ·At+j , j = 2 : k − t− 1. (2.29)

Based on the observations above, we now summarize the main results in the following
theorem.

Theorem 2.32 ([94]). Let A be an irreducible stochastic matrix that is imprimitive
with index k, invertible, and given by (2.23). Then A has a stochastic pth root X if
and only if both of the following conditions holds:

(a) gcd(p, k) = 1;

(b) there is a pth root M of (A−1
k A−1

k−1 . . . A
−1
1 )s such that the following inequalities

hold

Ak−t+1 · · ·AkM ≥ 0, (2.30)

Ak−t+j · · ·AkMA1 · · ·Aj−1 ≥ 0, j = 2 : t, (2.31)

MA1 · · ·At ≥ 0, (2.32)

A−1
j · · ·A−1

1 MA1 · · ·At+j ≥ 0, j = 2 : k − t− 1, (2.33)

where t is defined by the condition that t and s is a pair of smallest positive integers
satisfying tp− sk = 1.

In the event that conditions (a) and (b) hold, then the matrix X given by (2.24) is a
stochastic pth root of A, where the blocks X1, . . . , Xk are given by (2.26)–(2.29).

2.6.8 Symmetric positive semidefinite matrices:

An extension of Marcus and Minc’s theorem

The content in this section from Ilse Ipsen [82], is an extension of Marcus and Minc’s
result (Theorem 2.13) on the existence of stochastic square root of stochastic Hermi-
tian positive semidefinite matrix.

Denote by A∗ the conjugate transpose of a matrix A.

Proposition 2.33. If A is Hermitian positive semidefinite and Av = λv, ‖v‖2 = 1,
then

aii ≥ λ|vi|2, i = 1, 2, . . . , n.
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Proof. Since A is Hermitian positive semidefinite, it has a Hermitian square root B,
that is, A = B2 and B∗ = B. From B Hermitian follows

aii = e∗iAei = e∗iB
2ei = e∗iB

∗Bei = ‖Bei‖22.

It also implies v∗B =
√
λv∗, so that ‖Bei‖2 ≥ |v∗Bei| = |

√
λ||vi|, where the first

inequality is from the Cauchy-Schwarz inequality.

Directly from
∑n

i=1 aii = trace(A) =
∑n

i=1 λi ≥ 1, we have that at least one of the
diagonal elements of a stochastic and symmetric positive semidefinite matrix should
satisfy aii ≥ 1/n. The following corollary shows that this inequality holds for all i.

Corollary 2.34. If the n×n matrix A is stochastic and symmetric positive semidef-
inite, then aii ≥ 1/n.

Proof. Apply Proposition 2.33 with λ = 1 and v = e/
√
n.

Corollary 2.34 tells us that, the diagonal elements of a stochastic symmetric pos-
itive semidefinite matrix can not be too small.

Theorem 2.35. Let the n × n matrix A be nonnegative and symmetric positive
semidefinite, with a maximal eigenvalue λ and maximal eigenvector v, i.e., Av = λv,
λ ≥ 0, v ≥ 0, ‖v‖2 = 1. If the diagonal elements of A satisfy

aii ≤
λv2i

1− v2i
, 1 ≤ i ≤ n (2.34)

then A has a nonnegative square root A1/2.

Proof. Let B be a symmetric positive semidefinite square root of A, i.e., A = B2 and
B = BT . Then vTB =

√
λvT . As in the proof of Proposition 2.33, aii = ‖Bei‖22.

Now suppose B is not nonnegative, so that bℓk = bkℓ < 0 for some ℓ and k. Assume
without loss of generality that vk ≤ vℓ < 1. Let

w ≡




v1
...

vℓ−1

vℓ+1
...
vn




, c ≡




b1k
...

bℓ−1,k

bℓ+1,k
...
bnk




.

Then from
√
λvk = bℓkvℓ + wT c, we have wT c ≥

√
λvk ≥ 0. Hence

‖Bek‖2 > ‖c‖2 ≥ |wT c|/‖w‖2 ≥
√
λvk/

√
1− v2ℓ ≥

√
λvk/

√
1− v2k,

where the second inequality is the Cauchy-Schwarz inequality. Therefore

akk = ‖Bek‖22 > λv2k/(1− v2k),

which contradicts the upper bound on the diagonal elements.
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Remark 2.36. Apply Theorem 2.35 with λ = 1 and v = e/
√
n and then we can

get Theorem 2.13 on the existence of a stochastic square root of a symmetric positive
semidefinite stochastic matrix.

2.7 Embeddability problem

The stochastic root problem is closely related to the embeddability problem in discrete-
time Markov chains. Consider a time-homogeneous discrete-time Markov chain with
a finite number n of states. The single-step transition probability matrix P = (pij)
with

pij = Prob{Xk+1 = j|Xk = i}, i, j = 1, 2, . . . , n,

is independent of k. The embeddability problem, first proposed by Elfving [43], is to
determine whether there exists an intensity matrix Q such that exp(Q) = P . Here the
intensity matrix Q is a square matrix with qij ≥ 0 for i 6= j and

∑n
j=1 qij = 0, i = 1:n.

The embeddability problem is indeed to determine whether the given process is a
discrete manifestation of an underlying time-homogeneous continuous-time n-state
Markov process. If there exists such a Q (which is called a generator), P is said to
be embeddable, in which case the transition matrix P (t) for arbitrary time periods
is obtained P (t) = exp(Qt). For any intensity matrix Q, exp(Qt) is nonnegative
for all t ≥ 0 (see [72, Thm. 10.30]) and has unit row sums, so is stochastic. The
following theorem by Kingman [93] fully describes the relation between the matrix
root problem and the embeddability problem.

Proposition 2.37 ([93, Prop. 7]). Let P be an n× n nonsingular stochastic matrix.
If for each positive integer m there exists a stochastic matrix Qm such that

P = Qm
m,

then there exists a generator for P .

This means the problem of embedding the chain in a continuous time process is
equivalent to the problem of embedding it in a discrete time chain in which the unit of
time is an arbitrary submultiple of that in the original chain. Iwanik and Shiflett [86]
provide a slightly more general assertion than Proposition 2.37 when they analyze
the existence of roots of stochastic operators on L1-spaces: if a stochastic (doubly
stochastic) matrix has stochastic (doubly stochastic) roots of all orders, then it is em-
beddable in a continuous one-parameter semigroup of stochastic (doubly stochastic)
matrices. Here, the doubly stochastic matrix is a square nonnegative matrix with
unit row and column sums.

According to Kingman [93], the embeddability problem is completely solved for
2 × 2 matrices case by Dendall: a 2 × 2 stochastic matrix P is embeddable if and
only if det(P ) > 0. The sufficient and necessary conditions for embeddability of
3 × 3 matrices with distinct eigenvalues or positive multiple eigenvalues are given
by Johansen in 1974 [87]. The case of 3 × 3 matrices with a negative eigenvalue
of multiplicity 2 is solved by Carette in 1995 [25]. Johansen and Ramsey [88] and
Frydman [48] give a necessary and sufficient condition for embeddability of a 3 × 3
stochastic matrix with at least one off-diagonal element equal to zero. By analyzing
the geometry of the set of all embeddable matrices, Kingman [93] claims that no
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simple necessary and sufficient conditions like the 2 × 2 matrices case can be found
when the dimension is greater than 2. For more results on the structure of the set
of all embeddable stochastic matrices, one can refer to [49] where the author shows
that such a set is a Lipschitz manifold with boundary. In this section, we summarize
some results on the general case of the embeddability problem.

2.7.1 Conditions for embeddability and uniqueness

The first theorem is a collection of some necessary conditions for the existence of a
generator. Recall that a state j is accessible from state i if there is a sequence of
states k0 = i, k1, k2, . . . , km = j such that akℓkℓ+1

> 0 for each ℓ. We denote the (i, j)

entry of the matrix power Pm by p
(m)
ij .

Theorem 2.38. Let P be an n × n transition matrix, and suppose that there is a
generator Q for P . Then

(a) (Kingman 1962 [93]) det(P ) > 0;

(b) (Goodman 1970 [55]) det(P ) ≤∏i pii;

(c) (Elfving 1937 [43]) no eigenvalue of P other than 1 can satisfy |λ| = 1 and any
negative eigenvalue must have even (algebraic) multiplicity;

(d) (Chung 1967 [29], Grimmett and Stirzaker 1992 [58]) for every pair of states i
and j such that j is accessible from i, pij > 0;

(e) (Chung 1967 [29]) whenever pij = 0, then p
(m)
ij = 0, m = 2, 3, . . .;

(f) (Runnenberg 1962 [115]) all eigenvalues of P must lie inside a heart-shaped
region Hn in the complex plane whose boundary is the curve x(v)+ iy(v), where
0 ≤ v ≤ π/ sin (2π/n) and

x(v) = exp (−v + v cos
2π

n
) cos (v sin

2π

n
),

y(v) = exp (−v + v cos
2π

n
) sin (v sin

2π

n
),

together with its symmetric image with respect to the real axis;

(g) (Singer and Spilerman 1976 [119], Israel et al. 2001 [85]) if P has distinct
eigenvalues, then each eigenvalue λ of Q satisfies |λ| ≤ | log (det (P ))|;

(h) (Fuglede 1988 [49]) there exist distinct indices i, j such that for all k

pik = 0 implies pjk = 0,

and likewise distinct indices i′, j′ such that, for all k,

pki′ = 0 implies pkj′ = 0;
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(i) (Israel et al. 2001 [85]) the entries of P must satisfy

pik ≥ mmrr(m+ r)−m−r
∑

j

(pij − bm)(pjk − br)1pij>bm, pjk>br ,

for any positive integers m and r. Here bm =
∑∞

ℓ=m+1 e
−σσℓ/ℓ! is the probability

that N ′ > m, where N ′ is a Poisson random variable with mean σ ≡ maxi(−qii).
Furthermore 1B is the indicator function of the Boolean event B.

Some comments on these conditions are made in order. Condition (a) can be
obtained as follows

det(A) = det(eQ) = exp(trace(Q)) > 0,

where Q is the generator of A. The second equality is from the fact that the eigen-
values of f(A) are f(λi), where the λi are the eigenvalues of A (Theorem 1.3 (d));
see also [72, Theorem 1.45]. If A is symmetric positive semidefinite matrix, the con-
dition (b) is Hadamard’s inequality: suppose A = B2 where B is symmetric positive
semidefinite matrix having bi, i = 1, . . . , n as columns; then by Hadamard’s inequality
det(A) = det(B)2 ≤∏n

i=1 ‖bi‖22 =
∏n

i=1 aii. Conditions (a) and (b) are the first known
simple necessary conditions for embeddability of a stochastic matrix. Johansen and
Ramsey [88] and Frydman [48] prove that (a) and (b) are also sufficient conditions
for embeddability of a 3× 3 stochastic matrix with at least one off-diagonal element
equal to zero. It can be verified that the stochastic matrices satisfying conditions (a)
and (b) form a closed subsemigroup of the semigroup of all stochastic matrices with
positive determinant [49]. Condition (d) follows from the standard Lévy Dichotomy
and (i) is a more quantitative version of (d). Condition (e) is given by Ornstein’s
theorem. The regions H3, H6, H8 and H12 in Runnenberg’s necessary condition (f)
are visualized in Figure 2.4.

The following result identifies some cases in which there is a unique generator
for a given transition matrix. Here, logP denotes the principal logarithm of P [72,
Thm. 1.31], which is the unique logarithm whose spectrum lies in the strip {z : −π <
Im(z) < π}.
Theorem 2.39. Let P be a transition matrix.

(a) (Israel et al. 2001 [85]) If det(P ) > 1/2, then P has at most one generator.

(b) (Israel et al. 2001 [85]) If det(P ) > 1/2 and ‖P − I‖ < 1/2 (using any matrix
norm), then the only possible generator for P is logP .

(c) (Cuthbert 1972 [34], Cuthbert 1973 [35]) If P has distinct eigenvalues and
det(P ) > e−π, then the only possible generator for P is logP .

(d) (Singer and Spilerman 1976 [119]) If P has real, positive, distinct eigenvalues,
then the only real matrix Q such that exp (Q) = P is logP .

2.7.2 Relation to the stochastic pth root problem

Given a stochastic matrix A, Proposition 2.37 shows that the condition for the ex-
istence of a generator of A holds if and only if for every positive integer p there
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Figure 2.4: Region of Runnernberg’s necessary condition for embeddability: H3, H6,
H8 and H12.

exists some stochastic Xp such that A = Xp
p . (Thus the matrices identified in The-

orems 2.11 and 2.12 form two classes of embeddable matrices.) The condition that
A is embeddable is much stronger than the condition that A has a stochastic pth
root for a particular p. This is emphasized by the following facts, which show that
certain necessary conditions derived in the literature for A to be embeddable are not
necessary for A to have a stochastic pth root for certain p. Moreover, A may of course
be singular in the stochastic root problem, in which case it cannot be the exponential
of any matrix.

Fact 2.40. det(A) > 0 is necessary for the embeddability of a stochastic matrix A;
it is also necessary for the existence of a stochastic pth root when p is even, but it is
not necessary when p is odd.

The matrix

A =



0 1 0
1 0 0
0 0 1




has det(A) = −1, but A is its own stochastic pth root for any odd p.

Fact 2.41. det(A) ≤ ∏i aii is necessary for the embeddability of A [55, Thm. 6.1],
but it is not necessary for the existence of a stochastic pth root. For example, let A
be the matrix X in (2.9). Then A3 = I, so (A2)2 = A and A has a stochastic square
root, but det(A) = 1 > 0 = a11a22a33.

Fact 2.42. If there is a sequence k0 = i, k1, k2, . . . , km = j such that akℓkℓ+1
> 0 for

each ℓ but aij = 0 then A is not embeddable [58, sec. 6.10], but it is still possible for A
to have a stochastic pth root for some p. See the matrix A in (2.9), for which a12 > 0
and a23 > 0, while a13 = 0.
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2.8 Further discussion and conclusions

In both the embeddability problem and the stochastic root problem it is difficult to
identify conditions that guarantee the existence of a logarithm or root of the required
form. For some further insight, consider a nonsingular upper triangular stochastic
matrix T , taking n = 3 for simplicity. The equation U2 = T can be solved for
U (assumed upper triangular) a diagonal at a time by a recurrence of Björck and

Hammarling [17], [72, sec. 6.2]. This gives uii = t
1/2
ii , i = 1: 3 (since we require U

nonnegative), ui,i+1 = ti,i+1/(uii + ui+1,i+1), i = 1: 2, and u13 = (t13 − u12u23)/(t1/211 +

t
1/2
33 ). Hence u13 ≥ 0 when

t13 −
t12t23

(t
1/2
11 + t

1/2
22 )(t

1/2
22 + t

1/2
33 )
≥ 0.

If we assume that T is diagonally dominant, which implies tii ≥ 1/2, i = 1, 2, and note
that t33 = 1, we obtain the sufficient condition for nonnegativity that (1 + 21/2)t13 ≥
t12t23. But diagonal dominance alone is not sufficient to ensure nonnegativity. Thus
even for diagonally dominant triangular matrices the stochasticity of the principal
square root depends in a complicated way on the relationships between the matrix
entries.

We can also consider general strictly diagonally dominant stochastic matrices, for
which aii > 1/2 for all i. Let m = mini aii and write A = mI + E. Then E ≥ 0 and
Ee = (A−mI)e = (1−m)e, so ‖E‖∞ = 1−m. Hence we can write A = m(I + F ),
where ‖F‖∞ = ‖E‖∞/m = (1 − m)/m < 1. Then the principal pth root can be
expressed as

A1/p = m1/p(I + F )1/p = m1/p
(
I + 1

p
F + 1

2!
1
p
(1
p
− 1)F 2 + · · ·

)
.

Unfortunately, it is difficult to obtain from this expansion useful sufficient conditions
for A1/p ≥ 0. Nonnegativity is guaranteed if all the off-diagonal elements of F are
positive and ‖F‖∞ is sufficiently small, but as the matrix (2.8) shows, “small” here
may have to be very small.

The existing literature on roots of stochastic matrices emphasizes computational
aspects at the expense of a careful treatment of the underlying theory. We have used
the theory of matrix functions to develop tools for analyzing the existence of stochastic
roots of stochastic matrices. We have identified two classes of stochastic matrices for
which the principal pth root is stochastic for all p. However, such matrices seem rare,
and we have demonstrated a wide variety of possibilities for existence and uniqueness,
in particular regarding primary versus nonprimary roots. We have also given some
necessary spectral conditions for existence. We hope that as well as providing insight
into what makes this interesting and practically important problem so difficult our
work will prove useful for further development of theory and algorithms.



Chapter 3

Computing Short-interval
Transition Matrices

3.1 Overview

As described in Chapter 2, the applications of finding a short term transition matrix
require a stochastic root of a given stochastic matrix A. The focus therein is on
the underlying theory of the stochastic roots problem. In this chapter we investi-
gate numerical methods for computing approximate stochastic roots. We begin with
surveying some techniques in statistics that are currently used to estimate the tran-
sition matrix for a required time period or, more generally, the transition rate matrix
(also known as the generator of a Markov model in Section 2.7) based on a set of
observation data.

3.1.1 Statistics techniques

The problem of estimating the transition rate or transition probability matrix of a
Markov model is intensively investigated in statistics for a wide range of applications,
such as computational physics [33], credit risk in the finance industry [7], [89], [97],
and medical decision making in healthcare [18], [19], [22], [26], [131]. Different sta-
tistical techniques are intended for different models used and different kinds of data
available: continuous-time Markov process versus discrete-time Markov chain; fully
observed data versus partially observed data. For more about the underlying models
in this problem, see [11], [105], [121] where practical guides on Markov models in
medical decision making are given and [114] for its use in credit risk. Throughout
this section, we only consider the time-homogeneous discrete-time Markov chains and
continuous-time Markov models.

One of the advantages of the continuous-time Markov models is that they allow
meaningful estimation of the probability of rare transitions, for example, a transition
from a high rating category, say AAA in Moody’s credit risk rating, to default [19],
[97]. In a discrete-time model, if a single transition from AAA to default does not
occur over a given time period, then the estimate of the corresponding probability is
zero. However, if there are transitions from AAA to AA and from AA to default (pos-
sibly by other firms) then the estimator for transitions from AAA to default should
not be zero because there is chance of defaulting within a certain time period (after

53



CHAPTER 3. COMPUTING SHORT-INTERVAL TRANSITION MATRICES 54

successive downgrades). A continuous-time model captures this transition probabil-
ity whereas a discrete-time model does not. Another advantage of continuous-time
Markov models is that the matrix of transition probabilities for any time period t
can easily be obtained by P = exp(tQ), where Q is the transition rates matrix of
the underlying Markov model. In a continuous-time Markov model, if a full record
of all transitions is available, that is, observations are made continuously such that
the exact time at which a transition takes place is known, then an explicit formula
for the maximum likelihood estimator (MLE) of the transition rates is obtained [18];
see [97] for more details on this method and a comparison with estimators based on
a discrete-time model. Welton and Ades [131] propose a Bayesian framework for es-
timating transition rates with fully observed data. However, it is more often that the
observations are made at discrete time points. Bladt and Sørensen [18], [19] demon-
strate that a continuous-time Markov model can also be used to analyse observations
at discrete time points (which is referred as partially observed data in the continuous-
time Markov model), where the expectation maximization (EM) algorithm and an
EM approach employing a Markov Chain Monte Carlo (MCMC) technique are in-
vestigated to estimate the transition rate matrix. An MCMC approach within a
Bayesian framework for estimations from partially observed data is also studied in
[131]. Hence the advantages of a continuous-time model can be obtained without
continuous-time data. See [103] for details on the EM algorithm, [31] for Bayesian
modelling and [52] for the MCMC approach.

There is a distinction between discrete-time Markov chains and continuous-time
Markov models. For the discrete-time Markov chains, we exploit transition probabili-
ties directly instead of considering transition rates. Recall that a transition probabil-
ity matrix describes probabilities of one step transition among different states where
the step-size is known as the cycle length inherent to the Markov chain. In disease
modeling, the cycle length is often set to an interval associated with medical follow-
ups [105]. If the individuals are observed at an interval equal to the cycle length,
the MLE of the transition probability matrix is easily obtained by a closed form [32].
Difficulties in estimation are being noted when the observation interval and the cycle
length do not coincide (which is referred as partially observed data in discrete-time
Markov model). For example, a cycle length of six month is desired while the ob-
servations are made at one-year intervals. A more complicated case arises when the
observation intervals are not equal in length. Craig and Sendi [32] and Borg et al.
[22] propose use of the EM algorithm to cope with these situations.

Some comments on the statistics techniques are in order:

1. An advantage of methods under the Bayesian framework is that information
from multiple sources can be statistically combined into the currently used
model.

2. The EM algorithm for estimating short-interval transition matrices with par-
tially observed data in discrete-time Markov model works only when the interval
of interest is a proper divisor of the observation interval.

3. All these methods require the acquisition of the transition counts (the number
of transitions observed from one state to another). In many applications, nev-
ertheless, the only available data is a transition matrix that is readily obtained
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from the literature or from expert institutions, for example, Moody’s Investor
Service, Standard & Poor’s rating agencies for credit risk and the Swiss HIV
Cohort Study database for the study of AIDS.

4. Given a transition matrix, methods from the theory of matrices to get a valid
short-interval transition matrix are also mentioned in [26], [32] but without fur-
ther study. These methods compute a fractional root of the transition matrix by
employing an eigendecomposition. We mention in passing that in both papers
they wrongly take the nonnegativity of eigenvalues of the original transition
matrix as a necessary and sufficient condition to get a valid short-interval tran-
sition matrix. However, as seen in Chapter 2, this condition is neither necessary
nor sufficient for the existence of stochastic roots of a stochastic matrix.

3.1.2 Optimization techniques

As mentioned before, in many applications the transition matrix is readily obtained
from the literature or from expert institutions. In this case, the problem of computing
short-interval transition matrix reduces to computing a stochastic root of a stochastic
matrix. Regarding the problem of computing matrix roots, various methods are
available [14], [59], [60], [68], [72, Chap. 7], [79], [120], but there are currently no
methods tailored to finding a stochastic root.

Current approaches are designed to find an appropriate approximate stochastic
root. An immediate idea is to compute some pth root and perturb it to be stochastic
[26], [85], [95]. By choosing the principal root of A, this idea can be formalized as

min ‖X −A1/p‖ subject to X a stochastic matrix. (3.1)

This is termed as quasi-optimization of the root matrix (QOM) in [85]. A very similar
idea is to find the nearest intensity matrix G to log(A) and then an approximate
stochastic root can be formed by X = exp (G/p). This is to solve the following
quasi-optimization of the generator (QOG)

min ‖G− log(A)‖ subject to G an intensity matrix. (3.2)

A stochastic matrix X that minimizes ‖X−A1/p‖ may not minimize the residual
‖Xp−A‖. This can be easily illustrated by an example where the principal pth root
of A is not stochastic but there exists a stochastic matrix X that satisfies Xp = A,
either primary or nonprimary (see Fact 2.20 and Fact 2.23). Similarly, an intensity
matrix G that minimizes ‖G− log(A)‖ may not result in the matrix X = exp(G/p)
that minimizes ‖Xp − A‖. Relations between errors ‖X − A1/p‖, ‖G− log(A)‖ and
the residual ‖Xp − A‖ can be found in the following theorems.

Theorem 3.1. Assume that A ∈ Cn×n has no eigenvalues on R−, the closed negative
real axis. If ‖X − A1/p‖ = ǫ‖A1/p‖ then

‖Xp − A‖ ≤ ‖A1/p‖p((1 + ǫ)p − 1). (3.3)

Proof. Let B = A1/p and E = X −B. Then we have

Xp = (B + E)p = Bp + (Bp−1E +Bp−2EB + · · ·+ EBp−1) + · · ·+ Ep.
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It follows that

‖Xp − Bp‖ ≤ p‖B‖p−1‖E‖+ p(p− 1)

2
‖B‖p−2‖E‖2 + · · ·+ ‖E‖p

= (‖B‖p + p‖B‖p−1‖E‖+ · · ·+ ‖E‖p)− ‖B‖p
= ‖B‖p((1 + ǫ)p − 1),

since ǫ = ‖E‖/‖B‖. This completes the proof.

Theorem 3.1 says that if the distance between X and A1/p is small then so is the
distance between Xp and A. A similar result can be found for the matrix exponen-
tial. The following theorem is from [36] where ‖ · ‖∞ is used; the proofs there are
nevertheless valid for any consistent matrix norm.

Theorem 3.2. Assume that A ∈ Cn×n has no eigenvalues on R−. If ‖G−log(A)‖ = ǫ
then

‖A− eG‖ ≤ min{2, eǫ − 1}. (3.4)

Proof. See Davies [36, Thm. 13].

The minimal residual ‖Xp−A‖ is defined by the following nonlinear programming

min ‖Xp −A‖ subject to X a stochastic matrix. (3.5)

Due to the difficulty of solving the nonlinear programming (3.5) with n2 variables,
He and Gunn [64] propose an alternative to (3.5). Since for any positive integer k, Ak

can be expressed in terms of {I, A,A2, . . . , An−1} (by the Cayley-Hamilton theorem),
any primary pth root X of A (and hence a polynomial of A) can be written as
X = h0I + h1A + · · ·hn−1A

n−1. So if we restrict the stochastic approximation to
be a primary function of A, then problem (3.5) reduces to the following nonlinear
programming with n variables

min

∥∥∥∥∥

(
n−1∑

i=0

hiA
i

)p

− A
∥∥∥∥∥ (3.6)

subject to
n−1∑

i=0

hiA
i a stochastic matrix.

A final idea is mentioned in [85] but has few numerical experiments in the liter-
ature. This is to modify the original stochastic matrix A first (either to make it an
embeddable matrix or to make it admit a stochastic root) and then search for an exact
generator or stochastic root. The aim of this chapter is to study the properties of the
optimization problems described above and investigate numerical methods to solve
them. In Section 3.2 we identify problems of interest where we state the available
algorithms for finding the nearest stochastic matrix in (3.1) and the nearest intensity
matrix in (3.2) with certain norms; we derive explicit formulae for the gradient and
Hessian of the objective function in (3.5) and (3.6) with the Frobenius norm; we con-
sider an active set method, an interior point method, a spectral projected gradient
method (SPGM) and the sequential quadratic programming (SQP) method for both
optimization problems. In Section 3.3 we give numerical experiments to compare
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the performance of the methods. We also investigate different matrices to start the
iteration. Finally, some conclusions are given in Section 3.4.

3.2 Problems of interest: properties and numeri-

cal methods

To have a differentiable objective function, we use the Frobenius norm ‖·‖F through-
out this section.

3.2.1 The nearest stochastic matrix to A1/p.

The problem of interest is

minimize f(X) = ‖X − A1/p‖2F (3.7a)

subject to X ∈ Ω :=
{
X ∈ R

n×n :
n∑

j=1

xij = 1, i = 1:n,

xij ≥ 0, i, j = 1:n
}
. (3.7b)

Since both the objective function and the set Ω are convex, there is a global minimum
to problem (3.7). This can essentially be found on a row-by-row basis by reducing it
to n independent distance minimization problems

min ‖x− a‖2 subject to x ∈ R
n, xi ≥ 0,

n∑

i=1

xi = 1, (3.8)

where a ∈ Rn is a row vector of the matrix A1/p. In the case where A1/p has nonreal
numbers, let a be the real part of each row of A1/p. An algorithm for solving distance
minimization problem (3.8) is suggested by Merkoulovitch [104] and a corresponding
iterative algorithm is provided in [95]. Now we state the algorithm.

Algorithm 3.3 (distance minimization algorithm). Given a ∈ Rn this algorithm
computes a nonnegative vector x with ‖x‖1 = 1 that minimizes the distance ‖x−a‖2.

1 if
∑n

i=1 ai = 1 & a ≥ 0, x = a, quit, end
2 while true
3 λ = (

∑n
i=1 ai − 1)/n, x = a− λ

4 if x ≥ 0, quit, end
5 for i = 1:n
6 xi = max{0, xi}
7 end
8 a = x
9 end

Note that the iterative algorithm stops after j steps where j does not exceed the
size of the vector a [104]. The cost of Algorithm 3.3 is O(n2), so the cost of finding
the nearest stochastic matrix in problem (3.7) is O(n3).
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3.2.2 The nearest intensity matrix to log(A).

The problem of interest is

minimize f(X) = ‖G− log(A)‖2F (3.9a)

subject to G ∈ Ω :=
{
G ∈ R

n×n :
n∑

j=1

gij = 0, i = 1:n,

gij ≥ 0, i 6= j, i, j = 1:n
}
. (3.9b)

Again since the objective function (3.9a) and the set Ω are convex, there is a global
minimizer. In a similar manner as in problem (3.7), we solve (3.9) on a row-by-row
basis. Define a standard cone in Rn as

K(n) =
{
x ∈ R

n :
n∑

i=1

xij = 0, x1 ≤ 0, xi ≥ 0, i = 2 : n
}
. (3.10)

By permuting each row vector of an intensity matrix, we can always represent it as a
point in K(n). Problem (3.9) can be reduced to n independent problems of projecting
a point a ∈ Rn (each permuted row of the matrix log(A)) onto the cone K(n), i.e.,

min ‖g − a‖2 subject to g ∈ K(n). (3.11)

Kreinin and Sidelnikova [95] propose the following algorithm for solving (3.11). We
mention that ℓ∗ in line 3 of Algorithm 3.4 should be chosen among 1 : n − 1 other
than 2 : n− 1 as stated in [95].

Algorithm 3.4 (distance minimization algorithm for the generator). Given a ∈ R
n,

this algorithm computes g ∈ K(n) that minimizes the distance ‖g − a‖2.
1 λ =

∑n
i=1 ai/n, a = a− λ

2 b = σ(a), σ is a permutation sorting a in descending order
3 find ℓ∗ = min1≤ℓ≤n−1

{
ℓ: bℓ+1 ≥ (b1 +

∑n
i=ℓ+1 bi)/(n− ℓ+ 1)

}

4 for i = 2: ℓ∗, gi = 0, end
5 for i = 1, ℓ∗ + 1:n
6 gi = bi − (b1 +

∑n
j=ℓ∗+1 bj)/(n− ℓ∗ + 1)

7 end
8 g = σ−1(g), where σ−1 is the inverse permutation of σ

Note that ℓ∗ will be found within n steps of searching. The cost of Algorithm 3.4 is
O(n2), so the cost of finding the nearest intensity matrix is O(n3).

3.2.3 Minimize the residual ‖Xp − A‖F

Now we consider the nonlinear programming problem

minimize f(X) = ‖Xp − A‖2F (3.12a)

subject to X ∈ Ω :=
{
X ∈ R

n×n :
n∑

j=1

xij = 1, i = 1:n,

xij ≥ 0, i, j = 1:n
}
. (3.12b)
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The set Ω is convex; however, the objective function (3.12a) is nonconvex for p > 1.
We can only expect to determine a local minimizer. We first derive the gradient of
f(X), i.e., ∇f(X) = (∂f(X)/∂xij) ∈ Rn×n.

Lemma 3.5. For f(X) in (3.12a) we have

∇f(X) = 2

p∑

j=1

(XT )j−1(Xp − A)(XT )p−j. (3.13)

Proof. For arbitrary E ∈ Rn×n we have

f(X + E) = ‖(X + E)p −A‖2F
= trace(((X + E)p − A)T ((X + E)p − A))
= trace((Xp − A)T (Xp − A))

+ 2trace

(
p∑

j=1

(XT )j−1(Xp −A)(XT )p−jET

)

+O(‖E‖2F ).

Then the expression of (3.13) follows using the definition of ∇f(X).

Note that the Hessian H of f is an n2 × n2 matrix that can be viewed as the
representation of the Fréchet derivative L∇f of ∇f , that is, for any E ∈ Rn×n

vec(L∇f(X,E)) = Hvec(E). (3.14)

Lemma 3.6. For f(X) in (3.12a) we have

L∇f (X,E) = 2

p∑

j=1

(
(XT )j−1(Xp − A)

p−j∑

l=1

(XT )p−j−lET (XT )l−1

+ (XT )j−1

p∑

k=1

Xp−kEXk−1(XT )p−j

+

j−1∑

i=1

(XT )j−1−iET (XT )i−1(Xp − A)(XT )p−j

)
.

Proof. With the expression of ∇f(X) in (3.13), for arbitrary E ∈ Rn×n, we have

∇f(X + E) = 2

p∑

j=1

(XT + ET )j−1((X + E)p −A)(XT + ET )p−j

= 2

p∑

j=1

(
(XT )j−1

j−1∑

i=1

(XT )j−1−iET (XT )i−1

)

·
(
Xp +

p∑

k=1

Xp−kEXk−1 −A
)
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·
(
(XT )p−j +

p−j∑

l=1

(XT )p−j−lET (XT )l−1

)
+O(‖E‖2F ).

L∇f (X,E) is obtained immediately by finding the linear part in E of the expansion
above.

We consider several different numerical methods for this nonlinear optimization
problem. Since the gradient and the Hessian are explicitly known, Newton’s method
can be used on problem (3.12). The function fmincon of the MATLAB Optimization
Toolbox allows users to choose algorithms among an active set method, an interior
point method and a sequential quadratic programming (SQP) method. We can also
apply the routine e04uc of the NAG Toolbox for MATLAB [3], which implements an
SQP method.

Recall that Algorithm 3.3 allows us to find the nearest stochastic matrix to a
given matrix. This motivates us to use a spectral projected gradient method (SPGM)
introduced by Birgin, Mart́ınez, and Raydan [15, 16]. The method aims to minimize
a continuously differentiable function f on a closed convex set in R

n by generating a
sequence of vectors that is guaranteed to converge r-linearly to a stationary point of f .
It generates vectors of the form xk+1 = xk+αkdk with the spectral projected gradient
direction dk = P (xk − λk∇f(xk)) − xk, where λk > 0 is some precomputed scalar,
and with αk being chosen by a nonmonotone line search strategy. The direction dk
is guaranteed to be descent direction [15, Lem. 2.1]. The method explicitly takes
advantage of the possible simplicity of projections P onto the feasible set, which
applies to our problem.

3.2.4 Minimize ‖Xp − A‖F over all primary functions of A

As mentioned above (see (3.6)), we can solve the following problem to get a stochastic
matrix which is a primary function of A and minimizes the residual

minimize f(h) =

∥∥∥∥∥

(
n−1∑

i=0

hiA
i

)p

−A
∥∥∥∥∥

2

(3.15a)

subject to h ∈ Ω :=
{
h ∈ R

n : eTh = 1, Bh ≥ 0, (3.15b)

B = [vec(I) vec(A) . . . vec(An−1)]
}
.

Let X(h) =
∑n−1

i=0 hiA
i. The constraint Bh ≥ 0 in (3.15b) is to guarantee a non-

negative matrix X(h) and eTh = 1 is to ensure that X(h) has unit row sums. The
gradient of f(h) is given in the following lemma.

Lemma 3.7. For f(h) in (3.15a), we have

∇f(h) = 2

(
vec
( p∑

j=1

(X(h)T )j−1(X(h)p −A)(X(h)T )p−j
)
)T

B. (3.16)

Proof. Applying the chain rule, the result follows directly from Lemma 3.5 and the

fact that
dvec(X(h))

dh
= B.
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We consider the possibility of applying SPGM on the problem (3.15). The first
ingredient required is the projection onto the set Ω in (3.15b). Note that Ω is a convex
polyhedron, which is the intersection of a finite number of closed halfspaces. The
problem of projecting a vector onto a convex polyhedron arises in many applications
such as machine learning, pattern recognition [108], [118] and image restoration [100].
Nurminski [108] provides an efficient and stable algorithm to compute the projection,
with an complexity of O(mn2), where n is the number of variables and m is the
number of inequalities. In our case, however, the number of inequalities, i.e., the row
number of B in (3.15b), is n2, which results in a complexity of O(n4) for computing
the projection onto the feasible region Ω in (3.15b). This prevents us from using
SPGM except for very small n. Therefore, we will only apply the active set method,
the interior point method and the SQP method on problem (3.15).

3.3 Numerical tests

Our experiments were performed in MATLAB R2010a using the NAG Toolbox for
MATLAB Mark 22.0 on an Intel Dual-Core CPU (1.73GHz).

We first consider problem (3.12), which is to minimize ‖Xp−A‖2F over all stochas-
tic matrices X . To encourage a fair comparison with all numerical methods, we use
the same stopping criterion introduced in [16], [23] in all the algorithms employed in
this section. The stopping criterion is

‖q(X)‖F ≤ tol, (3.17)

where q : Rn×k 7→ Rn×k is defined by

q(X) = P (X −∇f(X))−X.

Here, P is a projection onto the feasible set and f is the objective function. It can
be shown that a point X∗ ∈ Ω is a stationary point of problems (3.12) if and only if
q(X∗) = 0 [42, (2.5)-(2.7)].

Now we consider several options to start the iteration for nonlinear programming
(3.12). Recall that A is the given stochastic matrix.

• Ident: the n× n identity matrix I.

• StoRand: this matrix is a random matrix with elements from the uniform
distribution on [0, 1] which is then scaled to a stochastic matrix by dividing
each element by its corresponding row sum.

• PrincRoot: this matrix is obtained by computing the principal pth root of
A and getting the nearest stochastic matrix of A1/p (if it is not stochastic)
by Algorithm 3.3. PrincRoot is the solution of problem (3.7). A1/p here is
computed by a Schur algorithm [120].

• GenFro: this is to compute log(A) first, get the solution G of problem (3.9) by
Algorithm 3.4 and construct GenFro by exp(G/p). During the computation,
we use the inverse scaling and squaring method for the logarithm [72, sec. 11.5]
and the scaling and squaring method for the exponential [5].
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• GenInf: for this choice of starting point we compute the principal logarithm of
A, L = log(A) and then adjust L as, for i, j = 1 : n,

ℓ̂ij =

{
0 ℓij < 0 and i 6= j,
ℓij otherwise.

(3.18)

The diagonal elements of L̂ are set ℓ̂ii = −
∑n

j=1
j 6=i

ℓij for i = 1 : n so as to get

an intensity matrix. GenInf is then exp(L̂/p). This is suggested by Stromquist
[124] as an alternative method to get a generator. It is also discussed in [95]

where it is called diagonal adjustment. Davis [36] proves that L̂ is actually the
nearest intensity matrix to L where the distance is measured in the infinity
norm, in contrast to the Frobenius norm in problem (3.9).

• GenWA: this is another way to get a near generator L̂ and then take exp(L̂/p)
as a starting point. As for GenInf, we compute L = log(A) first and then
adjust negative elements of L as in (3.18). In order to have all zero row sums,
we further adjust all nonzero elements by the following weighted adjustment
[95, 124]

ℓ̂ij = ℓ̂ij − |ℓ̂ij|
n∑

j=1

ℓ̂ij

/
n∑

j=1

|ℓ̂ij| , for i, j = 1 : n. (3.19)

• UTri: this is an upper triangular matrix obtained by simply setting the diagonal
with the real pth root of the corresponding diagonal element of A and then
adjusting the last element of each row to get the unit row sums

X0 =




a
1/p
11 0 · · · 0 1− a1/p11

0 a
1/p
22 · · · 0 1− a1/p22

...
...

. . .
...

...
0 0 · · · a

1/p
n−1,n−1 1− a1/pn−1,n−1

0 0 · · · 0 1



. (3.20)

This starting point is motivated by the fact that in some applications the given
stochastic matrix A is diagonally dominant and Utri is a rough approximation
to a pth root of A.

• FullRow: this is another approximation of a pth root of diagonally dominant
matrix A. It is a full matrix obtained by setting the diagonal elements in the
same way as for UTri and then equally setting the off-diagonal elements for
each row so as to get the unit row sums

X0 =




a
1/p
11

1− a1/p11

n− 1
· · · 1− a1/p11

n− 1
1− a1/p22

n− 1
a
1/p
22 · · · 1− a1/p22

n− 1

· · · · · · . . . · · ·
1− a1/pnn

n− 1

1− a1/pnn

n− 1
· · · a

1/p
nn




. (3.21)
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Figure 3.1: Final residual of each starting point.

We test these choices of starting matrix with the SQP method which is the most
reliable method to solve the problem though it is expensive in computation. We
used random matrices with elements from the uniform distribution on [0, 1], which
were then adjusted to stochastic matrices by dividing each element by its row sum.
We test for p = 2, 5, 7, 9 with 20 instances of 12 × 12 random matrices for each p.
Figure 3.1–3.3 reports the final residual, number of iterations and the computational
time for each problem. To facilitate comparing the performance of different starting
points, we show the performance profiles on these measures as well as the initial
residual for each choice of starting point. A performance profile shows the proportion
π of problems where the performance ratio of a method is at most α, where the
performance ratio for a method on a problem is the measure, the error or residual
say, of that method divided by the smallest value of the measure over all the methods
(if we favor a method with a smaller value of that measure). For more on performance
profiles, see [41] and [65, sec. 22.4]. Figure 3.4 shows the performance profiles for the
starting points Ident, StoRand, GenFro and FullRow and Figure 3.5 shows that for
PrincRoot, GenInf, GenWA, GenFro and FullRow. We omitted the performance
profiles for UTri because it is the worst starting point under all measures we are
using here. It is clear from Figure 3.4 that GenFro and FullRow outperform Ident
and StoRand while from Figure 3.5 that PrincRoot outperforms GenFro, GenInf,
GenWA and FullRow. PrincRoot has the best performance overall.

We do the remaining numerical experiments using the following sets of test ma-
trices.

Set 1 Random 12× 12 matrices with elements from the uniform distribution on [0, 1]
which are then scaled to a stochastic matrix by dividing each element by its
corresponding row sum.
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Figure 3.2: The number of iterations with each starting point.
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Figure 3.3: Computational time for each starting point.
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Figure 3.4: Performance profiles for Ident, StoRand, GenFro and FullRow. The
legend for the first plot applies to all four plots.
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Figure 3.5: Performance profiles for PrincRoot, GenFro, GenInf, GenWA and Full-
Row. The legend for the first plot applies to all four plots.
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Set 2 A = Xp where X is a stochastic matrix generated in the same way as matrices
in Set 1. Here the objective function f for (3.12) is zero at the global minimum.

Set 3 A = exp(Q) where Q is an intensity matrix obtained by generating a random
12 × 12 matrix with elements from the uniform distribution on [0, 1] and then
adjusting the diagonal elements such that each row sum is zero. In this case, the
objective functions f in (3.12) and (3.15) are both zero at the global minimums
for any p.

Set 4 Matrices from the literature on developing methods for roots of stochastic ma-
trices. All are of dimension 10 or less, most of them arising from finance and
healthcare applications.

Set 5 A 21 × 21 one year refined-rating transition matrix for year 2004 published in
February 2005 by Moody’s Global Structured Finance [1].

We computed with p = {2, 3, 4, 12} and for each p we generated 10 matrices from
Set 1–3. For problem (3.12), we tested with the active set method, the interior point
method, the SQP method and SPGM using the stopping criterion ‖q(X)‖F < tol with
tol = 10−3. We started the iteration with “PrincRoot”. For problem (3.15), since it
is expensive to compute the projection onto the feasible region, we use the default
stopping criteria for each method from the software with the function tolerance 10−15

and constraints tolerance 10−8. We report results averaged over 40 problems in Tables
3.1–3.3. Table 3.4 reports results with test matrices from Set 4. Table 3.5 shows
results for the test matrix in Set 5 for each value of p where we omitted results for
the interior point method and the active set method due to their poor performance
in both accuracy and computational time.

The abbreviations for the methods and results reported are

• act-set: fmincon from MATLAB with option ’active-set’.

• int-pt: fmincon from MATLAB with option ’interior-point’.

• SQP: e04uc, NAG implementation of SQP method.

• SPGM: spectral projected gradient method.

• t: (mean) computational time (in seconds).

• it: (mean) number of iterations.

• itsd: standard deviation of numbers of iterations.

• ires: (mean) initial residual ‖Xp − A‖F .

• res: (mean) final residual ‖Xp − A‖F .

• inq: (mean) initial value of ‖q(X)‖F .

• nq: (mean) final value of ‖q(X)‖F .

Several comments are made for results in Table 3.1–3.5.
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Table 3.1: Results for matrices from Set 1.

Set 1 t it itsd res nq
Prob. (3.7) 1.44e-2 – – 6.64e-1 1.26
Prob. (3.9) 3.05e-2 – – 8.96e-1 1.64
Prob. (3.12), ires = 6.64e-1, inq = 1.26 , tol = 1.00e-3
act-set 5.27 4.82e1 2.75e1 3.29e-1 1.51e-3
int-pt 1.87e2 8.74e3 1.63e4 4.12e-1 7.51e-2
SQP 4.24e-1 5.02e1 2.53e1 2.85e-1 1.34e-3
SPGM 1.24e-1 1.63e2 1.36e2 2.82e-1 8.87e-4
Prob. (3.15), ires = 3.36 , inq = 4.01 , tol = 1.00e-3
act-set 3.36e-1 7.32e1 6.01e1 5.26e-1 1.47e-1
int-pt 4.01 5.35e2 2.80e3 4.68e-1 1.95e-1
SQP 6.11e-2 1.51e2 3.58e2 5.23e-1 1.52e-1

1. The interior point method is not efficient in both the accuracy and the com-
putational time for all test matrices and problems considered. SQP is more
efficient than the active set method for both problems (3.12) and (3.15). For
problem (3.12), SPGM is clearly the best method. Table 3.5 shows that an
increased problem size (n = 21 for Set 5 and n = 12 for Set 1–4) gives a bigger
time advantage of SPGM over SQP.

2. From Table 3.1, 3.3 and 3.5 we see that for each method, the computational
time for solving problem (3.15) is less than that for problem (3.12). This is not
surprising because there are n variables for the former problem and n2 for the
latter one. However, the same observation is not found in Table 3.2 for test
matrices from Set 2. We point out that for each matrix from Set 2, there exists
a stochastic root whereas the principal stochastic root is not stochastic. In this
case, our experiments show that searching for an approximate primary root is
less efficient than searching directly for a nearest stochastic root regardless of
it being a primary function of the given stochastic matrix or not.

3. Matrices in Set 3 are all embeddable (see Section 2.7). A stochastic root is
obtained by computing the principal root. Iterations starting with the principal
root will stop after one iteration. Therefore the results for solving the problem
(3.12) with starting matrix PrincRoot are omitted from Table 3.3. Though
there exists a global minimum for problem (3.15), only a local minimum can be
found here.

4. For the transition matrix in Set 5, we are unable to verify whether there exists
a stochastic root for each p (though the matrix satisfies the necessary condi-
tions for the existence of stochastic roots derived in Section 2.5.2). All the
optimization techniques for solving problem (3.12) did not significantly reduce
the residual from the starting point (which is the solution of problem (3.7)).
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Table 3.2: Results for matrices from Set 2.

Set 2 t it itsd res nq
Prob. (3.7) 1.38e-2 – – 3.99e-2 7.89e-2
Prob. (3.9) 7.94e-3 – – 3.83e-1 7.31e-1
Prob. (3.12), ires = 3.99e-2, inq = 7.89e-2, tol = 1.00e-3
act-set 4.90e-1 9.55 1.15e1 3.00e-3 1.91e-3
int-pt 2.11 8.85e1 1.49e2 5.86e-3 6.26e-4
SQP 1.24e-1 8.88 1.15e1 3.21e-3 2.39e-3
SPGM 2.62e-2 1.02e1 1.34e1 3.15e-3 5.98e-4
Prob. (3.15), ires = 3.32 , inq = 3.79 , tol = 1.00e-3
act-set 9.97e-2 2.22e1 2.71e1 1.60e-2 6.12e-3
int-pt 3.86e1 5.03e3 1.34e4 1.36e-2 4.59e-3
SQP 2.70e-1 9.27e2 5.07e3 1.41e-2 5.76e-3

Table 3.3: Results for matrices from Set 3.

Set 3 t it itsd res nq
Prob. (3.7) 1.47e-2 – – 1.11e-15 3.89e-15
Prob. (3.9) 6.46e-3 – – 9.78e-16 2.24e-15

Prob. (3.15), ires = 3.31 , inq = 3.89 , tol = 1.00e-3
act-set 1.09e-1 2.19e1 3.22e1 1.65e-2 3.50e-3
int-pt 5.85 7.31e2 1.52e3 8.45e-3 1.77e-3
SQP 2.58e-2 2.59e1 4.11e1 1.27e-2 3.51e-3

Table 3.4: Results for matrices from Set 4.

Set 4 t it itsd res nq
Prob. (3.7) 5.92e-3 – – 4.09e-2 3.49e-2
Prob. (3.9) 4.31e-3 – – 4.85e-2 6.31e-2
Prob. (3.12), ires = 4.09e-2, inq = 3.49e-2, tol = 1.00e-3
act-set 7.09e-1 1.38e1 3.89e1 6.35e-2 4.52e-4
int-pt 3.90e1 3.72e3 1.13e4 7.62e-1 9.34e-2
SQP 8.24e-2 1.69e1 1.86e1 3.92e-2 9.64e-3
SPGM 1.88e-2 1.25e1 5.82e1 3.91e-2 1.87e-4
Prob. (3.15), ires = 9.01e-1, inq = 2.60 , tol = 1.00e-3
act-set 1.80e-1 4.41e1 2.93e1 1.35e-2 6.19e-2
int-pt 4.12e-1 5.43e1 7.88e1 2.29e-1 3.42e-1
SQP 2.23e-2 3.72e1 2.22e1 1.33e-2 6.11e-2
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Table 3.5: Results for the matrix from Moody’s in Set 5.

Set 5 t it res nq t it res nq

p = 2 p = 3
Prob. (3.7) 8.66e-3 – 1.66e-3 4.38e-4 1.20e-2 – 2.19e-3 1.13e-3
Prob. (3.9) 1.36e-2 – 3.31e-3 1.76e-3 9.34e-3 – 3.31e-3 2.30e-3
Prob. (3.12) ires = 1.66e-3, inq = 4.38e-4 ires = 2.19e-3, inq = 1.13e-3
SQP 5.74 8.00 1.93e-3 2.55e-3 5.05 2.00e1 2.23e-3 2.11e-3
SPGM 1.86e-2 1.00 1.65e-3 3.10e-4 2.39e-2 1.00 2.19e-3 8.79e-4
Prob. (3.15) ires = 8.72e-1, inq = 3.34 ires = 8.72e-1, inq = 4.24
SQP 4.23e-2 2.00e1 2.52e-2 8.59e-2 6.98e-2 2.10e1 3.32e-2 1.45e-1

p = 4 p = 12
Prob. (3.7) 1.92e-2 – 2.47e-3 1.88e-3 1.23e-1 – 3.03e-3 7.22e-3
Prob. (3.9) 1.01e-2 – 3.31e-3 3.07e-3 8.96e-3 – 3.31e-3 8.16e-3
Prob. (3.12) ires = 2.47e-3, inq = 1.88e-3 ires = 3.03e-3, inq = 7.22e-3
SQP 5.71 2.10e1 2.48e-3 2.07e-3 9.56 1.78e2 3.01e-3 1.37e-3
SPGM 3.55e-2 2.00 2.45e-3 2.43e-4 1.81e-1 3.00 3.00e-3 5.07e-4
Prob. (3.15) ires = 8.72e-1, inq = 4.76 ires = 8.72e-1, inq = 5.39
SQP 6.62e-2 3.10e1 3.70e-2 1.91e-1 1.75e-1 2.50e1 4.45e-2 5.23e-1

3.4 Concluding remarks

In this chapter, we briefly surveyed some statistical methods for computing the short-
interval transition matrices, where the existing literature emphasizes estimations of
transition rate matrices. With a set of fully observed data where the exact dates on
which transitions occur are known (for the continuous-time Markov process) or the
observation intervals coincide with the inherent cycle length (for the discrete-time
Markov process), an explicit formula for the maximum likelihood estimator of the
transition rate matrix or the transition probability matrix, respectively, is obtained.
The methods based on a Bayesian framework are also proposed for estimating the
transition rates for fully observed data. More often, one needs to deal with the
partially observed data: for a continuous-time Markov model this happens when the
observations are made at discrete time points other than continuously; for a discrete-
time model this is due to the fact that the observation intervals do not coincide with
the cycle length of the model. The expectation maximum (EM) method is usually
used in the case of partially observed data. However, the EM method for estimating
short-interval transition matrices works only when the interval of interest is a proper
divisor of the observation interval. Moreover, all the statistical techniques require the
acquisition of the transition counts (number of transitions observed from one state
to another over a certain time period).

Our main interest is in the case where the (long-term) transition matrix is readily
obtained from the literature or the expert institutions. Here, a fractional root of a
transition matrix is needed and thus methods based on the theory of matrices should
be used. In the statistics literature or practical papers in financial applications an
eigendecomposition is usually employed and then a fractional root is obtained by
computing a root of the corresponding diagonal matrix; when an invalid transition
matrix (with negative elements or even complex elements) results, it is perturbed to
a nearest transition matrix under some measure of distance and then an approximate



CHAPTER 3. COMPUTING SHORT-INTERVAL TRANSITION MATRICES 70

short-term transition matrix is obtained. We have considered several methods to
find an approximate stochastic root of a stochastic matrix. The first is to compute
the principal root of the original matrix, and if it is not stochastic, perturb it to the
nearest stochastic matrix in the sense of the Frobenius norm to get an approximate
stochastic root. The second is to compute the principal logarithm of the given matrix,
perturb it to the nearest intensity matrix (if it is not a valid one) in the sense of the
Frobenius norm or the infinity norm and then compute an approximate stochastic root
by the matrix exponential. Here the principal matrix root, the principal logarithm
and the matrix exponential are computed with the best available methods when
they are needed. We also took the perturbed principal root as a starting point and
considered various optimization techniques for solving the nonlinear programming
problem to minimize the residual ‖Xp − A‖F . Our experiments have shown that
if the principal stochastic root is not stochastic then adjusting it to the nearest
stochastic matrix gives a good choice of matrix to start the iteration. Despite the
fact that all the optimization methods considered can only find a local minimum,
the spectral projected gradient method is the most efficient method in terms of the
computation time and final residual. A variant problem of finding an approximate
stochastic root that is a primary function of A was also considered, where ‖Xp−A‖F is
minimized subject to X being stochastic and a primary function of A. The numerical
experiments have shown that, though it reduces the number of variables from n2 to
n (n is the dimension of A), narrowing the feasible region to the set of the primary
functions of A does not result in a significant reduction in cost while on the other hand
it may result in a larger final residual compared with that from the optimization over
all stochastic matrices regardless of them being primary functions of A or not. Our
conclusion is that, in finding an approximate stochastic root, the spectral projected
gradient method starting with the perturbed principal root of A to minimize the
residual ‖Xp − A‖F over all stochastic matrices is method of choice.



Chapter 4

A Schur–Padé Algorithm for
Fractional Powers of a Matrix

4.1 Introduction

The need to compute fractional powers Ap of a square matrix A arises in a variety
of applications, including Markov chain models in finance and healthcare [26], [85],
fractional differential equations [81], discrete representations of norms corresponding
to finite element discretizations of fractional Sobolev spaces [8], and the computation
of geodesic-midpoints in neural networks [46]. Here, p is an arbitrary real number,
not necessarily rational. Often, p is the reciprocal of a positive integer q, in which
case X = Ap = A1/q is a qth root of A. Various methods are available for the qth
root problem, based on the Schur decomposition and appropriate recurrences [57],
[120], Newton or inverse Newton iterations [60], [79], Padé iterations [80], [98], or a
variety of other techniques [14]; see [72, Chap. 7] and [74] for surveys. However, none
of these methods is applicable for arbitrary real p.

Arbitrary matrix powers can be defined via the Cauchy integral [72, Def. 1.11]

Ap :=
1

2πi

∫

Γ

zp(zI − A)−1dz, (4.1)

where Γ is a closed contour that encloses the spectrum Λ(A). This definition yields
many different matrices Ap, as the branch of the function zp can be chosen indepen-
dently around each eigenvalue. For practical purposes it is more useful to define Ap

uniquely as follows.

Definition 4.1. Let A ∈ Cn×n have no eigenvalues on R− except possibly for a
semisimple zero eigenvalue, and let p ∈ R. If A is nonsingular,

Ap = exp (p log(A)) , (4.2)

where log(A) is the principal logarithm of A [72, Thm. 1.31]. Otherwise, write the
Jordan canonical form of A as A = Zdiag(J1, 0)Z

−1, where J1 contains the Jordan
blocks corresponding to the nonzero eigenvalues. Then

Ap = Zdiag(Jp
1 , 0)Z

−1, (4.3)

71
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where Jp
1 is defined by (4.2).

It follows from the theory of matrix functions that the matrix given by Defini-
tion 4.1 is independent of the particular choice of Jordan canonical form. Moreover,
if A is real then Ap is real. For p = 1/q, with q a positive integer, Ap reduces to the
principal qth root of A [72, Thm. 7.2]. For 0 < p < 1, Ap can also be represented as
the real integral [72, pp. 174, 187]

Ap =
sin(pπ)

pπ
A

∫ ∞

0

(t1/pI + A)−1 dt. (4.4)

The aim of this work is to devise a reliable algorithm for computing Ap for ar-
bitrary p ∈ R. When A is diagonalizable, so that A = XDX−1 for a diagonal
D = diag(di) and nonsingular X , we can compute Ap = XDpX−1 = Xdiag(dpi )X

−1.
Alternatively, for any A we can compute the Schur decomposition A = QTQ∗, with
Q unitary and T upper triangular, from which Ap = QT pQ∗. The matrix T p has
diagonal elements tpii and we can obtain the superdiagonal elements from the Parlett
recurrence if the tii are distinct [72, sec. 4.6], [109]. However, this approach breaks
down when A is nonnormal with repeated eigenvalues.

The definition (4.2) suggests another way to compute Ap: to employ existing
algorithms for the matrix exponential and the matrix logarithm. However, if we
use the inverse scaling and squaring method for X = log(A) [28], [72, sec. 11.5],
[91] followed by the scaling and squaring method for exp(pX) [5], [71], [73] then we
are computing two Padé approximants: one of the logarithm and the other of the
exponential. We expect benefits to accrue from employing a single Padé approximant,
to (1− x)p. In this work we develop an algorithm for computing Ap based on direct
Padé approximation of (1− x)p.

The rest of this chapter is organized as follows. We begin, in Section 4.2, by
investigating the conditioning of fractional powers. Padé approximation of (1− x)p,
and in particular how to bound the error in the approximation at a matrix argument,
is the subject of Section 4.3. Evaluation of the matrix Padé approximant is consid-
ered in Section 4.4, where we investigate the numerical stability of several possible
methods. An algorithm for Ap with p ∈ (−1, 1) that employs an initial Schur de-
composition, matrix square roots, Padé approximation, and squarings, is developed
in Section 4.5. In Section 4.6 we explain how to deal with general p not necessarily
in the interval (−1, 1) and negative integer p, while in Section 4.7 we extend our
algorithm to handle singular matrices with a semisimple zero eigenvalue. Some alter-
native algorithms are considered in Section 4.8 and all the algorithms are compared
in the numerical experiments of Section 4.9. Finally, some concluding remarks are
given in Section 4.10.

4.2 Conditioning

We first investigate the sensitivity of Ap to perturbations in A. Recall that the Fréchet
derivative of f at A in the direction E, denoted by Lf (A,E), is a linear operator
mapping E to Lf (A,E) characterized by f(A+E) = f(A)+Lf(A,E)+ o(‖E‖). We
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also recall the definition and characterization of condition number

κf(A) := lim
ǫ→0

sup
‖E‖≤ǫ‖A‖

‖f(A+ E)− f(A)‖
ǫ‖f(A)‖ =

‖Lf (A)‖‖A‖
‖f(A)‖ , (4.5)

where

‖Lf(X)‖ := max
Z 6=0

‖Lf (X,Z)‖
‖Z‖ . (4.6)

Let vec denote the operator that stacks the columns of a matrix into one long
vector and let ⊗ denote the Kronecker product. For any f , we have vec(Lf (A,E)) =
Kf (A)vec(E) for a certain matrix Kf(A) ∈ C

n2×n2
called the Kronecker representa-

tion of the Fréchet derivative and, moreover, ‖Lf (A)‖F = ‖Kf(A)‖2 [72, (3.20)]. It
follows that, in the Frobenius norm,

κf(A) =
‖Kf (A)‖2‖A‖F
‖f(A)‖F

. (4.7)

To obtain a formula for Kxp(A) we first apply the chain rule [72, Thm. 3.4] to the
expression Ap = exp(p log(A)), to obtain

Lxp(A,E) = pLexp

(
p log(A), Llog(A,E)

)
. (4.8)

Then, by applying the vec operator, we find that

vec(Lxp(A,E)) = pKexp(p log(A))vec(Llog(A,E)) = pKexp(p log(A))Klog(A)vec(E),

which implies
Kxp(A) = pKexp(p log(A))Klog(A). (4.9)

This matrix can be computed explicitly if n is small, or its norm can be estimated
based on a few matrix–vector products involving Kxp(A) and its conjugate transpose
[72, sec. 3.4].

We now derive some bounds for the condition number κxp(A) that give insight into
its size. First, note that, since (A+ ǫI)p = Ap + pǫAp−1 +O(ǫ2) for sufficiently small
ǫ (by a general result on the convergence of a matrix Taylor series [72, Thm. 4.7]),
we have Lxp(A, I) = pAp−1 and hence ‖Lxp(A)‖ ≥ |p|‖Ap−1‖/‖I‖.

Since [72, (10.15)]

Lexp(A,E) =

∫ 1

0

eA(1−s)EeAs ds, (4.10)

we have, from (4.8),

‖Lxp(A,E)‖ = |p|
∥∥∥∥
∫ 1

0

ep log(A)(1−s)Llog(A,E)e
p log(A)sds

∥∥∥∥

≤ |p|‖Llog(A,E)‖
∫ 1

0

e|p|(1−s)‖log(A)‖e|p|s‖log(A)‖ds

≤ |p|e|p|‖log(A)‖‖Llog(A)‖ ‖E‖,
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and so ‖Lxp(A)‖ ≤ |p|e|p|‖log(A)‖‖Llog(A)‖. Thus we have the upper and lower bounds

|p|‖Ap−1‖
‖I‖ ≤ ‖Lxp(A)‖ ≤ |p|e|p| ‖log(A)‖ ‖Llog(A)‖. (4.11)

We also have the following lower bound [72, Thm. 3.14, Cor. 3.16], with f [λ, µ]
denoting the first divided difference of f(x) = xp,

‖Lxp(A)‖ ≥ max
λ,µ∈Λ(A)

|f [λ, µ]| = max

(
max
λ∈Λ(A)

|p||λp−1|, max
λ,µ∈Λ(A)

λ 6=µ

|λp − µp|
|λ− µ|

)
, (4.12)

which is an equality for the Frobenius norm when A is normal. When A is Hermitian
the lower bounds in (4.11) and (4.12) are the same for the 2-norm; we will make use
of the lower bound in this case in Section 4.6.

4.3 Padé approximation and error bounds

A [k/m] Padé approximant of (1−x)p is a rational function rkm(x) = pkm(x)/qkm(x)
with qkm(0) = 1 such that

(1− x)p − rkm(x) = O(xk+m+1),

where pkm and qkm are polynomials of degree at most k and m, respectively. If a
[k/m] Padé approximant exists then it is unique [9, Thm. 1.1], [10, Thm. 1.4.3], [72,
Prob. 4.2]. The aims of this section are to show the existence of Padé approximants of
(1− x)p and to investigate the error in the Padé approximant at a matrix argument
X ∈ C

n×n with ‖X‖ < 1. Throughout this section the norm is assumed to be a
subordinate matrix norm.

The scalar hypergeometric function is

2F1(α, β, γ, x) ≡ 1 +
αβ

γ
x+

α(α+ 1)β(β + 1)

2!γ(γ + 1)
x2 + · · · =

∞∑

i=0

(α)i(β)i
i!(γ)i

xi, (4.13)

where α, β, γ, x ∈ R, γ is not a nonpositive integer, (a)0 = 1, and (a)i ≡ a(a +
1) . . . (a+ i−1) for i ≥ 1. Replacing x in (4.13) with X ∈ Cn×n we obtain the matrix
hypergeometric function

2F1(α, β, γ,X) ≡
∞∑

i=0

(α)i(β)i
i!(γ)i

X i. (4.14)

Since (4.13) converges if |x| < 1 [6, Thm. 2.1.1], the matrix series (4.14) converges
if ρ(X) < 1 [72, Thm. 4.7], where ρ is the spectral radius. We are interested in the
special case where α = −p, β = 1, γ = 1, and |x| < 1:

2F1(−p, 1, 1, x) = 1− px+ p(p− 1)

2
x2 + · · · = (1− x)p.

The following lemma shows the existence of the Padé approximants of (1 − x)p for
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all p ∈ R.

Lemma 4.2. For p ∈ R, the [k/m] Padé approximant of (1 − x)p exists for all
nonnegative integers k and m.

Proof. It is shown in [9, p. 65], [10, sec. 2.3] that for any α, γ ∈ R the [k/m] Padé
approximant of the general hypergeometric function 2F1(α, 1, γ, x) exists for k−m+
1 ≥ 0 and that the denominator qkm(x) is given explicitly by

qkm(x) =
m∑

i=0

(−m)i(−(α + k))i
i!(1 − (γ + k +m))i

xi (4.15)

= 2F1(−m,−(α + k), 1− (γ + k +m), x). (4.16)

Thus [k/m] Padé approximants to (1 − x)p exist for all p ∈ R for k ≥ m. From
(1 − x)p = 1/(1 − x)−p, and the duality property that the [k/m] Padé approximant
of the reciprocal of a function is the reciprocal of the [m/k] Padé approximant of the
function [10, Thm. 1.5.1], it follows that (1 − x)p has a [k/m] Padé approximant for
k ≤ m.

We now state some properties of qkm(x). The following result of Kenney and Laub
bounds the condition number number of the matrix qkm(X).

Lemma 4.3. Let qkm(x) be the denominator polynomial of the [k/m] Padé approxi-
mant of 2F1(α, 1, γ, x) where 0 < α < γ and k −m+ 1 ≥ 0. The zeros of qkm(x) are
all simple and lie in the interval (1,∞). Furthermore, for X ∈ Cn×n with ‖X‖ < 1,

‖qkm(X)‖ ≤ qkm(−‖X‖), ‖qkm(X)−1‖ ≤ qkm(‖X‖)−1 (4.17)

and hence

κ(qkm(X)) ≤ qkm(−‖X‖)
qkm(‖X‖)

. (4.18)

Proof. See [92, Cor. 1 and Lem. 3], where X ∈ Rn×n is assumed; the proofs there are
nevertheless valid for complex X .

Corollary 4.4. Let qkm(x) be the denominator polynomial of the [k/m] Padé approx-
imant of (1 − x)p with −1 < p < 1 and k − m ≥ 0. Then the zeros of qkm(x) are
all simple and lie in the interval (1,∞) and for X ∈ Cn×n with ‖X‖ < 1, the matrix
qkm(X) satisfies (4.17) and (4.18). In particular, when −1 < p < 0 these conclusions
hold for k −m+ 1 ≥ 0.

Proof. It is straightforward to show that (1 − x)p = 1 − px · 2F1(1 − p, 1, 2, x) and,
moreover, that if k ≥ m then the [k/m] Padé approximant of (1−x)p is pkm/q̃k−1,m =
1 − pxr̃k−1,m, where r̃k−1,m = p̃k−1,m/q̃k−1,m is the [k − 1/m] Padé approximant of

2F1(1− p, 1, 2, x).
Since −1 < p < 1 we have 0 < 1 − p < 2, and since also (k − 1)−m+ 1 ≥ 0 the

properties of q̃k−1,m(x) in Lemma 4.3 all hold. If −1 < p < 0, it follows from Lemma
4.3 with α = −p and γ = 1 that the conclusions hold for k −m+ 1 ≥ 0.

Denote by E
(
2F1(α, 1, γ, ·), k,m, x

)
the error in the [k/m] Padé approximant to

2F1(α, 1, γ, x), that is,

E
(
2F1(α, 1, γ, ·), k,m, x

)
= 2F1(α, 1, γ, x)− rkm(x). (4.19)
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The following lemma provides a series expansion for this error.

Lemma 4.5. For |x| < 1, k − m + 1 ≥ 0, and α not a negative integer, the error
(4.19) can be written

E
(
2F1(α, 1, γ, ·), k,m, x

)
=
qkm(1)

qkm(x)

∞∑

i=k+m+1

(α)i(i− (k +m))m
(γ)i(i+ α−m)m

xi. (4.20)

Proof. See Kenney and Laub [92, Thm. 5]. The statement of Theorem 5 in [92]
requires 0 < α < γ, but in fact only the condition that α is not a negative integer
(and hence (i+ α−m)m is nonzero) is needed in the proof.

We are now in a position to bound the error in Padé approximation of the matrix
function (I −X)p = 2F1(−p, 1, 1, X). The following result, which for −1 < p < 0 is a
special case of [92, Cor. 4], shows that the error is bounded by the error of the same
approximation at the scalar argument ‖X‖.

Theorem 4.6. For k −m ≥ 0, −1 < p < 1, and ‖X‖ < 1,

‖E
(
(I −X)p, k,m,X

)
‖ ≤ |E

(
(1− ‖X‖)p, k,m, ‖X‖

)
|. (4.21)

In particular, when −1 < p < 0, (4.21) holds for k −m+ 1 ≥ 0.

Proof. For any matrix X with ‖X‖ < 1, (I −X)p = 2F1(−p, 1, 1, X) is defined and,
by (4.20),

E((I −X)p, k,m,X) = qkm(1)qkm(X)−1
∞∑

i=k+m+1

(−p)i(i− (k +m))m
i!(i− p−m)m

X i, (4.22)

where qkm(x) is the denominator of the [k/m] Padé approximant to (1−x)p. We claim
that every coefficient in the sum has the same sign, that is, the signs are independent
of i for i ≥ k+m+1. Indeed, (−p)i < 0 for 0 < p < 1 and (−p)i > 0 for −1 < p < 0,
and clearly (i − (k +m))m > 0 and (i − p −m)m > 0. Therefore, by Corollary 4.4
and the second inequality in (4.17), we have

‖E((I −X)p, k,m,X)‖ ≤ |qkm(1)|
qkm(‖X‖)

∞∑

i=k+m+1

|(−p)i|(i− (k +m))m
i!(i− p−m)m

‖X‖i

=
|qkm(1)|
qkm(‖X‖)

∣∣∣∣∣

∞∑

i=k+m+1

(−p)i(i− (k +m))m
i!(i− p−m)m

‖X‖i
∣∣∣∣∣

=
∣∣E
(
(1− ‖X‖)p, k,m, ‖X‖

)∣∣.

If −1 < p < 0, the result holds for k −m+ 1 ≥ 0, since Corollary 4.4 shows that the
required bound ‖qkm(X)−1‖ ≤ qkm(‖X‖)−1 still holds in this case.

In practice, we would like to select k and m to minimize the error for a given order
of approximation. The following result of Kenny and Laub [92, Thm. 6] is useful in
this respect.
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Theorem 4.7. Let k − m + 1 ≥ 0 and 0 < α < γ, and let the subordinate matrix
norm ‖ · ‖ satisfy ‖M̃‖ ≤ ‖M‖ whenever 0 ≤ M̃ ≤ M , where the latter inequalities
are interpreted componentwise. Then, if X ∈ Rn×n has nonnegative entries,

‖E
(
2F1(α, 1, γ, ·), k,m,X

)
‖ ≤ ‖E

(
2F1(α, 1, γ, ·), k + 1, m− 1, X

)
‖. (4.23)

Applying Theorem 4.7 with α = −p ∈ (0, 1) and γ = 1, we obtain the correspond-
ing result for (I −X)p, where −1 < p < 0. For 0 < p < 1, the inequality (4.23) holds
for k,m satisfying k −m ≥ 0; this can be proved in the same way as Theorem 4.7,
using Corollary 4.4. We conclude that when X has nonnegative entries, the error
is reduced as k and m approach the main diagonal (k = m) and first superdiagonal
(k + 1 = m) of the Padé table. In the rest of the paper we will concentrate on the
use of the diagonal Padé approximants rm ≡ rmm.

4.4 Evaluating Padé approximants of (I − X)p

Just as for the logarithm [69], there are several possible methods for evaluation of
Padé approximant rm(X) at X ∈ Cn×n:

1. Evaluation of the numerator and denominator in the representation rm(x) =
pm(x)/qm(x) by Horner’s method or the Paterson and Stockmeyer method [72,
sec. 4.2], [110].

2. Evaluation of the continued fraction form of rm(X) in either top-down fashion
or bottom-up fashion.

3. Evaluation of rm(x) = pm(x)/qm(x) using the representations of pm and qm as
products of linear factors (the zeros of pm and qm are all real).

4. Evaluation of the partial fraction representation rm(x) = α0+
∑m

j=1 αj/(βj − x).
In this section we will give a detailed comparison of these possibilities with respect
to numerical stability and computational cost to find the best method in the context
of the algorithm to be developed in the next section.

4.4.1 Horner’s method and the Paterson and Stockmeyer
method

One class of methods is based on the rational representation rm(x) = pm(x)/qm(x)
of the Padé approximant: evaluate the numerator and the denominator matrix poly-
nomials pm(X) and qm(X), respectively, and then compute Y = rm(X) by solving
qmY = pm. Here, we use Horner’s method and the Paterson Stockmeyer method [72,
sec. 4.2] [110] to evaluate the polynomials. Let pm(X) be a matrix polynomial

pm(X) =

m∑

k=0

bkX
k. (4.24)

Algorithm 4.8 (Horner’s method). This algorithm evaluates the polynomial (4.24)
by Horner’s method.
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1 Sm−1 = bmX + bm−1I
2 for k = m− 2:−1: 0
3 Sk = XSk+1 + bkI
4 end
5 pm = S0

Algorithm 4.9 (the Paterson and Stockmeyer method). This algorithm evaluates
the polynomial (4.24) by the Paterson and Stockmeyer method, in which pm(X) is
written as

pm(X) =
r∑

k=0

Bk · (Xs)k, r = ⌊m/s⌋, (4.25)

where s is an integer parameter and

Bk =

{
bsk+s−1X

s−1 + · · ·+ bsk+1X + bskI, k = 0 : r − 1,
bmX

m−sr + · · ·+ bsr+1X + bsrI, k = r.

1 Compute X2, . . . , Xs

2 Evaluate (4.25) by Horner’s method with each Bk formed as needed

Van Loan’s variant of the Paterson and Stockmeyer method is to compute pm a
column at a time, which reduces the storage required in the method but increases
the cost of evaluating pm.

Based on the standard model of floating point arithmetic with unit roundoff u,
we now investigate the stability and accuracy of the evaluation of rm with Algorithm
4.8 or Algorithm 4.9 to compute pm and qm. Let ‖ · ‖p denote any p-norm and let

Ŷ = Y+∆Y denote the computed Y . The errors in obtaining Y from qmY = pm result
from computing qm and pm and solving the system. The computed q̂m = qm +∆Q
and p̂m = pm+∆P from Horner’s method and the Paterson and Stockmeyer method
satisfy [69, Lemma 3.1], [72, Thm. 4.5]

‖∆Q‖ ≤ m(n + 1)uq̃m(‖X‖) +O(u2),

‖∆P‖ ≤ m(n + 1)up̃m(‖X‖) +O(u2),

where q̃m and p̃m are polynomials corresponding to qm and pm in the form of (4.24)
with the coefficient of each term replaced by its absolute value, respectively. Assume
that the linear system solver is stable, so that [70, sec. 9]

q̂mŶ = p̂m +R

where ‖R‖ ≤ γnu‖q̂m‖‖Ŷ ‖ for some constant γn. Then from qm∆Y + ∆QY =

∆P +R +O(u2), the overall forward error bound for Ŷ will be of the form

‖Y − Ŷ ‖
‖Y ‖ ≤ d(m,n)uκ(qm)η(X) +O(u2), (4.26)

where dj(m,n) denotes a constant depending on m and n and η is given by

η(X) =

(
p̃m(‖X‖)
‖qm(X)‖‖Y ‖ +

q̃m(‖X‖)
‖qm(X)‖ +

γn
d1(m,n)

)
≥ 1. (4.27)
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The stability of this method depends on the condition number κ(qm(X)) which is
bounded above by

κ(qm(X)) ≤ qm(−‖X‖)
qm(‖X‖)

(4.28)

as shown in Lemma 4.3.

4.4.2 Continued fraction form

The Padé approximant rm(x) to (1 − x)p has the continued fraction expansion [9,
p. 66], [10, p. 174]

rm(x) = 1 +
c1x

1 +
c2x

1 +
c3x

· · ·
1 +

c2m−1x

1 + c2mx

, (4.29)

where

c1 = −p, c2j =
−j + p

2(2j − 1)
, c2j+1 =

−j − p
2(2j + 1)

, j = 1, 2, . . . .

This expansion provides a convenient means to evaluate rm(X) for X ∈ Cn×n, either
in top-down fashion or in bottom-up fashion. We will summarize both methods as
follows.

Algorithm 4.10 (continued fraction, top-down). This algorithm evaluates the con-
tinued fraction (4.29) in top-down fashion at the matrix X ∈ C

n×n.

1 P−1 = I, Q−1 = 0, P0 = I, Q0 = I
2 for j = 1: 2m
3 Pj = Pj−1 + cjXPj−2

4 Qj = Qj−1 + cjXQj−2

5 end
6 rm = P2mQ

−1
2m

We now investigate the numerical stability of this recurrence. Since Algorithm
4.10 essentially computes rm by converting the continued fraction to the rational
form, the overall forward error bound (4.26) applies here with the constant η(X)
derived as follows.

The recurrence for the Qj can be expressed as

[
Qj

Qj−1

]
=

[
I cjX
I 0

] [
Qj−1

Qj−2

]

=

[
I cjX
I 0

]
· · ·
[
I c2X
I 0

] [
I
I

]
.
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From a standard error bound for matrix multiplication [70, Lem. 3.6] the errors in

the computed Q̂2m = Q2m +∆Q satisfy

‖∆Q‖ ≤ d2(m,n)u
2m∏

j=2

(1 + |cj|‖X‖) +O(u2).

Similarly, for the computed P̂2m = P2m +∆P ,

‖∆P‖ ≤ d3(m,n)u
2m∏

j=1

(1 + |cj|‖X‖) +O(u2).

Again, assume that the solver for the linear systems Y Q2m = P2m is stable. Then

Ŷ Q̂2m = P̂2m +R,

where ‖R‖ ≤ γnu‖Q̂2m‖‖Ŷ ‖. Therefore, from ∆Y Q2m + Y ∆Q = ∆P + R + O(u2),

we have the forward error bound (4.26) for the computed Ŷ with κ(Q2m) in place of
κ(qm) and η given by

η(X) =

∏2m
j=2(1 + |cj|‖X‖)
‖Q2m‖

(
1 +

1 + |c1|‖X‖
‖Y ‖

)
+

γn
d4(m,n)

. (4.30)

We now proceed to summarize the bottom-up evaluation of (4.29).

Algorithm 4.11 (continued fraction, bottom-up). This algorithm evaluates the con-
tinued fraction (4.29) in bottom-up fashion at the matrix X ∈ Cn×n.

1 Y2m = c2mX
2 for j = 2m− 1:−1: 1
3 Solve (I + Yj+1)Yj = cjX for Yj
4 end
5 rm = I + Y1

We now investigate the numerical stability of this recurrence. Assume that ‖Yj‖ <
1 for all j, and let Ŷj ≡ Yj +∆Yj denote the computed Yj . The errors in obtaining
Yj from (I + Yj+1)Yj = cjX result from forming the right-hand side and solving the
system. We assume that the solver is stable, so that [70, sec. 9]

(I + Ŷj+1)Ŷj = cjX + Fj +Rj,

where ‖Fj‖ ≤ u|cj|‖X‖ and ‖Rj‖ ≤ γnu(1 + ‖Ŷj+1‖)‖Ŷj‖, for some constant γn,
where u in the unit roundoff. Then (I + Yj+1)∆Yj = Fj + Rj − ∆Yj+1Yj + O(u2),
which implies

‖∆Yj‖ ≤
1

1− ‖Yj+1‖
(
u|cj|‖X‖+ γnu(1 + ‖Yj+1‖)‖Yj‖+ ‖Yj‖‖∆Yj+1‖

)
(4.31)

+O(u2), j = 2m− 1 : −1 : 1, ‖∆Y2m‖ ≤ u|c2m|‖X‖.
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We can bound ‖Yj‖ from the recurrence

‖Yj‖ ≤
|cj |‖X‖

1− ‖Yj+1‖
, j = 2m− 1 : −1 : 1, ‖Y2m‖ = |c2m|‖X‖. (4.32)

Together, the recurrences (4.31) and (4.32) allow us to compute, to first order, a
bound on ‖∆Y1‖ for any given ‖X‖. An upper bound for the relative error can then
be obtained by using ‖Y1‖ ≥ |c1|‖X‖/(1 + ‖Y2‖) together with the upper bound for
‖Y2‖ from (4.32).

With the recurrence (4.32) we can therefore compute a bound on the condition
number κ(I + Yj) for solving the linear systems

κ(I + Yj) ≤
1 + ‖Yj‖
1− ‖Yj‖

. (4.33)

4.4.3 Product form representation

This method is based on the product form representation of the denominator and nu-
merator polynomials: pm(x) =

∏m
i=1 (si − x)/

∏m
i=1 si and qm(x) =

∏m
i=1 (ti − x)/

∏m
i=1 ti,

where si and ti, i = 1 : m, are the zeros of pm(x) and qm(x), respectively. Note that
pm(0) = qm(0) = 1. Then we can rewrite rm in the product form as

rm(x) = cm

m∏

i=1

si − x
ti − x

, (4.34)

where cm =
∏m

i=1 ti/
∏m

i=1 si. The matrix rm(X) can be evaluated by solving m
multiple right-hand side linear systems successively, as described in the following
algorithm.

Algorithm 4.12 (product form). This algorithm evaluates the product form (4.34)
at the matrix X ∈ Cn×n.

1 Y0 = I
2 for j = 1:m
3 Solve (tjI −X)Yj = (sjI −X)Yj−1 for Yj
4 end
5 rm = cmYm

With an idea from Swarztrauber [125], we can save the cost of one matrix mul-
tiplication for each j (one matrix-vector multiplication in Swarztrauber’s case since
Yj’s are vectors there) while solving the linear systems (tjI −X)Yj = (sjI −X)Yj−1.
The idea is to rewrite the linear system as

(tjI −X)(Yj − Yj−1) = (tj − sj)Yj−1. (4.35)

This essentially uses the partial fraction representation [24] for j = 1 : m

x− sj
x− tj

= 1 +
tj − sj
x− tj

.
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Then Algorithm 4.12 is implemented with line 3 replaced by

“ 3 Solve (tjI −X)Tj = Yj−1 for Tj; Yj = Yj−1 + (tj − sj)Tj”
In order to reduce the amplification of the errors present in Tj , Swarztrauber [125]
suggests ordering sj and tj such that |tj − sj| is small for all j.

The product form method is based on the availability of the zeros of numerator and
denominator polynomials. We now introduce a practical way of computing the zeros.
As shown in the proof of Corollary 4.4, the denominator qm(x) of the [m/m] Padé
approximant of 2F1(−p, 1, 1, x) = (1−x)p is that of the [m−1/m] Padé approximant
of 2F1(−p + 1, 1, 2, x). Recall that −1 < p < 1 and thus 0 < −p + 1 < 2. The
following result is a special case of [92, (1.22) and Remark 2] that shows a well-known
representation for the denominator qm of the Padé approximant of 2F1(α, 1, γ, x) with
0 < α < γ in terms of orthogonal polynomials: we have

qm(x) = xmψm(
1

x
), qm(0) = 1. (4.36)

Here, the ψm are the orthogonal polynomials given by the Jacobi orthogonal poly-
nomials over (−1, 1) under the variable transformation x̃ = 2x − 1, which is given
by

ψm(x) = cP (p,−p)
m (2x− 1),

where c is a normalization constant and P
(a,b)
m (x̃) is the mth degree orthogonal poly-

nomial over −1 < x̃ < 1 with respect to the weight function (1 − x̃)a(1 + x̃)b for
a, b > −1 [4, sec. 22.7]. Now the problem reduces to computing the zeros xi, i = 1 : m

of P
(p,−p)
m (x̃) since for each xi, 2/(1 + xi) is a zero of pm(x). Golub and Welsch [54]

propose an effective algorithm to compute the Gauss quadrature rules, where the
zeros of an orthogonal polynomial are obtained from the computation of the eigen-
values of a tridiagonal matrix constructed from the three term recurrence relation of
the orthogonal polynomials. The Pi ≡ P

(p,−p)
i (x), i = 0, 1, . . . satisfy the following

recurrence [4, sec. 22.7]





P0 = 1
P1 = p+ x
Pi+1 = ai+1xPi − bi+1Pi−1, i = 1, 2, . . . ,

(4.37)

with ai =
2i− 1

i
, bi =

(i− 1)2 − p2
i(i− 1)

, i = 2, 3, . . .. Then the computation of the

zeros of P
(p,−p)
m (x̃) amounts to computing the eigenvalues of the m × m symmetric

tridiagonal matrix

Jm =




−p β1
β1 0 β2

. . .
. . .

. . .

βm−2 0 βm−1

βm−1 0



, (4.38)

where βi = (i2 − p2)1/2/(4i2 − 1)1/2, i = 1 : m− 1. And then we obtain the zeros of
the denominator polynomial qm accordingly. To obtain the zeros of the numerator
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polynomial pm, we use again the duality property of Padé approximants [10, Theorem
1.5.1]. Recall that the numerator pm of the [m/m] Padé approximant of (1 − x)p is
the denominator of the [m/m] Padé approximant of (1 − x)−p. Analogously to the
above discussion, we have

pm(x) = xmψm(
1

x
), pm(0) = 1 (4.39)

with
ψm(x) = cP (−p,p)

m (2x− 1).

Furthermore, the zeros of P
(−p,p)
m (x̃) are exactly the eigenvalues of Jm (4.38) with the

(1, 1) element −p replaced by p.
To simplify the error analysis for the overall computation of the product form

evaluation, we assume that the zeros tj and sj are exactly computed and that there
are no errors in forming tjI − X , for j = 1 : m. So the errors in the computed r̂m
result from solving the linear systems (tjI − X)Tj = Yj−1 and forming Yj . Denote

T̂j = Tj +∆Tj and Ŷj = Yj +∆Yj the computed Tj and Yj, respectively. Then [70,
sec. 9]

(tjX − I)T̂j = Ŷj−1 +Rj

where ‖Rj‖ ≤ γnu‖tjI−X‖‖T̂j‖. The computed Ŷj satisfies Ŷj = Ŷj−1+(tj−sj)T̂+Fj,

where ‖Fj‖ ≤ γnu‖Ŷj‖. From
{

(tjI −X)∆Tj = ∆Yj−1 +Rj ,
∆Yj = ∆Yj−1 + (tj − sj)∆Tj + Fj ,

(4.40)

it follows that, for j = 1 : m,

{
‖∆Tj‖ ≤ ‖(tjI −X)−1‖‖∆Yj−1‖+ γnu‖tjI −X‖‖(tjI −X)−1‖‖Tj‖,
‖∆Yj‖ ≤ ‖∆Yj−1‖+ |tj − sj |‖∆Tj‖+ γnu‖Yj‖. (4.41)

Therefore, the errors in the computed Ŷm = Ym + ∆Ym can be obtained from the
recurrence (4.41) with the inequalities ‖(tjI −X)−1‖ ≤ 1/(tj − ‖X‖) and

‖Tj‖ ≤
‖Yj−1‖
tj − ‖X‖

, ‖Yj‖ ≤
sj + ‖X‖
tj − ‖X‖

‖Yj−1‖

to bound ‖Tj‖ and ‖Yj‖ above, where we have used the fact that tj > 1 and sj > 1
for all j = 1:m. An upper bound for the relative error can then be obtained by the
recurrence ‖Yj‖ ≥ (sj + ‖X‖)‖Yj−1‖/(tj + ‖X‖).

The stability of the product form method is dependent on the condition of the
linear systems to be solved, which is bounded by

κ(tjI −X) ≤ tj + ‖X‖
tj − ‖X‖

. (4.42)
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Table 4.1: Cost of evaluating rm(X). M denotes the cost of a matrix multiplication
and D the cost of solving a linear system with n right-hand sides. The integer
parameters 1 ≤ s ≤ m are used in the Paterson-Stockmeyer method with the optimal
values being

√
2m and

√
m, respectively. f(s,m) = 1 if s divides m and 0 otherwise.

Method Computational cost Storage
Horner 2(m− 1)M +D 3n2

Paterson-Stockmeyer (s+ 2r − 1− 2f(s,m))M +D (s+ 2)n2

& (2
√
2
√
m− 1)M +D

Continued fraction top-down: 2(2m− 2)M +D 5n2

bottom-up: (2m− 1)D 3n2

Product form mD 3n2

Partial fraction mD 3n2

4.4.4 Partial fraction form

This method is based on the partial fraction representation

rm(x) = α0 +
m∑

j=1

αj

tj − x
. (4.43)

The coefficients αj can be given by the zeros tj for the denominator polynomial qm
and sj for the numerator pm as

α0 =

m∏

i=1

ti
si

and αj = α0

∏m
i=1(si − tj)∏
i 6=j(ti − tj)

, j = 1 : m.

An advantage of the partial fraction form over the product form is that the m linear
systems in the former can be solved in parallel. The accuracy of the partial fraction
method is dependent on the condition of the matrices tjI−X . The normwise relative
error is roughly bounded by d(m,n)uφ [69, (3.7)] where

φ = max
i

[αiκ(tiI −X)]. (4.44)

Table 4.1, partially taken from [69], summarizes the cost of the methods discussed
in this section.

4.4.5 Comparison and numerical experiments

We will show terms from the error analysis in the following tables for a range of
p ∈ (0, 1) and ‖X‖ ∈ (0, 1). 2-norms are used here and throughout this section and
the values of m, shown in Table 4.2, are chosen as the smaller of 100 and the minimal
value for which

‖rm(X)− (I −X)p‖ ≤ |(1− ‖X‖)p − rm(‖X‖)| ≤ u, (4.45)
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with u = 2−53 ≈ 1.1× 10−16, where the first inequality always holds by Theorem 4.6.
Table 4.3 shows the bounds for κ(qm) from (4.28), maxj κ(I + Yj) from (4.33) and
maxj κ(tjI −X) from (4.42), comparing the numerical stability of different methods.
We use “–” in place of the negative outputs which should be positive theoretically.
This is due to the rounding errors in finite precision computation. Table 4.4 shows
the terms from the overall forward analysis: η in the error bounds for Horner’s
method (4.27) and the top-down continued fraction method (4.30), respectively, with
γn ≡ 1 and d(m,n) = m; φ for the partial fraction method is defined in (4.44); d1
and d2 are the constants in the bound ‖∆Y ‖/‖Y ‖ ≤ du + O(u2) from (4.32) and
(4.41), respectively, with γn ≡ 1 (the bound scales roughly linearly with γn). For
Y = rm(X), we approximated ‖Y ‖ ≈ ‖(I − X)p‖ ≈ 1 and ‖qm‖ ≈ qm(0) = 1 when
they were needed. “NaN” in the table stands for Not-a-Number in MATLAB, which
is obtained as a result of dividing infinity by infinity. The infinity here is caused
by overflow in computing the coefficients of the denominator and numerator of the
rational representation of the Padé approximant with large m and certain values of
p.

Table 4.5 gives the results of some numerical tests. The test matrices X are 8× 8
random matrices with elements from the normal (0, 1) distribution. We then scaled
matrices X to get the desired values of norms. Table 4.5 shows the normwise relative
errors ‖Ŷ −Y ‖/‖Y ‖ in Y = (I−X)p for a range of p ∈ (0, 1). Here the “exact” matrix
powers are computed using Algorithm 4.11 (which is stable and accurate anticipating
the results from Table 4.3 and 4.4) at 100 digit precision with the VPA arithmetic of
the Symbolic Math Toolbox.

Some observations can be made.

1. Horner’s method, the Paterson-Stockmeyer method, and the continued fraction
evaluated top-down can only be guaranteed to be stable if ‖X‖ is much less
than 1, below 0.25 say.

2. The factors from the error bounds for Horner’s method, the top-down evaluation
of the continued fraction and the constant in the error bound for the product
form method grow rapidly as ‖X‖ approaches 1. The factor for the partial
fraction method increases as p approaches 1. The effect of rounding errors on
the bottom-up evaluation of the continued fraction is negligible for all ‖X‖ and
p tested.

3. For the bottom-up evaluation of the continued fraction, the assumption ‖Yj‖ <
1 was found to be satisfied in every case. The results show that as long as
we keep ‖X‖ below 0.9, say, the numerical stability of Algorithm 4.11 will be
excellent. Table 4.5 confirms that the bottom-up evaluation of the continued
fraction gives the best accuracy. In fact, in Algorithm 4.13, which is derived in
the next section, with the bottom-up evaluation used in it we will limit ‖X‖ to
about 0.3, for other reasons.

4.5 Schur–Padé algorithm for Ap

Now we develop an algorithm for computing Ap for a real p ∈ (−1, 1), where A has no
nonpositive real eigenvalues. We can restrict p to (−1, 1) without loss of generality,
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Table 4.2: Minimal values of m for which (4.45) holds.

p
‖X‖ 0.1 0.3 0.5 0.7 0.9
0.99 88 100 100 84 79
0.95 38 39 39 39 36
0.90 27 27 27 27 26
0.75 16 16 16 16 15
0.50 9 10 10 10 10
0.25 6 6 7 7 6
0.10 5 5 5 5 5

Table 4.3: Terms from the stability analysis, for different ‖X‖ < 1 and p ∈ (0, 1).

p
‖X‖ 0.1 0.3 0.5 0.7 0.9

κ(qm) (4.28)
0.99 7.26e15 NaN NaN 2.45e16 –
0.95 4.00e18 3.11e18 – – –
0.90 5.60e13 4.17e13 3.11e13 2.33e13 5.33e12
0.75 1.03e6 8.50e5 7.00e5 5.77e5 1.99e5
0.50 1.10e2 1.68e2 1.50e2 1.35e2 1.21e2
0.25 4.45e0 4.23e0 5.18e0 4.92e0 3.63e0
0.10 1.63e0 1.60e0 1.57e0 1.54e0 1.51e0

maxj κ(I + Yj) (4.33)
0.99 6.46e0 6.96e0 1.90e1 4.92e1 1.25e2
0.95 4.45e0 3.91e0 7.94e0 1.53e1 2.86e1
0.90 3.57e0 2.99e0 5.32e0 9.02e0 1.49e1
0.75 2.45e0 2.03e0 3.00e0 4.28e0 5.96e0
0.50 1.68e0 1.50e0 1.83e0 2.25e0 2.73e0
0.25 1.27e0 1.20e0 1.31e0 1.45e0 1.59e0
0.10 1.10e0 1.07e0 1.11e0 1.15e0 1.20e0

maxj κ(tjI −X) (4.42)
0.99 1.95e2 1.95e2 1.94e2 1.91e2 1.89e2
0.95 3.82e1 3.80e1 3.78e1 3.76e1 3.71e1
0.90 1.86e1 1.85e1 1.84e1 1.83e1 1.82e1
0.75 6.86e0 6.82e0 6.79e0 6.75e0 6.67e0
0.50 2.93e0 2.93e0 2.91e0 2.90e0 2.88e0
0.25 1.63e0 1.63e0 1.63e0 1.62e0 1.60e0
0.10 1.21e0 1.21e0 1.20e0 1.20e0 1.20e0
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Table 4.4: Terms from error analysis, for different ‖X‖ < 1 and p ∈ (0, 1). Here
ǫ(p, ‖X‖) := |(1− ‖X‖)p − rm(‖X‖)|

Approx. to ‖∆Y ‖/‖Y ‖ ≤ du+O(u2)
‖X‖ ǫ(p, ‖X‖) η in (4.27) η in (4.30) φ (4.44) d from (4.32) d from (4.41)

p = 0.1
0.99 0.00e0 3.83e14 8.12e16 2.52e2 4.24e2 4.21e59
0.95 0.00e0 1.89e6 1.10e7 6.42e2 8.79e1 1.03e22
0.90 0.00e0 2.35e4 5.84e4 3.07e2 4.25e1 5.94e13
0.75 0.00e0 2.43e2 2.48e2 1.00e2 1.49e1 1.22e6
0.50 1.11e-16 1.37e1 8.57e0 2.99e1 6.00e0 1.84e2
0.25 1.11e-16 3.99e0 2.26e0 1.30e1 3.26e0 1.47e1
0.10 1.11e-16 2.55e0 1.49e0 8.93e0 2.41e0 7.79e0

p = 0.3
0.99 3.89e-16 NaN 1.81e19 8.18e2 1.53e2 3.77e67
0.95 5.55e-17 2.72e6 1.85e7 1.30e4 4.32e1 2.77e22
0.90 1.11e-16 2.36e4 6.39e4 5.07e3 2.39e1 4.48e13
0.75 1.11e-16 2.44e2 2.68e2 1.35e3 1.01e1 1.02e6
0.50 0.00e0 1.69e1 1.14e1 4.17e2 4.80e0 3.07e2
0.25 0.00e0 3.99e0 2.31e0 1.20e2 2.94e0 2.33e1
0.10 0.00e0 2.55e0 1.50e0 7.73e1 2.31e0 1.42e1

p = 0.5
0.99 3.75e-16 NaN 1.94e19 4.28e3 5.27e1 2.24e67
0.95 8.33e-17 2.75e6 1.97e7 1.62e5 2.03e1 1.94e22
0.90 1.11e-16 2.38e4 6.80e4 5.47e4 1.29e1 3.38e13
0.75 0.00e0 2.45e2 2.83e2 1.18e4 6.67e0 8.57e5
0.50 0.00e0 1.70e1 1.18e1 3.05e3 3.80e0 3.71e2
0.25 0.00e0 4.48e0 2.62e0 1.11e3 2.64e0 6.71e1
0.10 0.00e0 2.55e0 1.51e0 4.36e2 2.22e0 3.34e1

p = 0.7
0.99 1.39e-17 8.83e13 1.70e16 9.29e4 1.68e1 1.68e56
0.95 5.55e-17 2.78e6 2.05e7 2.42e6 8.93e0 1.37e22
0.90 2.78e-17 2.41e4 7.08e4 7.06e5 6.60e0 2.55e13
0.75 5.55e-17 2.47e2 2.94e2 1.24e5 4.27e0 7.20e5
0.50 0.00e0 1.71e1 1.22e1 2.67e4 2.97e0 7.85e2
0.25 0.00e0 4.48e0 2.67e0 8.49e3 2.37e0 2.29e2
0.10 0.00e0 2.55e0 1.52e0 2.94e3 2.13e0 1.06e2

p = 0.9
0.99 8.67e-17 1.39e13 1.89e15 1.84e5 4.52e0 3.98e52
0.95 4.16e-17 9.56e5 5.81e6 8.10e7 3.48e0 1.72e20
0.90 2.78e-17 1.73e4 4.80e4 2.40e7 3.09e0 5.93e12
0.75 1.11e-16 1.86e2 2.13e2 3.12e6 2.61e0 2.78e5
0.50 0.00e0 1.72e1 1.25e1 7.10e5 2.29e0 5.22e3
0.25 1.11e-16 4.00e0 2.44e0 1.14e5 2.12e0 1.06e3
0.10 0.00e0 2.55e0 1.53e0 6.02e4 2.04e0 6.61e2
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Table 4.5: Relative normwise errors ‖Ŷ − Y ‖/‖Y ‖ in Y = (I − X)p for a range of
p ∈ (0, 1).

Paterson- Continued fraction Product Partial
‖X‖ m Horner Stockmeyer top-down bottom-up form fraction

p = 0.1
0.99 88 6.86e0 1.16e1 1.89e1 1.86e-17 3.64e-15 NaN
0.95 38 7.40e-8 9.74e-9 2.80e-8 1.05e-16 1.30e-15 7.55e-16
0.90 27 3.19e-10 2.48e-10 1.29e-10 1.42e-17 1.19e-15 1.22e-15
0.75 16 4.96e-14 4.06e-14 5.28e-14 2.12e-16 6.49e-16 8.45e-16
0.50 9 2.49e-15 1.48e-15 2.84e-15 1.04e-17 3.30e-16 3.26e-16
0.25 6 4.94e-16 6.24e-16 4.95e-16 3.73e-18 6.56e-16 4.37e-16
0.10 5 4.58e-16 4.85e-16 6.74e-16 1.96e-18 4.43e-16 2.52e-17

p = 0.3
0.99 100 NaN NaN 1.44e2 7.96e-17 4.79e-15 NaN
0.95 39 3.72e-12 1.75e-12 3.30e-12 9.76e-17 1.02e-15 4.53e-15
0.90 27 1.76e-10 6.49e-11 1.12e-10 9.92e-17 1.14e-15 2.08e-15
0.75 16 3.52e-14 2.46e-14 6.36e-14 1.97e-16 5.24e-16 4.52e-15
0.50 10 3.08e-15 2.16e-15 4.77e-15 2.34e-17 4.92e-16 1.90e-15
0.25 6 4.92e-16 3.31e-16 7.04e-16 2.10e-16 4.22e-16 1.16e-15
0.10 5 4.39e-16 4.39e-16 4.43e-16 4.84e-18 4.36e-16 1.53e-15

p = 0.5
0.99 100 NaN NaN 5.04e1 1.31e-16 2.74e-15 NaN
0.95 39 1.94e-7 6.75e-8 3.67e-8 1.07e-16 1.64e-15 4.26e-14
0.90 27 2.72e-10 1.43e-10 4.61e-10 5.46e-17 1.78e-15 1.55e-14
0.75 16 1.91e-14 1.24e-14 1.94e-14 1.02e-16 1.04e-15 1.30e-14
0.50 10 2.65e-15 2.17e-15 1.64e-15 9.93e-17 8.01e-16 9.53e-15
0.25 7 3.15e-16 4.84e-16 4.84e-16 1.03e-16 1.43e-15 5.29e-15
0.10 5 4.42e-16 4.37e-16 4.32e-16 8.04e-18 1.08e-15 2.15e-15

p = 0.7
0.99 84 6.21e2 1.18e1 1.46e1 1.59e-16 1.91e-15 NaN
0.95 39 2.00e-5 1.58e-5 6.05e-6 1.82e-16 1.43e-15 1.92e-13
0.90 27 3.03e-12 1.28e-12 1.17e-12 1.62e-16 1.15e-15 5.85e-14
0.75 16 1.99e-14 1.20e-14 3.00e-14 1.58e-16 1.92e-15 1.06e-13
0.50 10 1.50e-15 1.44e-15 2.72e-15 1.82e-16 1.84e-15 1.64e-14
0.25 7 3.20e-16 3.39e-16 5.01e-16 2.02e-16 1.71e-15 1.85e-14
0.10 5 3.24e-16 3.27e-16 8.66e-16 1.08e-16 1.29e-15 1.32e-14

p = 0.9
0.99 79 5.00e-1 3.57e-1 1.56e-2 1.68e-16 8.05e-15 NaN
0.95 36 2.76e-7 6.28e-7 2.40e-7 1.52e-16 6.32e-15 2.16e-12
0.90 26 9.15e-10 5.26e-10 7.85e-10 1.75e-16 1.04e-14 4.67e-13
0.75 15 5.14e-14 4.47e-14 4.99e-14 1.70e-16 1.03e-14 1.06e-12
0.50 10 1.17e-15 1.02e-15 1.61e-15 1.68e-16 9.44e-15 3.95e-13
0.25 6 4.26e-16 4.33e-16 5.10e-16 6.00e-17 1.09e-14 8.85e-14
0.10 5 4.48e-16 6.32e-16 6.23e-16 2.07e-16 1.07e-14 5.38e-14
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Table 4.6: θ
(p)
m , for p = 1/2 and selected m.

m 1 2 3 4 5 6 7 8 9

θ
(1/2)
m 1.53e-5 2.25e-3 1.92e-2 6.08e-2 1.25e-1 2.03e-1 2.84e-1 3.63e-1 4.35e-1

m 10 11 12 13 14 15 16 32 64

θ
(1/2)
m 4.99e-1 5.55e-1 6.05e-1 6.47e-1 6.84e-1 7.17e-1 7.44e-1 9.27e-1 9.81e-1

Table 4.7: Minimum values of θ
(p)
m , for p ∈ [−1, 1].

m 1 2 3 4 5 6 7 8 9

minp θ
(p)
m 1.51e-5 2.24e-3 1.88e-2 6.04e-2 1.24e-1 2.00e-1 2.79e-1 3.55e-1 4.25e-1

m 10 11 12 13 14 15 16 32 64

minp θ
(p)
m 4.87e-1 5.42e-1 5.90e-1 6.32e-1 6.69e-1 7.00e-1 7.28e-1 9.15e-1 9.76e-1

since in general we can compute Ap = Ap1Ap2 with p1 ∈ (−1, 1) and p2 an integer.
How best to choose p1 and p2 is considered in Section 4.6.

Our algorithm exploits the relation Ap = (A1/2k)p·2
k

. We take square roots of A
repeatedly until A1/2k is close to the identity matrix. Then, withX = I−A1/2k , we can
use the approximation (A1/2k)p ≈ rm(X), where rm is the [m/m] Padé approximant
to (1 − x)p. We recover an approximation to the pth power of the original matrix
from Ap ≈ rm(X)2

k

. This approach is analogous to the inverse scaling and squaring
method for the matrix logarithm [28], [72, sec. 11.5], [91]. In order to facilitate the
computation of the square roots we compute an initial Schur decomposition A =
QTQ∗, so that the problem is reduced to that for a triangular matrix.

For any p ∈ [−1, 1] and m we denote by θ
(p)
m the largest value of ‖X‖ such that

the second inequality holds in (4.45). With u = 2−53, we determined θ
(p)
m empirically

in MATLAB, using high precision computations with the Symbolic Math Toolbox.
For p = 1/2 and a range of m ∈ [1, 64]. Table 4.6 reports the results to three

significant figures. To see how the values of θ
(p)
m vary with p for a specific m, we show

in Figure 4.1 the values of θ
(p)
m corresponding to 324 different values of p between

−0.999 and 0.999, for a range of m. Table 4.7 reports the corresponding minimum
values of θ

(p)
m over p ∈ [−1, 1]. For each m, θ

(p)
m tends to 1 as p tends to −1, 0 or 1.

Our results show, however, that the relative variation of θ
(p)
m with p is slight, except

when p is within distance about 10−4 of −1, 0, or 1. We therefore base our algorithm
on the values

θm = min
p∈[−1,1]

θ(p)m , (4.46)

and do not optimize the algorithm parameters separately for each particular p.
In designing the algorithm we minimize the cost subject to achieving the desired

accuracy, adapting a strategy used within the inverse scaling and squaring algorithm
for the matrix logarithm in [28], [72, sec. 11.5]. Computing a square root of a trian-
gular matrix T by the Schur method of Björck and Hammarling [17], [72, Alg. 6.3]
costs n3/3 flops, while evaluating rm(T ) by Algorithm 4.11 costs (2m− 1)n3/3 flops.
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Figure 4.1: θ
(p)
m against p, for m = 1: 25, 32, 64; m = 1 is the lowest curve and m = 64

the highest curve. θm in (4.46) is marked as “∗”. The curves are not symmetric about
p = 0.

Bearing in mind the squaring phase, it is therefore worthwhile to compute an extra
square root if it allows a reduction in the Padé degree m by more than 1. Considering
that

‖I − T 1/2‖ = ‖(I + T 1/2)−1(I − T )‖ ≈ 1
2
‖I − T‖ (4.47)

once T ≈ I and that, from Table 4.7, θm/2 < θm−2 for m > 7, the cost of computing
T p when ‖I − T‖ > θ7 will be minimized if we take square roots of T repeatedly
until ‖I−T 1/2k‖ ≤ θ7. Then it is worth taking one more square root if it reduces the
required m by more than 1.

An important final ingredient of our algorithm is a special implementation of
the squaring phase, obtained by adapting the approach suggested by Al-Mohy and
Higham [5] for the matrix exponential. The squaring phase forms rm(I − T 1/2k)2

j ≈
T p/2k−j

, j = 1: k. But we can evaluate the diagonal and first superdiagonal elements of
T p/2k−j

exactly from explicit formulae, and injecting these values into the recurrence
should reduce the propagation of errors. The diagonal entries are computed in the
obvious way. We now derive an appropriate formula for the first superdiagonal.

The (1,2) element of F =
[
λ1

0
t12
λ2

]p
is given by f12 = t12(λ

p
2 − λp1)/(λ2 − λ1) if

λ1 6= λ2, or pλ
p−1
1 t12 otherwise [72, sec. 4.6]. We need a way of evaluating the divided

difference (λp2 − λp1)/(λ2 − λ1) accurately even when λ1 and λ2 are very close; this
formula itself suffers from cancellation. We have

λp2 − λp1
λ2 − λ1

=
exp(p log λ2)− exp(p log λ1)

λ2 − λ1
= exp

(
p
2

(
log λ2 + log λ1

)) exp
(
p
2

(
log λ2 − log λ1

))
− exp

(
p
2

(
log λ1 − log λ2

))

λ2 − λ1
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= exp
(
p
2

(
log λ2 + log λ1

)) 2 sinh
(
p
2

(
log λ2 − log λ1

))

λ2 − λ1
.

The remaining problem is to evaluate w = log λ2 − log λ1 accurately. To avoid
cancellation we can rewrite [72, sec. 11.6.2]

w = log

(
λ2
λ1

)
+ 2πiU(log λ2 − log λ1) = log

(
1 + z

1− z

)
+ 2πiU(log λ2 − log λ1),

where z = (λ2−λ1)/(λ2+λ1) and U(z) is the unwinding number of z ∈ C defined by

U(z) := z − log(ez)

2πi
=

⌈
Im z − π

2π

⌉
∈ Z. (4.48)

Then, using the hyperbolic arc tangent atanh(z), defined by

atanh(z) :=
1

2
log

(
1 + z

1− z

)
, (4.49)

w can be expressed as

w = 2 atanh(z) + 2πiU(log λ2 − log λ1).

Hence

f12 = t12 exp
(
p
2

(
log λ2 + log λ1

)) 2 sinh
(
p
(
atanh(z) + πiU(log λ2 − log λ1)

))

λ2 − λ1
.

(4.50)
Overall, we have the formula

f12 =





t12pλ
p−1
1 , λ1 = λ2,

t12
λp2 − λp1
λ2 − λ1

, |λ1| < |λ2|/2 or |λ2| < |λ1|/2,
(4.50), otherwise,

(4.51)

where we evaluate the usual divided difference if λ1 and λ2 are sufficiently far apart.
Several comments are made here. Note that we say λ1 and λ2 are sufficiently far
apart if |λ1| < |λ2|/2 or |λ2| < |λ1|/2. One might intuitively prefer the criterion
|λ1 − λ2| ≥ max{|λ1|, |λ2|}. However, the latter criterion does not work for some
extreme cases. For example, for λ1 = 1014 and λ2 = 1, the latter criterion is not
satisfied, whereas λ1 and λ2 are clearly far apart. Therefore we discard that criterion.
For the scalar function exp

(
p
2

(
log λ2 + log λ1

))
, numerical experiments in MATLAB

show that it is more accurate to evaluate it in the same way as it appears here by the
scalar exponential and logarithm than to evaluate it by (λ1λ2)

p/2. We are assuming
that accurate implementations of the scalar sinh and atanh functions are available.
The definition (4.49) is that used in MATLAB; there is an alternative to (4.49) which
necessitates modifications to (4.50) described in [72, sec. 11.6.2].

Now we state the overall algorithm.

Algorithm 4.13 (Schur–Padé algorithm). Given A ∈ Cn×n with no eigenvalues
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on R− and a nonzero p ∈ (−1, 1) this algorithm computes X = Ap via a Schur

decomposition and Padé approximation. It uses the constants θm := minp θ
(p)
m in

Table 4.7. The algorithm is intended for IEEE double precision arithmetic.

1 Compute a (complex) Schur decomposition A = QTQ∗.
2 If T is diagonal, X = QT pQ∗, quit, end
3 T0 = T
4 k = 0, q = 0
5 while true
6 τ = ‖T − I‖1
7 if τ ≤ θ7
8 q = q + 1
9 j1 = min{ i: τ ≤ θi, i = 3: 7 }

10 j2 = min{ i: τ/2 ≤ θi, i = 3: 7 }
11 if j1 − j2 ≤ 1 or q = 2, m = j1, goto line 16, end
12 end
13 T ← T 1/2 using the Schur method [72, Alg. 6.3].
14 k = k + 1
15 end
16 Evaluate U = rm(I − T ) using Algorithm 4.11.
17 for i = k:−1: 0
18 if i < k, U ← U2, end

19 Replace diag(U) by diag(T0)
p/2i .

20 Replace first superdiagonal of U by first superdiagonal of T
p/2i

0

obtained from (4.51) with p← p/2i.
21 end
22 X = QUQ∗

Cost: 25n3 flops for the Schur decomposition plus (2k + 2m− 1)n3/3 flops for U
and 3n3 to get X : about (28 + (2k + 2m− 1)/3)n3 flops in total.

Note that line 2 simply computes T p in the obvious way when T is diagonal, that
is, when A is normal; there is no need for Padé approximation in this case.

If A is real, we could take the real Schur decomposition at line 1, and compute
the square roots of the now quasitriangular T at line 13 using the real Schur method
[68], [72, Alg. 6.7]. This would guarantee a real computed X̂ and could be faster due
to the avoidance of complex arithmetic.

4.6 General p ∈ R

In developing the Schur–Padé algorithm we assumed p ∈ (−1, 1). For a general
noninteger p ∈ R there are two ways to reduce the power to the interval (−1, 1). We
can write

p = ⌊p⌋+ p1, p1 > 0, (4.52a)

p = ⌈p⌉+ p2, p2 < 0, (4.52b)

where p1 − p2 = 1. To choose between these two possibilities we will concentrate on
the computation of Ap1 and Ap2 and ask which of these computations is the better
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conditioned. To make the analysis tractable we assume that A is Hermitian positive
definite with eigenvalues λ1 ≥ · · · ≥ λn > 0 and we use the lower bound (4.12), which
is now an equality for the Frobenius norm. Using the mean value theorem, we obtain,
for p ∈ (−1, 1) and f(x) = xp,

‖Lxp(A)‖F = max
i≤j
|f [λi, λj]| = max

i≤j
|f ′(ξij)|, ξij ∈ [λi, λj]

= |f ′(λn)| = |p|λp−1
n .

Hence, by (4.5) for the Frobenius norm,

κxp =
|p|λp−1

n ‖A‖F
‖Ap‖F

≈ |p|λ
p−1
n ‖A‖2
‖Ap‖2

=

{
|p|κ2(A)1−p, p ≥ 0,
|p|κ2(A), p ≤ 0,

where κ2(A) = ‖A‖2‖A−1‖2 = λ1/λn. Since p1 > 0 and p2 < 0, in order to minimize
the lower bound we should choose p1 if p1κ2(A)

1−p1 ≤ −p2κ2(A) = (1 − p1)κ2(A),
that is, if κ2(A) ≥ exp(p−1

1 log
(
p1/(1− p1)

)
). Thus, for example, if p1 ≤ 0.5 then p1

is always chosen, while if p1 = 0.75 or p1 = 0.99 then p1 is chosen for κ2(A) ≥ 4.3
and κ2(A) ≥ 103.7, respectively.

Now we consider how to handle integer p. When p is positive, Ap should be
computed by binary powering [72, Alg. 4.1]. When p is negative there are several
possibilities, of which we state three. We write GEPP for Gaussian elimination with
partial pivoting.

Algorithm 4.14. This algorithm computes X = Ap for p = −k ∈ Z−.

1 Y = Ak by binary powering
2 X = Y −1 via GEPP

Algorithm 4.15. This algorithm computes X = Ap for p = −k ∈ Z−.

1 Y = A−1 via GEPP
2 X = Y k by binary powering

Algorithm 4.16. This algorithm computes X = Ap for p = −k ∈ Z−.

1 Compute a factorization PA = LU by GEPP.
2 X0 = I
3 for i = 0: k − 1
4 Solve LXi+1/2 = PXi

5 Solve UXi+1 = Xi+1/2

6 end
7 X = Xk

Algorithms 4.14 and 4.15 have the same cost. Algorithm 4.16 is more expensive
as it does not take advantage of binary powering. However, our main interest is in
accuracy and a full rounding error analysis is given here for these three algorithms.
Both Algorithm 4.14 and 4.15 involve inverting a full matrix via GEPP. There are
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several methods to do this. For example, MATLAB’s inv function takes the following
steps [70, sec. 14.3]: compute the LU factorization PA = LU , compute U−1 by back
substitution and then solve for X the equation XL = U−1. Now we assume the
matrix inversion required in Algorithm 4.14 and 4.15 is implemented in this way and
that, for simplicity in deriving the bounds, P = I.

First consider Algorithm 4.14. We write the computed Ak as X̂ = fl(Ak). Then
we have [70, Prob. 3.10]

‖X̂ − Ak‖2 ≤ (kn2u+O(u2))‖A‖k2, (4.53)

where u is the unit roundoff. Let Ŷ be the computed inverse of X̂ via GEPP. Recall
that X̂ = LU +∆X with ‖∆X‖2 ≤ cnu‖L‖2‖U‖2 [70, Thm. 9.3], where we write the
computed LU factors as L and U . Then it follows that [70, sec. 14.3.2]

‖Ŷ − X̂−1‖2 ≤ cnn
2u‖L‖2‖U‖2‖Ŷ ‖2‖X̂−1‖2 =: δ1‖X̂−1‖2. (4.54)

Applying the triangle inequality, it follows from (4.53) and (4.54) that

‖Ŷ − A−k‖2 ≤ ‖Ŷ − X̂−1‖2 + ‖X̂−1 −A−k‖2
≤ δ1‖X̂−1‖2 + ‖A−k(X̂ −Ak)A−k‖2 +O(u2)

≤ δ1‖X̂−1‖2 + kn2u‖A−k‖22‖A‖k2 +O(u2).

Now we get the following lemma on the rounding errors in Algorithm 4.14.

Lemma 4.17. Let Ŷ be the computed A−k by Algorithm 4.14. Denote X̂ = fl(Ak)

and let X̂ ≈ LU be the computed LU factorization of X̂ by GEPP. Then we have

‖Ŷ − A−k‖2 ≤ δ1‖X̂−1‖2 + kn2u‖A−k‖22‖A‖k2 +O(u2), (4.55)

where δ1 = cnn
2u‖L‖2‖U‖2‖Ŷ ‖2.

A rounding error bound for Algorithm 4.15 is given in the following lemma, which
can be proved in a similar manner as for Algorithm 4.14.

Lemma 4.18. Let A ≈ LU be the computed LU factorization of A by GEPP and
Ẑ ≈ A−1 be the computed inverse of A. Write the computed power Ẑk as fl(Ẑk).
Then the computed A−k by Algorithm 4.15 satisfies

‖fl(Ẑk)− A−k‖2 ≤ δ2‖A−1‖k2 + kn2u‖Ẑ‖k2 +O(u2), (4.56)

where δ2 = cnn
2u‖L‖2‖U‖2‖Ẑ‖2.

Now we proceed to the error analysis for Algorithm 4.16. Let X̂i+1/2 = Xi+1/2 +

∆Xi+1/2, X̂i+1 = Xi+1 + ∆Xi+1 be the computed Xi+1/2 and Xi+1, respectively.
Assume that the solver is stable, so we have [70, sec. 9]

X̂i+1/2U = X̂i + Fi+1/2, X̂i+1L = X̂i+1/2 +Ri+1,

where ‖Fi+1/2‖ ≤ αnu‖X̂i+1/2‖‖U‖ and ‖Ri+1‖ ≤ αnu‖X̂i+1‖‖L‖ for some constant
αn. Then ∆Xi+1 = ∆XiU

−1L−1 + Fi+1/2U
−1L−1 + Ri+1L

−1 + O(u2) and it follows
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that

‖∆Xi+1‖ ≤ ‖∆Xi‖‖L−1‖‖U−1‖+ ‖Fi+1/2‖‖L−1‖‖U−1‖+ ‖Ri+1‖‖L−1‖. (4.57)

So ‖∆Xk‖, rounding errors in Xk, can be bounded by the recurrence ‖Xi+1/2‖ ≤
‖Xi‖‖U−1‖ and ‖Xi+1‖ ≤ ‖Xi+1/2‖‖L−1‖.

The forward error bounds from the above analysis are difficult to compare and
do not provide any clear guidance on the choice of algorithm. Algorithm 4.14 inverts
Ak, which is potentially a much more ill conditioned matrix than A. Intuitively,
Algorithm 4.15 should therefore be preferred. Algorithm 4.16 does not explicitly
invert a matrix but relies on triangular solves, and triangular systems are typically
solved to higher accuracy than we might expect from conditioning considerations [70,
Chap. 8]. We will use numerical experiments to guide our choice (see Experiment 7
in Section 4.9).

4.7 Singular matrices

Since our aim is to develop an algorithm of the widest possible applicability, we would
like to extend Algorithm 4.13 so that it handles singular matrices with a semisimple
zero eigenvalue. If A is singular then the Schur factor T will be singular. We reorder
T (using unitary similarities) so that it has the form

T =

[
T11 T12
0 T22

]
(4.58)

where T11 is nonsingular and T22 has zero diagonal. The zero eigenvalue is semisimple
if and only if T22 = 0, by rank considerations. If T22 = 0 then U = T p is given by

U =

[
U11 T−1

11 U11T12
0 0

]
, U11 = T p

11. (4.59)

The diagonal blocks in this expression follow from the fact that any primary matrix
function of a block triangular matrix is block triangular [72, Thm. 1.13], while the
(1,2) block is obtained from the equation TU = UT . The conclusion is that we should
obtain U11 from Algorithm 4.13 and compute U12 separately from the given formula.

Algorithm 4.19. This algorithm is a modification of Algorithm 4.13 to handle sin-
gular matrices.

1 Apply Algorithm 4.13 with the following changes.
2 if T has any zero eigenvalues
3 Just after line 2, reorder T into the form (4.58), where T11 is nonsingular

and T22 has zero diagonal.
4 if ‖T22‖ ≥ cnu‖T‖ for some suitable constant cn
5 Quit with an error message that Ap is not defined.
6 else
7 Compute U in (4.59), obtaining U11 using lines 3–22 of Algorithm 4.13.
8 end
9 end
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Algorithm 4.19 is the starting point for a practical algorithm but is flawed in its
present form. In floating point arithmetic we are unlikely to obtain exact zeros on the
diagonal of T . Consider, for example, the MATLAB matrix A = gallery(5), which
has integer entries and a Jordan form with one 5×5 Jordan block corresponding to the
eigenvalue 0. The computed triangular Schur factor T has positive diagonal entries all
of order 10−2. The computed square root (for example) from Algorithm 4.13 has norm
of order 1010. Without further computations involving “difficult rank decisions” [53,
sec. 7.6.5], which would effectively be the first stages of computing the Jordan form,
it is not possible to determine whether it makes sense to compute Ap with p 6∈ Z when
A is singular. We will therefore not pursue the development of a practical algorithm
for the singular case.

4.8 Alternative algorithms

A number of alternatives to and variations of Algorithm 4.13 can be formulated.
They are based on initial reduction to Schur form, the exp-log formula (4.2), and
the Schur–Parlett algorithm of Davies and Higham [37], [72, Alg. 9.6]. The Schur–
Parlett algorithm is designed for computing f(A) for any f for which functions of
arbitrary triangular matrices can be reliably computed. It employs a reordered and
partitioned Schur triangular factor, computes f(Tii) for the diagonal blocks Tii by the
given method and obtains the off-diagonal blocks by the block Parlett recurrence.

We summarize the main possibilities.

(a) schur-pade: Algorithm 4.13.

(b) SP-Pade: the Schur–Parlett method using Algorithm 4.13 on the diagonal blocks
Tii.

(c) SP-ss-iss: the Schur–Parlett method with evaluation of exp(p log(Tii)) by the
inverse scaling and squaring method for the logarithm [72, sec. 11.5] and the scaling
and squaring method for the exponential [5].

(d) tri-ss-iss: reduction to Schur form T with evaluation of exp(p log(T )) by the
inverse scaling and squaring method for the logarithm applied to the whole matrix T
and the scaling and squaring method for the exponential.

(e) powerm: the algorithm discussed in Section 4.1 based on an eigendecomposition,
which is implemented in the MATLAB function of Figure 4.2.

Note that a variant of tri-ss-iss that works directly on A instead of reducing
to Schur form is not competitive in cost with tri-ss-iss, since computing square
roots of full matrices is relatively expensive [72, Chap. 6].

We make some brief comments on the relative merits of these methods.
For the methods that employ a Schur decomposition the cost will be dominated

by the cost of computing the Schur decomposition unless ‖A‖ is large. If the matrix
is already triangular then schur-pade and tri-ss-iss have similar cost, and in
particular require approximately the same number of square roots.

SP-Pade differs from schur-pade in that it applies Padé approximation to each
diagonal block of T (possibly with a different degree for each block) rather than to T
as a whole. It is possible for the partitioning to be the trivial one, T ≡ T11, in which
case SP-Pade and schur-pade are identical.



CHAPTER 4. FRACTIONAL POWERS OF A MATRIX 97

function X = powerm(A,p,str)

%POWERM Arbitrary power of matrix.

% POWERM(A,p) computes the p’th power of A for a nonsingular,

% diagonalizable matrix A and an abritrary real number p.

% POWERM(A,p,’nobalance’) performs the computation with balancing

% disabled in the underlying eigendecomposition.

if nargin == 3 && strcmp(str,’nobalance’)

[V,D] = eig(A,’nobalance’);

else

[V,D] = eig(A);

end

X = V*diag(diag(D).^p)/V;

Figure 4.2: MATLAB function powerm.

An advantage in cost of SP-Pade and SP-ss-iss over schur-pade is that large
elements of T do not affect the number of square roots computed, and hence the cost,
as long as they lie in the superdiagonal blocks Tij of the Schur–Parlett partitioning
of T .

In the next section we compare these methods numerically.

4.9 Numerical experiments

Our numerical experiments were carried out in MATLAB R2010a, for which the unit
roundoff u = 2−53 ≈ 1.1×10−16. Our implementations of SP-Pade and SP-ss-iss are
obtained by modifying the MATLAB function funm. For all methods except powerm
we evaluate powers of 2× 2 triangular matrices directly, using the formula (4.51).

Relative errors are measured in the Frobenius norm. For the “exact” solution
we take the matrix computed using powerm at 100 digit precision with the VPA
arithmetic of the Symbolic Math Toolbox; thus we can compute relative errors only
when A is diagonalizable.

When q = 1/p is an integer, another measure of the quality of a computed solution
X is its relative residual,

ρ(X) =
‖A−Xq‖
‖X‖η(X)

,

where η(X) =
∥∥∑q−1

i=0

(
Xq−1−i

)T ⊗X i
∥∥ if p > 0 and η(X) =

∥∥∑−q
i=1

(
X−i

)T ⊗X i+q−1
∥∥

if p < 0, with ⊗ denoting the Kronecker product. This is a more practically use-
ful definition of relative residual than ‖A − Xq‖/‖Xq‖, as explained in [60], [72,
Prob. 7.16].

Experiment 1. We computed the pth power of the matrix

A(ǫ) =

[
1 1
0 1 + ǫ

]
, (4.60)
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Figure 4.3: Experiment 1: relative errors for powerm on matrix (4.60) with ǫ = 10−t.

for p ∈ {0.1, 0.5, 0.9} and ǫ = 10−t with 65 equally spaced values of t ∈ [0, 16]. The
condition number κxp(A(ǫ)) is of order 1 for all these ǫ and p. The relative errors for
powerm are shown in Figure 4.3. Clearly, the errors deteriorate as t increases and A(ǫ)
approaches a defective matrix; the reason for the “bifurcation” in the error curves is
not clear. The other methods defined in Section 4.8 all produce results with relative
error less than 4u in all cases.

Experiment 2. In this experiment we formed 50 random 50 × 50 matrices with
elements from the normal (0,1) distribution; any matrix with an eigenvalue on R

− was
discarded and another random matrix generated. Then we reduced A to Hessenberg
form using the MATLAB function hess and computed A1/3 by all five methods as
well as by powerm nb, the latter denoting powerm with the ’nobalance’ argument,
which inhibits the use of balancing in the eigendecomposition. The results, with 2-
norms used in the residuals, are shown in Figure 4.4. The improved performance of
powerm nb over powerm shows that it is the balancing that is affecting the numerical
stability of powerm in this example. This is not surprising, because Watkins [129]
has pointed out that for upper Hessenberg matrices balancing can seriously degrade
accuracy in the eigendecomposition and should not be automatically used.

We note that using powerm nb in place of powerm makes no difference to the
results in Experiment 1, as balancing has no effect in that example.

Experiment 3. In this experiment we use a selection of 10 × 10 nonsingular ma-
trices taken from the MATLAB gallery function and from the Matrix Computation
Toolbox [66]. Any matrix found to have an eigenvalue on R

− was squared. We com-
puted Ap for p ∈ {1/52, 1/12, 1/3, 1/2}, these values being ones likely to occur
in applications where roots of transition matrices are required [72, sec. 2.3], [76], as
well as the negatives of these values. This gives 376 problems in total. We omit
tri-ss-iss from this test, as it is generally outperformed by SP-ss-iss (as can
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Figure 4.4: Experiment 2: relative residuals for 50 random Hessenberg matrices.

be seen in Experiment 2). Figures 4.5 and 4.7 show the relative errors and relative
residuals. The solid line in Figure 4.5 is κxp(A)u, where κxp is computed via (4.7)
and (4.9) using codes from the Matrix Function Toolbox [67] that compute Kexp and
Klog; the problems are sorted by decreasing condition number. Figures 4.6 and 4.8
show performance profiles. A performance profile shows the proportion π of problems
where the performance ratio of a method is at most α, where the performance ratio
for a method on a problem is the error or residual of that method divided by the
smallest error or residual over all the methods. The errors and residuals lead to the
same conclusions. First, powerm often produces very good results but is sometimes
very unstable. Second, schur-pade SP-Pade and SP-ss-iss perform similarly, with
schur-pade having a slight edge overall.

Experiment 4. This experiment is identical to the previous one except that we use
the upper triangular QR factor R of each matrix and replace every negative diagonal
element of R by its absolute value. The errors and residuals and their performance
profiles are shown in Figures 4.9–4.12. For this class of matrices schur-pade is clearly
greatly superior to the other methods. The performance profiles are qualitatively
similar if we use the Schur factor instead of the QR factor.

Experiment 5. In this experiment we compute the three bounds in (4.11), (4.12)
as well as the true norm of the Fréchet derivative ‖Lxp(A)‖ for the same matrices
and values of p as in Experiment 3, using the Frobenius norm. The computed upper
bound, which sometimes overflowed, was set to the minimum of 1030 and itself. The
results are plotted in Figure 4.13. The results show that the lower bounds are sharper
than the upper bounds and that they are often correct to within a couple of orders
of magnitude, being less reliable for the very ill conditioned problems.

Experiment 6. In this experiment, we test our proposed choice of the fractional
part of p when p 6∈ [−1, 1]. For κ2(A) we use the lower bound maxi |tii|/mini |tii|
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Figure 4.5: Experiment 3: relative errors for a selection of 10 × 10 matrices and
several p.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

π

 

 

Schur−Pade
SP−Pade
powerm
SP−ss−iss

Figure 4.6: Experiment 3: performance profile of relative errors.
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Figure 4.7: Experiment 3: relative residuals for a selection of 10 × 10 matrices and
several p.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

π

 

 

Schur−Pade
SP−Pade
powerm
SP−ss−iss

Figure 4.8: Experiment 3: performance profile of relative residuals.
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Figure 4.9: Experiment 4: relative errors for a selection of 10×10 triangular matrices
and several p.
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Figure 4.10: Experiment 4: performance profile of relative errors.



CHAPTER 4. FRACTIONAL POWERS OF A MATRIX 103

0 50 100 150 200 250 300 350

10
−15

10
−10

10
−5

 

 

Schur−Pade
SP−Pade
powerm
SP−ss−iss

Figure 4.11: Experiment 4: relative residuals for a selection of 10 × 10 triangular
matrices and several p.
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Figure 4.12: Experiment 4: performance profile of relative residuals.
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Figure 4.13: Experiment 5: the lower bounds lowbnd1 in (4.11) and lowbnd2 in
(4.12), the upper bound upbnd in (4.12), and the true norm ‖Lxp(A)‖F , for the
matrices in Experiment 3.

in the prescription of Section 4.6, where T is the triangular Schur factor. We use
the same matrices as in Experiment 3 and compute Ap for p = 3.9, 3.7, 3.3, 3.1. The
performance profiles of the relative errors are shown in Figure 4.14. Our strategy
chose p1 in 169 of the 197 cases in this experiment. Indeed, p1 is almost as good a
choice as the “optimal” choice, as can be seen in two ways. First, the performance
profile curve for p1 is almost indistinguishable from that for the “optimal” choice and
so is omitted from the figure. Second, the maximum and minimum values of the
relative error for p1 divided by that for p2 were 3.2 and 1.3× 10−16, respectively.

Experiment 7. In this final experiment we compare Algorithms 4.14, 4.15, and
4.16, all of which compute Ap where p = −k is a negative integer. We test the
algorithms on the same set of matrices as in Experiment 3 for p = −3,−5,−7,−9.
The results are shown in Figures 4.15 and 4.16. Algorithms 4.15 and 4.16 clearly
produce much more accurate results than Algorithm 4.14, as we expected. There is
little to choose between Algorithms 4.15 and 4.16; we favour the former in view of
its lower computational cost.

4.10 Concluding remarks

We have derived a new algorithm (Algorithm 4.13) for computing arbitrary powers
Ap of a matrix, based on diagonal Padé approximants of (1 − x)p and the Schur
decomposition. The algorithm performs in a generally numerically stable fashion in
our tests, with relative error usually less than the product of the condition number of
the problem and the unit roundoff. Our experiments demonstrate the superiority of
this approach over alternatives based on separate approximation of the exponential
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Figure 4.14: Experiment 6: performance profile of relative errors. The legend for first
plot applies to all four plots. Schur-Pade2 uses p2 in (4.52b) and Schur-Pade opt

uses the choice defined in Section 4.6.
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Figure 4.15: Experiment 7: relative errors for Algorithms 4.14, 4.15, and 4.16 for a
selection of 10× 10 matrices and several negative integers p.
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Figure 4.16: Experiment 7: performance profile of relative errors .

and logarithm in the formula Ap = exp(p log(A)) using the best available methods.
The use of Algorithm 4.13 within the Schur–Parlett algorithm (to compute T p

ii for the
diagonal blocks Tii of the blocked and re-ordered triangular Schur factor) merits con-
sideration as it is generally faster than applying it to the whole T , but Algorithm 4.13
is significantly more accurate in our tests with triangular matrices (Experiment 4).

MATLAB has a built-in function mpower for which the function call mpower(A,p)
is equivalent to the syntax A^p. In our tests with MATLAB R2010a, mpower performs
identically to our powerm function for noninteger p, and in particular performs badly
on matrices that are defective or nearly defective. For negative integer p, mpower
performs identically to Algorithm 4.14 in our tests.



Chapter 5

Conclusions and Future Work

On the problem of roots of stochastic matrices, we started with a careful treatment
of the underlying theory where we have used the theory of matrix functions to de-
velop tools for analyzing the existence of stochastic roots of stochastic matrices. We
have identified two classes of stochastic matrices for which the principal pth root is
stochastic for all p and demonstrated a wide variety of possibilities for existence and
uniqueness. We have also given some necessary spectral conditions for existence.

On the computational side, we emphasized finding an approximate stochastic root
by solving the nonlinear programming problem of minimizing the residual ‖Xp−A‖F .
A spectral projected gradient method starting with the perturbed principal root is
found efficient in the sense of the computational time and the final residual.

We also considered a more general problem of matrix powers Aα where A ∈ Cn×n

and α is an arbitrary real number. We have derived a new algorithm for computing Aα

based on diagonal Padé approximants of (1− x)α and the Schur decomposition. The
algorithm performs in a generally numerically stable fashion in our tests and shows
its superiority over alternatives based on separate approximation of the exponential
and logarithm in the formula Aα = exp(α log(A)) using the best available methods
and that based on the Schur–Parlett algorithm with our new algorithm applied to
the diagonal blocks.

The problem of the existence of stochastic roots is still open. We have not yet given
a full characterization of all stochastic matrices that have stochastic pth roots for a
given p. One of the problems that is closely related to the stochastic roots problem
is the inverse eigenvalue problem that determines conditions under which a set of n
complex numbers comprises the eigenvalues of some n× n stochastic matrix (which
is called the inverse spectrum problem by Minc [106]). Different from the necessary
condition derived in Section 2.5.2 where we check whether each eigenvalue of A is the
eigenvalue of some pth power of a stochastic matrix, a refined necessary condition
can be derived by checking whether every eigenvalue of A is an eigenvalue of the pth
power of the same stochastic matrix. This can be done with a full understanding of
the inverse spectrum problem. Though it has been completely solved for the 3×3 case,
the inverse spectrum problem for stochastic matrices with a set of arbitrary n complex
numbers remains open. Note that deriving a necessary and sufficient condition for
the existence of stochastic roots can be quite difficult since the nonprimary roots of
a derogatory matrix can not be identified from its spectrum alone.

107
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It is worthwhile to be aware of a more general setting of functions preserving non-
negativity of matrices. Bharali and Holtz [13] characterize entire functions f(A) that
preserve nonnegativity of two classes of structured matrices: triangular and block-
triangular matrices and circulant matrices. One can consider the characterizations of
matrix functions (which may not be entire functions) that preserve nonnegativity of
matrices with or without certain structures. For a specific matrix function f(A), the
conditions under which f(A) preserves the nonnegativity of A could also be looked
at.

About the computational matter of finding an approximate stochastic root, since
the methods currently considered to minimize ‖Xp − A‖ can only guarantee a local
minimum, one can consider the global optimization techniques, for example, the
multilevel coordinate search currently used in the NAG Toolbox for MATLAB [3]
and the genetic algorithm and pattern search used in Global Optimization Toolbox
[2].

Finally, a more general class of functions that arise in the applications of fractional
differential equations is the Mittag-Leffler function defined by

Ek1,k2(z) :=
∞∑

j=0

zj

Γ (jk1 + k2)
, k1, k2 > 0, (5.1)

whenever the series converges. These functions are of fundamental importance in
the analysis of fractional differential equations [40, Chap. 4], [62]. Note that Mittag-
Leffler functions are generalizations of the ψ functions defined by ψk =

∑∞
j=0 z

j/(j+
k)!, which are closely related to the exponential:

ψ0(z) = ez, ψ1(z) =
ez − 1

z
, ψ2(z) =

ez − 1− z
z2

, . . . .

We have E1,k(z) = ψk(z) for integers k > 0. The need to evaluate Mittag-Leffler
functions at a matrix argument arises. Recall that the evaluation of ψk, k = 0, 1, . . .,
at a matrix argument can be done via an analogue of the scaling and squaring method
for the matrix exponential [72, sec. 10.7.4]. Even for scalar arguments it is nontrivial
to evaluate Ek1,k2(z) accurately, on which some work has been done based on the
integral representation of Ek1,k2(z) [39], [56], [117]. However, no methods have yet
been proposed on evaluating Mittag-Leffler functions at matrix arguments.
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