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Abstract 

The University of Manchester, William Cheung. 

A thesis submitted to The University of Manchester  for the degree of Doctor of 

Philosophy (PhD) in the Faculty of Engineering and Physical Sciences. 

Metabolic profiling of volatile organic compounds and enhanced vibrational 

spectroscopy 

!ov 2010 

 

Metabolomics is a post genomic field of research concerned with the study of low 

molecular weight compounds within a biological system permitting the investigation 

of the metabolite differences between natural and perturbed systems (such as cells, 

organs and tissues). Rapid identification and discrimination of biological samples 

based upon metabolic differences and physiological status in microbiology, 

mammalian systems (particularly for disease diagnosis), plants and food science is 

highly desirable. Volatile organic compound (VOC) profiling is a novel area of 

research where the composition of the VOCs emitted by the biological samples can 

be correlated to its origin and physiological status. The aim of this project was to 

investigate the applicability of VOC profiling as a potential complementary tool 

within metabolomics. 

In this project the discrimination of bacteria using a novel gas phase separation 

method was investigated and the development of VOC-based profiling tools for the 

collections of VOCs emitted from biological samples was also studied. The 

optimisation and validation of a high throughput method for VOC analysis was 

achieved and this was used to assess wound healing. 

VOC metabolite profiling was further extended to the discrimination of S. 

typhimurium contaminated meat; the study was conducted in parallel with metabolite 

profiling analysis for the analysis of non-volatile small molecules. Finally, enhanced 

vibrational spectroscopic techniques were applied to the characterisation and 

screening of dye molecules in contaminated foodstuffs using Raman spectroscopy. 

This thesis clearly demonstrates that VOC metabolic profiling is a complementary 

tool within the metabolomics toolbox, one of its great attractions is that it permits the 

characterisation of biological samples in a rapid and non-invasive manner. The 

technique provides detailed chemical information regarding the VOC composition 

present above the headspace of the sample and can be used to understand its 

physiological status and biological origin. VOCs metabolite profiling will become a 

valuable tool for non-invasive analysis of many biological systems. Raman 

spectroscopy is a sensitive and non-destructive technique which can generate 

detailed chemical and structural information regarding the analyte under 

investigation with little or no sample preparation needed. The effect of the weak 

Raman signal can be significantly amplified by coupling the analyte molecule to 

surfaces of nanoparticles and demonstrated that it is ideal for analysing aqueous dye 

solutions in a quantitative manner. 
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1.1 Introduction 

The classical view of molecular biology is based upon a hypothetico-reductionist 

approach, where the emphasis is placed on understanding individual key components 

of a system. The flow of information within a cell has been assumed to be 

unidirectional where, the DNA encodes mRNA, which in turn encodes several 

proteins some of which are enzymes, and will catalyses intermediates involved in 

metabolic reactions (metabolites), this paradigm is summarised below.  

 

Figure 1 The flow of information from genes to function, the downward arrows showing the 

direction of influence from one component to the next, the upwards arrows are positive and 

negative feedback mechanisms in gene regulation. 

Since the completion of the human genome project in 2003, there has been a 

paradigm shift in which we view modern biology, moving away from a traditional 

unidirectional approach and towards a more holistic view, in which greater 

importance on understanding the system (the cell, tissue or an organism as a whole) 

and how these different components e.g. the genome (the complete sequence of the 

chemical base pairs of an organism), transcriptome (total set of mR�A produced 

within cell or tissue), proteome (the entire complement of protein expressed by the 

cell, tissue or organism) and metabolome (the sum of the metabolites constituents of 
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an organism) interact in relation to each other to give rise to function. The 

metabolome represents the final downstream product of the genome, both gene 

expression and protein modification are subject to complex homeostatic control and 

feedback mechanisms and the net results of these processes are alterations within the 

metabolome. This is summarized in Figure 1 by the upward arrows. Metabolites are 

functional entities and they have clear roles in the operation of a biological system, 

reflecting its surrounding environment (Ryan and Robards 2006). The concept that 

various disease states can be reflect/result in the changes of the metabolite 

concentration is central to metabolomics (van der Greef 2004; van der Greef 2007; 

Nicholson and Lindon 2008).  

 

Metabolomics is the study of the metabolome; the total quantitative collection of low 

molecular weight compounds (metabolites), present within a cell or organism under 

set conditions, which are involved in metabolic reactions required for growth, 

maintenance and normal function (Oliver 1998). Metabolites are generally labile 

species and have immense chemical diversity existing in a highly dynamic state 

ranging from picoMolar (10
-12

) to milliMolar (10
-3

) concentrations, with a turnover 

rate for some pathways (e.g. glycolysis) in the order of milliseconds (Weckwerth and 

Morgenthal 2005; Dunn and Ellis 2005b). 

 

Metabolomics is a hypothesis driven science in which, carefully designed 

experiments are conducted to generate complex chemical data in conjunction, with 

inductive reasoning (supervised analysis) to derive a hypothesis which in turn can be 

tested and validated (Goodacre 2004; Kell and Oliver 2004). The diversity of 

function and structure of metabolites is greater than that of proteins or genes at 

present. Many organisms have fewer metabolites than genes or proteins, (e.g. the 

single cell eukaryote Saccharomyces cerevisiae has ~6000 protein-encoding genes 

with only ~600 low molecular intermediates (Rammsdonk 2001)) and therefore 

profiling the metabolome might increase the likelihood of identifying and tracking 

meaningful biochemical changes in relation to external perturbations (van 

Ravenzwaay 2007). Metabolomics is complementary to transcriptomics and 

proteomics and reflects more closely to the phenotype as changes are amplified 

relative to the transcriptome and proteome.  
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The metabolome is in a state of constant flux and is influenced by a magnitude of 

intrinsic and extrinsic factors such as health status, age, metabolic rate and nutrient 

intake. The net results of these perturbations can be reflected within the metabolome 

(Goodacre 2007). 

Metabolomics had been successfully applied to numerous different fields since its 

inception from the investigation and characterisation of microorganisms (Koek 2006; 

Khoo and Al-Rubea  2007) to plants, (Kopka 2004; Weckwerth 2005), food and 

nutrition (Wishart 2008) health and diagnostic purposes (van der Greef 2004; 

German 2005; Kell 2006; Dieterle 2007; Oresic 2009) and the evaluation of drug 

effectiveness and its mode of action (Lindon 2006; van der Greef 2007; van 

Ravenzwaay 2007). 

1.1.2 Analytical strategies in Metabolomics 

There is numerous analysis methodologies employed in metabolomics. Below are a 

set of terms and definitions commonly used (Dunn 2008). 

(1) Metabolomics: non-discriminate quantification and identification of all 

metabolites present within a biological system.  

(2) Metabolic profiling: detection of a wide range of metabolites related by 

classes (such as amino acids, sugars, alcohols, organic acids, vitamins) by 

employing a single or multiple analytical platforms to obtain maximal 

coverage of the metabolome. Metabolic profiling can be considered as an 

untargeted analysis approach, with the emphasis on detecting and quantifying 

as many metabolites as possible. The relative changes of the metabolite 

concentrations are used to define any metabolic differences between the 

samples. 

(3) Metabolic fingerprinting: rapid and high-throughput analysis of crude 

sample mixtures with minimal sample preparation. Identification and 

quantification is limited in this strategy as greater emphasis is placed on 

discrimination of samples, based on biological origin or physiological status. 

(4) Metabolic footprinting: analysis of extracellular metabolome, any 

metabolites secreted from the intracellular complement of the organism into 

its extracellular growth medium. Sampling and analysis is rapid since 
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metabolite quenching and extraction is not required. This strategy is 

commonly applied to the study of microorganisms and cell culture systems. 

(5) Targeted metabolite analysis: this involves the absolute quantification and 

identification of a single or set of related metabolites after extensive sample 

preparation and extraction, prior to analysis by one or more analytical 

platforms.  

 

In addition to the many analysis methodologies there are also a diverse range of 

analytical platforms employed in metabolomics, the most predominate analytical 

platforms include gas chromatography mass spectrometry (GC/MS) (Fiehn 2002), 

liquid chromatography mass spectrometry (LC/MS), Fourier transform infrared 

spectroscopy (FTIR), Raman spectroscopy nuclear magnetic resonance spectroscopy 

(NMR) (Lindon 2003). Each analytical platform has its own advantages and 

disadvantage towards the detection of different classes of metabolites. Of these 

analytical platforms Ultra high performance liquid chromatography mass 

spectrometry (UPLC-MS) has the greatest potential for near-global profiling (Plumb 

2005, Theodoridis 2008.) A detailed comprehensive review of the analytical 

platforms employed in metabolomics is given elsewhere (Dunn 2005a; Dunn and 

Ellis 2005b). 

Due to the complexity, dynamic range and size of the metabolome complete global 

quantification is extremely challenging and currently unachievable (Dunn 2008). At 

present there is no single extraction methodology or analytical platform capable of 

targeting and detecting every single metabolite (Hall 2006). To circumvent this 

problem multiplex targeted extractions (different extraction methods applied to the 

same sets of samples) combined with parallel sample analysis on different analytical 

platforms are employed in an attempt to profile a biological system at the global 

level with minimal bias. This multiplex approach reduces the effects of individual 

extraction and instrumental bias towards certain classes of compounds and allows a 

more comprehensive range of possible metabolites to be detected (maximal 

metabolite coverage). 
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1.1.3 Technological innovations in MS-based Platforms 

Recent technological innovations in MS-based analytical platforms have led to 

exponential increases in performance: the introduction of Orbitraps (OT) and Fourier 

transform ion cyclotron resonance (FT-ICR) (Aharoni 2002,  Marshall and 

Hendrickson 2002) mass analyzers, have enabled a significant step up in sensitivity, 

selectivity, resolution and hence accuracy. Faster and smaller micro electric devices 

have allowed MS analyzers to achieve near total 3D ion confinement and ultra fine 

ion control. This in combination with ultra fast scan rate in modern analyzers in the 

order of sub-millisecond has enabled a greater number of total metabolites to be 

simultaneously, accurately and reliably detected. The higher scan rate allows much a 

better peak shape to be obtained for even ultra low level metabolites, resulting in a 

more accurate peak deconvolution and subsequent identification. 

The use of collision-induced disassociation (Johnson 1988) and chemical 

fragmentation (Munson1966; Harrison 1992) has also allowed a greater range of 

structural information to obtained relating to unknown compounds facilitating their 

identification. 

  

The use of robotic automation in conjunction with shortened sample analysis time 

(due to improved chromatographic separation techniques) has enable significantly 

greater throughput, to the point where extremely large amounts of samples can be 

analysed accurately and reproducibly in a relatively short space of time with minimal 

supervision from the operator. Currently MS based instruments provide the most 

reliable and accurate way of identifying and quantifying low concentration 

metabolites in complex sample matrices (Weckwerth 2005). 

1.1.4 Metabolic flux analysis (MFA) 

Another important area of metabolomics is based around metabolic flux analysis 

(MFA), in which the rate of transport of substrates through multiple connected 

biochemical pathways at steady state is monitored and measured. This is achieved by 

the use of isotopic labeling experiments and measuring these distributions using 

either nuclear magnetic resonance (NMR) or MS. The technique involves monitoring 

changes in the substrate and product concentration or by analysing the flow and 

redistribution of labeled precursor material into other metabolites (Schwender 2004).  
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This technique has been successfully applied to plants (Boatright 2004; Heinzle 

2007; Matsuda 2007), mammalian cells (Munger 2008) and bacteria (Nöh and 

Wiechert 2006; Antoniewicz 2007; Nöh 2007). MFA is essential for further 

understanding of control and regulatory mechanisms within metabolic networks (Fell 

1997). Metabolic fluxes are regulated by both gene expression and post 

transcriptional and post translational modifications, and while such processes may 

results in only minor changes in enzyme concentrations, these changes can and do 

have a significant impact upon concentration of a variety of metabolites.  

 

Within the post genomic era of research, despite the advent of transcriptomics, 

proteomics and metabolomics we have yet to increase our understanding of the 

metabolic network within a biological system to the point where rational metabolic 

engineering is a viable option. However MFA has shown to be a valuable tool for the 

elucidation of metabolic pathways, enhancing our ability to accurately predict the 

impact of gene knock-outs on mutant flux network and facilitating the development 

of accurate mechanistic pathway models (Kruger and Ratcliff 2009). As such, MFA 

may well prove to be a useful complementary tool to metabolomics for the global 

characterisation of metabolic networks (Cornish-Bowden and Cardenas 2000). 

1.2 Methods and materials 

1.2.1 Biogenic volatile organic compounds (BVOC) 

The traditional definition of volatile organic compounds (VOCs) is extremely broad 

and misleading due to large overlaps between distinct classes of compounds. Any 

low molecular weight compound (with a mass less than 400 amu) with a carbon 

backbone or ring and high vapour pressure, (greater than 0.27 KPa) with a boiling 

point between 50-260
o
C and readily exists and as a gas under standard temperature 

and pressure can be classed as a VOCs (WHO 1989; EPA 1999). This definition 

makes no distinction between any biological and artificial form of VOCs covering 

everything from organic solvents such as acetone and dichloromethane, to 

polyaromatic hydrocarbons (PAH), environmental pollulates such as BTEX 

(benzene, toluene, ethylbenzene and xylene). Methane from decomposing organic 

matter through to perfumes, sense and flavour molecules in fruits, food, plants, 
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bacteria to chemical warfare agents such as phosgene (choking agent) and cyclosarin 

(nerve agents). Biogenic volatile organic compounds (BVOCs) are a relatively novel 

term that describes any VOCs which are synthesised by living organisms. The 

production and emission are dictated by abiotic factors such as light, temperature and 

nutrient level. In addition to this, the release of such BVOCs is induced as a stress 

response in plants due to wounding or feeding by insects and herbivores (Arneth and 

Niinements 2010). This may also act as a defence mechanism for plants reacting to 

climatic changes (Penuelas and Llusia 2003). 

 

BVOC plays an important role in plant to insect communication (Du 2001; Inui 

2007) and also in the mating of insects (Landolt and Philips 1997) and mammals. 

Specific BVOCs include olfactive and non-olfactive compounds and these can be 

considered as a class of terminal metabolites (Wang and Zhao 1995; Zini 2001; Zeng 

2002); examples include isoprene, terpenes, alkanes, alcohols, esters, carbonyls and 

acids (Kesselmeier and Staudt 1999). BVOC profiling can be used as an indication 

of food quality since bacteria will release VOCs. The BVOC profile of fruits and 

vegetables are often sampled and analysed at different phases of transport for quality 

control purposes (Krumbein 2004; Georg Schmarr  and Bernhardt 2010). The BVOC 

profile of human skin and breath varies significantly with respect to time and 

physiological state and holds great potential as a non-invasive diagnostic tool for 

personalised health care and for disease progression monitoring purposes (Acevedo 

2007; Belda-Iniestaa 2007; Riazanskaia 2008; Song 2009). 

1.2.2 Volatile organic compound (VOC) sampling 

Analysis of VOCs is normally achieved through headspace (HS) sampling with gas 

chromatography, HS is one of the most important sampling techniques available for 

the capture of VOCs, requiring minimal sample preparation and good instrumental 

sensitivity make this technique of the choice for sampling a wide range of analytes 

and concentrations. The classical theory of HS sampling is explained in extensive 

detailed in three key texts by Hachenberg, Loffe and Vitenberg, Kolb and Ettre 

(Hachenberg and Schmidt 1977; Loffe and Vitenberg 1984; Kolb and Ettre 2006). 

Other sampling methodologies include liquid-liquid extraction (LLE), stream 

distillation (SD), simultaneous distillation extraction (SDE) and supercritical fluid 
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extraction (SFE); a detailed review of these techniques is given elsewhere by Zhang 

(Zhang and Li 2010). 

HS sampling can be split into two main categories: static and dynamic, the following 

sections briefly describes the two different types of sampling methods and the 

different surfaces used. 

1.2.3 Headspace sampling 

Solid phase micro extraction (SPME) is widely regarded as the current gold standard 

for static Head space (HS) sampling. The capturing method is favoured because it is 

simple to use and demonstrates a high degree of robustness. Extensive literature is 

available on the theory and applications of SPME (Pawliszyn 2002; Pawliszyn 2003; 

Musteatan and Pawliszyn 2007). The sample is placed in a sealed vial (the ratio of 

sample with respect to the HS is kept at a ratio of 1:1) and a small circular air flow is 

induced by a rotating magnetic bead as this is necessary for representative sampling 

of a large volume of HS onto a small surface area of the fibre; this also facilitate in 

introducing more VOCs into the HS. For solid samples, the sample was placed 

directly into the vials and capped, the VOCs was then allowed to build up, typically 

for around 45-60min.  

 

The SPME fibre was then inserted into the HS above the sample and exposed for a 

fixed amount of time; typically 30min is sufficient to collect any VOCs; the 

sampling procedure is shown in Figure 2. After the sampling is complete the SPME 

fibre is retracted and removed, it is then inserted into a GC injector port where it is 

thermally treated to desorb the VOCs which are transferred into the GC to undergo 

chromatographic separation and subsequent detection. SPME fibres provide an 

excellent surface for the trapping of VOCs, with several different activated surfaces 

available for sampling different classes of VOCs. SPME has a good overall sampling 

versatility and each fibre can last up to 200 injections before degradation is observed. 

Its throughput can be limited as each fibre needs to be cleaned individually before 

and after each injection, this may limit its use in large scale experiments. 

Furthermore the fibre is highly susceptible to contamination and should be cleaned 

beforehand and used immediately in order to minimise background signature during 

sampling. 
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Figure 2 A diagrammatic representation of SPME sampling and introduction of VOC into the GC. 

 

1.2.4 Polydimethylsilioxane elastomer (PDMS) 

PDMS patches were originally developed by Riszanskia et al (Riazanskaia 2008) and 

were design for use in skin BVOC sampling; the patch was modified to act as a 

passive VOC sampling device. It functions similar to SPME where the patch is 

suspended over the HS of the sample. After collection the patches are then 

transferred to a silico-coated thermal desorption tube for GC/MS analysis. PDMS 

offers good sensitivity and reproducibility for the trapping of polar compounds, large 

batches can be made and cleaned in advance and they are not particularly prone to 

degradation. The batches can be stored in a stable manner inside a clean thermal 

desorption tube for up to several days at time. 

1.2.5 Dynamic sampling (DHS) 

DHS the volume of the HS within the sample vial is evacuated several times 

typically using an inert carrier gas such as helium, nitrogen or argon which are 

passed through an absorbent material such as Tenax-TA or PDMS for the VOCs to 

be adsorbed on it. DHS allows significant sample enrichment to be achieved as large 

volumes of air are sampled onto a relatively small surface area; this is ideal for low 

level concentration VOC analysis (Hagman and Jacobsson 1987). However, this type 

of sampling is highly problematic as it requires the use of specialised sampling rigs 
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and other equipment. The complexity of the sampling also increases if, multiple 

parallel sampling is employed. Analogue needle valve flow controllers are normally 

used due to their robustness and low cost, but digital flow controllers are 

commercially available which are more precise however, they are significantly more 

expensive and durability is often an issue. Suitable flow regulators and controllers 

are essential in order to obtain reproducible results. Care must be taken during active 

sampling to ensure consistent flow rate and sampling time, as small variations in 

either parameters will be amplified into significant differences in the total volume of 

HS extracted. 

1.2.6 Tenax-TA 

Tenax-TA is a porous polymer resin of 2,6-diphenylene oxide, it is a highly versatile 

absorbent material used in DHS. Tenax-TA comes in a granulated form which 

provides an extremely large surface area for the VOCs to be adsorbed onto, the 

trapping material is universal for all types of VOCs (polar or non polar) and has 

good durability for repeated use. Furthermore, Tenax-TA has a very low background 

signature and if sufficient care is taken during the cleaning process each Tenax-TA 

packed thermal tube and can be used for up to 250 injections before any degradation 

is observed. However, it is recommended that the packing material is changed after 

250 injections to ensure optimal trapping performance. Tenax-TA does have several 

drawbacks as it is highly prone to sample degradation and is stable for a few days 

only after cleaning. 

Thermal desorption systems provide a method of sample introduction for transferring 

VOCs from absorbent material with a large surface area such as Tenax-TA or 

PDMS, into a GC in a highly reproducible and automated fashion. The Tenax-TA 

packed thermal desorption tube is first thermally treated to desorbed the VOCs and 

pre-concentrated it into a smaller volume via a primary cold trap. This cold trap then 

is thermally heated and the VOCs are then introduced into the GC as a small discrete 

volume of gas. This method of sample introduction minimise peak broadening and 

reduces co-elution effects, significantly improving overall resolution and sensitivity 

of the analysis. 
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1.3 Instrumentation 

1.3.1 Analytical pyrolysis (Py) 
Analytical Py (Wampler 1999) is a well established method of sample introduction 

of nonvolatile materials not amenable to GC analysis. It involves the control of 

thermal degradation of a sample under an inert atmosphere to generate volatile 

pyrolysis fragments (pyrolysate) which is then amenable to GC analysis. The sample 

is applied to the tip of a pyroprobe and inserted into the pyrolysis chamber where it 

is rapidly heated to the point of thermal decomposition. The pyrolysate is then 

cryogenically focused onto a primary cold trap; once the initial pyrolysis is 

completed the cold trap is then heated to desorbs the preconcentrated pyrolsate and 

introduced into the GC as a small discrete volume. When the experimental 

parameters for analytical pyrolysis are sufficiently controlled (the temperature, 

heating rate and duration of heating) the pyrolysis fragment generated will be highly 

characteristic and indicative of the original parent sample. The technique has been 

extensively applied in numerous different fields from the analysis of art materials 

(Shedrinsky 1989; Chiavari 1995), biological samples (Goodacre 1990; Goodacre 

1991; Goodacre 1992; Navale 1992; Goodacre 1993; Stankiwicz 1998), food and 

agriculture (Galletti 1997; Hashimoto 2005) and in particular forensic science for the 

analysis of paints (Wampler 1997), fibers (Almer 1991) and drugs (Bottcher and 

Bassmann 1984). 

 

The two most commonly used pyrolysers for GC analysis are Curie-point and 

resistively heated pyrolysis. In Curie-point pyrolysis the pyrolysis condition is 

produced by the use of ferromagnetic metal alloys that are rapidly heated using a 

high frequency induction coil. The pyrolysis temperature is determined by the Curie-

point of the metal alloy used and heating ceases when the metal alloys become 

paramagnetic (the temperature at which the material loses its magnetism), the 

temperature remains constant until the coil is switched off (Fifield and Kealey 2000). 

Resistively pyrolysis involves the use of a high voltage current to induce rapid 

heating of the filament until the desired temperature is reached. The pyrolysis 

temperature is maintained by reducing the voltage applied, in resistively heating 
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pyrolysis a greater range of temperature is available to the operator as in Curie-point 

pyrolysis the pyrolysis temperature is limited by the type of alloy used. 

1.3.2 Gas chromatography (GC) 

GC is a separation technique suited for the analysis of low molecular weight 

compounds with a typical mass range of 40 to 600 m/z. Chromatographic separation 

can be defined as the separation of a mixture into its individual components via the 

interactions with both the stationary and mobile phases. Chromatographic separation 

in GC (Grob and Barry 2004) takes place within an analytical column, which is a 

narrow bore open tubular column with a stationary phase immobilised onto its inner 

wall. The type of stationary phase employed is dictated by the chemical nature of the 

compounds (i.e. its polarity) and its sample matrix. A small volume of liquid sample 

(1-5 µL) is injected into a high temperature, pressurised injection port assembly 

where it is immediately vaporised (Figure 3). The sample is then deposited onto the 

top of the analytical column, the sample then migrates through the column under the 

influence of the mobile phase. As this occurs the individual components within the 

sample will interact chemically with the stationary phase and be retained to varying 

degrees. As the sample migrates through the column the separation of each 

individual component within the sample will become more and more pronounced 

eventually separating into individual discrete bands and is then eluted from the 

column. Each band or peak represents an individually resolved component within the 

sample mixture. 

The equilibrium constant K (also known as the partition co-efficient) is defined as 

the molar concentration of the analyte within the stationary phases divided by the 

molar concentration of the analyte within the mobile phase. The time taken from the 

point of injection to the time of elution is termed the retention time (tR). Each 

resolvable component within the sample will have its own unique retention time. The 

time required for the mobile phases to travel the length of the analytical column is 

termed the retention of the mobile phase (tM), (Figure.4). 
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Figure 3 GC Injection port assembly (Restek 2005). 

Within GC the distribution of the analyte A is in equilibrium between the two phases 

 

The rate of migration of an analyte A through the analytical column can be describe 

by its capacity factor (K’) and is defined as follows: 

(K’A) = (tR – tM)/ tM 

Where tM and tR is obtained from the chromatograph directly. If the analyte has a 

capacity factor less than 1, the rate of elution will be too fast for the retention time to 

be determined accurately. The higher the capacity factor (K’) the longer it will take 

for the component to be eluted from the column as it will be more strongly 

interacting with the stationary phases and therefore be more strongly retained, the 

capacity factor of most components within a GC normally has a range from 1 to 5 

(Skoog 1998). 

The separation of the two components (A and B) is given by the selectivity factor (α) 

and it is expressed as follows: 

α= K’B/K’A 

The rate of elution of component A is always faster than component B therefore the 

selectivity factor will be greater than 1. Chromatographic separation in GC can be 

described by the plate model in which the analytical column consists of a large 

number of imaginary layers stacked on top of each other (termed theoretical plates). 
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Figure 4 Idealised chromatographs of two peaks. 

Each plate is where the separation equilibrium of the samples between the stationary 

and mobile phase take place. The mixture migrates down the column by the transfer 

of equilibrated mobile phases from one plate to the next.  The plates model is an 

abstract concept developed to describe the column efficiency by either stating the 

total number of theoretical plates within the column (�), the greater the number the 

higher the efficiency, or by stating the height equivalent to a theoretical plate 

(HETP) the lower the number the more plates are contained within a given unit of 

length of column. Therefore for a given column length (L), the (HETP) can be 

calculated as: 

 

HETP=L/� 

The number of theoretical plates on the analytical column can be approximated 

directly from the chromatograph as follows: 

�=5.55(tR)2/(w1/2)
2 

Where tR is the retention time of a given peak and w is the width of the peak at half 

height. 
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The resolution of a column (Rs) provides a quantitative measure of its ability to 

separate two 

analytes. A resolution of 1.5 gives effectively complete separation of two 

components, the 

resolution of the analysis can be improved by increasing the length of column or by 

decreasing the temperature ramp rate to resolve compounds with similar volatility; 

however both approaches will result in increased analysis time. 

Resolution of separation with respect to peak width and the number of theoretical 

plates is expressed as follows:    

Rs= (√�)/4 *(α-1/ α)*(K’B/1+ K’B) 

The equation can be rearranged to calculate number of theoretical plates required for 

a specific resolution as follows:   

� = 16RS
2 (α/ α-1)2* (1+ K’B/ K’B)2

 

1.3.2.1 Van Deemter equation 

The plate model however does not take into account the lag time taken for the solute 

in the gas phase to be equilibrated between the stationary and mobile phase (it is 

assumed that this occurs at an infinitely fast rate). The band shape of the 

chromatographic peak is thus dependent upon the rate of elution and different paths 

available for the solute as they migrate from one plate to next. Various mechanisms 

that contribute towards peak broadening are described by the Van Deemter equation 

(Figure 5). The equation show below contains terms which are linearly proportional, 

inversely proportional and independent of the velocity of the mobile phases (Van 

Deemter 1956). 

 

HETP = A+B/ (u +Cu) = HETP =A+ B/ u + (Cs + Cm) u 

Where u is the average velocity of the mobile phase given in cm s
-1

, and (A) is the 

multiple path term or eddy diffusion which describes the alternative path taken by 

the solute within the 

column, and is linearly proportional to the diameter of the packing material which 

make up the column. Multipath broadening is partially offset by ordinary diffusion 

effects at a low flow rate, as the analyte particles can switch between different paths 
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quickly and this reduces variations in transit time from one plate to the next, the 

effect of multipath diffusion is independent of the flow rate. It should be noticed that 

this term has more influence in liquid chromatography LC where the analytical 

column is packed rather than in GC where the column is an open tubular as this term 

only has a very small contribution. 

 

B is the longitudinal diffusion term, the concentration of the analyte is lower and at 

the edges of the band than at its centre, the analyte will therefore diffuse out toward 

the edges resulting in peak broadening. This effect is inversely proportional to the 

flow rate. The higher the flow rate, the less time the analyte has to spend on the 

column and reduces the effect of longitudinal diffusion. This effect is much less 

pronounced in LC because the longitudinal diffusion term reduces to zero relative to 

the other terms due the high pressure employed. 

 

C is the mass transfer coefficient, where Cs and Cm is the mass transfer co-efficient 

of the stationary and mobile phase respectively. The mass transfer co-efficient 

describe the finite time required for an analyte moving from the mobile phases to the 

stationary phases and back again if the velocity of the mobile phase is too high and 

the analyte is strongly retained by the stationary phase, the analyte in the mobile 

phases will move ahead of the analyte in the stationary phases resulting in band 

broadening and this effects is proportional to the velocity of the mobile phase. Other 

factors that will contribute towards column efficiency are the diameter of the packing 

material and the internal diameter of the analytical column itself. A lower diameter of 

the packing material will allow lower stable plate height to be achieved with respect to 

the increasing flow rate; however this effect is much more influential in LC than in GC. 

Smaller internal column diameter column will have a lower surface area and therefore 

lower capacity but the effects of band broadening are also reduced. 

 

Temperature is the single most influential factor in GC since chromatographic 

separation is based upon chemical volatility. Lower boiling point compounds will 

traverse through the column faster than those with a higher boiling point. Increasing 

the GC oven temperature results in a increase in the rate of elution of all compounds 

within the system, as they will have a greater amount of kinetic energy to migrate 

through the analytical column. Initial temperature or ramp rates (degrees per minute) 



30 

 

that are too high can severely affect the chromatographic separation and subsequent 

resolution of the analysis. 

 

Variable linear temperature programming is standard practice in GC to solve the 

general elution problem, where the GC oven temperature is programmed to increase 

at a set rate over a given period of time (in degrees per minute, commonly known as 

the ramp rate). This is used to exploit the large differences in the boiling points of 

different compounds present within a given mixture, the method also minimise peak 

broadening effect and improves resolution while reducing analysis time compared to 

isothermal analysis 

 

 

Figure 5 A Van Deemter plot showing the contribution of the various terms, the upper curve are 

experimental data, Cu is the mass transfer for both phases, (A) is the multipath effect and (B/u) is 

longitudinal diffusion  (Skoog 1998). 

 

After elution from the analytical column, the band or peak is then subjected to 

detection and quantification by various means. GC can and has been coupled to 

many different types of detectors, including flame ionization detectors (FID), 

nitrogen phosphor detectors (NPD), electron capture detectors (ECD) and has been 

increasingly coupled to mass spectrometers (Adlard 2007) for the analysis of small 

low molecular weight compounds. 
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1.3.3 Gas chromatography mass spectrometry 

(GC/MS) 
GC/MS is a hyphenated analytical method widely employed in the field of analytical 

science and metabolomics. The GC is employed as the front end separation 

technique in which, complex chemical samples are fractioned into individual 

components which are then sequentially introduced into a MS detector. The MS 

typically employs an electron impact source (70eV), to ionise the sample generating 

a molecular ion which is unstable and will undergo self fragmentation into smaller 

sub units. This is then introduced into the QMF/QIT cell where, the ion fragments 

are separated and detected according to their mass to charge ratio (m/z). The peak 

fragmentation profile generated is highly characteristic and indicative of the original 

parent molecule, by examining the isotopic ratios, distribution and composition of 

these ion fragments, detailed chemical information regarding the structure and 

functional group present can be obtained. The peak fragmentation profile is normally 

matched against a known mass spectral library database such as National Institute of 

Standards and Technology (NIST) (Stein 1999) to aid in the identification of the 

unknown compounds. 

1.3.3.1 Quadrupole mass filter (QMF) 

QMF and the Quadrupole ion trap (QIT) were both developed in parallel during the 

early 1970s, below is a brief description of both mass analyzers and their principle of 

operation. A QMF consist of four symmetrically spaced cylindrical electrodes 

connected electronically in pairs, a positive (U+Vcos (ωt)) potential is applied to one 

set, while at the same time a second negative - (U+Vcos(ωt)) potential is applied to 

the other set as shown in Figure 6. 

Where (U) is the dc voltage, (Vcos(ωt)) is the ac voltage, (ω) is the angular velocity 

of alternating voltage and (t) is time. The potential applied to the two set of 

electrodes is identical in amplitude but are 180
o
 out of phase with respect to each 

other (this is commonly known as superposition effect), generating a quadruple field 

which will affect the trajectory of ions in the X-Y plan relative Z axis in the QMF 

cell.  
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The motion of the ions within this field is an inherent property associated with its 

mass to charge ratio (m/z), at selected U and Vcos(ωt) potential only ions of a certain 

m/z value will be able to traverse entire length of the QMF cell and be detected 

(resonant ion), while all other ions of different m/z values will be ejected from the 

QMF or neutralised through collision with the electrodes due to unstable trajectory 

(non resonance ions). 

 

 

Figure 6 Idealised representation of QMF (see text). 

In order for the ion to traverse the entire length of the QMF it must have stable 

trajectories in both the X-Z (high mass past filter) and Y-Z axes (low mass past 

filter), this mutual stability condition imposed by the low and high mass pass filter 

combined to form a band mass filter where, only ions of the correct m/z value will be 

able to pass through to the detector, this is dictated by the ratio of ac and dc potential 

and its applied amplitude. By increasing magnitude of both the ac and dc potential 

whilst keeping their ratio constant, ions of different m/z values is able pass through 

the QMF and arrived at the detector generating a mass spectrum (Miller 1986).  

1.3.3.2 Quadrupole ion trap (QIT) 

QIT is often thought of as a 3 dimensional quadrupole filter; however its design and 

assembly is somewhat different, the QIT is significantly more compact in terms of 
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design and construction and it allows greater control and manipulations of ions in 

comparison to a QMF. A QIT consist of three electrodes, two of these electrodes has 

a hyperbolic geometry and are often referred to as end cap electrodes due to their 

shape. At the centre of each end cap electrodes there is an ion aperture which allows 

either the introduction or exit of ions through the QIT assembly.  

 

Figure 7 Idealised diagram of the ion trap assembly. 

A third ring electrode with an internal hyperbolical geometry (like a hollowed out 

donut shape) is positioned symmetrically between the two end-cap electrodes, Figure 

7 shown an idealised ion trap assembly. As the ions enter the QIT assembly, they are 

trapped within a quadrupole field generated by the voltages applied to these 

electrodes. A low amplitude auxiliary oscillating potential is applied to the two end 

cap electrodes whilst, a RF oscillating drive potential is applied to the central ring 

electrode; this creates a 3 dimensional rotationally symmetrical quadrupole field 

trapping the ions in a stable oscillating orbit and in the presence of the carrier gas at 

the pressure of 10
-3 

Torr the ions are condensed into a cloud in the centre of 

quadrupole field (March 2000). 

 

The motion of the ions is dependent upon the RF potential applied, by increasing the 

drive potential the orbital motion of the ions will become progressively more and 

more energetic, until they are eventually ejected from the field and be focused onto 

the exit aperture towards the detector. A useful property of this 3D quadrupole field 
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is that the ions are ejected in order of increasing m/z corresponding to an increase in 

amplitude of the applied RF and dc potential (March 1998). By keeping the ratio of 

the RF and dc potential constant, but increasing in amplitude, ions of increasing m/z 

are destablised from the QIT and be focused  into detector  and generate a 

corresponding mass spectrum. 

 

In tandem MS/MS a survey scan is initially carried out in which all the ions are 

sequentially destablised and ejected from the QIT in order to indentify the ion of 

interested. A separate second scan was then conducted which involves the selective 

trapping of the desired ion. MS/MS operation in QIT is carried out in three separate 

sequential stages: 

(1) Initially the voltages in the QIT was selected so that all other ions apart from 

the one of interested was ejected from QIT, this was achieved by increasing 

the RF potential applied to the central electrode while, keeping the 

supplementary ac voltage to be the same on both end cap electrodes. 

(2) The second stage involve the stabilisation of the precursor ions within the 

QIT, the RF voltage potential to the central electrode was decreased until the 

isolated precursor ions attend a stable trajectory within the quadrupole field. 

(3) The isolated precursor ions are then subjected to CID, where a supplementary 

time dependent RF potential was applied to both the end cap electrodes, 

exciting the precursor ions in the field causing them to undergo CID with the 

surrounding helium carrier gas, resulting in the formation of product ions in 

the QIT. The ions are then destabilised and ejected from the quadrupole field 

for mass detection. 

 

The capacity of the ion trap is somewhat limited and its linear dynamic range can be 

compromised by the over population of ions, where the spatial charge repulsion 

effect between individual ions arises and reduces the trapping efficiency of the field. 

In order to minimised this effect, the ions are rapidly counted before they enter the 

QIT and the time window is dependent upon the ion flux, the greater the ion flux, the 

shorter the time window and vice visa. Ensuring that, there is a fix amount of ions 

within the QIT each time and it does not become over populated, the disadvantages 

of this is that low intensity ions with weak signal are unlikely to be detected in a mix 

of other ions (March 2000). 
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1.3.4 Chemical derivatisation 
Chemical derivatisation is widely used in the field of metabolomics and GC/MS 

analysis. It is employed to permit the analysis of compounds not directly amenable in 

GC analysis due to inadequate volatility or stability. Furthermore it serves to increase 

the quality of analysis by improving the chromatographic profile and subsequent 

detectability of the analyte molecule within the sample. The main reason for using 

chemical derivatisation is to impart volatility to otherwise non volatile compounds, low 

volatility in large compounds is the result of a large dispersion field encompassing the 

molecule stabilizing it, in such instance chemical derivatisation cannot be used to 

increases the molecule’s volatility (Knapp 1979). In smaller molecules low volatility 

may be the result of strong intramolecular attraction between the polar groups present. 

Masking such functional groups can yield significant increases in the molecule’s 

volatility, polar groups such N-H, O-H and S-H groups undergo hydrogen bonding and 

have a significant contribution towards the intermolecular attraction. Replacing the 

active hydrogen in those groups through alkylation, acylation or silylation will 

dramatically increase its chemical volatility particularly in compounds with multiple 

polar groups. 

 

The analysis of monosaccharide are a prime examples of this (Wang and Huang 2007), 

the low molecular weight molecules display little volatility even when subjected to 

temperatures at the point of decomposition. However by replacing the active hydrogen 

with methylation groups can generate a derivative which is readily amenable to GC 

analysis. The opposite is also true in situations where excessive volatility is a problem, 

derivatisation can be used to yield less reactive products to help minimize sample lost in 

preparation and improve the chromatographic profile. Also in the case where thermally 

sensitive compounds are able to be volatilized but undergo partial thermal 

decomposition during GC analysis, derivatisation can be employed to yield more stable 

product and improve chromatographic resolution (Knapp 1979). 

1.3.5 Differential mobility spectrometry (DMS) 

DMS is a gas phase ion separation technique operating at ambient pressure. This 

analytical technique emerged from ion mobility spectrometry (IMS) (McLean 2005). 

DMS operates by exploiting the non linear dependency of a compound’s ion 

mobility (∆K) within an alternating weak and strong electric field. (Krylov 2007; 
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Krylov and Nazarov 2009). The technique was originally developed for the detection 

of chemical warfare agents and explosives; it has been applied more recently to the 

analysis of human breath (Basanta 2007), bacteria (Prasad 2007), forensic analysis 

(Lu and Harrington 2007) and jet fuel (Rearden 2007).  

The DMS is composed of the three main components; an ionisation source, a drift 

region consisting of two closely spaced parallel metal plates and a detector. Within 

DMS, the samples are first ionised and then swept into the drift region under the 

influence of a drift gas (N2) here the ions are subjected to a rapidly alternating 

asymmetric electric field perpendicular to the ion flow, a property of this applied 

asymmetric electric field is that it has two specific cycles to it, a high field (strong 

electric field, t1) and a low field end (weak electric field t2) show in Figure 8. 

 

 

Figure 8 The two different cycle of the asymmetric electric field applied across the drift tube 

region. 

In the presence of a strong electric field (high field end) the ions will move toward 

the upper electrode plate while the opposite occurs when ions are exposed to a weak 

electric field (low field end). This results in the ion moving through the drift region 

in a zigzag trajectory. The asymmetric electric field induces the transverse 

displacement of ions between the electrode plates. Any non resonance ion will 

eventually strike either the upper or lower plates and become neutralised in the 

process (Prasad 2007). The trajectories of any resonance ions as they transverse the 

drift region, do not necessarily have be in a staggered zigzag manner, it is possible to 

align the ion’s trajectories to be more linear, enabling it to traverse from the drift 

region to the detector unhindered. This can be achieved by applying a suitable low 

amplitude DC electric field (termed compensate voltage) in the opposite direction to 

the applied asymmetric waveform across the drift region. By applying a single fixed 
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DC voltage only one type of ions will have a resonance trajectory able to traverse the 

drift region and arrive at the detector unhindered, this is due to each type of ion 

having its own unique (∆K ) value which is a property associated with the ion’s 

shape and charge (Miller 2001).  

 

The ∆K of the ion corresponds to a particular dc frequency within applied the 

compensation voltage therefore by applying a fixed single DC voltage, the DMS 

function becomes similar to a continuous ion filter or alternatively the DMS can scan 

across the DC range in a sweeping manner producing a spectrum of all ions present 

within the analyzer (Figure 9), this methodology is termed dispersion field 

programming and it is commonly employed in DMS to increase the amount of 

analytical information obtained (Basanta 2007). 

 

Figure 9 Interactions of ionic species in the presence of a asymmetric applied electrical field (in 

Blue) and a compensation voltage (CV) (in Orange), when the appropriate CV is applied, ions with 

corresponding (ΔK) can transverse unhindered towards the detector. 

1.3.6 Raman spectroscopy (RS) 

RS is a non destructive analytical technique which can be applied to the analysis of 

different matrices in various physical states (liquid, solid or gas) and in very dilute 

concentrations, with minimal sample preparation. In RS a monochromatic radiation 

(laser) is used to irradiate the sample, the photons will neither be scattered elastically 

or inelastically. The majority of the photons will be scattered elastically where there 
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is no change in the frequency/wavelength of scatter photons relative to the applied 

incident radiation (Rayleigh scattering). However, a very small component will be 

scattered inelastically where there will be a transfer of energy either from the photon 

to the molecule or vice visa this is known as Raman scattering and can be used to 

give detailed molecular information about the structure and chemical bonds present 

within the molecule.  

Raman scattering can be further divided into two categories Stokes and anti-Stokes 

scattering, in Stokes scattering, the molecule gains energy and is promoted to a 

virtual state and emitted photon which has a lower energy relative to the incident 

radiation (excitation), while the opposite is true for anti-Stokes scattering. Anti-

Stokes scattering arises due to thermal contribution, as some of the molecules will 

already be present in a virtual state and scattering from this to a lower ground state is 

termed anti-Stokes scattering (relaxation). The effect of anti-Stokes is extremely 

weak in comparison to Stokes scattering, as the majority of the molecules will be 

present in it lowest vibrational ground state and the likelihood of observing a Stokes 

scattering phenomena will be much greater than anti-Stokes, in addition the effect of 

anti-Stokes scattering will increase proportionally with increasing in temperature due 

to greater thermal contributions. Raman scattering is an inherently a weak process 

where only 1 in every 10
6
-10

8
 photons will be scattered this way. The weak Raman 

scattering can be significantly amplified through surface or resonance enhancement 

to obtained very high level of sensitivity even with very low analyte concentration. 

1.3.7 Surfaced enhanced resonance Raman spectroscopy 

(SERRS) 

SERRS is a variation of Raman spectroscopy which combines 2 independent 

mechanisms of enhancement together.(1) The applied excitation frequency is tuned 

to be sufficiently close to the molecular adsorption maxima of the analyte for the 

resonance enhancement to take effect, generating significantly increased Raman 

scattering compared normal Raman scattering. (2) This signal intensification can be 

further amplified by surface enhancement through coupling to silver/gold 

nanoparticles (conventional SERS) and the combined enhancement of a factor of 

10
14

 can be obtained if, the excitation frequency sufficiently matched to the 

molecular adsorption maxima (Roger 1996; Nie and Emery 1997). SERRS has been 
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successfully applied to the analysis of a variety of biological samples, DNA, 

antibodies, cytochromes and since water scatters light weakly, SERRS can be used to 

analyse samples in aqueous environments, this holds great potential for bio-sensing 

applications and in vivo measurements (Bizzarri 2002). An additional benefit of 

SERRS is that any fluorescence generated is efficiently quenched by the metallic 

nanoparticles and used for subsequent enhancement, this permits the analysis of a 

wide range of colored dyes natural or synthetic with high fluorescence background 

as long as it can made to adhere to the metal surface (Graham 2006), 

1.3.8 Surfaced enhanced Raman spectroscopy (SERS) 

SERS is a relatively new spectroscopic technique used in the analysis of solid and 

liquid samples. Fleischman and colleagues were the first to observe SERS when 

investigating pyridine adsorbed onto an electrochemically roughened silver surface. 

(Fleischmann 1974) Pyridine exhibited an increased Raman scattering effect. At the 

time these authors were unable to account for this enhancement and attributed the 

effect solely to the increase in surface area of the silver electrode. Shortly after this 

two groups independently reported similar observations (Albrecht and Creighton 

1977; Jeanmaire and van Duyne 1977) and also highlighted that the increase in 

surface area of the electrode was not sufficient to account for the signal 

enhancement.  

 

Two different mechanisms for the observed SERS enhancement were proposed, the 

electromagnetic enhancement effect by Jeanmaire and Van Duyne (Jeanmaire 1977) 

and the charge transfer effect (also known as chemical enhancement effect) by 

Albrecht (Albrecht and Creighton 1977). The development of the electromagnetic 

theory was built upon and developed further during the early part of the 80s and was 

investigated by several research groups (Gersten and Nitzan 1980; McCall 1980; 

Gersten 1980a; Gersten 1980b; Gersten and Nitzan 1981; Kerker 1984) Kneipp et al. 

approximated which metals would be most likely to generate significant 

enhancement based on their surface plasmonic oscillations properties. 

 

It was also theorized that the enhanced Raman cross section was not solely confined 

to a roughened silver surface but could be replicated in a similar manner using other 

metal nanoparticles (Kneipp 2006). The charge transfer theory was further developed 
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and refined in the early 90s (Mrozek and Otto 1990; Otto 1991; Otto 1992), it was 

proposed that the analyte is covalently bound to the surface of the SERS substrate 

achieving Raman spectral enhancement. In understanding the SERS effect it is 

necessary to describe both proposed theories. 

1.3.9 Electromagnetic effect 

Surface plasmons are waves of oscillating electrons which exist at the surface of a 

dielectric material, such as metallic nanoparticles. Their sinusoidal amplitude can be 

tuned using a monochromatic light source. When radiation of a defined wavelength 

hits the nanoparticles' surface, localized surface plasmons become excited. When the 

frequency of the plasmon oscillation (ωp) is in resonance with the applied 

monochromatic radiation source, the amplitude of the plasmonic waves will be at 

their maximum. The plasmon oscillations occurs perpendicular to the plane of the 

surface. In order to induce Raman scattering there must be a change in polarizability 

of the analyte, the enhancement effects can be simply explained using the equation 

below: 

µ=αE 

Where µ is the induced dipole moment, α is the polarisation, E is the electric field. 

The oscillating electron waves which surround the nanoparticles work to increase the 

electric field surrounding the analyte. This causes an exaggerated increase in the 

polarisability of the analyte and results in the formation of a larger Raman cross 

section. 

Theoretical models such as the generalised Mie theory (Hao and Schatz 2004) allow 

the plasmonic fields of metallic nanoparticles to be described when the nanoparticle 

is a single entity or part of an aggregated system, it is evident that the aggregated 

nanoparticles exhibit a greater number of SERS hotspots, where the electric field is 

at its greatest (Schatz 2006). Therefore, experimentally it is necessary to bring the 

nanoparticles into close proximity to ensure maximum enhancement is achieved. 

Further studies demonstrates that plasmon bands can be altered by varying the shape 

and size of the nanoparticles and experimental data indicates that for a single 

nanoparticle, Raman enhancement is less than 10
6
 however in dimers, trimers and 

poly nanoparticle systems, Raman hotspots become more prevalent and enhancement 

is greater (Schatz 2006). Modeling a nanoparticle as a single spherical entity means 

that the equation below can be derived as follows: 
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Er = Eo cosθ + g(a3/r3) Eo cosθ  

Where Er is the total charge of the electric field, at a given distance r from the 

spherical surface a is the radius of the sphere, θ is the angle relative to the direction 

of the electric field and g is the surface plasmon intensity related to the dielectric 

constant. E0 is the dielectric of the surrounding medium, E1 is the dielectric constant 

of the metallic sphere and νL is the frequency of the incident radiation: 

g = (E1(νL) - E0 / E1(νL) +2E0 ) 

The value of g is inversely proportional to the denominator, when g is at maximum; 

the plasmon resonance frequency is increased resulting in the immediate area 

surrounding the nanoparticles to experience an increase in localized electron density. 

This increase in charge density also encompasses the molecule causing the electrons 

within it to become polarised giving rise to intense Raman scattering (Smith and 

Dent 2005). 

1.3.10 The charge transfer mechanism 

The charge transfer model is based around the formation of a metal-analyte covalent 

bond, allowing communication to and from the metallic surface. Electron mobility 

along this bond perturbs the analyte’s electronic cloud increasing the Raman cross 

section and its affinity for change in polarisability. The orientation of the molecule 

and how it is bound to the nanoparticle’s surface is dependent upon the structure and 

functional groups present.  

Molecules containing thiols and amines have demonstrated greater adsorption 

property towards a gold surface whilst molecules containing halogen atoms exhibit 

similar trends toward a silver surface. This theory is limited to monolayer coverage, 

as bond formation is essential for the phenomena to occur. Through a combination of 

mathematics and experimental observations the chemical theory seem to be very 

well defined however, it only describes a small fraction of all Raman spectral 

enhancement (Liu 2009; Morton and Jensen 2009). 

1.3.11 Nanoparticles 

Nanoparticles are dielectric materials composed of a positive charge center with 

sinusoidal electron waves propagating at its surface. The silver and gold colloids 
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used in both studies were prepared according the Lee-Meisel method in a one pot 

synthesis (Lee and Meisel 1982). SERS enhancement is facilitated most commonly 

by either silver or gold colloids. The size and shape of the nanoparticles can be 

manipulated by varying the concentration of chemical reactants and also their 

reactivity. The silver (Ag) and gold (Au) colloid have different optical properties, Ag 

and Au solution displays absorption maxima of approximately 420nm; Au sol has 

maxima around 520nm respectively. Aggregated Au colloid show new absorption 

bands in the region of 500-600 nm and for Ag colloid in the region of 700-900 nm, 

this is due to plasmonic shift. Nanoparticle suspensions offer a better alternative to a 

metallic surface due to their increased surface area; furthermore as the nanoparticles 

are suspended in solution they also benefit from the effect of Brownian motion, 

therefore the SERS spectra observed represents an averaged effect. 

1.4 Data analysis 

The high throughput capacity and sensitivity of modern MS-based instruments are 

not without its drawbacks. The ever increasing complexity and volume of data 

generated represents a real significant challenge in terms of data storage, curation 

and analysis. GC/MS and LC/MS data often have a high degree of dimensionality 

associated with them. This necessitates the need for an accurate and efficient data 

pre-processing and analysis methodology in order to extract meaningful and 

interpretable information from the experiments, therefore the use of chemometrics 

plays an integral part within metabolomics.  

1.4.1 Data pre-processing  
Data pre-processing is an important step prior to multivariate data analysis, as 

inappropriate use will severely biased the result obtained. This may include the 

effects of misalignment, baseline drift, large scale differences between variables and 

variation in samples or sampling and need be accounted for and minimized. If these 

technical/non-biological variations are not adequately constrained, the major trend 

observed would be due to such variations mentioned, rather than any biological 

differences between the samples. 
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Hyphenated GC/MS or LC/MS analytical methods used in metabolomics analysis 

can generates huge quantity of highly complex data, which may require a significant 

amount of data pre-processing before it is suitable for multivariate data analysis, 

below is a brief description of the data pre-processing steps applied in this research 

thesis. 

1.4.2. Alignment 
In GC/MS, slight variations in the flow rate will result in instrumental drift over 

time. The traditional univariate approach focusing only on selected parts of the 

chromatograph for quantitative analysis, are largely not affected by such 

misalignment. However, in multivariate analysis the entire chromatograph/spectra is 

normally utilised, therefore it is essential that the chromatographs are properly 

aligned so that they have the same start and end time; and each corresponding 

variable within different samples are matched accordingly by retention time. 

Correlated Optimised Warping (COW) is a alignment algorithm extensively applied 

for correcting chromatographic shifts (Nielsen 1998, Pravdova 2002), it is a 

piecewise or segmented data processing method, aim at aligning samples towards a 

common reference template,. This is done by allowing limited change in the 

segments lengths (time windows) and predefined shift margins (slack size). The 

different windows are shifted or warped, so that it optimises the overall correlation 

between the sample, and the reference template. Mis/unaligned data when subjected 

to PCA the resulting major trend observed would likely to be due to the differences 

in alignment or drifting between the samples rather, than to biological differences. 

1.4.3 Baseline correction 

Differences in background intensity for samples analysed at different time points 

often has a contributions towards the clustering observed in PCA, baseline correction 

(Boelens 2004) with asymmetric least square (ALS), is an adaptive baseline 

estimation algorithm, employed to eliminate/minimise this type of instrumental 

variations, by adjusting the background intensity of all the samples to be the same 

prior to multivariate data analysis. The shape and intensity differences of the 

background relation to the eluent/vibrational peak are taken into account, and are 

subtracted from the chromatogram/spectra. If data set is not baseline corrected prior 

to PCA, it will have a significant effect on the resulting scores plot in a similar 
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manner to unaligned data, where the clustering observed would likely to be based on 

the differences in baseline intensity between samples rather than biological 

differences.  

1.4.4 Scaling 

Scaling in data pre-processing is used to adjust for large scale differences and to 

account for heteroscedasticity (differences in the variance between variables) within 

the data set. By adjusting the variances of each variable to be the same initially, this 

would allow the PCA model to describe/capture as much systematic variations as 

possible, as every variable will have an equal opportunity to enter the PCA model. 

There are two types of scaling relevant to two way data; mode one scaling is when 

every row (samples) is multiplied by a specific number, and mode two scaling is 

when every column (variables) is multiplied by a specific number. This is commonly 

applied to the data set prior to PCA. The individual variable are scaled by the inverse 

of it standard deviations, this in combination with mean centering across the row 

vector, this is often refer to as autoscaling or scaling to unit variance or column 

standardization (Bro and Smilde 2003).  

1.4.5 Mean centering 

Mean centering is applied to remove any common offset present within the dataset 

and adjust the distribution of the data points to be more symmetrical. Mean centering 

is achieved by subtracting the mean of each variable from itself, the process also has 

the following outcomes (1) reduction the Rank of the model, (2) improvements to 

the fit of the model; mean centering is automatically implemented prior to PCA 

(Brereton 2003).  

1.4.6 Normalisation 
Normalisation is used to adjust for sample to sample variations, one such type of 

normalisation is a min-max normalisation where each variable is divided by the 

absolute differences between the maximum and minimum intensities, the dataset is 

scaled so that the influence (weight) of each sample lies within a predefine range 

with respect to each other (i.e. between 0 and 1), this also avoids large values issues 

(Xu 2006). 
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1.5. Unsupervised data analysis 

1.5.1 Principal component analysis (PCA) 

PCA is one of the most well known and widely used tools in exploratory data 

analysis (EDA). PCA was first published over 100 years ago (Pearson 1901) and was 

further developed by Hotelling (Hotelling 1933). PCA is a variance capture method 

in which it seeks to describe the most significant variations within the data set, by 

the use of a few latent variables termed principal components (PCs). Through a 

linear combination of the original features, PCA can be used to highlight underlying 

trends or clustering relationships within the data set; it is also used in the detection of 

outliners. In real application it is normal that multiple variables follow a similar trend 

and can be effectively described using a single PC, therefore PCA can be used to 

reduced the dimensionality of the data set. Given a data matrix (X) the PCA model is 

as follows: 

 

Where X is the original matrix of i number of columns and j numbers of rows, where 

the columns represent the variables and it elements present the value of chemical 

measurement on the samples (j). The number of columns in the matrix T is equals to 

the number of columns in the matrix P. T is termed the score matrix and contains the 

latent variables, and it contains as many rows as in the original matrix. P is the 

loading matrix and contains as many columns as the number of variables in the 

original data matrix. The nth column of T and nth column of P can be represented by 

vectors Tn and Pn and are vector representation of the nth PC. 

The product of TxP’ can be regarded as a model of the data approximation by the PC 

to the original dataset and the residual error is represented by E. This general 

equation can be expanded thus: 

EptptptX +′⋅++′⋅+′⋅= kk...2211  

 

The first PC accounts for the largest variation and subsequent PCs have 

progressively smaller variations. In most cases, the variation caused by noise is 

smaller than that caused by biological factors. By disregarding the latter PCs, where 

EPTX +′⋅=
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little or no information of interest is present, random instrumental noise variation can 

be effectively removed from the data set. 

In order to visualised the overall clustering relationships of the samples or objects 

within the dataset, the few PCs in T are plotted against each other (i.e. PC1 vs. PC2, 

PC1 vs. PC3, and PC2 vs. PC3), this is called the scores plot and permits any major 

trends, groupings and outliners to be revealed, the Euclidean distance of the objects 

within the scores plots, can be used to relate them to each other. Objects which lie 

close together will have a similar multivariate profile whereas; objects which are far 

apart will be more dissimilar to each other; by assessing the compactness and purity 

of the clusters within the score plots it is possible to evaluate the reproducibility of 

replicate analysis as well.   

Analogous to the scores plot, the loadings plot which plot the first few PCs in P 

against each other displays the relative weight/influence of each individual variable 

and its contribution towards the separation observed within the score plot. The 

greater the magnitude of a variable within the loading vector, the more the 

contribution it has towards the trend observed in the scores plot. An important 

feature of PCA that the directions of the scores plot correspond to the directions in 

the loadings plot, this allows the identification and correlation of which variables are 

responsible for the separation observed between different groups in the scores plot 

(Lindon 2007).  

PCA is used both as an exploratory data analysis (EDA) tool as well as a modelling 

tool. By examining the cumulative percentage explained variance, with respect to the 

number of PC extracted, it is possible to assess the proportionality of the data that 

has been modelled through PCA, the closer it is to 100% the more accurate the data 

has been modelled. 

1.5.2 Parallel factor analysis (PARAFAC) 

PARAFAC is another form of unsupervised leaning methodology and it is 

particularly suited to analysing multiway data with known multiple trends present. 

PARAFAC has its roots in psychometrics (Carroll and Chang 1970; Bro 1999) and it 

is a generalisation of PCA. Other methods for analysing multiway data include 

Tucker3 methods (Kroonenburg 1983; Kroonenberg 2009) or by simply unfolding 

the 3D array into a 2D matrix prior to PCA analysis (Bro 1997). 
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In multiway data the structure is composed of a series of matrices stacked in front of 

one and another arranged in a cube like fashion and a set of variables measured in a 

nested manner (where the variables are measured repeatedly over different samples 

and different time points). In such cases where multiple trends maybe present, PCA 

may not be the most suitable method for analysing the data. This point can be 

demonstrated by the following example: for an F component PCA solution to a 

multiway array with a dimension of (IxJxK), in conventional PCA the 3D matrix is 

first unfolded into a 2D matrix so that it becomes (IxJK). The PCA model will 

consist of F(IxJK) parameters with the corresponding PARAFAC model consisting 

of F(I+J+K) parameters, for a hypothetical array with a dimension of 20x150x20 

modeled by a 6 component solution. The PCA model of 6(20 x 3000) array will be 

unfolded into 360,000 parameters, while the same data set can be modelled by 

PARAFAC using only 1140 parameters. The resulting PCA loading plots can be 

misleading and difficult to interpret (Bro 1997). 

 

This is due to the way the multiway data is concatenated into a 2D matrices, where 

the effect of one variable is no longer associated with one element but with many 

within the loading vector (termed co-linearity). The primary aim of using multiway 

method over conventional PCA is not only to obtained a better fit of the data but 

rather to have a more robust and interpretable model which is less sensitive to noise 

and give loadings which can be related directly to the different modes of the 

multiway array. A multiway object with a dimensional of (IxJxK) is modelled by 

PARAFAC as the summation over the number of PARAFAC component (R) outer 

product of the triads of vectors, where the triad is the tensor product of the three 

vectors (Burdick 1995). 

For each Xk in X, each slab within the multiway data (e.g., all the data points within 

particular time point) PARAFAC decomposes into a product of two loading 

matrices:  

kkk D ε+⋅⋅=
TAFX  

Where F is the loading matrix of the row vector and A is the loading matrix in the 

column vector, Dk is the scalar weight for the Xk slab (where a slab is 2D array) and 

εk is the residual error forthe Xk slab. However, PARAFAC requires the size of each 
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slab to be the same and in practice this cannot always be the case due to sample loss 

for various reasons even with a well balanced experimental design. Therefore 

PARAFAC2 was developed in order to cope with such problems and allows one 

dimension, normally the row vector, to be unequal between different slabs. Instead 

of having one global loading for all slabs as in PARAFAC1, PARAFAC2 gives K 

loadings matrices, where each slab has its own individual loading vector as show 

below. Furthermore each slab may have different row vectors which match the 

original size of X within the multiway data. Using PARAFAC2 minor sample loss 

can be tolerated without the need to trim the multiway data so that each slab is of 

equal size. 

 

kkkk D ε+⋅⋅=
TAFX  

Within PARAFAC nomenclature the row vector is term the mode 1 and the column 

vector is mode 2 and the diagonal matrix Dk containing the weights of all the slab is 

mode 3. PARAFAC models the multiway object (X) by minimising the residual error 

(εk) by the use of alternating least square optimization. By examining the loadings of 

mode 1 the relative distributions of the samples within a particular time point or 

experiment can be revealed and the loading of mode 2 permits the identification of 

potential interesting variables and the loading of mode 3 (the weight of each slab) 

reveals the global change of the samples with respect to the time. 

1.6. Supervised data analysis 

Supervised data analysis involves the use of a classifier (discriminate function) to 

generate a rule of classification based on a sample set with a known class 

membership (training set). The rules are then tested by applying it to unknown 

samples to asses and evaluate the classifier's predictive ability. In supervised 

learning the aim is to find a model which will correctly associate the inputs (data) 

with the target (output) by minimising the error between the known target and the 

model response. Classifiers such as partial least square (PLS), artificial neural 

networks (ANNs) and support vector machines (SVMs); these are briefly discuss in 

the following sections. 
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1.6.1 Partial least squares (PLS) 

PLS is a well known method that has been widely applied in metabolomics. The 

classifier has certain properties that make it useful for predictive purposes. In PLS 

regression it is possible to obtain a score matrix that is related to both the 

instrumental response (X) and the concentrations (c). In addition, PLS takes into 

account errors in both the concentration estimates (c) and the spectral data (X) and 

does not assume they are error free and that these errors are equally distributed in 

both the X and the c blocks. 

 

PLS was originally first developed by Wold and Martens (Martens and Naes 1989; 

Wold 1989). The algorithm attempts to relate two types of variables X block and c 

block (where X represents the instrumental response and c is the labelling 

information).  

Rather than just modelling exclusively on X variables, two set of equations are 

obtained as follow in PLS1 

X = T P + E 

c = Tq + f 

T is the score and P is the loading and E is the error, the product of the T and P will 

approximate to spectral data and the product of T and q will approximate to the 

concentration, therefore the common link between the two set of equation is T. T and 

P for PLS are different from those to the T and P obtained in PCA, for each 

component within the dataset, a unique set of T and P is generated, therefore if there 

are 5 compounds within the data set, there will be 5 different sets of T, P and f, one 

for each component. 

 

The scores are orthogonal but the loadings are not. In addition, the loadings are not 

normalized and therefore the sums of squares of each loading vector does not equal 

to one. The magnitude of the PLS components can be defined by multiplying the 

sums of squares of both ta and pa together as in PCA. This feature has a property 

whereby the sum of values of the PLS components for all non-zero components adds 

up to the sums of squares of the original data set. Therefore it accounts for all the 

total explained variance of the original data set. The value of each PLS component 
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does not necessary decrease as successive component are calculated. In PLS it not 

only try to model the X data, but also compromise between X and c block for 

regression (Brereton 2003). 

1.6.2 Artificial neural network (ANN) 

ANN has been extensively applied in numerous different scientific disciplines for 

non-linear classification and calibration purposes. Extensive and detailed 

descriptions of ANNs are available in the literature (Smits 1994; Beavis 2000). 

ANNs are a biologically inspired classifiers consisting of many processing sub units 

that function similarly to that of the biological neuron.  

 

They receive a signal or stimuli, process it and decide whether or not to produced a 

response that is then passed to other cells. In ANN the neurons are replaced with a 

simple processing unit (called node) which can take a numerical input and transform 

it into an output (this is typically can be achieved by summation followed by a 

sigmoidal squashing function). The manner in which those processing units are 

connected and organized themselves is very similar to that of the human brain and 

they do exhibit similar characteristics (e.g., they can learn from example generalising 

from past experience and apply it to new ones).  

 

Much of the inspiration for the development of ANN stems from the desire to 

produce an artificial system which would be capable of intelligent computation 

similar to the human brain. Multi layer perceptron (MLP) is one of the most widely 

applied forms of ANN; this is briefly described in following section. One of the 

reason why MLP is so attractive and widely used, is that it has been shown that a 

MLP network consisting of only a single hidden layer with a large number of nodes 

are able to learn and generalise any arbitrary non-linear problem to suitable degree of 

accuracy (Funahashi 1989; Hornik 1990; White 1990). 

The structure of MLP consists of an input layer connected to the output layers via a 

hidden layer (where the hidden layer may have one or more layers). Each node of the 

input layer is connected to the node of the hidden layer through abstract connection 

termed synapse. Each synapse has am associative weight (wi) which scales the input 

(ii) passing through them, along with a bias term with a modifiable weight. 
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The nodes in the hidden layer(s) sum the signal feeding to the synapse and scale it 

using a squashing function along with the bias term so that it is between 0 and 1, 

these values are then fed to the output node within the output layer. The output node 

then sums up signals feeding to it from the hidden layer and also applies a sigmoidal 

activation function, the results are then feed to the outside world (Beavis 2000). For 

classification purposes in ANN a sigmodal squashing function is generally used 

whereas in calibration a summation function is employed instead. Training of MLP 

typically uses a standard back propagation (BP) algorithm (Werbos 1994), as the 

input is applied to the network, it is allowed to run until an output is produced at 

each output node. The difference between the target and the actual output over the 

entire training set are then fed back through the network in the reverse direction 

modifying each weight as they go. The process is iteratively repeated until a suitable 

level of error is obtained, training a MLP network is a very inefficient process as all 

the connections are adjusted simultaneously and the number of nodes and layers 

need to be specified before training. This process is very time consuming and 

computationally intensive to optimised and it is prone to over-training resulting in 

decreased predictive ability. 

1.6.3. Support vector machine (SVM) 

SVM is a form of kernel method originally developed in the mid 1990s (Boser 1992; 

Vapnik 1995) and it has since been widely accepted and applied in different 

applications for analysing non-linearly separable classification problems. This is due 

to the fact that many of the problems normally associated with non-linear classifiers 

such as ANN have been largely resolved by SVM. With fewer parameters to 

optimised, less prone to over-training and noisy data, and with significant 

improvement in computational efficiency SVMs are an attractive alternative to 

ANNs. SVM works by transforming a non-linearly separable problem into a linearly 

separable one by the use of a suitable mapping function (termed a kernel function), 

after transformation a linear solution can be found within the feature space defined 

by the mapping function.  

The transformation of using a mapping function allows the determination of a non-

linear boundary to be found in a hyperplanar boundary which separates the classes in 
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a (generally) higher dimension feature space defined by the mapping function. In 

addition, the optimal hyperplanar boundary should be equidistant from the outer 

edges of respective each class which maximised the margin between them. SVM 

therefore focuses on the data points which closest to the optimal separation boundary 

(so called support vectors) and ignores those that are already well separated. Thus 

the separation boundary is only based on a subset of samples rather than the whole 

data set.  

SVM can be divided into two categories: hard and soft margin SVMs. Hard margin 

SVM assumes two classes to be perfectly separable and the goal is to determine the 

optimal boundary that exactly separates the two classes with a maximum possible 

margin between them, however this is not always be the case. By contrast, soft 

margin SVM are able to tolerate a certain degree of misclassifications and are 

designed to find a compromise between the complexity of the model and 

generalisation performance of the model; the lower the tolerance for rate of 

classification error, the more complex the hyperplanar boundary will become and 

this in turn may lower the generalisation performance of the model (Brereton 2003; 

Xu 2006). 
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1.7 Research objectives 

 

The aim of this thesis is to investigate the ability of using BVOC analysis as a 

profiling tool within metabolomics. It will be necessary to trap the volatile 

components prior to MS and once this is established and shown to be reproducible 

this will be used for bacterial discrimination, foodstuff quality assessment, and non-

invasive personalised health care applications. The data generated will be complex 

and so it is also the aim to develop suitable robust data analysis methodologies. The 

application of SERS and SERRS in rapid food screening analysis was also 

investigated and this also involved the use of chemometrics analyses. The primary 

work conducted over the course of this thesis is presented in chapter two to seven, 

with a final chapter discussing the findings. 
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Chapter 2 
 

Discrimination of bacteria using pyrolysis gas chromatography-

differential mobility spectrometry (Py GC-DMS) and 

chemometrics 
 

William Cheung, Yun Xu, Christopher. L. P. Thomas and Royston Goodacre. 
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Discrimination of bacteria was investigated using pyrolysis-gas chromatography-differential mobility

spectrometry (Py-GC-DMS). Three strains belonging to the genus Bacillus were investigated and

these included two strains of Bacillus subtilis and a single Bacillus megaterium. These were chosen so

as to evaluate the possibility of bacterial strain discrimination using Py-GC-DMS. The instrument

was constructed in-house and the long-term reproducibility of the instrument was evaluated over

a period of 60 days using a Scotch whisky quality control. To assess the reproducibility further each

bacterium was cultured six times and each culture was analysed in replicate to give three analytical

replicates. The DMS data were generated in both positive and negative modes, and the data in each

mode were analysed independently of each other. The Py-GC-DMS data were pre-processed via

correlation optimised warping (COW) and asymmetric least square (ALS) to align the DMS

chromatograms and to remove any unavoidable baseline shifts, prior to normalisation. Processed

chromatograms were analysed using principal component analysis (PCA) followed by supervised

learning methodology using partial least squares for discriminant analysis (PLS-DA). It was found

that the separations between B. subtilis and B. megaterium can be readily observed by PCA; however,

strain discrimination within the two B. subtilis was only possible using supervised learning. As

multiple biological replicates were analysed an exhaustive splitting of the training and test sets was

undertaken and this allowed correct classification rates (CCRs) to be assessed for the 3375 test sets.

It was found that with PLS-DA the negative ion mode DMS data were more discriminatory than the

positive mode data.

Introduction

In just about every area of microbiology the rapid identification

of bacteria is desirable. For example, being able to identify

a pathogen from a patient admitted into hospital would allow

targeted antimicrobial therapy and accurate epidemiology

studies to be conducted. Physicochemical methods are constantly

being investigated and these have focussed mainly on vibrational

spectroscopy- and mass spectrometry-based techniques.1–5 For

the latter technique a variety of sample introduction and ion-

isation methods have been employed and these included fast

atom bombardment, pyrolysis, matrix assisted laser desorption

ionisation and electrospray ionisation1,6–9

In general, MS is vacuum-based which has implications for

portability of the instrument. By contrast, differential mobility

spectrometry (DMS) is a gaseous phase ionic separation tech-

nique operating at ambient pressure, where the separation of ions

is achieved by exploiting the difference in the ion mobilities

between alternating high and low electric fields within the DMS

drift cell.10–16 During the last decade DMS has been primarily

employed for detecting volatile organic compounds (VOCs).

The low power consumption, compactness of DMS, coupled to

ambient pressure operation with minimal maintenance makes it

an attractive alternative to MS for VOC analysis where porta-

bility is required. Recently, DMS has been successfully coupled

with GC for the analysis of human breath, bacterial odours and

for jet fuel analysis.11–17

Eiceman et al.11,12,14,15 have extensively studied the suitability

of using GC-DMS as an alternative method to MS for bacterial

characterisation where the non-volatile bacterial components are

introduced into the GC using pyrolysis; a method that has been

routinely coupled to MS.1,7,18 In a series of experiments Eice-

man’s group has shown that biomarkers can be discovered which

are specific to sporulated Bacillus and these included crotonic

acid (a pyrolysis product of 3-hydroxybutyric acid) from Bacillus

megaterium11 and pyridine for Bacillus subtilis.15 Pyridine is

a pyrolysis product from dipicolinic acid which is found within

bacterial spores and readily identified using Py-MS.1,3 In addi-

tion, these authors have explored the pyrolysis conditions used14

and found that these are consistent with those adopted for

Py-GC-MS.3 Finally, they have investigated the phenotypic

changes that bacteria undergo when cultured at different

temperatures, and have shown that the Py-GC-DMS signal is

dependent on the organism’s phenotype.16 However, to date,
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bacterial discrimination at the sub-species (i.e. strain) level has

not been successfully reported.

Therefore the purpose of the present study was to investigate

whether it is possible to distinguish between different bacteria at

the strain level using Py-GC-DMS. Three strains from the genus

Bacillus were selected, and these included two different strains

from B. subtilis and B. megaterium as a closely related but

phylogenetically different species. In order, to assess spectral

reproducibility each strain was cultured six times and three

analytical replicates recorded from each culture. Chemometric

analysis was used to assess reproducibility and the ability to

classify these bacteria.

Methods and materials

Culture and harvesting methodology

Three stains belonging to the genus Bacillus were studied; these

included B. subtilis B0014, B. subtilis B1382 and B. megaterium

B0010.1,19 These strains were cultivated axenically on LabM

blood agar base plates at 37 �C for 16 h. Growth was performed

independently six times to generate six biological replicates per

strain. This was because we are measuring the phenotype of the

organism with Py-GC-DMS and since the phenotype¼ genotype

+ environment we need to control the latter else the former will

be variable and the ability to characterise the different bacteria

impaired, a phenomenon noted by all whole organism finger-

printing methods.1,7,11 After incubation the vegetative biomass

was carefully collected using a sterile plastic loop and suspended

in 1 mL of physiological saline (0.9% NaCl in H2O). The

bacterial suspensions were centrifuged at 15 871 g for 3 min, the

supernatants were then discarded, and the pellets were then

resuspended in 1 mL of saline solution and centrifuged for 3 min;

this process was repeated twice to remove any medium compo-

nents from the agar. In the final resuspension the biomass

concentration was adjusted to lie within an optical density of

2.5–2.7 AU at 600 nm (Biomate 5, Thermo Electron Corpora-

tion). As the analytical equipment was housed in a category 1

environment the resulting bacterial pellets were sterilised by

autoclaving at 70 �C at 4 psi for 45 min. These were then stored at

�80 �C until analysed.

In order to compensate for any systematic drift it is essential

that the analysis was randomized by injections rather than by

batches (biological specimens). Each bacterial injection was fol-

lowed by a system blank to check for instrumental and/or envi-

ronmental artefacts. In addition, after every three bacterial

injections, a QC sample (see below) was run to assess the

reproducibility and performance of the system. Sample sizes of

1.5 and 2 mL injections were chosen for the bacterial and QC

samples respectively, this is equivalent to 3.9 and 2 mg of dry

matter.

Quality control (QC) samples

In addition to the bacterial samples as described above, a number

of QC samples were also analysed in order to monitor the

performance of the system with respect to time. This was to

determine whether or not there was any systematic drift within

the instrumental response over the course of the experiment. The

QC was an in-house whisky mix, 10 mL of a single malt whisky

(Glen Moray Classic, Elgin, Spreyside, Scotland) was rotary

evaporated down to dryness and left under a vacuum system (5�
10�2 Torr) overnight to ensured the removal of all volatiles. After

this the brown ‘slurry’ residue was then dissolved in 2 mL of

ethanol (analytical grade; Fischer Scientific).

This QC sample had a complex matrix, which upon pyrolysis

produced a complicated mixture of pyrolysates that can be used

to assess instrumental drift; whisky has been used for this

application before and yielded complicated Py-GC and Py-MS

spectra.20,21 The data obtained from these QC samples were

treated using the same methodology that is described in the data

analysis section below. Principal component analysis (PCA) was

also performed on these QC samples to assess whether there was

any systematic drift that correlated with injection time.

Instrumentation

As shown in Fig. 1 a CDS 5200 analytical pyrolysis unit (CDS

Analytix Ltd., Unit 9 Seaview Workshop, Timber Rd, Horden,

Peterlee, Durham, UK) was connected to a HP5890 gas chro-

matography unit (Mass Spec UK, Regal House, Highfield St.,

Oldham, UK) via a digitally controlled heated transfer line (an

insulated silco steel coated inner core) into the front injector port

A. The GC was also modified to enable a DMS unit (Sionex�

Corp, 8-A Preston Court, Bedford, MA, USA) to be fitted

directly to the existing flame ionisation detection housing using

an annular heat pipe (30 cm � 0.635 cm inner diameter) main-

tained at 170 �C.

Pyrolysis unit. A Pt coil pyroprobe and quartz fire tube were

used with the walls of the pyrolysis chamber maintained at

150 �C to minimise condensation of the pyrolysate. The pyrolysis

chamber was continuously purged with He (5 mL min�1) prior to

sealing the chamber. The pyrolysis chamber was sealed and

allowed to equilibrate for 60 s when the internal temperature

reached 150 �C. Next the chamber temperature was increased

from 150 to 300 �C at a rate of 20 �Cms�1. After equilibration the

temperature of the Pt coil pyroprobe was increased to 530 �C at

a rate of 20 �C ms�1. Pyrolysis took place for 5 s. During this

sequence the Py-GC transfer line was maintained at 300 �C with

a flow rate of 1 mL min�1 of He.

GC. The front injector port A was maintained at 300 �C with

a split ratio of 10 : 1. The analytical column was a Restek RTx 5

Sil MS analytical column (30 m � 0.25 mm � 0.25 mm film

thickness, with a stationary phase composition of 5% diphenyl/

95% dimethylsiloxane). The He flow rate was maintained at

approximately 1 mL min�1. The analytical column was con-

nected directly to the DMS unit through an annular heat pipe

with the following temperature program: initial temperature:

60 �C (held for 2 min); then increased to 280 �C at a rate of 8 �C

min�1; the final temperature of 280 �C was held for 2 min.

DMS. The DMS unit was a Sionex SVAC-1 unit (Sionex�

Corp) maintained at 100 �C with a N2 flow rate of 270 mL min�1,

see Table 1 for the instrument parameters. Dispersion field

programming methodology was used which increased the

maximum dispersion field strength from 10 to 26 kV cm�1. The
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rationale for adopting this methodology has been reported

recently.17 Typical DMS profiles for B. subtilis are shown in

Fig. 2.

Data analysis

The overall scheme used for data pre-processing and data anal-

ysis is detailed in Fig. 3. For each strain there were six biological

replicates and each biological replicate was analysed three times

(machine/analytical replicates) creating 18 samples per strain.

Therefore the data matrix analysed consisted of three strains,

containing 54 Py-GC-DMS spectra in total.

Signal processing. The unprocessed DMS data were generated

in Microsoft Excel Worksheet format. The resultant files were

catalogued into biological, and then analytical replicates, with

the positive and negative modes data-processed separately.

Preliminary visual inspection of the data enabled dominating and

potentially non-reproducible features to be identified and we

chose to exclude the reactant ion peak (RIP) from the all Py-GC-

DMS data. The original DMS matrix sizes were as follows: the

voltage compensation was from �15 to +10 CV and DMS scan

time was 0–1534 s�1. After RIP removal the cropped matrix for

negative mode included the GC eluent from 9 to 22.5 min

retention time and the DMS ranged from �6 to +6 CV with

a 500–1350 s�1 scan time. Whilst for the positive mode the GC

included the retention times from 10 to 23.3 min and the DMS

was from �5 to +5 CV and the scan time was 600–1400 s�1. The

data were then summed across the compensation voltage (CV)

axis producing two DMS chromatograms; for the negative mode

this was summed from �5 to +5 CV, and �6 to +6 CV for the

Fig. 1 Schematic diagram of the pyrol probe and pyrolysis chamber interface.

Table 1 DMS settings and parameters

Starting CV/V �42
End CV/V 15
No. of steps 100
Step duration/mS 10
Step settle time/mS 3
Step to blank 1
Positive gain High
Negative gain High
RF step size/V 1
RF steps 0
CV step/V 0.56565

Fig. 2 DMS responses from B. subtilis B0014 in the (A) negative and (B)

positive modes.

Fig. 3 Flow diagram summarising the data pre-processing (LHS) and

data analysis (RHS) methodology.
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positive mode data. For consistency all Py-GC-DMS data were

pre-processed in an identical manner.

The chromatograms were aligned by using correlation opti-

mised warping (COW22) to correct the drifting of the peaks

between different Py-GC-DMS runs. The segment size was set to

10% of the number of the data points within each chromatogram,

and the slack variable was set to 10% of the segment size (e.g. as

the Py-GC-DMS chromatogram contained 500 data points the

segment size was therefore set to 50 and the slack variable was set

to 5).

After COW alignment the baseline was corrected by using

asymmetric least square (ALS23), an adaptive baseline estimation

algorithm. Finally, the chromatograms were normalised by using

min–max normalisation, whereby each chromatogram was

divided by the absolute difference between the maximal and

minimal intensities.

Pattern recognition. MATLAB version 2007a (MathWorks,

Nantwich, USA) was employed for the data analysis. Principal

component analysis (PCA)24–27 was performed on the processed

chromatograms (detailed in Fig. 3) containing 500 data points.

PCA is an unsupervised vector space transform method, often

used to reduce high dimensional data sets to lower dimensions

for analysis, e.g. modelling or visualisation. The variance of the

data set was captured by a few latent variables called principal

components (PCs). The variance captured by each PC is in

a nested fashion. The first PC always captures the largest vari-

ance of the whole data set and the second PC captures the largest

variance of the residues (the unexplained variance of the previous

PC) and so on for the later PCs. The data set was column centred

before the PCA. The scores of the first few PCs were plotted

against each other in order to visualise any natural clustering

trends within the data sets. After PCA, the next step was to

perform a supervised classification upon the data set to investi-

gate if it was possible to discriminate between the three bacterial

strains. Unlike PCA, which is an unsupervised method, super-

vised classification attempts to build a predictive model based on

a subset of samples with known origin (training set). If there are

sufficient chemical differences between the bacteria that are

detected by Py-GC-DMS the model should be able to predict the

class membership of unknown samples. The accuracy of such

prediction was assessed by using an independent data set (test

set) which was not used during the training stage. In this study,

we used partial least squares-discriminant analysis (PLS-

DA)24,26–29 as the supervised classifier.

PLS-DA is a commonly used supervised classification method

which is based on a well known regression model called partial

least squares or project to latent structure (PLS). Similar to PCA,

PLS is also a latent variable-based model but in a supervised

manner. Instead of finding a smaller set of latent variables

capturing as many variations as possible, PLS finds a linear

model describing some predicted variables (e.g. concentration

levels, class membership, etc.) in terms of a set of other observ-

able variables, e.g. the Py-GC-DMS data in our case. Similar to

PCA, the observable variables were also ‘compressed’ into a few

latent variables, called PLS components, and the fundamental

relations between the predicted variables and observable vari-

ables were established based on the PLS components. PLS can

model one predicted variable, which is usually called a PLS1

model, while it can also model several predicted variables

simultaneously, which is usually called a PLS2 model. Although

it was originally designed as a regression model, various appli-

cations as well as some theoretical studies have proved that it can

be a very effective classification model.24,26–29 For two-class

separation problems, both PLS1 and PLS2 models can be

employed, while for multiple class classification problems, in

general a PLS2 model should be used (although it is also possible

to combine multiple PLS1 models). In this study, there are three

classes to be separated; hence PLS2 modelling was used. The

class memberships of the samples were represented by a Ymatrix

with three columns and each column corresponds to one

different class. Binary encoding was used such that class 1 would

be encoded as 1, 0, 0, class 2 as 0, 1, 0, and class 3 as 0, 0, 1.

The PLS model was built on the training set and the number of

significant PLS components were determined by using k-fold

cross-validation while k is the number of biological replicates (see

below). This model was then applied to the test set and the class

membership of each sample was determined by using the

procedure described by Wu et al.30 For each sample, the pre-

dicted vector of y was calculated. The sample was assigned to the

class for which the predicted value is the only one higher than 0.5.

For instance, if the predicted y is [0.1, 0.9, 0.2], the sample is

assigned to class 2. When the prediction is, for example, [0.1, 0.9,

0.8] or [0.1, 0.4, 0.2], the sample was regarded as a misclassified

sample, i.e. the class membership of that sample cannot be

confidently determined.

The training set was created by selecting 66.7% (2/3) of the

samples from the original data set for training and the remaining

1/3 were used as the test set. During training set selection each of

three machine replicates per biological replicate were considered

as a ‘whole’ rather than as independent samples, the sample

selection must account for this else one is merely measuring the

reproducibility of the analytical instrument rather than the bio-

logical differences. In our case, there were six biological repli-

cates for each strain, so four were used for training and two were

used for testing. Since the number of different combinations of

selecting four samples out of six is 15, this splitting of training

and test set procedure had been repeated exhaustively 153 ¼ 3375

times. The predictions were averaged to give an estimation of

the expected accuracy of the classification model. The reason for

such exhaustive resampling is to minimise the influence of

selecting samples for training or testing on the final outcome of

the classification models and avoid the chance that seemingly

good results were in fact due to a ‘lucky’ set of samples being

chosen as the training set and another ‘lucky’ set of samples being

chosen as the test set. If the separation is genuine, it should be

relatively insensitive to the splitting of training and test set and

the results of these models should be similar to each other. There

might be some ‘fortunate’ or ‘unfortunate’ occasions which yield

extremely good or poor results, but such circumstances should be

rare.

Results and discussion

In order to show that Py-GC-DMS could be a useful analytical

approach for the characterisation and identification of bacteria

we designed a robust experiment where multiple biological

replicates of three bacteria (viz. two strains of B. subtilis and one
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B. megaterium) were analysed in triplicate using Py-GC-DMS

over a period of 60 days. During this analysis analytical blanks

were collected and used to assess artefacts in terms of carryover

of pyrolysate from one sample to another and inspection of these

blanks showed that there were no ‘memory effects’ observed

(data not shown). In addition, after three bacterial analyses a QC

sample from dried whisky was analysed so as to assess repro-

ducibility during data acquisition. Following the pre-processing

as detailed in Fig. 3 and above the QC samples were analysed

using PCA. A plot of the injection number (which is relative to

time) versus the first PC (which contained 47.1% total explained

variance) is shown in Fig. 4 where no correlation with respect to

sample injection time is seen, and the same was true for other PCs

as well (data not shown). This result suggests that as no

systematic trends can be observed in PCA space that the

instrument was running in a stable and reproducible manner.

This gave us confidence that the analysis of the bacteria by the

same system would not be overtly influenced by any analytical

artefacts.

Following data collection from the bacterial samples the Py-

GC-DMS data were processed as detailed above (and Fig. 3).

Initially the Py-GC-DMS data (Fig. 2 for examples) were sum-

med across the CV axis after RIP removal and aligned using

a two-step COW alignment. The data before and after the results

of the COWalignment are shown in Fig. 5, where it can be clearly

seen that the peak drifting is significantly reduced after the

alignment, indicating the utility of running this step in the pre-

processing sequence of procedures.

Once aligned the data were baseline corrected using ALS and

were normalised to min–max per chromatogram. These data

were then ready for chemometric analysis. The initial stage of the

data analysis strategy was to use unsupervised exploratory data

analysis and PCA was employed to discover any natural groups

within the data and is also a useful algorithm for discovering any

outliers. The results of the PCA are shown in Fig. 6 where it can

be seen that both negative and positive modes generated similar

trends and there was an obvious separation between B. mega-

terium and the two strains of B. subtilis in both PC1 and PC2 for

both positive mode and negative mode. However, no obvious

separation between the two strains of B. subtilis (B0014 vs.

B1382) can be observed, also for both ionisation modes. Whilst

all three bacteria belong to the Bacillus genus, in terms of

phylogenetics B. megaterium is different from B. subtilis at the

16S rDNA sequence level,31 and these genotypic differences are

manifest in the organism’s phenotype which is what we are

measuring using Py-GC-DMS. By contrast the two strains of B.

subtilis are very closely related and so using this unsupervised

learning algorithm cannot be separated; indeed a finding we have

previously observed with Raman spectroscopy31,32 but not elec-

trospray ionisation mass spectrometry,19 presumably because the

latter generates analyte specific information. This therefore

presents a true test for Py-GC-DMS. The question arises as to

whether there are any significant differences which lie in less

obvious variance of the Py-GC-DMS data that can be discovered

using supervised learning.

Therefore we chose to use a supervised classifier PLS-DA

which was programmed as described above. As it was trained

with training data – i.e. data from Py-GC-DMS from known

bacterial origin – it is important that the classification model is

tested independently and we used a third of the data as the

independent hold out test set. These training and test sets were

selected from the Py-GC-DMS profiles in an exhaustive fashion.

As detailed above, this resulted in 3375 splits of the data. The

3375 predictions for the test set were then averaged to give an

estimation of the expected accuracy of the classification model.

In most cases, three PLS components appeared to be optimal

via k-fold cross-validation. The average correct classification

rates (CCRs) on the test set along with their standard deviation

as well as the minimum and maximum of all 3375 runs are shown

in Table 2. In addition to the CCR, the averaged confusion

matrices are also shown in Table 3. The results suggested that the

Fig. 4 Plot of injection number for the QC standards versus the first

principal component score (total explained variance ¼ 47.1%). This

shows that there was no systemic time-related trend within the Py-DMS

data.

Fig. 5 (A) Chromatograms before alignment, and (B) after alignment

using the COW algorithm. In this two-step alignment process the (i)

global alignment uses one replicate from each of the three machine

replicates for each sample (n ¼ 18) aligned to the global mean, followed

by (ii) a local second alignment where the remaining two chromatograms

were aligned to the above alignment for each of the 18 groups. In the

figure the x-axis represents the chromatograms (DMS scantime) and the

y-axis the 54 chromatograms (3 strains � 6 biological replicates � 3

machine replicates).
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positive prediction accuracy of B. megaterium is 100% and so

consistently better than those of the two strains of B. subtilis. For

the data obtained using the negative mode data from the DMS,

the error rate of the prediction of B. megaterium is also always

0 for all 3375 runs, and for positive mode data B. subtilis B1382 is

rarely mis-identified as B. megaterium.

Inspection of the confusion matrix indicates that by using

PLS-DA it is possible to separate the two strains of B. subtilis

with very high accuracy. The prediction accuracies are higher in

the negative mode where 98.83% on average for B. subtilis B0014

and 95.50% average for B. subtilis B1382 are predicted. This is

particularly encouraging as in PCA (Fig. 6) there were no

obvious separations between these two B. subtilis strains; by

contrast PLS-DA suggests that there is enough information in

the Py-GC-DMS data to allow supervised classification methods

to separate these two strains.

It is also evident in Table 2 and Table 3 that the negative mode

data yielded better prediction accuracy of the bacterial class than

those of the positive mode data.

Conclusions

It has been successfully demonstrated that discrimination at the

bacterial strain level is possible using Py-GC-DMS as the

analytical technique, but only when coupled with supervised

learning methods. The separations between different species can

be readily observed by PCA; however, strain discrimination

requires more powerful chemometric methods using supervised

classifiers such as PLS-DA.

In addition, the data analysis suggests that the positive mode

data contained less strain-specific information than the negative

mode data in DMS (Table 2 and Table 3) and this is likely to be

due to the difference in ionisation chemistry with negative reac-

tant ions, and such a finding is consistent with the work carried

out by other researchers.11 However, rather than disregard the

chemical information obtained from the positive mode this

should be viewed as an additional orthogonal response to that of

the negative mode, and in the future we shall investigate this

further as the positive mode in DMS also offers the added option

of derivatization to be employed to obtain greater chemical

information.

In conclusion, we believe that Py-GC-DMS presents itself as

a complementary analytical approach for the rapid character-

isation of bacteria, and this is the first study to apply advanced

chemometrics for the separation of bacteria at the sub-species

level and will be investigated further.
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Table 2 Summary of the correct classification rate (CCR) for PLS-DA

Mean
CCR

Standard
deviation

Minimum
CCR

Maxmum
CCR

PLS-DA
Positive mode 91.90% 0.073% 61.00% 100.00%
Negative mode 97.39% 0.036% 77.78% 100.00%

Table 3 Confusion matrices for the supervised classification algorithm

Actual strain

Predicted strain

B. subtilis
B0014

B. subtilis
B1382

B. megaterium
B0010

PLS-DA on positive mode data
B. subtilis B0014 85.83% 14.17% 0.00
B. subtilis B1382 9.67% 89.83% 0.50%
B. megaterium B0010 0.00 0.00 100.00%

PLS-DA on negative mode data
B. subtilis B0014 98.83% 1.17% 0.00
B. subtilis B1382 4.50% 95.50% 0.00
B. megaterium B0010 0.00 0.00 100.00%

Fig. 6 PCA scores plot of PC1 vs. PC2: (a) negative mode; (b) positive

mode. See inset legend for which symbols refer to B. subtilis strains B0014

and B1382 and B. megaterium B0010.
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ABSTRACT

A complex profile of volatile organic compounds (‘‘VOC’’s) emanates from hu-
man skin, which is altered by changes in the body’s metabolic or hormonal state,
the external environment, and the bacterial species colonizing the skin surface.
The aim of this study was to compare VOC profiles sampled from chronic leg
wounds with those from asymptomatic skin. Five participants with chronic arte-
rial leg ulcers were selected. VOC samples were obtained using polydimethylsil-
icone membranes (‘‘skin-patch method’’) and analyzed by gas chromatography-
ion trap mass spectrometry. Resultant data were analyzed using multivariate
analysis and mass spectral matches were compared against the National Institute
of Standards and Technology database. Principal component analysis showed
differences in profiles obtained from healthy skin and boundary areas and be-
tween profiles from healthy skin and lesion samples (p < 0.05). Partial least
squares for discriminant analysis gave an average prediction accuracy of 73.3%
(p < 0.05). Mass spectral matching (verified against microbial swab results) iden-
tified unique VOCs associated with each sample area, wound bacterial coloniza-
tion, and ingested medications. This study showcases a reproducible, robust,
noninvasive methodology that is applicable in a clinical setting and may offer a
new, hitherto unexplored, class of biochemical markers underpinning the metab-
olism of chronic wounds.

Chronic wounds affect circa 200,000 people in the United
Kingdom at any one time and of these wounds, leg ulcers
are highly prevalent affecting up to 2% of the adult pop-
ulation.1,2 The estimated cost of treating leg ulceration (as
defined as a loss of skin that takes more than 6 weeks to
heal3) to the UK’s National Health Service amounts to
d400 million–d600 million per year,4,5 with the overall fi-
nancial burden of all chronic wounds being estimated at
more than d1 billion per annum.6 Furthermore, patients
with leg ulcers have reduced quality of life when compared
with age-matched controls due to pain, odor, and de-
creased mobility.3

Identification of the causation of such wounds is prob-
lematic, as is ascertaining the most appropriate treatment
method. Currently, patients with leg ulcers are assessed via
the history, appearance of the lesion, and a vascular as-
sessment (palpation of the pedal pulses, ankle brachial
pressure index and duplex ultrasound scanning). The abil-
ity to delineate both the underlying cause and the bacterial
colonization of such lesions via a noninvasive technique
would be helpful in understanding the disease process, aid-
ing appropriate treatment selection (possibly mitigating
against the emergence of multiresistant organisms via cor-
rect antibiotic choice). The noninvasive technique used in

this study is based on the collection and analysis of volatile
organic compound (‘‘VOC’’) signatures emitted from leg
ulcers.

VOC is a generic term used to classify a wide range of
molecules with a boiling point of �300 1C, for example,
alcohols, aldehydes, ketones, isocyanates, sulfides, and hy-
drocarbons.7 The human body is known to contain
and emit a large number of these substances as essential
nutrients and intermediates, waste products of endoge-
nous processes, from the absorption of environmental
contaminants, and also via exogenous bacterial metabo-
lism. To date, these compounds have been detected from
skin (sebum, sweat, skin emanations, and hair), breath, se-
rum, urine, saliva, cerebrospinal fluid, feces, breast milk,
semen, amniotic fluid, and tissue homogenates.7,8 The
VOCs emitted change with the body’s metabolic or

NA Nonadhesive

PC Principal component

PCA Principal component analysis

PLS-DA Partial least square for discriminant analysis

VOC Volatile organic compound
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hormonal state9 (for example, the metabolic changes asso-
ciated with diabetes cause the release of acetone on
breath10), with ingested dietary compounds,11 by varia-
tions in the external environment (VOC emissions from the
skin alter diurnally and seasonally12), and by alterations in
the bacterial species colonizing the skin surface.12–14

Aside from the underlying causative factors that result
in the formation of ulcers, another important aspect in
their chronicity is concurrent bacterial colonization or in-
fection of the ulcerated area.15 Wounds are usually colo-
nized by the commensal skin flora but pathogenic bacterial
species are also commonly implicated.16,17 Colonization
of a wound is not itself a barrier to wound healing15;
however, repeated infections have been shown to cause
increased proinflammatory cytokines and matrix metallo-
peptidases, decreased tissue inhibition of these peptidases
and decreased levels of growth factors—these changes
have been hypothesized to be the underlying causes of
wound chronicity.18

Historically, the degree and/or speed of wound healing
were thought to be related to the bacterial count. A study
of pressure ulcers showed that significant healing only
occurred when the bacterial count was < 106mL�1 bac-
teria.19 More recent research indicates that while bacterial
density at the wound surface is independently predictive of
nonhealing, this is overly simplistic as factors such as bac-
terial diversity, microbial synergistic interactions, and the
underlying host response are contributory.16,18,20

Current clinical methods of wound infection analysis
are surface swabbing and wound exudate culture, wound
tissue biopsy, and the clinician’s judgment of the ‘‘classic’’
signs of infection (pain, erythema, edema, heat, and puru-
lence). None of these methods is ideal. Surface swabbing is
difficult to undertake reproducibly and reliably21 and
causes trauma to the granulating tissue.22 Trauma is of
greater concern with tissue biopsy, still deemed the ‘‘gold
standard’’ method for quantitative wound infection anal-
ysis, with some authors finding that the accuracy of cul-
ture results obtained is comparable with that of surface
swabbing.20,21,23 Clinicians cannot provide reproducible,
consistent, and accurate assessments: purely subjective ob-
servations result in a large variation in the sensitivity of
results with little interobserver reproducibility.24,25

Development of an accurate, noninvasive method for
the analysis of chronic wound etiology, infection, and
healing would be of clinical use. In this study, we propose
to sample the VOC profiles of vascular leg ulcers to dem-
onstrate a novel technique for the future analysis of not
only vascular ulcers but also other types of chronic wounds.

METHODS

Participant selection

Participants were selected from a cohort of inpatients un-
der the care of the vascular surgery department at Univer-
sity Hospital of South Manchester NHS Foundation
Trust, Wythenshawe, Manchester, UK. The inclusion cri-
teria were that a participant was male, of Caucasian de-
scent, between the ages of 55 and 95 and have a leg ulcer of
predominantly arterial etiology (proven by the evidence of
significant arterial disease on duplex ultrasound scanning).

This was necessary to minimize confounding factors asso-
ciated with comparing ulcers of variable etiology. A par-
ticipant was deemed to be of Caucasian descent if his
parents and all grandparents were stated as Caucasian—
this was relevant because ethnicity and sex are known to
alter skin VOC profiles.26–30 There were no specific exclu-
sion criteria; however, the selected cohort was necessarily
limited to five participants due to the prospective nature of
the study and the time required to process and analyze the
samples—this provided 50 samples, allowing the appro-
priate use of the chosen statistical tests. For each partici-
pant, a comprehensive history was elicited including that
of the lesion to be sampled, ingested medication, and the
treatment applied to the lesion both historically and before
the sampling period. Also noted were any toiletries used
and whether specific consumables that affect the emitted
VOC profile, e.g., spicy food, coffee had been ingested
during 48 hours before sampling.

Equipment preparation

The sampling methodology has been described recently
and evaluated.11 Briefly, polydimethylsilicone skin-sam-
pling patches measuring 20mm�15mm�0.45mm (Good-
fellow Cambridge Ltd., Huntingdon, UK), were prepared
by washing and conditioning at 180 1C in a vacuum oven
before storage in inert thermal desorption tubes (Markes
International Ltd., Rhondda Cynon Taff, UK). Before
utilization, the patches were thermally desorbed to verify
that they were free from contamination.

Ethics and participant preparation

This study was conducted in accordance with the ethical
principles of Good Clinical Practice and the Declaration
of Helsinki. The Local Research Ethics Committee (Man-
chester, UK) approved the protocol before commence-
ment of the study and all subjects gave written, informed
consent. Twenty-four hours before sampling, the dressing
covering the participant’s lesion was removed, the area
was irrigated with distilled water to remove any remnants
of prior dressing materials, and a sterile nonadhesive (NA)
dressing (Johnson & Johnson Medical Ltd., Ascot, UK)
was applied using an aseptic technique. A secondary dress-
ing layer comprising Softform gauze and crepe bandaging
was applied over the NA dressing. The same procedure
was used to apply a second sterile NA dressing on a more
proximal, lesion-free region of the ipsilateral leg, at least
10 cm away from the ulcer edge. This was used to collect
the VOC profile of normal skin. The participant was ad-
vised to keep the dressings dry and not to use any toiletries
until post-sampling 24 hours later.

Sampling procedure

Twenty-four hours after applying the dressings, the pre-
pared thermal desorption tubes were removed from
refrigeration and transported to the participant. The par-
ticipant’s local environment was assessed for signs of
significant exogenous VOC contamination (cleaning,
cooking, or other medical interventions) and other clini-
cal staff and patients were excluded from the sampling
locality to reduce exogenous sample contamination.
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Forceps used to handle the patches were sterilized with
an isopropyl alcohol wipe and air-dried. A cotton-wool
pad was located 1–2m from the participant onto which a
sampling patch was placed. This was exposed for 30 min-
utes, providing a baseline of the environmental VOCs
present. Concurrently, the secondary dressings were re-
moved and three skin patches were applied to each sam-
pling region (Figure 1), covered with a cotton-wool pad
and left in situ for 30 minutes. At the end of the sampling
time, each patch was removed from the sampling site and
resealed into its thermal desorption tube. The sampled
area was photographed and swabbed for microbiological
analysis before being redressed. The samples were placed
in storage at 4 1C to await analysis within 24 hours of sam-
ple collection.

Sample analysis

Sampled VOCs were recovered from the skin patches via a
two-stage thermal desorption procedure (Markes Interna-
tional Ltd.), separated along 60m of a 0.25mm diameter
capillary column with a 0.25mm thick 5% phenyl, 95%
methyl polysiloxane stationary phase (DB-5MS; Agilent,
West Lothian, UK) before passing into the Varian 2200
(Varian Ltd., Oxford, UK) ion trap mass spectrometer, the
operating parameters of which are summarized in sup-
porting information Table S1.

Mass spectral searching and data visualization

All chromatographic data were evaluated and checked to
ensure reproducibility. The chromatograms were assessed
on a peak-by-peak basis and five mass spectra were aver-
aged from consecutive scans for all resolved peaks > 5%
of the maximum peak intensity. The resultant list of mass
spectra was searched against the National Institute of Stan-
dards and Technology library and provisional assignments
were made to the isolated compounds. The assignments
were then reviewed and those with incompatible physical
chemical characteristics were removed from the list of
candidate compounds and labeled as unknown. The com-

pounds were then examined by sample type to assess the
variability of the samples obtained from the different sites.

Data preparation

The gas chromatography-mass spectrometric (GC-MS)
data files were converted into netCDF format using a con-
version program (Palisade MASSTransit, Scientific Instru-
ment Services, Ringoes, NJ, USA) enabling the data to be
exported into the multivariate statistical processing soft-
ware (Matlab, Mathworks, Natick, MA, USA) (Figure 2).
Within Matlab, linear interpolation algorithms with resam-
pling were applied to ensure that all data sets were the same
size—the accumulation of small variations in the instru-
ment control unit results in GC-MS data surfaces of differ-
ent dimensions over a range of time off-sets. The resampled
data were then aligned using correlated optimized warping
and baseline corrected by applying asymmetric least
squares. The final process was to remove those parts of the
data set that did not contain chemical information—the
gaps between chromatographic peaks. This was achieved by
studying the chromatogram visually and identifying the
level of the base line, along with the standard deviation for
the baseline. A standard deviation filter was subsequently
applied to the data sets and all data that were within three
standard deviations of the base line were removed. The re-
sultant chromatogram was normalized such that the total
integrated peak areas of the peaks were equal to unity.31

Chemometric analysis

The chromatograms were analyzed for natural trends or
outliers using principal component analysis (PCA) and the
result of this unsupervised learning analysis was visualized
by plotting the first three principal components scores
(PC 1, PC 2, and PC 3).9,32,33 Hotelling’s T2-statistics33

were applied to the PCA scores to determine the statistical
significance of the observed intersite differences.

Partial least squares for discriminant analysis (PLS-
DA)9,31–33 was then used to model the VOC data for
its ability to discriminate between different sites (lesion,

Figure 1. A diagram showing the po-

sitioning of the skin patches on a par-

ticipants’ foot. Patches were applied

in triplicate for 30 minutes to the

lesion, boundary, and control areas

above the nonadhesive dressings

applied previously.
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control and boundary). The data were randomly divided
into two sets: 80% was used to build a training model and
the remaining 20% was used to test the accuracy of the
model. In order to avoid biasing the analysis (vide infra),
the selection of the training set and test set was based on
participants rather than samples. That is, if the data from a
participant were selected for use as part of the training set,
all the other data from this participant were also used in
the training set. Consequently, four out of five of the par-

ticipants’ data were used for training and the remaining
participant’s data were used for testing. This procedure
was repeated five times, each time using one different indi-
vidual. This minimized the influence of the characteristic
individual VOC signatures that might have resulted in
overoptimistic results if the training and test data con-
tained profiles from the same participant. Because of the
limited sample size, the classification results obtained were
averaged and further evaluated using a permutation
test.34–36 In this test, 2,500 Monte-Carlo simulations were
carried out and in each simulation, the order of labels was
shuffled randomly—the same PLS-DA procedure was ap-
plied to the data set post-shuffling. The results formed the
null distribution and the averaged classification result ob-
tained as described above was compared against it to as-
sess the significance level of the result.

RESULTS

The researchers observed no discomfort to the participants
and no participant reported any discomfort arising from
the procedure.

All sampled lesions were of mixed etiology: the major
component was limb ischemia due to arterial occlusion,
but elements of neurogenic injury and superimposed
wound colonization were also present. There was hetero-
geneity in the character of each lesion, varying between dry
and necrotic to wet and exudative. The clinical description
correlated with bacterial colonization of each lesion (see
Table 1 for a summary of the microbiological swab re-
sults). The organisms cultured were mainly Gram-negative
aerobic bacilli, coagulase-negative staphylococci or Pro-
teus species and coliforms. Methicillin-resistant Staphylo-
coccus aureus was cultured in one patient.

Data characterization and visualization

Examples of GC-MS data obtained from lesion samples
are represented in Figure 3. The complexity of the chro-
matogram is striking: the range of intensities of responses
spans more than three orders of magnitude, with more
than 300 clearly resolved signatures. There were many
other nonresolved chromatographic peaks with peak
shapes suggesting the presence of significant numbers of

Table 1. Microbiology swab results taken from the center of the lesion, boundary area of the lesion and control (reference) skin site

Participant Control (reference site) Boundary area of the lesion Lesion

1 Mixed coagulase-negative

staphylococci (mixed skin-type flora)

Methicillin-resistant Staphylococcus

aureus

Methicillin-resistant Staphylococci

aureus

2 No growth No growth Mixed coliforms and Proteus species

3 Mixed coagulase-negative

staphylococci (mixed skin-type flora)

Mixed coagulase-negative

staphylococci (mixed skin-type flora)

Mixed coagulase-negative

staphylococci (mixed skin-type flora)

4 No growth Mixed coagulase-negative

staphylococci (mixed skin-type flora)

Mixed coagulase-negative

staphylococci (mixed skin-type flora)

5 No growth Mixed coagulase-negative

staphylococci and enterococci

Mixed coagulase-negative

staphylococci and enterococci

Rotational spot swabbing was utilized due to the limited surface area available on some sites. Unsurprisingly, all lesions were as-

sociated with bacterial growth whereas the majority of healthy control skin demonstrated no bacterial growth.

Principal
component analysis

(PCA) (Figures 3
and 4)

Statistics.
Hotelling T-square

Partial least square
(Table 2)

Results compared
to Null distribution

to assess
significance of

results

Raw data file

Conversion to netCDF file format

Import to Matlab

Resample chromatograms

Alignment of chromatograms

Asymmetric least squares baseline correction

Normalisation

Unsupervised analysis Supervised analysis

Figure 2. Data handling flow-chart.
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close and coeluting components. Indeed, a preliminary as-
sessment of the data with deconvolution software (ACD/
Labs IntelliXtract, Toronto, Canada) indicates the pres-
ence of many hundreds of hitherto undocumented VOCs
in the skin samples. Such chemical diversity has been dis-
cussed previously11 and arises from the underlying metab-
olism of the participant (affected by phenotype, diet and
environment); exogenous inputs (medication, environ-
mental contamination); compounds specifically related to
the metabolism of bacteria in the lesion; and the associated
pathology of tissue damage.

Compounds of varying chemical groups were recovered,
including esters, alcohols, thiols, hydrocarbons, carboxylic
acids, amines, amides, ketones and siloxanes. Visualiza-
tion of the data resulted in the list of compounds in Table 2
—this summarizes the tentative assignments of com-
pounds that were associated exclusively with each individ-
ual sampling site. Although site-unique compounds may
be discerned, it is helpful to note that the distribution of
compounds across the different sites arises from a variety
of mechanisms: exogenous materials may be washed out
by wound exudates; VOCs generated within the lesion may
diffuse into the blood stream to be released from the skin
at the control site; and VOCs released from the affected
area into the surrounding air may be present in the envi-
ronmental control samples. Certainly, a strong odor asso-
ciated with infected, necrotic tissue was frequently
encountered during sampling. Thus, while the compound

list in Table 2 is encouraging, the information associated
with peak intensities is also important, i.e., compound
abundances, and as such, chemometric approaches are re-
quired to prospect these data to identify the chemical
differentiators.

Chemometric analysis

Chemometric analysis was utilized as this allows the dis-
crimination of statistically significant differences in the
VOC profiles acquired from each sample site. Figure 4
shows the results of PCA of the complete data set (com-
prising 50 samples). There was no separation observed be-
tween the lesion and boundary areas (p > 0.05). However,
significant differences between the control and lesion areas
and between the control and boundary areas were ob-
served (both p < 0.05). In addition, it was possible to
identify which chemical compounds might be responsible
for such separation via comparison of the scoring plot and
the corresponding loading plot (see Figure 5). Because
chromatograms were used for the data analysis, each chro-
matographic peak (correlating to a specific chemical com-
pound) was represented by a series of adjacent variables.
From the loadings plot, the variable clusters on the ex-
tremes were mainly responsible for the separation exhib-
ited in the scores plot whereas those close to the origin had
little or no contribution to such separation. Examination
of the loading plot revealed six peaks with the highest
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Figure 3. Examples of the gas chro-

matography-mass spectrometric data

obtained from lesion samples. The

top trace shows the total ion chro-

matogram while the two bottom

traces show normalized plots of se-

lected ion chromatograms (shown in

black), superimposed on the total ion

trace (gray lines). The selected ions

were m/z 45 for the bottom left trace

and m/z 299, and 228 for the bottom

right trace. The complexity of the data

observed within the total ion chro-

matogram in the top trace derives

from a variety of sources (examples

as follows): Endogenous metabo-

lites—trimethylcarbazole (TMC, at a

retention time [Tr] of ca. 12.7 minutes)

bottom left; exogenous volatile or-

ganic compounds—isopropylalcohol

from the sampling protocol (IPA,

Tr5ca. 9 minutes) bottom left, isopro-

pylmyristate from personal care prod-

ucts (IPM, Tr5ca. 56.3 minutes)

bottom right and Codeine (Tr5ca.

44.8 minutes) bottom right; and from

the bacterial activity within the lesion-

dimethylamine (DMA, Tr5ca. 8.3 min-

utes) bottom left.
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Table 2. Tentative identification of the extracted compounds that were unique to each of the sampled sites—this list was derived

from mass spectral matches against the NIST data base and is subject to further confirmation

Compounds

Molecular

weight Formula

Lesion

2-Indazol-2-ylphenylamine 209 C13H11N3

1,4-Methanoazulen-3-ol decahydro-1,5,5,8a-tetramethyl-, [1s-(1.a.,3.b.,3a.b.,4.a.,8a.b.)]- 222 C15H26O

Z,Z-2,5-Pentadecadien-1-ol 224 C15H28O

E-2-Methyl-3-tetradecen-1-ol acetate 268 C17H32O2

Pentanoic acid, 2,2,4-trimethyl-3-carboxyisopropyl, isobutyl ester 286 C16H30O4

Octadecane, 1-chloro- 288 C18H37Cl

2,6-Nonadienoic acid, 7-ethyl-9-(3-ethyl-3-methyloxiranyl)-3-methyl-, methyl ester, [2R-[2.a.(2E,6E),3.a.]- 294 C18H30O3

Z-3-Octadecen-1-ol acetate 310 C20H38O2

.a.-Ethylether of 11-epi-dihydroartemisinin 312 C17H28O5

4-Trifluoroacetoxypentadecane 324 C17H31F3O2

1,2-Benzenedicarboxylic acid, butyl 2-ethylhexyl ester 334 C20H30O4

Boundary area

2-Propanol, 1-(2-methoxy-1-methylethoxy)- 148 C7H16O3

2-t-Butyl-5-propyl-[1,3]dioxolan-4-one 186 C10H18O3

3-Decen-1-ol, (E)- 156 C10H20O

E-2-Tetradecen-1-ol 212 C14H28O

1-Dodecanol, 3,7,11-trimethyl- 228 C15H32O

Myristic acid, 9-hexadecenyl ester, (Z)- 450 C30H58O2

Reference skin site (nonlesion)

(S)-(1)-1,2-Propanediol 76 C3H8O2

1,3-Pentanediol, 2,2,4-trimethyl- 146 C8H18O2

Cyclodecanol 156 C10H20O

5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- 194 C13H22O

Tetradecanal 212 C14H28O

1-Decanol, 2-hexyl- 242 C16H34O

1-Nonadecene 266 C19H38

1-Eicosanol 298 C20H42O

4-Trifluoroacetoxytetradecane 310 C16H29F3O2

Octadecanoic acid, 4-hydroxy-, methyl ester 314 C19H38O3

Cyclopropaneoctanoic acid, 2-[(2-pentylcyclopropyl)methyl]-, methyl ester, trans,trans- 322 C21H38O2

2-Trifluoroacetoxypentadecane 324 C17H31F3O2

Dodecane, 1,2-dibromo- 326 C12H24Br2

Background compounds (field blanks)

Nonanal 142 C9H18O

Cyclodecanol 156 C10H20O

7-Tetradecene 196 C14H28

1-Propyl-3,6-diazahomoadamantan-9-ol 210 C12H22N2O

2-Methyl-Z-4-tetradecene 210 C15H30

Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester 216 C12H24O3

Butylated hydroxytoluene 220 C15H24O

2-Hexadecanol 242 C16H34O

3-tert-butyl-5-chloro-2-hydroxybenzophenone 288 C17H17ClO2

3-Benzoylmethyl-3-hydroxy-5-nitro-2-indolinone 326 C17H14N2O5

1,3,5-Tris(trimethylsiloxy)benzene 342 C15H30O3Si3

3-Isopropyl-6a,10b-dimethyl-8-(2-oxo-2-phenyl-ethyl)-dodecahydro-benzo[f]chromen-7-one 396 C26H36O3

NIST, National Institute of Standards and Technology.
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variability (see Table 3 for the tentative assignments of
these peaks)—the compounds identified in this pilot study
are often associated with preservatives typically used in the
formulation of creams and gels. However, as the experi-
mental protocol restricted the use of such creams and
gels during the experiment and none of the patients repor-
ted using such products, the source of these compounds is
unclear.

Analysis clearly shows that participant-specific ‘‘finger-
prints’’ were identified (see supporting information Table

S1). Therefore in the supervised classification, the selected
training and test sets had to be based on participants
rather than samples in order not to create overoptimistic
results. The data from the lesion and boundary samples
were combined into a single class, termed the affected
class, as the PCA scoring plot showed no clear separation
between these samples. A predictive model based on PLS-
DA supervised classification was formulated, which gave
an average prediction accuracy of 73.3%. When this was
compared with the null distribution that showed an aver-
age prediction accuracy of 51.1% and when only 122 out
of 2,500 simulations (� 4.9%) obtained a better prediction
accuracy, it was concluded that our classification results
were significant to a confidence level of 95% (p < 0.05)
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Figure 4. Principal component anal-

ysis (PCA) scores biplot of gas chro-

matography mass spectrometric

data from lesion (denoted by aster-

isk symbol), boundary (denoted by

square symbol), and control (de-

noted by diamond symbol) areas

where principal component (PC) 1

and PC 2 exhibit 62.08 and 21.29%

of the total explained variance (TEV),

respectively. The first two PC scores

in PCA were plotted against each

other in order to look for underlying

trends within the data set, where no

obvious patterns were observed for

the boundary and lesion areas. How-

ever, the reference (control) areas

were observed to be localized as a

broad cluster at the lower left hand

side of the PCA plot (encircled in

gray).
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Figure 5. Principal component analysis loadings plot of the re-

duced chromatographic data. Data points that lay close to origin

(zero), have little or no contributions toward separations shown

in the scores plot, whereas points that lay further away from

the origin (zero) have more significant contributions toward the

separations. Because the separation between control and le-

sion/boundary most appeared in principal component (PC) 2,

the variables that show a large diversity in PC 2 are more likely

to be the chemicals that differentiate these classes. The num-

bers represent retention times of the variables, which corre-

spond to one or multiple peaks observed in chromatograms.

Table 3. Tentative identification of unique compounds recov-

ered from the loading plot of the reduced chromatographic

data—these compounds were not unique to a single sample

area but significantly discriminate between the areas

Tr/minutes Compound

Molecular

weight Formula

11.20 2-propanol, 1-(1-

methyethoxy),

118 C6H14O2

11.63 Disulfide, dimethyl 94 C2H6S2

20.9 3-Carene 136 C10H16

21.2 1-Hexanol, 2-ethyl- 130 C8H18O

43.1 Phenol,3,5-bis(1,1-

dimethylethyl)-

206 C14H22O

43.2 Butylated hydroxytoluene 220 C15H24O

43.3 Straight chain hydrocarbon

They may serve as a focus for future chronic wound VOC

analysis.

VOC, volatile organic compound.
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(Table 4). This shows that the sampling technique gener-
ates reproducible, information-rich, complex VOC profiles
which, when analyzed with chemometric methods, show
statistically significant differences between the affected,
i.e., lesion plus boundary areas and the control, i.e.,
healthy, normal skin areas. The most quantitatively prev-
alent of these differences were revealed by the loading plot,
allowing identification of the key statistically significant
differentiating VOC peaks from among the hundreds of
compounds delineated through visual characterization
alone.

DISCUSSION

The aim of this study was to show for the first time the
utility of a novel, noninvasive sampling method for the
analysis of chronic wounds and specifically chronic arterial
leg ulcers. This was achieved by sampling from three sep-
arate areas (the lesion center, a control area of healthy
skin and a boundary area between the two) on five indi-
viduals with chronic ulcers. VOC profile differentiation
was achieved between the control and lesion areas and be-
tween the control and boundary areas (to p < 0.05) but
not between the lesion and boundary areas (p > 0.05).
VOCs unique to each sampling area were identified,
with evidence of VOCs from ingested medication (e.g.,
Codeine) and secondary to the metabolic processes of
colonizing bacteria (e.g., 2-indazole-2ylphenylamine). Al-
though the VOC species cannot be defined as specific bio-
markers for wound infection or healing, some may be
attributed as the products of reactive oxidative stress while
others may be due to preferential absorption of exogenous
and ubiquitous environmental contaminants into dam-
aged tissue. Species such as biogenic diamines and thiol
compounds may also be related to bacterial degradation of
the tissues. Conversely, it may be alterations in the overall
VOC profile rather than quantitative analysis of specific
VOC species that will give the greatest insight into chronic
wound metabolic processes. Overall, it must be noted that
it would be premature to definitively attribute the identi-
fied compounds to specific wound healing or degenerative
processes due to the limited sample size—this would ne-
cessitate a larger, precisely described, phenotypically
matched cohort of participants.

It is possible to differentiate visually between healthy
control skin and diseased lesions but such a technique al-
lows a greater understanding of the chronic wound micro-
environment. Each VOC profile reflects the compounds
carried to and from the skin within the blood stream, the
metabolites of the underlying epidermal and dermal cellu-

lar layers, the superimposed metabolites from the normal
skin bacterial flora and the environmental VOCs ad-
sorbed at the skin surface. In the case of ulcerated regions,
the profiles may be altered by the loss of normal skin cel-
lular layers and their metabolic products and/or by the
metabolites associated with the processes of necrosis, heal-
ing, and superimposed bacterial infection. Therefore, the
technique of VOC profiling can provide a greater insight
into the complex processes of skin infection and healing. It
may, with further refinement and in conjunction with
other existing modalities, become a useful method to as-
sess the lifecycle of chronic wounds, the bioavailability of
applied treatments, and in vivo bacterial antibiotic suscep-
tibility. It will also allow for the identification of single
VOCs or profiles that could act as biomarkers of specific
bacterial wound infections. However, with specific
reference to arterial ulceration, while this technique yields
extensive chemical information regarding processes occur-
ring at the local skin level that may be used in the assess-
ment of infection and healing, its application in the
planning of vascular interventional procedures is likely to
remain adjunctive to imaging modalities.

The benefits of such a technique include its noninvasive,
painless nature, its accuracy and reproducibility and the fact
that it offers the possibility of rapid point-of-care testing at
the bedside. At present, however, the laboratory equipment
would need further optimization and miniaturization to al-
low this to occur. In addition, aspects of the sample pro-
cessing are as yet not fully automated and thus it remains
labor intensive. There are currently no VOC libraries avail-
able that are specific to chronic wounds with which to rap-
idly identify the sampled VOCs; certainly this will change
with further development in this field of research.

This work has been successful in proving the applicabil-
ity of the VOC sampling technique in a clinical setting with
specific reference to the assessment of chronic wounds.
The sample size investigated was adequate to allow chemo-
metric analysis to be undertaken in order to show both the
significance of the results in differentiating between VOC
profiles and the reproducibility of the method. Despite
this, future work would aim to extend the scope of sam-
pling to a larger number of participants with a variety of
chronic wounds in individuals of different ethnicities.

Research into the efficacy of VOC analysis in a medical
setting has shown promise in a variety of conditions includ-
ing lung carcinoma,37 asthma,38 aerodigestive tract carci-
noma,39 pulmonary tuberclosis,40 hyperglycemia,41 heart
transplant rejection42), gastrointestinal disease (ulcerative
colitis, Clostridium difficile and Clostridium jejuni infec-
tions),43 bacteremia,44 bacterial vaginosis,45 and in the de-
tection of an array of microbes. Few studies of wound
infection have been undertaken, with those to date utilizing
‘‘electronic nose’’ machines46,47 rather than GC-MS.

Chronic wounds have a major effect on both morbidity
and mortality worldwide but currently are only assessed by
dated, invasive methods (i.e., swabbing and biopsy). These
methods do allow for an accurate identification of infect-
ing organisms but take no account of the complex interde-
pendent relationship between those cultured bacteria and
an individual’s genetic susceptibility or response to such an
infection. Research has indicated that while bacterial den-
sity at the wound surface is independently predictive of
wound nonhealing, this view is overly simplistic; bacterial

Table 4. Summary of partial least square for discriminate anal-

ysis (PLS-DA)

Control vs. lesion/

boundary areas

Lesion vs.

boundary areas

Average CCR (%) 73.3 56.67

Minimum CCR (%) 55.56 50

Maximum CCR (%) 88.89 83.33

Standard deviation (%) 14.91 14.91
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diversity, microbial synergistic interactions, and the un-
derlying host response all play a role,16,18,20 the effects of
which could be assessed via VOC analysis.

The application of this technique to chronic wounds is
still in its infancy but shows great promise. Future work
will involve compiling a library of wound bacterial VOCs
both in vitro and in vivo with the eventual identification of
biomarkers or VOC fingerprints by which future noninva-
sive diagnosis of wound infection and etiology could be
achieved. Another focus of substantial future work will be
an investigation into the chronological VOC changes
within healing and nonhealing chronic wounds and an
analysis of the effect of ingested medications, e.g., antibi-
otics, on the VOC profiles of such wounds. The ultimate
aim will be to minimize the equipment to allow hand-held
bedside VOC analysis that would allow rapid, cheap,
and painless analysis of chronic wounds and other skin
conditions.

In conclusion, this preliminary study has shown how
VOC profiles of chronic human skin lesions may be sam-
pled and studied. The data processing methods applied to
this study reliably differentiated control profiles from
boundary profiles and control profiles from lesion profiles.
The methodology has been shown to yield reproducible
data from complex, previously intractable sampling envi-
ronments. The development and extension of this ap-
proach may be appropriate for use in the future clinical
evaluation of ulcers, wounds, and other skin lesions. An
important next step in this area will be the creation of a
phenotypically matched library of volatile skin metabolites.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Summary of instrumentation parameters.
Fig. S1.Distance heat map plot. The distance between

each pair of samples are represented by a colour as indi-
cated by the colour bar on right (red to blue). The higher
the distance, the lower (bluer) the similarity between two
samples. The 5 different subjects, each subject has 3 sam-
ples from each class, respectively, were labeled by numbers
from 1–5 and samples from the sample class (e.g., Bound-
ary, Control or Lesion) were placed together. Since each
subject has 3 samples for each class, the 3�3 blocks in the
diagonal of the picture represent the similarities between
the samples from the same subject and also the same class
which thereby show the reproducibility of the sampling
methodology.

Please note: Wiley-Blackwell is not responsible for the
content or functionality of any supporting materials sup-
plied by the authors. Any queries (other than missing ma-
terial) should be directed to the corresponding author for
the article.
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Abstract In this study, we investigated the feasibility of
using a novel volatile organic compound (VOC)-based
metabolic profiling approach with a newly devised chemo-
metrics methodology which combined rapid multivariate
analysis on total ion currents with in-depth peak deconvo-
lution on selected regions to characterise the spoilage
progress of pork. We also tested if such approach possessed
enough discriminatory information to differentiate natural
spoiled pork from pork contaminated with Salmonella
typhimurium, a food poisoning pathogen commonly recov-
ered from pork products. Spoilage was monitored in this
study over a 72-h period at 0-, 24-, 48- and 72-h time points
after the artificial contamination with the salmonellae. At
each time point, the VOCs from six individual pork chops
were collected for spoiled vs. contaminated meat. Analysis
of the VOCs was performed by gas chromatography/mass
spectrometry (GC/MS). The data generated by GC/MS
analysis were initially subjected to multivariate analysis
using principal component analysis (PCA) and multi-block
PCA. The loading plots were then used to identify regions
in the chromatograms which appeared important to the
separation shown in the PCA/multi-block PCA scores plot.

Peak deconvolution was then performed only on those
regions using a modified hierarchical multivariate curve
resolution procedure for curve resolution to generate a
concentration profiles matrix C and the corresponding pure
spectra matrix S. Following this, the pure mass spectra (S)
of the peaks in those region were exported to NIST 02 mass
library for chemical identification. A clear separation
between the two types of samples was observed from the
PCA models, and after deconvolution and univariate
analysis using N-way ANOVA, a total of 16 significant
metabolites were identified which showed difference
between natural spoiled pork and those contaminated with
S. typhimurium.

Keywords VOC analysis . Pork . Salmonella typhimurium .

Peak deconvolution .Metabolic profiling

Introduction

In recent years, non-targeted metabolite profiling-based
approaches have been widely applied to many types of
sample matrices like plant extractions, biofluids from
animals or humans, etc. to address various problems like
gene function analysis, disease diagnostic and more [1–3].
However, until now, there were few reports of using
metabolite profiling on volatile organic compounds
(VOCs). Compared to other types of analysis, VOC
analysis has its unique advantage which is that the sampling
process is normally rapid, noninvasive and can be done in
situ and the collected VOCs can be readily analysed using
gas chromatography with little to no sample pretreatment.

The objective of this study was to investigate the
possibility of using VOC-based metabolite profiling for
food spoilage detection. Conventional methods of microbial
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spoilage detection are normally carried out by determining
the total viable bacterial counts taken from the surface of
the suspected meat; this typically requires an incubation
period of 24 to 72 h for bacteria colony formation.
Furthermore, this does not include additional time for
selective enrichment of the sample and subsequent analysis;
therefore, the total time required for the analysis of meat
spoilage could be in the orders of weeks rather than days.
Since food spoilage is the result of decomposition and the
formation of metabolites caused by the growth and
enzymatic activity of microorganisms, this is normally
accompanied by the emission of unpleasant odour [4, 5].
Therefore, as the odour intensifies with the progression of
the spoilage process, the analysis of VOCs potentially
provides a rapid and quantifiable estimation of the level of
microbial contamination. Previous studies have demonstrat-
ed a correlation between the intensity of the odour emitted
from spoiled pork and viable counts. It has been reported
that [6–8] at levels of 107 colony forming units per square
centimetre (c.f.u. cm−2), off-odours may become evident in
the form of a faint ‘dairy’-type aroma, and once the surface
population of bacteria has reached 108 c.f.u. cm−2, the
supply of simple carbohydrates has been exhausted and
recognisable off-odours develop, leading to what is known
as ‘sensory’ spoilage. The development of off-odours is
dependent upon the extent to which free amino acid
utilisation has occurred, and these odours have been
variously described as dairy/buttery/fatty/cheesy at 107 c.f.
u. cm−2 through to a sickly sweet/fruity aroma at 108 c.f.u.
cm−2 and finally putrid odour at 109 c.f.u. cm−2. VOCs are
readily analysed using headspace collection, and this
process is noninvasive and so attractive for food sampling.
Since VOCs from the spoilage process are mostly caused
by the action of microorganisms, it would also be
advantageous to establish a method using the analysis of
VOCs which allows the discrimination between pathogenic
and natural spoilage microorganisms.

In this study, we investigated such a possibility using
pork as a test food matrix and Salmonella typhimurium as a
relevant model pathogen. S. typhimurium is commonly
associated with microbial spoilage of meat products
including pork [9] and is pathogenic to humans; symptoms
are gastrointestinal and infection is typified by bloody
diarrhoea with mucus, fever, vomiting and abdominal
cramps. The sampling of VOCs can be achieved using a
variety of methods. The most popular sampling method for
VOC analysis is head space sampling, and this includes
dynamic head space sampling and static head space
sampling [10]. Dynamic head space sampling generally
offers better sensitivity, albeit requires more sophisticated
equipment which makes it more suitable for the detection of
analytes at low levels. Static head space sampling is more
often used because of its better adaptivity and lower cost.

Head space sampling can be achieved by sampling the air
above the samples directly by using an airtight syringe or
combined with a pre-concentration device such as solid
phase micro-extraction. In this study, we employed a
polydimethylsilicone (PDMS) patch-based approach
reported by Riazanskaia et al. [11] as the PDMS patch
can be easily fit into a glass Petri dish (see below).

Fresh pork chops were purchased from a local supermar-
ket to avoid variation caused by different hygiene status
between the pork chops. Each pork chop was butterfly cut
into two pieces to provide a sterile surface for the study. The
two ‘matched’ pieces from the same pork chop were either
subjected to a natural spoilage process or contaminated with
S. typhimurium. VOCs from each piece were sampled via
head space using a PDMS patch and subsequently analysed
using gas chromatography/mass spectrometry (GC/MS).
Four time points over a period of 72 h were monitored,
and the VOC profiles were analysed using a newly devised
chemometrics methodology which combined rapid multivar-
iate analysis on total ion currents (TICs) with in-depth peak
deconvolution on selected regions and univariate statistics
testing to reveal the natural trend of the whole data set and
also identify the potentially interesting metabolites.

Materials and methods

Culture and chemicals

A culture of S. typhimurium strain 4/74, whose genome
sequence is known, was kindly provided by Professor Tim
Brocklehurst (Institute of Food Research, Norwich, UK).
This strain was sub-cultured on Lab M LAB028 blood agar
plates three times after cold storage to establish phenotypic
stability. A single colony was harvested using a sterile plastic
loop and transferred to 250 mL of sterile nutrient broth and
incubated at 37 °C for 16 h, resulting in a suspension of 5×
107 c.f.u./mL according to plate counts. An aliquot (5 mL,
∼2.5×108 cells) of the suspension solution was transferred to
a Falcon tube and centrifuged at 4,810×g for 10 min. The
supernatant was removed and the pellet resuspended in
50 mL of sterile physiological saline solution (0.9% NaCl)
and centrifuged at 4,810×g for 10 min. The supernatant was
removed and the pellet was resuspended in 50 mL of sterile
saline solution. This was repeated three times in total to
remove the remaining media. The washed pellet was
resuspended in 50 mL of sterile saline solution and used
for the artificial contamination of the pork.

Sampling and extraction

A total of 24 boneless pork chops (weight 200–300 g) were
purchased from a local supermarket. Each pork chop was
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cut to a unified size of 12–14 cm2 surface area and butterfly
cut into two pieces with equivalent surface area. This
provided a sterile surface for the study. A digital photo
(2,048×1,536 resolution, ∼3,000,000 pixels) was taken for
each piece of pork alongside a ruler to enable the estimation
of pixels per square centimetre and thus the surface areas in
the section of pork. The butterfly piece was then placed in a
large sterile glass Petri dish (Fisher Scientific, PDS-100-
04L) lined with sterilised Whatman grade 40 filter paper
(cat no. 90-7501-06) to which 2 mL of sterilised physio-
logical saline solution was added to act as a moisture source
to prevent the surface of the meat from drying out. The two
‘matched’ pieces from the same pork chop were used to
produce a control (natural spoilage) and salmonellae-
contaminated sample. An aliquot (1 mL) of sterile
physiological saline was added to the surface of the meat
and spread across the surface using a sterile plastic loop.
The sample was incubated as detailed below to allow
for the colonisation by the natural spoilage microorganisms.
The second section of pork was contaminated with the
saline suspension of S. typhimurium (1 mL, see above) and
also spread across the surface of the meat using a sterile
plastic loop. The Petri dishes were wrapped in two
autoclave bags individually and sealed to minimise VOC
cross-contamination and incubated at 25 °C. The headspace
was sampled at a total of four time points: 0, 24, 48 and
72 h after the contamination. At each time point, six pork
chops, i.e. 12 pieces, six of each type (naturally spoiled and
Salmonella-contaminated) were sampled using PDMS
patches.

PDMS patches were cut from a single silicone elastomer
sheet (cat no. 751-624-16; Goodfellow Cambridge Limited)
to the following dimensions, 20×15×50 mm. The patches
were washed in a 5% Decon 90 solution with ultrapure
water (18 MΩ) three times. The patches were then rinsed
with a copious amount of ultrapure water and conditioned
in a vacuum oven for 15 h at 180 °C (pressure was
maintained at −1,000 mbar). Once conditioned, the patches
were transferred directly into clean thermal desorption (TD)
tubes (cat no. C-TBE10: Markes International Ltd.) and
capped. The TD tubes were stored at room temperature
within an airtight glass container filled with a layer of
molecular sieves (cat no. M2635,8-12 mesh beads, Sigma).
All of the tubes were used within 48 h of cleaning and
conditioning, and a random selection of 20% of the TD
tubes was analysed after cleaning to confirm that the batch
was clean and free from contaminants before use. The
patches were stuck onto the underside of the front cover of
the Petri dish due to its natural adhesiveness. The samples
were then resealed and placed back in the incubator for 1 h.
The patches were removed and placed back into the TD
tubes and analysed by GC/MS. All samples were analysed
within <24 h after collection.

GC/MS analysis

A Markes International Unity 1 thermal desorption unit was
connected directly through the front injector assembly of a
Varian CP 3800 gas chromatograph coupled to a 2200
quadrupole ion trap mass analyzer. The Unity 1 transfer line
was connected directly to the analytical column within the
GC oven through the use of a Valco zero dead volume
micro union (Restek, cat no. 20148). The cold trap packing
material was Tenax-TA carbograph 1 TD. The transfer line
to the GC was kept at 150 °C isothermally.

The analytical column was an Agilent HP-5 60 m×
0.25 mm (I.D) with a film thickness of 0.25 µm and with a
stationary phase composition of 5% phenyl/95% methyl
capillary column. To ensure splitless injection efficient
desorption within the cold trap within the Mark 1 Unity
unit, a minimum flow rate of 1.5 mL/min is required. The
on-column pressure was adjusted to 85.5 kPa.

The thermal desorption profile is as follows: sample
desorption 180 °C for 3 min, the cold trap kept at −10 °C.
After the initial first stage sample desorption, the cold trap
was then heated to 300 °C for 3 min.

The GC profile used a 70 °C initial temperature hold for
10 min; this was then ramped to 250 °C at the rate of 3 °C/min
and held for 10 min. The transfer line to the MS was
maintained at 270 °C isothermally. The MSwas maintained at
200 °C with electron impact ionisation source at 70 eV. The
mass range used was from 40 to 400 amu with a scan rate of
1.03 scan per second. Cold trap blanks and column blanks
were ran after each sample to ensure that the system was free
of artefacts before the next sample was analysed.

Data analysis

All the data were recorded as Varian sms files, the files
were converted to netCDF files using Palisade mass transit
programme (Scientific Instrument Services, Ringoes, USA),
and the netCDF files were then loaded into Matlab
(Mathworks, MA, USA) using the mexnc toolbox.

The procedure used for data analysis was performed as
given below, and a detailed discussion about the reason of
using such a procedure is explained fully in “Results and
discussion”. The multivariate pattern recognition was
mainly conducted on the TIC. The TICs were firstly
baseline-corrected using alternative least square as de-
scribed by Paul et al. [12]. Alignment of the data was
performed by correlation optimised warping (COW) [13].
The two parameters of COW, the number of segments and
the slacking size, were optimised with a simplex optimisa-
tion procedure as described by Skov et al. [14]. For each
aligned TIC, the results of the warping, i.e. the position of
every segment before and after the warping, were recorded
and applied to each mass channel of that chromatogram so
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that not only the 1D TICs but also the 2D chromatograms
were both aligned using the same alignment settings. The
baseline-corrected and aligned TICs were further normal-
ised to the surface area of each sample (see above) and
log10-scaled. The data were log10-scaled because of the
large difference in the peak intensities between different
time points, and such scaling is necessary to prevent the
multivariate analysis from being dominated by large peaks.

Principal component analysis (PCA) [15, 16] was
performed on the pre-processed TICs to reveal the natural
trend of the data. As previously demonstrated [17–19], the
multi-block PCA models, e.g. consensus PCA (CPCA) [17,
18], are easier to interpret compared to classical PCA when
there are two or more influential factors. Hence, two further
CPCA models were built on two rearranged multi-block
matrices to elucidate the changes caused by the two major
factors of interest: (1) natural spoilage vs. salmonella-
contaminated spoilage and (2) the changes over time during
spoilage. A diagrammatic representation of this rearrange-
ment of the data is shown in Fig. 1. The block loadings
plots were used to identify potential interesting time
windows which may contain metabolites responsible for
the separation shown in the scores plot. These time
windows were then selected for peak deconvolution; each
time window contains 100–150 data points with 8–15
potential peaks.

On each time window, peak deconvolution was per-
formed on each sampling time point separately due to the
large difference in the peak intensities between different

time points. Within the same time window, all the
chromatograms at the same sampling time point were
concatenated to form a matrix X. An orthogonal projection
approach [20] coupled with Dubin–Watson statistics [21,
22] were performed to provide an initial estimation of the
pure spectra matrix Sest and the number of components in
the X. An initial curve resolution was performed on the X
using alternating regression (AR) [23, 24] based on Sest.
Non-negativity and unimodality constraints were applied to
concentration profiles, whilst non-negativity constraint was
applied to spectra. The resolved concentration profiles
matrix C and the pure spectra matrix S were visually
inspected and obvious artefacts, e.g. irregular peak shape,
highly variable retention time, etc., were removed. The
remaining components in C and S were multiplied together
to produce a reconstructed data matrix, Xest, which was
superimposed on the original X and subjected to visual
inspection. The unfitted peaks were identified and the
spectra at the apex of those unfitted peaks were selected
and appended to S to generate the new estimated spectra
matrix Sest. Another AR curve resolution was then
performed using the new S

_

. This was repeated until most
significant peaks were fitted and no obvious artefacts were
noted in the deconvolved C and S matrices. This procedure
is illustrated as a flowchart in Fig. 2. The peak area of each
peak was calculated by integrating the concentration profile
of each peak.
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Fig. 1 Graphic illustration of the CPCA models. a CPCA model 1,
aimed at highlighting the difference between two types of samples. b
CPCA model 2, aimed at highlighting the changing-over-time effect
whilst the spoilage progresses

OPA on X to get an 
estimation of Sest

Perform ALS on X using 
Sest to obtain C and S

Remove artefact 
components from C

and S
Artefacts in C and S? 

No 

Yes 

Xest=C •S
Superimpose X over Xest

Unfitted peaks exist? 

Append the spectra at the 
apex of unfitted peaks to S

to obtain a new Sest

Yes 

No 

End 

Fig. 2 Flowchart of the GC/MS peak deconvolution process
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The deconvolved peaks at different sampling time points
were then combined to build an overall peak table. The
peaks with high similarity in the deconvolved spectrum
(correlation coefficient >0.9) and also similar retention time
(±1 data points, ∼2 s) were considered the same peak and
merged as the same variable. If in one sample no peak can
be found to match the above two criteria, this peak is
considered as “missing” in this sample. It is noteworthy that
during the peak deconvolution, it is not possible to fit all of
the peaks in all the chromatograms, and hence, it is safer to
treat “not exist” as “missing” rather than an arbitrary “0”
because “0” values can have very a significant impact on
the statistical testing. Once the peak table was compiled, the
values were log-scaled and N-way ANOVA (although this
is a balanced two-way ANOVA experiment design, the
two-way ANOVA cannot be applied directly due to the
missing values) was applied to each variable to identify
statistically important peaks which showed significant
difference between different time points, different types of
samples (naturally spoiled or Salmonella-contaminated) or
both. The deconvolved mass spectra of the significant
peaks were exported as NIST text files and imported into
NIST 02 mass library for metabolite identification. A
tentative chemical identification is made if a match factor
(either match or reverse match) is >750 within the NIST
library matching software. In our experience, a match factor
>750 can generally be considered as a good match, and
such a threshold has been used previously [19, 25]. In order
to achieve definitive identification, it would be necessary to
analyse the pure reference chemical and incorporate at least
one additional orthogonal parameter (e.g. retention index)
[26]. As most of these chemicals are not readily available,
this was not conducted in this study.

Results and discussion

Two categories of methods are routinely employed to
analyse the data generated by hyphened chromatography
such as GC/MS, LC/MS or CE/MS. One is to use the TIC
directly and treat it as a format of spectrum and apply
multivariate methods such as PCA and PLS-DA to the TICs
directly [27]. The advantage of this method is that less
effort on the data pre-processing is needed and the risk of
introducing artefacts caused by the data pre-processing into
the data is relatively low; therefore, researchers can quickly
gain insights into the data. However, the main drawback of
using this approach is that the extra dimension brought by
using hyphened chromatography, e.g. the mass spectromet-
ric dimension, is completely ignored and the results provide
little to no chemical information (i.e. the identification of
the chromatographic peaks), which is against the very
purpose of using MS compared to FID. By contrast, in

another category of methods focused on performing a form
of peak deconvolution on the 2D chromatograms using the
information provided by the second dimension (i.e. spec-
trum at each time point), one can deconvolve all (or at least
the most significant) the chromatographic peaks and their
“pure” spectra to form a peak table with relative concen-
trations and then apply multivariate analysis on the peak
table [24, 28]. This way, in theory, provides the most
comprehensive information of the data set. Various methods
have been developed during the last few decades; the latest
method is called hierarchical multivariate curve resolution
(H-MCR), reported by Jonsson et al. [24]. The main
advantage of H-MCR is that by stacking multiple chroma-
tograms together and assuming a trilinear data structure, the
curve resolution results can be significantly improved
compared to previously reported methods which apply
curve resolution to each chromatogram separately. Further-
more, it is even possible to resolve co-eluting metabolites
which results in fully overlapped chromatographic peaks
using H-MCR because in multiple samples, the relative
concentrations will be different; this is impossible for
methods which deconvolve chromatograms individually.
However, this type of method has a much higher require-
ment on the quality of the data compared to the methods
which use TICs directly; else, the deconvolved results will
contain artefacts and can be misleading.

In this study, we found that the results obtained by
applying H-MCR were far from satisfactory (results not
shown). By adopting the end criterion proposed by Jonsson
et al., a large number of artefacts were found from the
deconvolved peaks, and these manifested themselves as
irregular-shaped peaks, whilst a large amount of peaks in the
chromatograms appeared left unfitted. There were many
cases found wherein when the peak requirement can no
longer be met by introducing more components into the
deconvolution process, there were still one or more
significant peaks in the chromatograms that remained
unfitted, and the extra introduced components were modelled
as artefacts (e.g. irregular-shaped peaks) in the end results.
We believe this is because our data employed a quadrupole
mass filter which has a much lower sampling rate and also a
mass resolution comparing to the more expensive time-of-
flight MS used by Jonsson and colleagues.

This suggested a problem with the data structure rather
than the H-MCR algorithms per se, and since many
researchers to do not have access to ToF-MS and use
quadrupoles as an alternative, devising a new strategy for
handling such data is needed. We concluded that H-MCR
was still a valid approach to peak deconvolution, but that
we could not follow the semi-automatic procedure de-
scribed by the Jonsson et al. Extensive manual inspection
had to be performed on the deconvolved results and some
adjustments had to be made on the curve resolution (e.g.
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removal of artefacts, insertion of better initial estimations
and re-computing the curve resolution) accordingly, and
this would be a very time-consuming process given the
amount of data we have collected. In addition, it is likely
that it is in fact not necessary to perform full deconvolution
on all the peaks from all the chromatograms as not every
peak in the chromatogram will have biological significance.
Therefore, we decided to combine the two categories of the
methods described above:

& We firstly performed the multivariate analyses of PCA
and multi-block PCA on the TICs directly to reveal the
trend of data set. The potentially interesting chromato-
graphic regions were identified through the inspections
of the loadings plots.

& Next these selected regions were then subjected to a
modified H-MCR procedure as described in “Data
analysis” for curve resolution, and the resolved peaks
were assessed using statistical test. The resolved mass

spectra of those peaks being identified as significant
were exported to NIST 02 mass spectra library
(National Institute of Standards and Technology, MD,
USA) for structure identification.

By adopting this approach, the excessive amount of time
performing just curve resolution was avoided, and as
reported below, we were still able to gain useful chemical
insight into the data, even using a relatively cheap, routinely
used GC/MS. More importantly, even though there were
some imperfections in the deconvolved data, which were
unavoidable, this did not have a negative influence on the
results obtained from the multivariate analysis.
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As described above, the chromatograms, using TIC
alone, were first analysed using classic PCA and the
resulting scores plot is shown in Fig. 3a. Inspection of this
plot shows that the four sampling time points were clearly
separated. In addition, the separation between two types of
samples (natural spoilage and salmonella-contaminated)
can be observed from 24 h onwards, and seemingly, the
discrimination between the sample types improves as the
spoilage progresses. Such a trend is even easier to observe
from the block scores in the CPCA models once one of the
two major influential factors had been suppressed (in the
first CPCA model, the influence of the progression of
spoilage is suppressed (Fig. 4a), whilst in the second CPCA
model, the influence of different type of samples is
suppressed (Fig. 4b)) by rearranging the data into a multi-
block matrix as illustrated in Fig. 1. In the score plots
(Fig. 4a) from the first CPCA model, which highlights the
difference between two types of samples, natural spoilage
vs. salmonella-contaminated, the sample types were sepa-
rated across the first two PCs, particularly the first PC, from
24 h which accounted for 41.9% total explained variance
(TEV) and increased with the following time points to
approximately 50% TEV. The time-dependent trends of the
two types of samples are clearly shown in the score plots
(Fig. 4b) from the second CPCA model, and it can be seen
that the naturally spoiled samples appeared to have a
“longer” time trajectory compared to that of salmonellae-
contaminated samples; this can also be seen from the
classical PCA score plots.

On examination of the loadings plots of the two CPCA
models (shown in Electronic supplementary material (ESM)
Figs. S-1 and S-2), it appeared that the most important
features are within the first 25 min of the chromatogram, with
the exception of a predominating peak at ∼32 min which was
more abundant in the S. typhimurium-contaminated samples
at 72 h. Hence, we performed peak deconvolution on the
first 25 min plus the region between 30–33 min of each
chromatogram as described before. A typical example of the
results from the peak deconvolution is given in Fig. 5. It can
be seen that by superimposing the original and the
reconstructed chromatograms, the most significant m/z were
well fitted, and this gives a certain confidence on the quality
of the deconvolved mass spectra. The mass spectra before
and after the peak deconvolution of one significant peak are
also given in this figure. No satisfactory match can be found
using the mass spectrum before the deconvolution. By
contrast, using the mass spectrum after the deconvolution,
it is possible to identify this feature as 5-methylpyrimidine
with a high matching factor of 814. A total number of 63
unique peaks (metabolites) were extracted by this deconvo-
lution processing from the first 25 min of the chromato-
grams, and 48 of them can be identified through mass
spectra matching in the NIST 2.0 library search engine with
confidence (match factor and reverse match factor >750).
The predominating peak at 32 min appeared to be a siloxane-
type peak which is very unlikely to be of a biological origin
and more likely to be some type of column bleeding
material. Its occurrence in one type of sample at only one

Table 1 List of the identified significant metabolites

Identified chemical Match scores Reverse match scores CAS no. Changea

Phenylethyl alcohol 875 914 60-12-8 ↑

1-Butanol, 3-methyl acetate 846 847 123-92-2 ↑

Dimethyl disulfide 787 887 624-92-0 ↑

2-Heptanone 854 862 110-43-0 ↑

2,5-Dimethylpyrazine 891 899 123-32-0 ↓

Methoxybenzene 919 932 696-62-8 ↓

Phenol 925 936 108-95-2 ↓

Dimethyltrisulfide 922 929 3658-80-8 ↓

2-Octanone 815 861 111-13-7 ↓

Butanoic acid, 3-methyl, 2-methylpropylester 887 906 589-59-3 ↓

5-Methylpyrimidine 814 885 2036-41-1 ↓

4-Methyl-2-oxovaleric acid 778 844 816-66-0 ↓

2-Octenal 811 817 2548-87-0 ↓

L-5-Propylthiomethylhydantoin 734 753 71100-43-1 ↑

Propanoic acid, 2-methyl, 3-methylbutylester 766 855 2050-01-3 ↓

Toluene 889 901 108-88-3 ↓

a An upward arrow means an increase in Salmonella-contaminated relative to natural spoilage and vice versa
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time point could be purely by chance. Hence, it was
excluded from the statistical analysis. In addition, there
were 52 missing values (i.e. a peak that could not be found
a match in a certain chromatogram) in total, accounting for
1.72% of the total number of the elements in the final peak
table, and the correlation coefficients of the matched peaks
varied from 0.92 to 0.99, with the majority of the matches
having a correlation coefficient higher than 0.96. This
suggested that even the peak deconvolution procedure was
conducted independently four times on different set of
samples (samples from four different time points); the
results are highly consistent and can be seen as an
evidence showing that the peak deconvolution is robust
and reproducible.

N-way ANOVA was applied on the 63 metabolites. It
appeared that the majority of these VOCs (52 out of 63)
show significant difference with false discovery rate [29]
Q≤0.05 between different time points, and these metab-
olites generally increased as spoilage progresses. This
matches our organoleptic observations that the odour from
the spoiled pork intensifies as spoilage progresses. In
addition, 19 metabolites were identified as being signifi-
cant in that they showed differences (Q≤0.05) between the
sample types. Among those 19 significant peaks, 16 of
them can be putatively identified through mass spectra
matching. These significant peaks with their chemical
identifications are listed in Table 1, and the box whisker
plots along with the corresponding deconvoluted mass
spectra of one metabolite, 5-methylpyrimidine which is
also the exemplary peak given in Fig. 5, is shown in
Fig. 6. Such plots of other significant metabolites are
listed in the supplementary information (ESM Figs. S-3 to
S-20).

Once deconvolution was complete, classical PCA was
performed on the peak areas of the 63 deconvolved peaks
(without the siloxan peak at 32 min), and the scores plot is
shown in Fig. 3b. It is clear that the result is almost
identical to the one obtained from TICs (Fig. 3a), except
that the separation on the last time point (72 h) was not as
striking as before; this is likely to be because the artefact
siloxane peak was excluded from the analysis. This proved
that in using TICs alone, it was still possible to extract
valuable information from the data set without the need to
go through laborious peak deconvolution process. On the
other hand, the predominating siloxane peak found at
32 min in this study also suggested that the results obtained
from TICs analysis alone can be misleading because no
chemical information was obtained from the TICs, and
hence, the findings are prone to false positive errors. We
believe that a good approach is to combine the two
methodology using TICs to get an initial view of the data
set and then perform targeted peak deconvolution and
structure identification to confirm the findings from the

analysis based on TICs. Employing such a strategy enables
researchers to achieve results within a reasonable timescale
whilst maximising the knowledge obtained from the data.

From Table 1, it is clear that five VOCs are significantly
increased in S. typhimurium relative to pork that has been
allowed to spoil naturally. These are phenylethyl alcohol
(C8H10O), 1-butanol, 3-methyl acetate (C7H14O2), dimethyl
disulfide (C2H6S2), 2-heptanone (C7H14O) and L-5-
propylthio methylhydantoin (C7H12N2O2).

2-Heptanone is naturally found in certain foodstuffs
including beer, bread and various cheeses [30]. As these are
all microbially produced food (albeit from fungi), it is
perhaps not surprising that we identified this metabolite.
Although 2-heptanone has been observed in the headspace
of Enterobacteriaceae [31], the concentration of the
metabolite was reported at a higher concentration in
Escherichia coli compared to S. typhimurium; however,
the growth was performed on artificial culture rather than
on the surface of meat in which the metabolic source of 2-
heptanone has not yet been reported.
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Fig. 6 a Box-whisker plot of 5-methylpyrimidine. b Standard mass
spectrum. c Extracted mass spectrum of the target peak
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It is known that phenylethyl alcohol is a metabolite that
is part of the phenylalanine pathway (KEGG: reaction
R02611), so this suggests that from the meat substrate,
Salmonella is utilising the amino acid phenylalanine
preferentially for growth compared with other organisms
found on the meat surface naturally. In a similar manner,
dimethyl disulfide may be present due to degradation of
sulphur-containing amino acids such as methionine and
cysteine, as has been reported previously for S. typhimu-
rium contamination in vegetables rather than meat [32].

With respect to the other volatile species, these have not
been extensively reported in the literature, and so it is
difficult to be very specific. However, it is known that
VOCs are used by microorganisms to give the VOC
producer an advantage in terms of colonisation by
suppressing the growth of other bacteria [33], so these
may be defence chemicals elicited by S. typhimurium. It is
already known that phenylethyl alcohol has antimicrobial
property; hence, this metabolite could also be a part of the
defence mechanism of S. typhimurium to inhibit the growth
of other bacteria.

Conclusions

In this study, we have demonstrated the feasibility of
developing a VOC metabolite profiling method based on
headspace analysis using PDMS capture followed by
thermal desorption into GC/MS. This analytical approach
generated information-rich metabolite data that we have
shown were able to discriminate successfully S. typhimu-
rium-contaminated and naturally spoiled pork during
spoilage at 25 °C over 72 h. This suggests that VOC
analysis has the potential to become a valuable tool for
noninvasive, rapid detection of pathogenic microorganisms.

A set of potentially interesting metabolites have been
putatively identified through this study, and this will aid the
development of specific and sensitive analytical tools for
the detection of pathogens in food. Further work is needed
to improve the confidence of the metabolite identification;
that is to say to go from putative to definitive identification
[26]. Currently, the metabolite databases containing VOCs
is still at a very preliminary stage and more international
effort is needed to increase the metabolite coverage in these
databases to the current level offered by derivative-based
GC/M metabolite databases.

In addition, we have also developed a chemometric
methodology that combines fast multivariate analysis on
TICs with more time-consuming peak deconvolution on
selected regions of the chromatograms that contain dis-
criminatory information. Satisfactory results were obtained
rapidly from the data generated by a routinely used MS
instrument employing a quadrupole mass filter. This makes

it particularly suitable for low-cost, rapid pilot studies. If
further investigations are desired, more labour-intensive
and expensive instrumentation can be used (viz. GC-ToF-
MS or GCxGC-ToF-MS) followed by more in-depth
deconvolution. In this investigation, we have employed
this methodology to investigate the differences in the
production of VOCs in the natural and artificial spoilage
of pork. We have highlighted several metabolites which are
characteristic of spoilage by the pathogenic bacteria and
with future work may be used as indicators for noninvasive
biomarkers of pathogenic spoilage of meat.
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Spoilage in meat is the result of the action of microorganisms and results in changes of meat and

microbial metabolism. This process may include pathogenic food poisoning bacteria such as Salmonella

typhimurium, and it is important that these are differentiated from the natural spoilage process caused

by non-pathogenic microorganisms. In this study we investigated the application of metabolic profiling

using gas chromatography-mass spectrometry, to assess the microbial contamination of pork.

Metabolite profiles were generated from microorganisms, originating from the natural spoilage process

and from the artificial contamination with S. typhimurium. In an initial experiment, we investigated

changes in the metabolic profiles over a 72 hour time course at 25 �C and established time points

indicative of the spoilage process. A further experiment was performed to provide in-depth analysis of

the metabolites characteristic of contamination by S. typhimurium. We applied a three-way PARAllel

FACtor analysis 2 (PARAFAC2) multivariate algorithm to model the metabolic profiles. In addition,

two univariate statistical tests, two-sample Wilcoxon signed rank test and Friedman test, were

employed to identify metabolites which showed significant difference between natural spoiled and

S. typhimurium contaminated samples. Consistent results from the two independent experiments were

obtained showing the discrimination of the metabolic profiles of the natural spoiled pork chops and

those contaminated with S. typhimurium. The analysis identified 17 metabolites of significant interest

(including various types of amino acid and fatty acid) in the discrimination of pork contaminated with

the pathogenic microorganism.

Introduction

Food spoilage is the result of the activities of microorganisms on

the food matrix resulting in the decomposition of carbohydrates

and proteins,1,2 and the synthesis and subsequent release of

malodorous substances and metabolites from the breakdown of

meat products or microorganisms. The quality of food is usually

defined with respect to organoleptic changes that make the meat

unacceptable to the consumer and these include the development

of off-odours, colour changes or slime formation;3 this deterio-

ration eventually makes the food unsuitable to eat and this

occurs at around 107 colony forming units (cfu) per square cen-

timetre.4 It is particularly hazardous when the food is contami-

nated by pathogenic microorganisms, for example Salmonella

bacteria, as these can attack the stomach and intestine and in

severe cases result in blood poisoning. Various tools have been

developed to monitor the hygiene status of foods, from general

flavours and aroma analysis to some very specific tool including

PCR assays and immunosensors among others for detecting

specific hazardous pathogen(s); for a review see Ellis and

Goodacre.2 In recent years, the approach of spectral ‘‘finger-

printing’’ of the metabolic profile of a biological system has

attracted significant attention, especially in the field of metab-

olomics. This is because of the rapidity of the sampling which

leads to immediate action being taken if a contamination is

detected. In addition, methods that measure the phenotype of the

cell are advantageous as this shows how the organism is

responding to an environment rather than a somewhat static

readout such as PCR. The metabolic profile is a ‘holistic’ method

to determine metabolites from a diverse range of metabolic

pathways, so to define system-wide differences in metabolism. By

utilizing powerful analytical tools such as gas chromatography-

mass spectrometry, a wide range of metabolites can be detected

and identified and, at least, semi-quantified. This provides

abundant information to further the understanding of the bio-

logical process under investigation and paves the way for

developing more specific and sensitive tools for pathogen

detection.5–8

Given the advantages of metabolic profiling approaches, we

believe that such approach can be adopted as a valuable tool to

improve the traceability of the contaminations of microor-

ganism. There are a few reports in the literatures investigating

rapid natural meat spoilage detection by proton transfer reaction

mass spectrometry9 and FT-IR spectroscopy10,11 yet these studies

were based on a single isolated experiment on naturally spoiled

meat. In this study we explore the use of a metabolic profiling

approach to characterise the microbial contamination of pork

and, in addition, discriminate samples colonised with

natural spoilage microorganisms from those contaminated
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by Salmonella typhimurium. Two objectives were investigated: (1)

the temporal progression of the spoilage process and (2) to

determine metabolic differences associated with contamination

by Salmonella or natural spoilage microorganisms. Two inde-

pendent experiments were conducted; the first experiment

monitored the progression of the spoilage process during the

incubation period following contamination by S. typhimurium.

Metabolic profiles were generated at multiple time points

(n ¼ 11) across a 72 hour period for each experimental condition

(natural spoiled and Salmonella contaminated). The second

experiment provided robust statistical testing and identified

specific metabolites to differentiate between the experimental

conditions. It is worth noting that even S. typhimurium is not

a commonly observed microorganism found in food ‘spoilage’;

however, when this food ‘poisoning’ organism is found, it usually

leads to very serious consequences.12,13

Experimental

Culture and chemicals

S. typhimurium strain 4/74 was kindly provided by Professor Tim

Brocklehurst (The Institute of Food Research, Norwich, UK).

The strain was sub-cultured on Lab M LAB028 blood agar plates

(Lab M Ltd., Lancashire, UK). A single colony was inoculated

into nutrient broth (250 mL) and incubated at 37 �C for 16 h,

which resulted in a culture of �5 � 107 cfu mL�1. An aliquot

(5 mL) of the culture was harvested by centrifugation at 4810g

for 10 min. The supernatant was removed and the pellet was re-

suspended in 50 mL of sterile saline solution and centrifuged at

4810g for 10 min, the supernatant was removed and this process

was repeated two further times. The pellet was re-suspended in

50 mL of sterile saline solution and used for the artificial

contamination of the pork.

Sample collection

A total of 33 boneless pork chops (weight 200–300 g) were used

in the initial experiment. They were purchased from a local

supermarket. Each pork chop was sampled to provide a unified

surface area of 12–14 cm2 followed by a process of butterflying

into two pieces with equal surface area. In butterflying the meat is

cut laterally and as spoilage organisms are not intramuscular this

provides a virtually sterilized surface for the study. For each

piece of pork, a digital photo was taken alongside with a ruler.

The number of pixels on the pork surface was counted and

divided by the number of pixels within one cm2 area (estimated

from the ruler in the same photo), thus providing an estimation

of the surface area of the pork. Each piece of pork was placed in

a large glass Petri dish lined with sterilized filter paper (Whatman

grade 40 cat. no. 90-7501-06) to which 2 mL of sterilized saline

solution (0.9% NaCl, w/v) was added to act as a moisture source

and prevent the surface of the meat from drying out. The

matched pieces of meat from the same pork chop were used as

either a control or an artificial contamination surface. To the

control sample, an aliquot (1 mL) of sterilized saline solution was

added and the sample was incubated to allow the natural

spoilage to progress. To the other piece, 1 mL of saline

suspension of S. typhimurium (vide supra) was added and spread

by using a sterile plastic loop. The Petri dishes were covered and

incubated at 25 �C for various time points. A total of 11 time

points were monitored: 0, 12, 24, 28, 32, 36, 40, 44, 48, 60 and

72 h during the incubation. At each time point, the biomass from

the surface of 3 pork chops, i.e. 6 pieces were harvested using

sterile swabs. Two swabs were used for each piece of pork and

both were transferred directly into 1 mL of ice-cold methanol

stored on dry ice (�48 �C). The suspension was extracted with

three freeze–thaw cycles (frozen in liquid nitrogen and allowed to

thaw on dry ice). The suspensions were then centrifuged at

16 060g, at �9 �C for 5 min. The supernatants were immediately

lyophilised and subjected to GC-MS analysis (see below). A

second experiment was performed approximately 6 months after

the first experiment, the sample collection procedures were the

same with the exception that only 4 time points were monitored:

0, 24, 48 and 72 h after the contamination. Samples from 6 pork

chops were collected for each time point with 50% of the samples

being applied as the controls and the other 50% applied as

contaminated with Salmonella. Total viable counts (TVCs) were

also performed in this experiment. This was performed by har-

vesting the microbial load from a 1 cm2 area (randomly selected)

of each pork piece using a sterile swab and transferred it into

1 mL of sterilized saline solution. The TVC data were hereby

obtained using the plate count method.3

GC/MS analysis

An aliquot of 1000 mL of each metabolite extract was spiked with

100 mL of internal standard solution (0.19 mg mL�1 succinic d4

acid, 0.27 mg mL�1 malonic d2 acid and 0.22 mg mL�1 glycine d5

in HPLC grade water) and then lyophilised in a HETO VR

MAXI vacuum centrifuge attached to a HETO CT/DW cooling

trap (Thermo Life Sciences, Basingstoke, UK). Samples were

subsequently derivatized in two stages. An aliquot (50 mL) of

20 mg mL�1 O-methylhydroxylamine solution in pyridine was

added and heated at 60 �C for 45 min followed by adding an

aliquot (50 mL) of MSTFA (N-acetyl-N-(trimethylsilyl)-tri-

fluoroacetamide) and then heating at 60 �C for 45 min. A

retention index solution was added for chromatographic align-

ment (20 mL, 0.6 mg mL�1 C10/C12/C15/C19/C22 n-alkanes).

The samples were analyzed in a random order by employing

a GC/TOF-MS (Agilent 6890 GC coupled to a LECO Pegasus

III TOF mass spectrometer) using a previously described method

for yeast footprint samples.14 Raw data were processed using

LECO ChromaTof v2.12 and its associated chromatographic

deconvolution algorithm, with the baseline set at 1.0, data point

averaging of 3 and average peak width of 2.5. A reference

database was prepared, incorporating the mass spectrum and

retention index of all metabolite peaks detected in a random

selection of samples (one sample per contamination or time-

point class) so to allow detection of all metabolites present,

whether or not expected from the study of bibliographic data.

Each metabolite peak in the reference database was searched for

in each sample and if matched (retention index deviation < �10;

mass spectral match > 750) the peak area was reported and the

response ratio relative to the internal standard (peak area-

metabolite/peak area-succinic d4 acid internal standard) calcu-

lated. These data (matrix of N samples � P metabolite peaks)

representing normalised peak lists were exported in ASCII

format for further analysis. Metabolites were definitively

Analyst This journal is ª The Royal Society of Chemistry 2010
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identified15 by matching the mass spectrum and retention index

of detected peaks to those present in the mass spectral library

constructed at the University of Manchester.16 A match is

defined as a match factor greater than 750 and a retention

index �10.

Data analysis

We employed a three-way model named PARAllel FACtor

analysis 2 (PARAFAC2)17,18 to model the data generated by the

two experiments. PARAFAC2 is an extension of the well known

PARAFAC model,19–21 a generalization of principal component

analysis22 to the situation where a series of matrices to be

analysed (e.g. a three-way matrix). In PARAFAC, it models

a 3 dimensional matrix X with a dimension of (I � J � K) as

a summation over R outer products of triads of vectors where R

is the number of PARAFAC components. For the kth (k ¼ 1,

2,., K) ‘‘slab’’ (e.g., all the sample at one certain time point) Xk

in X, PARAFAC decompose it into a product of two loadings

matrices as shown in eqn (1):

Xk ¼ FDkAT + 3k (1)

where F is the loadings matrix of the row units (e.g., samples), A

is the loadings matrix of the column units (e.g., the peak areas of

the metabolites), Dk is the weight scalar for the kth slab and 3k is

the residue matrix of the kth slab. In PARAFAC related litera-

tures, row units is normally named mode 1, column units is

named mode 2 and a diagonal matrix D, which contains the

weights of all the slabs on its diagonal, is named mode 3, while F,

D and A are called the loadings of mode 1, 3 and 2 respectively.

PARAFAC fits the three-way matrix X by minimizing each of

the 3k and this is typically achieved by using an alternative least

square optimization.

However, PARAFAC requires that the size of each slab has to

be exactly the same which sometimes cannot be met, even with

a balanced experiment design (e.g., a few samples may have failed

to be derivatized and cannot generate good GC/MS data).

PARAFAC2 was developed to cope with such problem and

allows one dimension (normally rows, containing the samples) to

be unequal between different slabs. The PARAFAC2 model is

given by

Xk ¼ FkDkAT + 3k (2)

Instead of giving a global loadings matrix for mode 1, PAR-

AFAC2 gives K loadings matrices, one for each slab, and each

matrix may have different rows which matches the original size

of X. By using PARAFAC2, a minor sample lose can be afforded

without the need to ‘‘trim’’ the whole 3-D data matrix to make

each slab equal.

In this study, two samples were lost during the first experiment

and therefore a flexible PARAFAC2 was needed. We re-

arranged the data matrix into a three-way matrix as illustrated in

Fig. 1, then employed a PARAFAC2 model to fit the data. Using

this model, the relative distribution of the samples at each time

point can be revealed at loadings plots of the mode 1, the load-

ings of mode 2 can help identifying potential interesting variables

(i.e., metabolites), while the loadings of mode 3 (i.e., the weight of

each slab) reveal the global change of metabolic profiles over

time. The number of PARAFAC2 components was 2 as once 3 or

more components were used, the results appeared to be very

unstable (i.e., different runs generated different results), indi-

cating too many components were introduced causing distor-

tions. Once the model was built, the separation between two

types of samples, viz. S. typhimurium contaminated and natural

spoiled samples, at each time point was measured using

a Hotelling T2 statistic23 using the model 1 loadings. Two

PARAFAC2 models were built, one for each experiment, with

the same parameter setting and the results were compared.

Although mode 2 of the PARAFAC2 model can help identi-

fying potentially interesting metabolites as stated above, it

provides no statistical assessment of the metabolites. Hence we

also employed univariate statistics test to identify statistically

significant metabolites from the two experiments. Since the two

experiments have different sample compositions, different

statistical tests have to be used. For the first experiment, we

monitored a fairly large number of time points (11 in total) while

the number of samples at each time point is rather limited (6 in

total, 3 for each type). In this dataset, the peak areas of each

metabolite of the same type of samples at the same time point

were averaged and resulted in 11 pairs of averaged peak areas

indicating the difference of the abundance of a certain metabolite

at each time point. A paired two-sample Wilcoxon signed rank

test24 was then employed to identify the metabolites which

showed significant difference between two types of samples. Since

the number of levels (time points) is larger than the number of

samples at each level in this experiment, it is difficult to identify

the metabolites which showed significant difference between

different levels based on the data obtained from this experiment.

For the second experiment, a reduced number of time points (4 in

total) was monitored while the number of samples at each time

point was doubled which makes it more suitable for statistics test.

We employed a non-parametric two-way ANOVA test (Fried-

man’s test)25 to identify metabolites which showed significant

differences between different types of samples or different time

points or both. Since the statistics tests were used for multiple

hypothesis testing (i.e. simultaneously testing a family of vari-

ables/metabolites), the significant threshold of p-values was

adjusted by using false discovery rate (FDR)26 to control the

increased chance of type I error (false positive).

Fig. 1 Illustration of PARAFAC2 model. Mode 1 details information

about the samples that have been analysed (e.g. naturally spoiled and

contaminated with a food poisoning pathogen), Mode 2 details the

variables (in this case identified metabolites), and Mode 3 the time course

of the experiment (e.g. 11 time points from 0–72 h in the first experiment).
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Results and discussion

In both experiments, a distinct odour can be smelt after 24 h of

incubation and such odour intensified rapidly afterwards. After

48 h of incubation the odour developed into a very unpleasant

putrid smell, indicating the onset of proteolysis. Transparent to

light green slimes could be seen on the surface of the pork from

36–48 h onwards. Few visual differences were observed between

naturally spoiled pork and those contaminated by Salmonella

after 48 hours. The total viable counts at 0, 24, 48 and 72 h in the

second experiment are provided in Table 1. The TVCs increase as

spoilage progresses to a level of approximately 108 to 109 cm�2

after 72 h of incubation. The increase in TVC was different for

the two types of spoilage with the naturally spoiled meat showing

higher TVCs at each time point.

A total number of 126 peaks were detected from the first

experiment while 116 peaks were detected from the second

experiment from the GC-MS analysis. In multivariate analysis,

principal component analysis (PCA) is the most commonly used

tool to gain an intuitive view of the multivariate data. However,

when there are 2 or more underlying influential factors PCA is

not always the best method to reveal the influence of these

factors. In this study there are two factors of interest, these are

the progression of spoilage and the type of samples (natural vs.

Salmonella spoilage). As suggested by Cattell,27 when classical

factor analysis models like PCA are applied to such dataset, the

latent factors obtained will be ‘‘neither clear species differentiator

nor optimal individual differentiators’’. A three-way model is

most suited to the data generated in this study such that the

influential parameters i.e., time, experimental conditions (natural

spoilage and Salmonella contamination) and progression of

spoilage can be investigated individually. The influence of time,

i.e. the progression of spoilage, can be explicitly modelled by

adding a third dimension into the model (mode 3) whilst sepa-

rating it from the influence of the experimental condition i.e.

natural spoilage and salmonella contamination which are

modelled in mode 1 (Fig. 1). The plots of the loadings of mode 1

which models the relative position of the samples at each time

point from the PARAFAC2 model based on the data from the

first experiment are shown in Fig. 2. For brevity, only 4 time

points: 0, 28, 32 and 72 h of the mode 1 loadings were shown in

Fig. 2(a) and this illustrates that the separation of the sample

types (S. typhimurium contaminated and natural spoiled)

becomes greater as the spoilage progresses. This trend is easier to

see by plotting the Hotelling’s T2 statistics which measures the

separation between two types of samples against time as shown

in Fig. 2(b). The Hotelling’s T2 statistics allows a p-value to be

calculated. If one considers p < 0.05 as ‘‘significant’’, it appears

that in this experiment between 32 and 36 h (and later time

points) after the contamination, the sample types (contaminated

vs. naturally spoiled) can be ‘‘significantly’’ separated. Note that

at each time point the TVCs (Table 1) are equivalent so this is not

Table 1 Average total viable counts per cm2 from the 4 time points
monitoreda

0 h 24 h 48 h 72 h

Nb 0–500 1.9 � 107

(1.8 � 106)
3.9 � 108

(5.1 � 107)
1.5 � 109

(9.5 � 107)
Cc 4.8 � 105

(5.7 � 104)
1.4 � 107

(5.1 � 106)
2.3 � 108

(9.5 � 106)
5.3 � 108

(1.3 � 107)

a The standard deviations of the TVCs are given in the parentheses. b N:
naturally spoiled samples. c C: S. typhimurium contaminated samples.

Fig. 2 (a) PARAFAC2 mode 1 loadings plot from the first experiment:

C ¼ Salmonella contaminated samples; N ¼ natural spoiled samples; (b)

Hotelling’s T2 statistics versus time, the value corresponds to p¼ 0.05 was

marked by a horizontal line and (c) the first component in the PAR-

AFAC2 mode 3 loadings plotted against time.
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a bacterial load influence but a metabolic difference, i.e. different

types of samples appeared to have different metabolic profiles.

Due to the restricted sample size, the statistical implication of the

p-value derived from the Hotelling’s T2 statistics is limited and

can only be used for reference purpose, therefore in the second

experiment we increased the number of samples at each sampling

point. The mode 3 loadings plot (Fig. 2(c)) showed an approxi-

mately monotonically increasing trend which suggests that the

abundance of the majority of the metabolites was increasing as

the spoilage progressed, and thus can be used as indicator for the

progression of the spoilage. The increase in the general abun-

dance of metabolites is most likely caused by the increase in the

abundance of the microorganisms on the surface of the meat as

shown in the TVC data (Table 1).

The mode 1 loadings plot from the PARAFAC2 model based

on the second experiment is shown in Fig. 3(a) which showed

a similar trend as observed in the first experiment (Fig. 2). The

inclusion of multiple replicates increases the statistical power of

the Hotelling’s T2 statistics, and allows a clear discrimination of

the early sample points (24 h) after the contamination (p < 0.05)

as shown in Fig. 3(b).

By applying a paired t-test on the data from the first experi-

ment, 16 peaks were identified as significant when the false

discovery rate (FDR) was set to 0.05; 12 of these peaks were

chemically identified by the matching of mass spectra to those in

metabolomics-specific mass spectral libraries. The two-way

ANOVA test with the FDR set to 0.05 on the data from the

second experiment suggested that nearly half of the metabolite

features (55 out of 116 detected peaks) showed significant

differences between different time points. The majority of peaks

showed a monotonically increasing trend which matched the

trend shown in the mode 3 loadings plot from the PARAFAC2

model based on the data from the first experiment (Fig. 2 (c)). In

addition, 16 peaks were identified as significant and 11 of them

were definitively identified through mass spectra matching.15,16

Among these 11 metabolites with chemical identifications, 6 of

them were also detected and identified as significant in the first

experiment. In addition, there is one compound (inosine) which

was identified as significant in the first experiment but not

significant in the second experiment. It seems that this compound

was not detected in 33 of 48 samples analysed in the second

experiment. This is most likely a result of the metabolite

concentration being lower than the analytical limit of detection.

The 17 significant (identified as significant in either of the 2

experiments) and identifiable metabolites are detailed in Table 2

with an indication as to if they are increased in natural spoilage

relative to S. typhimurium contaminated meat, or vice versa; the

time trajectories for these metabolites are shown in the ESI†. In

addition to these a further 9 metabolite features (peaks) were

significant but remain unidentified. Ignoring the differences

between natural vs. contaminated meat, many of the metabolites

identified are due to proteolysis occurring after 24 h. This is

associated with the post-glucose utilization of amino acids by

pseudomonads and is coincidental with organoleptic changes

indicating the production of malodorous protein breakdown

products.2 Several amino acids (valine, tryptophan, aspartic acid,

lysine and glycine), amino acid derivatives (hydrocinnamic acid

from microbial action in the phenylalanine pathway) and creat-

inine (a breakdown product from general enzymatic proteolysis)

all increase (see ESI†) after 24 h. Methylmalonic acid is a product

from the metabolism of fat and protein and also increases after

24 h. In addition, several fatty acids increased during the spoilage

process and these included dodecanoic acid, tetradecanoic acid,

hexadecanoic acid, octadecenoic acid and ethanolamine (which

produces an ammoniacal odour). The production of fatty acids is

likely to result from the breakdown of meat and incorporation

into the lipid membrane of the bacteria that are growing on the

meat surface.

With respect to differences between S. typhimurium contami-

nation and natural spoilage it is clear that several amino acids are

increased in Salmonella contamination relative to natural

spoilage and these include aspartic acid, lysine and glycine, whilst

lysine, valine and tryptophan are increased during natural

spoilage. It is known that bacteria utilise amino acids preferen-

tially and in a species specific manner28 and this information

could be used to differentiate this food poisoning bacterium from

background harmless microflora. In addition, the same is also

the case for fatty acids content in bacteria and hexadecanoic acid

could be a marker for S. typhimurium contamination. However,

from this study there is no direct evidence of this and future

studies will be targeted at the amino acid utilisation pattern from

S. typhimurium strain 4/74, and also undertake a fatty acid

profile.

Fig. 3 (a) PARAFAC2 mode 1 loadings plot from the second experi-

ment: C ¼ Salmonella contaminated samples; N ¼ natural spoiled

samples; (b) Hotelling’s T2 statistics versus time.
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Conclusion

In this study we have conducted two independent experiments

which were separated by a period of 6 months to explore the

possibility of applying metabolic profiling to characterise the

hygiene status of pork chops which undergo a spoilage process.

The results from the PARAFAC2 analysis on the two experi-

ments appeared to be highly consistent. The mode 3 loadings

from the PARAFAC2 analysis as well as the non-parametric

two-way ANOVA test (Friedman test) suggested that the

intensities of the majorities of the metabolites generally increased

over time and reflects the fact that as the spoilage progresses, the

microbial load increases and hence the metabolites from the cells

become more abundant in the extraction solvent. More inter-

estingly, the mode 1 loadings from the PARAFAC2 suggested

that the salmonella contaminated samples have metabolic

profiles which are different from those acquired from naturally

spoiled meat. Such differences can be observed as early as 24 h

after contamination at room temperature and the findings were

consistently observed in the two independent experiments. By

employing statistical tests, 17 metabolites were discovered which

showed significant differences between two types of samples and

6 of these were identified as significant in both experiments.

These included valine, creatinine, tetradecanoic acid, hex-

adecanoic acid, and octadecenoic acid. In further studies we shall

employ a targeted approach to quantify the changes of the 6

metabolites highlighted in this investigation and also test their

validity as biomarkers against the contamination of other closely

related strains (e.g. Escherichia coli). Our investigation demon-

strates the use of metabolic profiling as a tool to discriminate

between natural spoilage and pathogenic microorganisms

without the need for time-consuming and laborious methods

traditionally employed in microbiology to detect pathogenic

microorganisms. The outlined method provides valuable infor-

mation for tracing the source of accidental or intentional

contamination of food products by pathogenic and natural

spoilage microorganisms. Although this study focused on

S. typhimurium detection, our metabolic profiling technique

could readily be applied to detect other commonly observed

foodborne pathogenic bacteria that are involved in food

poisoning such as Campylobacter jejuni, E. coli, Bacillus cereus,

Staphylococcus aureus, and Listeria monocytogenes.
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Abstract Surface-enhanced resonance Raman scattering
(SERRS) spectra of aqueous solutions of the triphenyl-
methane dye methyl green have been obtained for the first
time by use of citrate-reduced silver colloids and a laser
excitation wavelength of 632.8 nm. Given the highly
fluorescent nature of the analyte, which precluded collec-
tion of normal Raman spectra of the dye in solution and
powdered state, it was highly encouraging that SERRS
spectra showed no fluorescence due to quenching by the
silver sol. The pH conditions for SERRS were optimised
over the pH range 0.5–10 and the biggest enhancement for
SERRS of this charged dye was found to be at pH 2.02,
thus this condition was used for quantitative analysis.
SERRS was found to be highly sensitive and enabled
quantitative determination of methyl green over the range
10−9 to 10−7 mol dm−3. Good fits to correlation coefficients
were obtained over this range using the areas under the
vibrational bands at 1615 and 737 cm−1. Finally, a limit of
detection of 83 ppb was calculated, demonstrating the
sensitivity of the technique.

Keywords pH .Methyl green . Silver sol . Surface-enhanced
resonance Raman spectroscopy (SERRS)

Introduction

Methyl green is a triphenylmethane dye used for identifi-
cation of DNA, RNA, and other cell components; in

histology it is a particularly useful counterstain that stains
nuclei light green [1–7]. This dye has also been used for
routine staining of biopsies from lymphoid glands to enable
clinical pathologists to identify pyroninophilic cells [8] and
has also been used to reveal sites of developing cartilage in
human embryos [9].

Surface-enhanced resonance Raman scattering (SERRS)
spectra of aqueous solutions of methyl green have been
obtained in order to investigate the sensitivity of the
technique as an alternative probe for the dye, and the
concentration dependence of the signal intensities for
quantitative analysis.

The theory of the SERRS effect has been outlined by
Mullen et al. [10]. Briefly, SERRS signal enhancement
arises from a combination of signal intensification via
resonance Raman scattering (RRS) [11] and surface-
enhanced Raman scattering (SERS) mechanisms [12–14]
which in combination can increase the efficiency of the
Raman scattering process by 1010-fold or greater [15, 16].
SERS and SERRS have found wide utility as sensitive
analytical and bioanalytical tools [17–20]. For maximum
sensitivity, SERRS requires controlled aggregation of the
colloidal sol used [21]. Surface enhancement of the Raman
signals depend on the size of the colloidal particles [22], pH
[23, 24], and the excitation wavelength employed. The
surface plasmon absorption bands of metals such as silver
and gold show wavelength-dependent shifts with metal
particle size and a surface enhancement effect is achieved
by choosing the Raman excitation wavelength to lie within
the contour of the plasmon band [25].

The inability to interrogate intrinsically highly fluo-
rescent molecules (for example methyl green) by Raman
spectroscopy in the visible to near infrared (here defined
as 488–830 nm because of the ready availability of
lasers) can be overcome by using several alternative
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Raman analytical techniques. These include, but are not
restricted to, the use of Fourier-transform (FT) Raman at
1064 nm excitation or deep UV resonance Raman below
260 nm [26, 27], anti-Stokes vibrational bands, shifted
subtractive Raman spectroscopy [28], and the use of the
Kerr gate effect in time-resolved Raman spectroscopy
[29]. In addition, surface-enhanced methods (viz. SERS
and SERRS) can also be used to overcome both
fluorescence and the analytically (relative) low sensitivity
generally associated with Raman scattering of molecules
in solution. Different kinds of media/substrates can be
used to obtain SERS and/or SERRS signals of analytes.
These include, for example, roughened electrodes [30],
silver and gold colloids [31], nanoshell colloids [32], and
so-called “gel-colls” which employ a hydrophilic swelling
polymer (such as polyacrylic acids) in combination with a
metal colloid [33].

Although the average SERS signal enhancement of
molecules adsorbed on SERS-active silver surfaces has
normally been measured to lie in the range 105–106, it has
been known for some time that the SERS enhancement can
be 1010 (or greater) in specific “hot spots” [16]. The observed
SERS signal enhancement is currently hypothesized to be
caused by a combination of effects: “classical electromag-
netic field (EM) enhancement” and “the chemical effect”.
The former refers to surface-plasmon polariton resonances in
colloidal systems such as silver colloidal particles (and nano-
particles of a few other metals) used as SERS substrates. The
chemical effect, actually due to a combination of effects, is
primarily a “first-layer effect” caused by dynamic (i.e.
optically excited) electron (or hole) transfer from the metal
to the LUMO (or HOMO) of the adsorbed analyte(s) in the
first monolayer of the metal (e.g. silver) sol [34, 35].

In previous investigations we carried out SERS and
SERRS studies on a wide range of dyes belonging to different
structural classes and illustrated the power of Raman
spectroscopy, when coupled with a surface enhancement
effect, for characterisation of these dyes [23, 36–40]. In the
current investigation reported herein we investigated SERRS
spectroscopy, with laser excitation at 632.8 nm, to generate
information-rich spectra from the triphenylmethane dye
methyl green (Fig. 1). We investigate the pH dependence
of the dye solutions for generating good SERRS. Following
this optimisation we used these conditions for quantitative
analysis of the dye.

Experimental

Reagents

Methyl green (Aldrich), poly(l-lysine) hydrobromide, Mr

4,000–15,000 (Sigma), silver nitrate (BDH), trisodium

citrate, sodium hydroxide, and hydrochloric acid (Fisher)
were of analytical grade. The dye was used without further
purification. Double-deionized water was used for all
experiments.

Methyl green solutions

Aqueous solutions of the dye in the concentration range
10−9–10−3 mol dm−3 were prepared in double-deionised
water. Samples were always made up fresh, immediately
before analysis was carried out.

Colloid preparation

A silver colloid was prepared according to a modified
Lee-Meisel procedure [25, 41]. All glassware was acid-
washed with aqua regia (HNO3-HCl, 1:3v/v) followed by
gentle scrubbing with a soap solution. Silver nitrate
(90 mg) was suspended in 500 mL deionised water at
45 °C and rapidly heated to boiling before addition of a
1% solution of trisodium citrate (10 mL) under vigorous
stirring. The solution was held at boiling for 90 min with
continuous stirring. The quality of the resulting colloid
was checked by determining the wavelength of the
absorption maximum in the visible region on a Perkin-
Elmer Lambda-2 UV-visible spectrometer. Good quality
silver colloids for SERS apparently have an absorption
maximum at approximately 404 nm and this peak has a
full width half height (FWHH) of ~60 nm [41] which
demonstrates a narrow distribution of the particles. In
addition, a Jeol JEM-200CX transmission electron micro-
scope was used to inspect the colloids and revealed a
mean of diameter of 50 nm (±1 nm standard deviation) for
citrate-reduced sols (see Fig. 2 for an example TEM
image). The nature of the Lee-Meisel colloid [15, 42],
has been examined using visible absorption, photon

C

NCH3
+

CH3

2Cl-

xZnCl2.

NCH3+

CH2CH3

CH3

CH3N

CH3

Fig. 1 Schematic diagram of the structure of methyl green
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correlation, and NMR spectroscopic techniques (data not
shown) which confirm that the surface of the silver
particles are covered with a layer of citrate with pendent
negatively charged groups. As the methyl green dye itself
is negatively charged (Fig. 1) and would repel the colloid,
the subsequent addition of poly(l-lysine) coats the surface
with pendent positively charged groups on the colloidal
surface [43] thus allowing colloid and dye to aggregate.
We thus adopted this approach to obtain good SERRS
signals from the methyl green dye.

Sample preparation

Aggregation of the silver colloid particles was induced by
poly(l-lysine). An aqueous solution of poly(l-lysine)
(0.01%, 150 μL) was added to 1 mL silver colloid which
had been diluted with 1 mL deionised water, followed by
150 μL methyl green solution and 35 μL of a 1 mol dm−3

aqueous solution of either HCl or NaOH. For quantification
(vide infra) all the SERRS spectra were collected three
times using the same analyte, colloid, and aggregating
agent prepared three times; all measurements were made on
the same day.

Instrumentation

Raman spectra were obtained using a Renishaw (Old
Town, Wotton-under-Edge, Gloucestershire, UK) System
2000 Raman microscope, with a resolution of ~6.5 cm−1.
A 20-mW 632.8 nm HeNe laser source was used for
all measurements and there was ~2 mW power at the
sample. All SERRS spectra were collected by using
180° back-scattering geometry. An Olympus microscope
objective of magnification 50× was used both to focus
the incident laser light and to collect the back-scattered
Raman light.

SERRS pH dependence

A series of SERRS spectra from 10−7 mol dm−3 methyl
green dye were collected over the pH range 0.5 to 10.0. The
optimum pH conditions were determined by plotting the
logarithm (log10) of peak area of the vibrational band at
1615 cm−1 from methyl green vs. pH.

Reproducibility/time dependence

Following mixing of the dye solution with the silver sol and
aggregation of the colloidal particles, SERRS signal intensi-
ties of methyl green grew with time until after ~5 min when
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Fig. 3 A typical unprocessed (raw data) SERRS spectrum of 8.1×
10−6 mol dm−3 methyl green using an excitation wavelength of
632.8 nm and a laser power at the sample of 2 mW. Vibrational bands
at 797 cm−1 and 1615 cm−1 used for quantitative analysis are indicated
by arrows

Table 1 Tentative SERRSa vibrational band assignments for methyl
green

Wavenumber (cm−1) Tentative band assignments

797 CH3 stretching vibration

1369 CH3 sym deformation

1400 CH3 antisym deformation

1445 CH3 antisym deformation

1479 CH2 scissoring

1603 Ring stretch

1615 Ring stretch

1620 C=C stretch

a λexc 632.8 nm

Fig. 2 Representative TEM image of citrate-reduced sols (magnifi-
cation×50,000)
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they remained constant. Therefore all spectra were collected
5 min post-aggregation.

Quantification of methyl green

The concentration-dependence of the SERRS signal from
methyl green was determined by plotting the logarithm
intensity (peak area) vs. the logarithm of methyl green
concentration. For quantitative analysis the area under the
vibrational bands at 1615 and 797 cm−1 were used; this was
because all the other bands showed very similar trends and
similar limits of detection (data not shown).

Results and discussion

All Raman and SERRS spectra were collected using
exciting radiation of 632.8 nm on a Renishaw 2000 Raman
microspectrometer. Because of the highly fluorescent nature
of the methyl green dye normal Raman spectroscopy of the
dye in the solution and solid state revealed strong
fluorescence backgrounds (data not shown) and an absence
of any Raman vibrational bands. By contrast, strong
vibrational bands were observed at 201, 483, 755, 797,

1218, 1369, and 1615 cm−1 (Fig. 3) from the dye in
solution. Tentative vibrational band assignments are given
in Table 1. The excitation wavelength of 632.8 nm lies
within the strong electronic absorption band centred on
635 nm, so these spectra are resonance-enhanced and
surface enhanced from the silver colloid. In addition, it
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Fig. 5 (a) Methyl green in the concentration range 2.14×10−10 to
2.20×10−4 mol dm−3. SERRS vibrational bands used for analysis are
1615 cm−1 (squares) and 797 cm−1 (circles). (b) Linear region used
for semi-quantitative analysis in the concentration range 10−10 to
10−7 mol dm−3 (see Table 1). The excitation wavelength was
632.8 nm, and the laser power at the sample was 2 mW. Points
represent averages from three measurements and error bars represent
the standard deviation

Table 2 Analytical data obtained from linear regression for analysis of methyl green using SERRS at 632.8 nm

Linear regions for calculations below

Band Slope Intercept Correlation
coefficient (R)

Concentration range
(mol dm−3)

RSD
(±)

Orders of
magnitude

Χ2 LODa

(ppb)

1615 cm−1 1.51 17.46 0.992 10−9–10−7 0.139 2 0.016 117

797 cm−1 1.36 15.76 0.993 10−9–10−7 0.114 2 0.06 83

a Limits of detection (LOD) were determined by taking three times the standard deviation of the intercept (of non-log plots) and dividing by the
slope, as adopted by Womack et al. [45]
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Fig. 4 SERRS pH profile for methyl green using a dye concentration of
5.5×10−7 mol dm−3. Logarithm (Log10) intensity (peak area) of the
632.8 nm-excited SERRS vibrational band at 1615 cm−1 of methyl green
is plotted against the pH. The optimum SERRS response is indicated by
an arrow. Points represent averages from three measurements
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was also encouraging to observe in these and all the
SERRS spectra collected that the fluorescence was com-
pletely quenched.

As one can observe from the chemical structure of
methyl green (Fig. 1) this dye is a charged molecule and its
ionisation state depends on the pH of the surrounding
medium. It has been recently demonstrated that the
SER(R)S response is dependent on the pH of the solution
of the analyte [23, 24], and therefore we decided to
conduct a “pH profile” of the methyl green in order to
optimise the signal enhancement. In this optimisation all
conditions were kept constant except the pH which was
adjusted using NaOH and HCl to lie between pH 0.5 and
10.0. The dye concentration was 5.5×10−7 mol dm−3 and
the largest surface and resonance-enhanced peak at
1615 cm−1 was used to assess signal enhancement. Figure 4
shows the pH profile from this set of SERRS spectra and
it was interesting to note that good SERRS spectra can
be obtained for methyl green over the whole pH profile.
Moreover, the optimum pH was found to be 2.02 and
this was used for quantification of methyl green.

SERRS spectra of methyl green were collected over the
concentration range 5×10−9 to 5×10−4 mol dm−3. Plots of
the area under two SERRS peaks at 1615 cm−1 and
797 cm−1 that gave good reproducibility are shown in
Fig. 5a; these bands are chosen for illustrative purposes
because very similar results were obtained for all other
bands (data not shown). In this figure it can be seen that the
signal enhancement reaches a plateaux after 10−7 mol dm−3

and this was because of the coverage of the colloidal silver
particles being in excess of full monolayer of the dye, a
phenomenon that we have observed previously [44]. The
region from 10−9 to 10−7 mol dm−3 shows very good
linearity (in this log-log plot) over two orders of
magnitude (Fig. 5b) and this is confirmed using correla-
tion coefficients and error measurements on the repeated
acquisition (three in total) over this range (see Table 2 for
the statistics). In Fig. 5b the mean peak areas of each
vibrational band at 1615 cm−1 and 797 cm−1 are shown,
with standard deviation error bars. The percentage
difference for the three replicates was ~3% which is
excellent for SERRS. We note that the slope of these two
measurements was slightly different (Table 2); for the
band at 1615 cm−1 this was 1.51 whereas for the 797 cm−1

band it was 1.36. This could indicate different mecha-
nisms for the two lines (i.e., a mixture of electromagnetic
versus chemical enhancement) but there was no direct
evidence of this.

The limits of detection (LOD) were determined by
taking three times the standard deviation of the intercept
(of non-logged plots) divided by its slope, as adopted by
Womack et al. [45] and used by us previously [23, 36–40].
These calculations are shown in Table 2 for the two bands

and it is clear that the LOD for SERRS was 83 ppb
(10−9 mol dm−3) for the band at 797 cm−1.

In conclusion, this is the first study to show SERRS
from the triphenylmethane dye methyl green. SERRS has
been shown to be a very sensitive technique for quantitative
determination of methyl green with the advantage of
fluorescence quenching by the silver colloids. The benefits
of the SERRS technique are clearly demonstrated in that it
was not possible to obtain normal Raman spectra of the dye
in the solution and solid states. For quantitative analysis
good linear fits over the 10−9 to 10−7 mol dm−3 range were
observed. For this molecule SERRS spectra could also be
obtained across a broad pH range, and the optimum pH was
calculated to be 2.02. Thus we have clearly demonstrated
excellent SERRS spectra of aqueous solutions of methyl
green in order to investigate the sensitivity of the technique
as an alternative probe for the dye. Future work will
concentrate on investigating SERRS of this dye in
histological sections.
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Quantitative Analysis of the Banned Food Dye Sudan-1 Using Surface Enhanced Raman
Scattering with Multivariate Chemometrics†
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Sudan-1 has been used for coloring food. However, recent alarms worldwide about the carcinogenic and
mutagenic properties of azo-compounds have led to concerns over their human consumption. In the U.K. in
2005, over 570 products were found to be contaminated with the azo dye Sudan-1 and this and the health
risks associated with this dye resulted in the subsequent international ban of this additive in all foodstuff, at
all levels, relating to human consumption. These incidents have also necessitated the need for high throughput
low cost reliable approaches for the detection and quantification of food contaminated by such azo compounds.
While there are a small number of analytical techniques that can be considered portable, many lack sensitivity.
By contrast, we show that employing a portable Raman spectrometer, using surface enhanced Raman scattering
(SERS), can provide good sensitivity, such that Sudan-1 can be quantified in a complex food matrix reliably
over the range of 10-3 to 10-4 mol L-1. We also demonstrate that a variety of multivariate approaches including
principal components analysis (PCA), partial least-squares (PLS) regression, artificial neural networks (ANNs),
and support vector regression (SVR) can be employed for the chemical analysis of this dye in a quantitative
manner. Compared to the commonly used univariate approaches, where the area under a single band in assessed,
the advantage of using multivariate approaches is that these algorithms can analyze the full spectra directly
and the laborious task of selecting and integrating marker appropriate quantitative spectral bands can be
avoided thus greatly simplifying and speeding up data analysis.

Introduction

Sudan-1 (1-phenylazo-2-naphthol; Figure 1) is a synthetic azo
compound with orange red appearance, widely used as a
coloring agent with many commercial applications. It is com-
monly found in printing ink, color waxes, oils, petrol, solvents,
plastics and polishes, as well as foodstuffs.1 However, azo dyes
have demonstrated significant carcinogenic and mutagenic
properties, inducing tumors in the liver and bladder of mice,
rats, and rabbits.1-7 It has therefore been classified as a third
category carcinogen by the international agency for research
on cancer (IARC).

However despite this, several high profile international
incidents involving the use of Sudan-1 were documented in the
past decade. In India in 2003 Sudan-1 was detected in hot chilli
products resulting in the U.K.’s food standard agency (FSA) to
implement measures for the detection of Sudan-1 for all chilli
products originating from India. In China in 2005, Sudan-1 was
found in numerous foodstuffs from chilli oil and powder,
chicken fast food shops, and turnip pickles causing widespread
panic.8 In the same year in the U.K., a Worcestershire sauce
product was found to be contaminated by Sudan-1, which was
latter traced back to adulterated chilli powder used in its
production. This product was widely used in many supermarket
products such as pizzas and in numerous ready meal products,
leading to over 570 products having to be taken off the shelves.
More recently Sudan-1 has also been detected in several dried
spices products in South Africa forcing them to implement
measures similar to India, China, and U.K. for the detection of

Sudan-1 within their foodstuffs. Despite the international ban,
these incidents have highlighted the need for a rapid, low cost,
reliable method for the detection of Sudan-1 in contaminated
foods.

Extensive literature is available for the detection of Sudan-1
in contaminated foodstuffs, most of which involve the use of
liquid chromatography-based instrumentation for chromato-
graphic separation of Sudan-1 from its food matrix and
subsequent detection by various detectors. These include HPLC-

† Part of the “Martin Moskovits Festschrift”.
* To whom correspondence should be addressed. E-mail: roy.goodacre@

manchester.ac.uk. Tel: +44 (0) 161 3064480.

Figure 1. Raw SERS spectrum of Sudan-1 (6.4 × 10-5 mol-1 dm3)
with a blank of colloid. Inset is the chemical structure of this azo dye,
with tentative assignments for the three highlighted bands, where vib.
) vibration, def. ) deformation, and str. ) stretch.
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UV/vis,9,10 HPLC fluorimetry,11 flow injection chemilumines-
cence,12 HPLC/APCI-MS/MS,13,14 and HPLC/ESI-MS/MS.15,16

In addition, a novel method for sample extraction has also been
reported using molecularly imprinted solid phase extraction,17

and the use of a glass carbon electrode has also been applied
for the detection of Sudan-1 in foodstuffs.8

These LC-based methods mentioned for the detection of
Sudan-1 are highly robust, reproducible, have relatively high
sample throughput through automation, and have very good
detection limits. However, they also have some serious draw
backs, including sample pretreatment and extractions which can
be labor intensive; they are also expensive and not currently
portable. The direct analysis of Sudan-1 within the food matrix
without sample preparation would hence be very desirable.

Raman spectroscopy is a physicochemical technique, which
like the other vibrational spectroscopic method infrared absorp-
tion spectroscopy gives chemical information on the molecular
make up of a molecule in a nondestructive manner.18 Raman
spectroscopy offers several advantages over mid-IR and near-
IR spectroscopy; little or no sample preparation is required, as
water is a weaker Raman scatterer no special accessories are
needed for measuring aqueous solutions, and recently there have
been many manufacturers producing small portable instrumenta-
tion. In combination, this makes this technique ideal for both
qualitative and quantitative applications that involve the analysis
of organic and inorganic chemicals. A main drawback of Raman
spectroscopy is its low sensitivity. Raman scattering only
comprises a very small fraction of those photons that are scat-
tered, about 1 in 107, of the incident photons; the rest are
Rayleigh scattered.19 However, such weak Raman effects can
be significantly amplified by coupling the analyte molecules to
the surfaces of nanometer-sized nanometal structures, a tech-
nique termed surface enhanced Raman scattering (SERS).20

Under normal conditions enhancements are on the order of
104-106,21 as demonstrated for bacterial identification22 and for
DNA analysis,23 but for certain molecules factors up to 1014 or
even greater have been observed leading to the idea of single
molecule detection.24,25

The objectives of this study were to combine SERS with
chemometric analysis26,27 for the detection and quantification
of Sudan-1; the advantages of multivariate analysis over peak
peaking (univariate) shall also be explored. In addition, we shall
demonstrate the use of portable Raman spectroscopy for the
quantification of Sudan-1 combined with SERS and chemo-
metrics and further show that good signals from Sudan-1 can
be generated when this azo dye is spiked into the complex food
matrix of chilli powder.

2. Experimental Section

Reagents. The following reagents were provided as indicated
and used without further purification: Sudan-1, poly (L)-lysine
hydrobromide, (Mr: 4000-15,000), gold tetrachloride, trisodium
citrate were all of analytical grade, purchased from Sigma
Aldrich Ltd. (Gillingham, U.K.). Hydrochloric acid was pur-
chased from Fisher Scientific (Loughborough, U.K.). Chilli
powder was bought from a local supermarket.

Raman Instrumentation. Spectra were collected using an
Ahura defender system (Ahura scientifics, Wilmington, MA)
which is a hand-held, portable Raman spectrometer (using back
scattered geometry). This instrument has a built in 4 mL sample
chamber which provided up to 300 mW laser power at
785 nm ( 0.5 nm laser excitation and 2 cm-1 line width. All
spectra were collected with an integration time of 5 s with the
power setting set to low (30 mW). The spectrometer has a

monochromator spectral range of 781-1014 nm, a Raman
spectrum range of 250-2875 cm-1, and a spectral resolution
of 7-10.5 cm-1 (full width at half-maximum (fwhm)) across
the range. Built into the Ahura spectrometer are Rayleigh
rejection filters of OD 7, a silicon CCD 2048 pixels detector in
direct dispersive detection mode, and a dispersion mode which
is a single pass spectrometer (1200 grooves/mm blazed at 900
nm).

Surface Enhanced Raman Scattering. A gold colloid
solution was prepared according to ref 18. All glassware was
soaked in aqua regia (HNO3:HCl 1:3 V/V) overnight. The colloid
was prepared by reduction of HAuCl4 by sodium citrate: 250
mL of 1 mM HAuCl4 was first brought to the boil, after the
addition of 25 mL of 38.8 mM sodium citrate, the mixture was
allowed to boil for a further 30 min. The solution was then left
to cool before use.

Aggregation of the citrate-reduced gold colloid particles was
induced by poly(L)-lysine. The overall composition of the SERS
solution was as follows: 1 mL of the gold colloid was diluted
with 1 mL of ultra pure water, followed by the addition of 150
µL (0.01%) of poly(L)-lysine solution, 150 µL of sample
solution, and finally 35 µL of the pH modifier (Vide infra). The
solution was vortex for 3 s between each successive addition.
To allow for aggregation to occur, the solution was allowed to
rest within the sample chamber for 1 min before spectral
acquisition.

pH Profiling of SERS of Sudan-1. In order to determine
the optimal pH which gave the largest SERS response, a stock
solution of Sudan-1 (1 × 10-3 mol L-1) was used for pH
profiling. In pH profiling the pH of the SERS sample was
adjusted between pH 1.4 to pH 5.3 by adding 35 µL of a pH
acid modifier with the appropriate pH into the solution. Three
replicate SERS spectra were taken at each pH. Following this
the peak areas of the vibrational band at 725 cm-1 were plotted
as a function of pH in order to find the maximum SERS
response. This was found to be 2.0 (Vide infra) and was used
for all future SERS analyses.

Extraction of Sudan-1 from Spiked Chilli Powder. To
evaluate the viability for the detection of Sudan-1 in a common
complex foodstuff, we used chilli powder as the test matrix;
this was chosen as chilli powder has been found in the past to
be contaminated with Sudan-1.8 In order to have accurate levels
of Sudan-1 in chilli, methanol extractions from unadulterated
chilli were prepared. This involved measuring 0.1 g of chilli
powder and transferring this to a Falcon test tube to which 10
mL of analytical grade methanol was added and vortexed for
10 min. After, this the solution was then allowed to stand for
another 5 min. Following this the brownish red supernatant was
carefully removed using a pipet and used as the matrix into
which Sudan-1 was to be spiked.

Known solutions of the dye dissolved in water were used to
spike chilli powder to give a series of Sudan-1 standards with
the following concentration range: 2 × 10-3, 1 × 10-3,
8 × 10-4, 4 × 10-4, 2 × 10-4, and 1 × 10-4 mol L-1. Six
samples were prepared for each concentration, and each sample
was measured three times by SERS. Note that for actual
concentrations of the dye being analyzed by SERS one should
be aware that these are 15.56 times more dilute than the stock.
This is because, for example, in our sample preparation 1 mL
of sol is diluted with 1 mL of H2O followed by aggregation by
150 µL of poly(L)-lysine and 150 µL of the analyte and 35 µL
of acid/base.
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3. Data Analysis

For univariate analysis we performed a classical linear regression
analysis between the areas under the curve (AUC) of the three
selected vibrational bands within the SERS spectrum at 464.91,
587.79, and 727.23 cm-1 (peak apexes). These three bands were
chosen as they appeared to have relatively high intensity with little
or no background interference. Prior to regression, for each sample
the AUCs from the three replicate SERS spectra from the six
identical solutions were averaged prior to the analysis. Three
regression models were built, one for each vibration band.

For multivariate analysis, the data set were baseline corrected
by using asymmetric least-squares (ALS28), an adaptive baseline
estimation algorithm. The unsupervised learning algorithm
principal components analysis (PCA)26,29,30 was used to visual-
ized any natural variations within the data set.

Prior to multivariate regression the three replicated spectra SERS
spectra from the six identical solutions were averaged prior to the
analysis to reduce unavoidable variation caused during collection.
For multivariate regression we employed partial least-squares (PLS)
regression26,29,31,32 to establish a multivariate linear regression model
between the whole baseline corrected Raman spectra and the
concentrations of the Sudan-1 in the solution. Considering the fact
that the response of SERS intensity with the concentration of the
analyte may not necessarily be linear, we also employed two
nonlinear methods: ε-support vector regression (SVR) programmed
in Matlab33 and artificial neural networks (ANNs) using an in house
program.34 For ANN analysis a multilayer perceptron with a
topology of 650-8-1 (650 input Raman scatters, eight nodes in
the hidden layer and a single output node for the concentration of
Sudan-1) was used employing a learning rate of 0.2 and a
momentum of 0.8.35

For all three multivariate methods the performances of these
three models on our data set was compared. The generalization
performance of the multivariate regression models were assessed
by using a double cross-validation scheme as detailed in refs
36-38. Each time we left out all of the six samples of one
concentration which was used as the blind test set and the remaining
samples were used as the training set. The model parameters, e.g.,
the number of PLS components, the kernel parameters of ε-SVR,
etc., were tuned by using another inner k-fold cross-validation
procedure on the training set only, where k is the number of
concentration levels in the training set. Following this the model
was built on the full training set using the optimal model parameter
found by the inner cross-validation and used to predict the
concentration of the samples in the test sets.

This was repeated until all the samples of each concentration
level have been left out and predicted once and the root-mean-
square error of cross-validation (RMSECV) as well as the predictive
squared correlation coefficient (Q2)26 was calculated using the
samples in the test sets according to the following two equations:

where n is total number of samples used for testing; yi is the
concentration of sample i (i ) 1, 2, 3, ..., n); ŷi is the predicted

concentration of sample i, and yj is the mean of the concentrations
of all the samples used for testing.

RMSECV and Q2 are the 2 most used and unbiased metrics
to assess the predictive ability of a predictive model in regression
analysis. Generally speaking, RMSECV gives an unbiased
estimation of the error of the prediction when the model is used
to predict the concentration of an unknown sample. Smaller the
RMSECV is, the better the model is. Also, Q2 is a scale inde-
pendent, and also unbiased, metric to quantify the predictive
ability of the model with values similar to the commonly used
squared correlation coefficient R2 in univariate regression anal-
ysis. The closer the value of Q2 is to 1, the better the model is.

4. Results and Discussion

SERS and pH Profiling. A typical SERS spectrum of the pure
Sudan-1 dye is shown in Figure 1 along with this azo dye’s
chemical structure. As can be seen the SERS spectrum is
information-rich and the main bands that were used for quantifica-
tion are 464.91, 587.79, and 727.23 cm-1 and these bands have
been tentatively assigned in this figure.39,40

It has been shown that the SERS response of many analytes
is dependent on the pH of the solution in which the analyte
resides,41,42 therefore we conducted a “pH profile” of the Sudan-1
in order to optimize the signal enhancement. The pH was
therefore adjusted from pH 1.4 to pH 5.3 and SERS measure-
ments taken. Using the strong band at 727.23 cm-1, we
constructed a pH profile (Figure 2), and it can be clearly seen
that there is a general trend of decreasing intensity toward neutral
pH and that it appears that at a pH of 2.0 the highest SERS
response was seen. Therefore these conditions were used for
the quantitative analysis of Sudan-1 in chilli powder.

Assessment of Spiked Chilli Solutions Using Univariate
Analysis. As detailed above 2 × 10-3, 1 × 10-3, 8 × 10-4,
4 × 10-4, 2 × 10-4, and 1 × 10-4 mol L-1 Sudan-1 was spiked
into a methanol extract from chilli powder. Chilli powder was
chosen as it has been found to be contaminated by Sudan-1;
note we took preliminary spectra of the chilli powder and extract
and no bands belong to Sudan-1 were seen (data not shown).

In order to see if the SERS signal from Sudan-1 was
reproducible enough to allow its quantification the averaged peak
areas of the three vibrational bands at 464.91, 587.79, and 727.23

RMSECV ) � ∑
i

(yi - ŷi)
2

n

Q2 ) 1 -
∑

i

(yi - ŷi)
2

∑
i

(yi - yj)2

Figure 2. Peak area of the vibrational band at 725 cm-1 plotted against
the pH profile from pH 1.4 to 5.3. The concentration of Sudan-1 in
this preliminary experiment was 6.4 × 10-5 mol-1 dm3, and the data
were collected in triplicate.
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cm-1 were plotted against the log of the concentrations of
Sudan-1 spiked into the chilli powder (Figure 3). Linear
regression analysis was carried out on the areas of each of the
selected vibration band in these log-log plots and showed very
good correlation with the concentration and resulted in the R2

values of 0.985, 0.965, and 0.979 respectively for 464.91,
587.79, and 727.23 cm-1 (Figure 3). As detailed in the data
analysis section, these AUC for the bands were also assessed
by using a double cross-validation scheme and the RMSECV
and Q2 are detailed in Table 1.

Principal Components Analysis (PCA). While the RM-
SECV and Q2 values for the univaraite analysis are encouraging
this is some room for improvement. We therefore decided to
assess the spectra employing multivariate analyses. Initially PCA
was used on the SERS spectra from all six Sudan-1 concentra-
tions along with a blank (methanol extract from the chilli
powder). The first two principal components (PCs) captured over
88% of total variance of the data, and the scores plot of PC1
and PC2 are shown in Figure 4A. It can be seen from this plot
that the first PC (which accounts for 84.75% of the total
explained variance (TEV)) captures the variation caused by
different concentrations of spiked Sudan-1 and the second PC
(which only accounts for 4.16% TEV) captures the minor
experimental variations. The PCA loadings plot from the first
principal component (Figure 4B) clearly shows that many
spectral features relating to Sudan-1 (Figure 1) are important
for this quantitative separation in PC1. It is noteworthy that the
clusters of high concentrations show some overlap, however
the separation improves as the concentration of the Sudan-1
decrease; in addition, the separation with respect to Sudan-1
concentration is not wholly explained in the first PC and the
second one also has some minor influence as a parabolic
trajectory from low to high concentration in both PC1 and PC2

(Figure 4). In combination this suggests that the SERS response
of Sudan-1 may be nonlinear, particularly at high concentrations.
Nevertheless, the results from the unsupervised PCA suggests
that it is possible to use multivariate regression models to model
the relationship between the SERS response of Sudan-1 and it
concentration level in the chilli extract using the whole Raman
spectrum.

Multivariate Regression. We therefore constructed multi-
variate models using PLS regression, ε-SVR and ANNs, and
Figure 5 shows the predictions from the test data only and this
clearly shows that the predictive ability of all three models
(Figure 5a-c) was excellent as these predictions lie on the
expected y ) x line.

We also made comparisons between the univariate regression
and multivariate regressions by performing the same type of
cross-validation on both the univariate and multivariate regres-
sion. The RMSECV and Q2 obtained from the double cross-
validation as described in data analysis section of the univariate
regressions on 3 selected vibration bands are also shown in Table
1 along with the same metrics for PLS regression, ε-SVR and
ANNs.

From the prediction metrics we can see that two nonlinear
multivariate methods (Viz., ε-SVR and ANNs) obtained better
results compared with those obtained by using the linear

Figure 3. Peak area of three different vibrational bands plotted against
the log10 of concentration of Sudan-1; this is equivalent to a concentra-
tion range of 6.4 × 10-6 to 1.3 × 10-4 mol-1 dm3. The R2 values are
also shown for the three different bands. The average peak areas for
three measurements are shown and the error bars show standard
deviations.

TABLE 1: Comparison between Univariate Calibration and
Multivariate Chemometric Methods for the Quantification of
Sudan-1 from SERS

univariate analysis from
peak areas

multivariate chemometric
methods

464.91
cm-1

587.79
cm-1

727.23
cm-1 PLSR SVR ANNa

RMSECV 0.127 0.134 0.137 0.123 0.095 0.084
Q2 0.911 0.906 0.903 0.916 0.961 0.977

a The values are the averages of 10 independent neural networks.

Figure 4. (A) PCA score plot from SERS spectra acquired from
spiking Sudan-1 into chilli powder. The ellipses are drawn as a guide
and have no statistical meaning. (B) The corresponding PCA loadings
plot from the first principal component illustrating which spectral
features are important for separation in PC1; highlighted are the three
peaks used for univariate quantification.
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regression methods of PLS and AUC regressions. The results
of ANN were the average from 10 independent multilayer
perceptrons since even under exactly the same parameter setting
ANN still gives (slightly) different results from different runs
due to its approximation methodology.43,44 The results from PLS
is marginally better than that from the univariate regression on
the vibration band at 464.91 cm-1 while the results of univariate
regression on the vibration bands at 587.79 cm-1 and 727.23
cm-1 are the poorest, probably due to the fact that these bands
were partially overlapped with neighboring bands and hence
resulted in larger integration error when calculating the AUCs.
This further justifies the needs of using multivariate regression
for calibration. From the residue plots (Figure 5d-f) it can be
seen that the residues of the linear regression method PLS are
not all distributed around 0 while for other 2 nonlinear regression
methods, ε-SVR and ANN, the residues are mostly distributed
around 0. This further suggests that nonlinearity exists in the
relation between the SERS response and the concentration level
of the analyte.

Conclusions

A gold citrate reduced sol was employed in this study as it
is recognized to be more homogeneous compared to silver sols.45

The results obtained show that this is viable as a suitable
substrate for semiquantitative analysis of Sudan-1, as good
correlations coefficients of R2 ) 0.985, 0.965, and 0.979 were
observed for the vibrational bands at 464.91, 587.79, and 727.23
cm-1 respectively and with standard deviations of only 13.3%.

The recent introduction of portable Raman spectrometers for
chemical analysis, in situ, and the widespread interest of Raman
spectroscopy require that investigations be made to determine
the sensitivity of such instrumentation. Although portability is
a distinct advantage this has only been shown to allow for

qualitative analysis of analytes. However the enormous interest
in applying the SERS technique to both qualitative and
quantitative chemical analysis requires that tangible working
models be available to demonstrate the viability of compact/
portable Raman spectrometers. The data reported herein dem-
onstrated that not only is it possible to get good sensitivity by
employing the SERS technique using a portable Raman
spectrometer (an Ahura defender system), but that multivariate
chemometrics is essential for providing excellent sensitivity and
quantitative data compared to classical univariate area under
specific vibrational bands approaches. The limit of detection of
Sudan-1 spiked into a complex matrix is calculated as 48 µg/
kg chilli powder. This is currently an order higher than HPLC-
based approaches which use considerable sample clean up prior
to analysis,9,10 and an area of work will be to optimize analyte
extraction from the sample matrix prior to SERS.
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(44) Goodacre, R.; Timmins, É.M.; Burton, R.; Kaderbhai, N.; Wood-

ward, A. M.; Kell, D. B.; Rooney, P. J. Microbiology 1998, 144, 1157.
(45) Jarvis, R. M.; Johnson, H. E.; Olembe, E.; Panneerselvam, A.;

Malik, M. A.; Azad, M.; O’Brien, P.; Goodacre, R. Analyst 2008, 133,
1449.

JP908892N

7290 J. Phys. Chem. C, Vol. 114, No. 16, 2010 Cheung et al.



107 

 

Chapter 8 
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8.1 Discussion  
The studies presented in this research thesis (Chapter 2 to Chapter 7) involve 

investigating a combination of different analytical techniques and multivariate data 

analysis methodologies. Due to the diverse nature of the work presented it is more 

appropriate to discuss the following chapters as three separate areas of work rather 

than as a single body of work. Accordingly, this discussion section is divided into 

three sections: section 8.2 will discuss the results generated in Chapter 2 and Chapter 

3, which focused on the discrimination of bacteria to based on VOC profiling of 

wound infection; section 8.3 will discuss Chapter 4 and Chapter 5, VOC profiling of 

contaminated meat spoilage using S. typhimurium as a model pathogen in 

conjugation with parallel metabolite profiling; finally section 8.4 will discuss 

Chapter 6 and Chapter 7 on the development of SERRS and SERS base analysis for 

the characterization of triphenylmethane and azo dyes. 

8.2 Bacterial discrimination using DMS 

and VOC profiling in medical 

applications 
In Chapter 2 the applicability of DMS as an alternative analytical detection technique 

for the discrimination of bacteria was investigated, as present bacterial identification 

is carried out by traditional microbiological techniques, such as the API 

identification system (Nucer 2006), in which the first step involves obtaining a pure 

culture. This is followed by a variety of morphological, serological, nutritional and 

biochemical tests, many of these tests require further incubation steps and are 

followed by interpretations and ultimately identification of the microorganism. 

Therefore in microbiology bacterial identification is an inherently slow process 

dictated by the need to generate sufficient biomass for analysis, the time scale 

involved is dependent upon the microorganism’s growth rate (in certain extreme case 

members of the slow growing mycobacterial group may take to three to six weeks to 

grow), therefore in nearly all areas of microbiology a rapid and accurate method of 

bacterial identification is highly desirable (Goodacre 1994). Various research groups 

have investigated alternative methods of bacterial identification using spectroscopic 

(FT-IR/Raman) (Helm 1991,Yu and Irudavaraj 2005, Jarvis and Goodacre 2004, 
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Lopez-Diez and Goodacre 2004) and MS-based analytical methods (Goodacre 1994, 

Goodacre  and Kell 1996, Sauer 2008, Sauer and Kliem 2010). 

Initially rather than analysing the head space (HS) of the bacterial cultures, it was 

decided to assess the analytical potential of using DMS directly to see if bacterial 

discrimination could be achieved based on chemical information obtained from the 

bacterial biomass. 

Pyrolysis-MS has been investigated in the past and found to be a reproducible 

method of sample introduction (Goodacre 1994, Goodacre and Kell 1996). An in-

house Py-GC/DMS hyphenated system was therefore constructed. Validation and 

monitoring of the system were conducted using a whisky quality control (QC), the 

composition of the QC, and its subsequent instrumental responses, provide a useful 

means of tracking any instrumental drift that  may be occurring during batch analysis 

and can be used to detect any data points that appear as outliers (i.e., atypical due to 

technical or biological artefacts).  

The volatile species were generated using pyrolysis and the resultant pyrolysate were 

then separated using GC prior to DMS detection. Whilst this approach for bacterial 

discrimination has been studied before (Schmidt 2004; Shnayderman 2005, Prasad 

2006), sub-species discrimination using Py-GC/DMS had not been successfully 

reported. Due to the complexity and high dimensionality of the Py-GC/DMS data, 

insufficient data pre-processing and multivariate analysis methodologies were 

implemented, and these authors focussed on using only selective sections of the 

DMS spectra (i.e., specific compensation voltages (CV) and scantimes) rather than 

utilising the entire DMS spectrum for discrimination. These issues of data pre-

processing and data analysis have subsequently been addressed in later studies by the 

same groups (Prasad 2007). The use of dispersion field programming was not 

possible in this thesis due to less a sophisticated DMS analyser being employed, 

instead fixed CV scanning was used throughout these studies.  

The DMS data were recorded in both positive and negative modes, reflecting the 

chemical reactions of the positive and negative adduct ions generated between the 

pyrolysate GC eluent and the positive H
+
(H2O)n and negative O2

-
(H2O)n reactant ion 

present within DMS drift region (Schmidt 2004). The result from the Py-GC/DMS 

study represented therefore a three dimensional cube of scantime (matched to GC 
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elution) versus CV versus ion counts (see Fig.11 for examples).  These data cubes 

were unfortunately complex and in order to use these for bacterial characterisation 

and identification purposes, data pre-processing and the application of chemometrics 

was necessary. This was achieved for spectral alignment using correlation optimised 

warping (COW) followed by baseline correction with asymmetric least squares 

(ALS). Exploratory data analysis involved PCA and subsequent bacterial 

identification from the data cubes with PLS-DA. This process is highlighted in the 

flow diagram (Fig.10) and will be further expanded on below.  

 

 

Figure 10 Flow diagram of the data processing methodology for Chapter 2. 

The data are normally visualised as contour maps (Fig.11), where the colour 

intensity represents the peak intensity normalised to the biggest peak (Z-axis). In 

these contour maps which are for different samples the reactant ion peak (RIP) is 

variable due to the amount of pyrolysate generated and this is impossible to control.  

Therefore the RIP region was removed from the analysis and a subset (‘slabs’) 

containing the most information rich area of the DMS were used for analysis. Both 

modes of the DMS data were processed independently from each other. Once these 

slabs had been isolated they were then summed cross the CV axis, turning the three 

dimensional contour map into a two dimensional spectra (scantime versus intensity). 

These spectra were then grouped into the appropriate classes (strain identity), the 
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initial result of this is shown below (Fig 12A) along with the aligned version of the 

entire array (Fig 12B). 

 

Figure 11 DMS negative mode response of the three bacteria used in the Py-GC/DMS study. 

. 

 

Figure 12 The effect of (A) before and (B) after alignment using correlate optimised warping 

(negative mode only). 

The array was first aligned using COW. In this process a reference template was 

generated by combining the mean responses from all three strains; this acted as a 
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master template with features common to all three groups for the array to be aligned 

against. The whole array was aligned simultaneously to the master template. The 

array was split initially into different time windows to assess the optimal window for 

alignment.  It was found that the optimum window size for these data was 10% of 

the original data points (i.e., if the data set has 500 data points then the windows was 

set to 50 data points).  In order to allow peaks that span between different windows a 

‘slack sides’ was also defined (again this was optimised to10% of the window size; 

i.e., 5 data points). The result of the alignment process is shown in the figure above 

(Fig.12B). The entire array was then baseline corrected using ALS followed by min-

max normalisation prior to PCA and PLS-DA.  

Due to the way the DMS data were summed across the CV axis prior to multivariate 

data analysis, this could potentially reduce the amount of chemical information 

obtained from the data. This was found to be necessary due to difficulties with 

aligning the contour maps in 3 dimensions. Alternative methods of data analysis 

should be investigated in the future to take advantage of the extra dimension of 

information provided by the CV axis.  

Unfortunately peak identification in DMS is very difficult currently as there are 

limited libraries available. Consequently, the identification of significant variables 

from the loading plots, from either PCA or PLS-DA, that would appear to contribute 

towards discriminations, was highly difficult, subjective and misleading.  In the 

future standard reference materials should be analysed to construct DMS and Py-

GC/DMS libraries.  

Despite the above problems with data processing and spectral interpretation, this 

study demonstrates that successful sub-species discrimination was possible using Py-

GC/DMS combined with supervised learning methodology. Future studies should 

include more diverse sets of bacteria with greater phenotypic differences to assess 

the full potential of DMS. DMS is an interesting portable technology and has the 

ability to operate at ambient pressure. It is particularly well suited to the rapid 

screening of VOCs with sensitivity down to the ppt level (Krebs 2005), the system is 

robust, low cost, compact and its modular design allows it to be potentially mobile 

since it requires minimal laboratory and technical support. This makes DMS an 
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attractive alternative to MS for the rapid screening of VOCs and this was 

investigated further in Chapter 3.  

One of the main disadvantages of analytical pyrolysis is that the molecules in the 

sample are thermally fragmented into pyrolysate which reduces the amount of 

structural information available.  Therefore it would be desirable to have a sample 

introduction method that will leave the molecular ions intact allowing more chemical 

information to be obtained. In addition, significant amounts of time are spent on 

sample processing to generate sufficient biomass for analysis by Py-GC/DMS and it 

would also be highly preferable to have a rapid direct sampling approach. Static 

Head Space (SHS) sampling would permit a more direct sampling method, 

circumventing the need for additional culturing and harvesting procedures. Thus the 

suitability of thermal desorption into GC-MS with SHS sampling was investigated 

for in situ VOC measurements.  Fortunately the opportunity arose to profile 

pathogenic bacteria from wound patients directly. Thus the second part of this 

discussion section focuses on a pilot study for the development of a VOC profiling 

protocol for wound analysis. Wound infection is the result of colonisation by 

pathogenic bacteria and the presence or absence of these pathogens may be evaluated 

directly by sampling the HS above the infected area. This method of SHS sampling 

was previously developed by Riazanskaia et al. (2008) and was adopted to profile 

the HS composition from lesion, boundary and control areas from five different 

subjects with leg ulcers.  In these subjects significant arterial disease had been 

confirmed by ultrasound scanning.  

As was shown in Chapter 3 GC-ion trap MS permits detailed VOC profiles from 

each of the sampling areas to be obtained, as well as capturing the subject’s current 

physiological state. PCA indicated that partial discrimination between the control 

area, and boundary and lesion areas was possible. However, discrimination between 

the lesion and boundary area was not observed, and this may be due to the high 

similarity of the two sites and their close spatial proximity. The loadings biplot 

indicated that 2-propaniol 1-(1-methyethoxy) and methyl disulfide seemed to have 

contributed towards discrimination between the control and lesion regions (Chapter 3 

Fig.5 and table 3). The VOC profile of each patient was highly characteristic to that 

individual; these profiles possessed a very strong fingerprint signature generated 

from the subject’s own underlying metabolism, as well as other exogenous factors. 
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The limitations of the study in terms of disease diagnosis arose by a combination of 

low sample number and this high biological variation, which made discriminations 

based on TIC alone not only challenging but extremely difficult. 

Despite these limitations, this study did demonstrate that PDMS is a robust SHS 

sampling device, and combined with thermal desorption, offers a reproducible 

method of sampling and introduction. This can be observed by examining the 

distance heat map of all samples plotted against each other (Fig.13).  

 

Figure 13 Heat map of the samples plotted against each other in the wound profiling study. 

The blue diagonal relationship areas indicate regions of high similarity, whereas the 

red areas indicate region of low similarity and high variation. It can be seen that 

replicates from the same subject sampled in the same sites display very high 

similarity demonstrating excellent analytical reproducibility. 

It should be recognised that increasing sample replications is not always possible, 

particularly for clinical samples where patients are under treatment and any new 

diagnostic test is a secondary goal. Therefore, there needs to be greater emphasis on 

more robust experimental design. For example, adequate matching of patients with 

disease to those who are healthy, in terms of gender, age, BMI, and ethnicity, as well 
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as other extrinsic factors such as metabolic rates, pharmaceutical use and diet, is 

important to avoid sample bias (Goodacre, 2007). In addition, diurnal effects should 

be considered, as should the oestrous cycle or fertility. All of these factors will 

significantly influence the subject’s physiological profile, and these need to be 

carefully considered when generating a robust experimental design. 

Data deconvolution steps for GC-MS will need to be incorporated in any future data 

analysis protocols, where the pure component (i.e. fragmentation profile) of each 

resolvable peak in the TIC spectra is extracted and its relative concentration level 

calculated. This process also allows the removal of any artefacts such as non-

reproducible or erroneous peaks (e.g. siloxanes) from the data set, resulting in a peak 

table of all the common metabolites detected and their relative concentrations. This 

would increase the quality of the data obtained significantly, allowing a more 

detailed analysis and interpretation to be conducted. Currently these data pre-

processing protocols are still under development. 

Compared with other alternative screening methods such as electronic noses (E-

noses), the data obtained from TD-GC/ITMS offers higher resolution data due to the 

incorporation of chromatographic separation prior to MS detection. However, the 

trade off is a decrease in sample throughput due to the extended sampling and 

analysis times. E-noses (Berna 2009) are small portable sensor platforms, using 

either metal oxide sensors (MOS) or conducting polymers (CP), which are selective 

towards particular classes of VOCs. The detector is usually an array of MOS/CP 

sensors operating in parallel. When the sensors are exposed to the sample, changes in 

the current across the individual sensors are recorded as function of concentration, 

and the combined response of each sensor is used to generate a very distinct 

signature profile of the sample (Dutta 2002). Like GC-MS measurements on VOCs, 

E-nose data require the use of supervised learning methodology to associate the 

response obtained to the original sample; however, unlike GC-MS, E-noses do not 

readily allow individual components of the VOC to be identified (Laothawornkitkul, 

2008). 

DMS can also be employed as an alternative method of VOC screening.  It would 

offer an attractive alternative to GC-MS due to less intensive laboratory support, low 

cost of operation, and higher throughput capacities. In addition, its portability would 
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be particularly suited to on-site detection and point-of-care analysis. All of these 

methods are complementary and these methods could be combined where E-noses or 

DMS would be used for initial screening before more detailed VOC analysis using 

MS.  

The initial result from this pilot study is encouraging as it demonstrates PDMS to be 

a reproducible and non-invasive method of SHS sampling, with the potential in the 

future for in situ real time sample profiling. Furthermore, the PDMS patches were 

found to be stable after sampling with no short-term sample degradation observed. 

Within a clinical context, the eventual aim would be to develop a method of rapid at 

patient screening, which would aid in the accurate detection of early wound infection 

and thus allow suitable targeted treatment to be administered. 

8.3 VOC and metabolite profiling for the 

early detection and discrimination of S. 

typhimurium contaminated meat. 
This second discussion section will compare and contrast the results of two 

orthogonal studies (VOC and metabolite profiling), conducted to investigate the 

effect of S. typhimurium on contaminated meat vs. natural spoilage. 

S. typhimurium is associated with contamination of meat products and these bacteria 

are pathogenic to humans. Conventional method of microbial screening may be 

ineffective, due to the time involved in culturing and harvesting sufficient amount of 

cells required for identification. It is assumed that S. typhimurium proliferate 

utilising different metabolic pathways, in comparison to normal spoilage, and the 

VOCs emitted from the meat surface or metabolites found on the meat surface could 

be utilised for both rapid screening and discrimination. 

Some of the deficiencies highlighted in the previous section, relating to VOC 

profiling using PDMS were subsequently addressed, such as: (1) robust experimental 

design for a time course study and sample analysis; (2) incorporation of a 

deconvolution step to improve the quality of the MS data obtained followed by; (3) 

MS library matching with NIST 02 database for peak identification, resulting in the 

generation of VOC metabolite peak table for multivariate data analysis. The 
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spoilage/contamination study contains multiple significant trends incorporated into 

an experimental design (such as the types of spoilage organisms and the progression 

rate of microbial growth with respect to time).  For such types of data, the same 

variables are measured repeatedly at different time points in a nested fashion. 

Conventional PCA alone may not be a suitable method of analysis as the effect of 

one variable will no longer be associated to one. Rather multiple elements in the 

loading vector (co-linearity effect) will make subsequent interpretation from the 

loadings vector difficult and misleading. Therefore consensus PCA (CPCA) was 

utilised in order for these trends to be investigated individually, a simplified pipeline 

of the data processing steps is outline (Fig. 14). 

In deconvolution, a time window was first predefined within the TIC chromatograph, 

within this time window all the chromatographs from the same sampling time point 

were stacked together. Orthogonal projection approaches, combined with Dubin-

Waston statistics, were then used to provide an initial estimate of the pure spectra 

and the number of components observed within the time window.  

 

Figure 14 Pipeline for the preprocessing of TD-GC/ITMS data.  

Alternating least squares (ALS) was then used to deconvolute the concentration 

profiles. The pure mass spectra with non-negativity constraints were applied to both 

the concentration profile and spectra, and unimodality constraints were then applied 
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to the concentration profile only (Chapter 3 Fig. 2). The deconvoluted concentration 

profile and the pure component (i.e. MS fragmentation profile) were then visually 

inspected and manually matched against a NIST 02 MS library database. This 

process was iteratively repeated for the all remaining time windows until the entire 

TIC chromatograph was deconvoluted. This is a highly time consuming and labour 

intensive process as certain parameters need to be repeatedly optimised to obtained 

satisfactory results (i.e. the length of the specify time window, and number of pure 

component.) 

In order to save time, during the initial exploratory data analysis, only areas of 

analytical interest deemed to be of statistical significance were deconvoluted and 

analysed, but for the final data analysis the entire TIC spectra were fully 

deconvoluted. 

Any siloxane peaks or peaks with irregular shape, low MS match score (less than 

600 forward and backward combined match MS score) and non-reproducible 

retention times were removed from the data set prior to multivariate analyses.  

The low scan rate of the QIT mass analyzer (1 scan per s), necessitated the need for 

the deconvolution step to be incorporated, in order to have better confidence on the 

peaks detected and also facilitate their identification. The final result is a list of all 

commonly detected metabolites across all time points and types of 

spoilage/contamination with their calculated concentration values; this was then 

subjected to multivariate data analysis. 

The initial results from PCA suggest that spoilage progressions with respect to time 

are captured by PC1 and the differences between the two types of 

spoilage/contamination are largely captured by PC2. It was evident from this that the 

separation between the two types of spoilage increases with time; indicating two 

distinctively different processes are taking place (Chapter 4 Fig. 3). Results from N 

block and S block CPCA also confirmed this, all time points and types of spoilage 

can be clearly discriminated after 24 h. There was a larger degree of overlap between 

data points for 24 and 48 h for S. typhimurium contamination compared to natural 

spoilage; however, all time points except for 0 h irrespective of spoilage types can be 

discriminated by both PC1 (24-48 h) and PC2 (48-72 h) in the N and S block CPCA 

(Chapter 4 Fig. 4). 
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This study demonstrates the applicability of a VOC screening approach and its 

potential as a rapid method for the detection of S. typhimurium contamination. 

Discrimination can be readily observed within 24 h from the onset of contamination, 

compared to traditional microbial identification techniques such as API tests. These 

biochemical tests require a minimum of 48-72 h incubation time plus additional time 

for interpretation of the results, by then it may be too late as the contaminated meat 

product may have already left the shop floor (Ellis and Goodacre 2001). It is clear 

from the data above that the VOC screening method developed could allow more 

immediate action to be taken. This type of SHS sampling approach could lead to the 

eventual development of low cost disposable chemical sensor based on enzyme 

assays incorporated into the food packaging itself. This works by detecting specific 

VOC markers associated with S. typhimurium contamination. Positive identification 

would result in a visual change in the colour of the packaging warning that the meat 

product is no longer suitable for human consumption.  

Although discrimination was possible after 24 h using SHS sampling with PDMS, 

discrimination was not observed at earlier time points, this may be due to insufficient 

bacterial biomass on the meat surface whereby the concentrations of the emitted off 

odours were too dilute to be captured effectively using SHS sampling. This could be 

further improved on by implementing a dynamic Head Space (DHS) sampling 

methodology, In DHS the entire volume of the HS inside the sample chamber is 

evacuated and passed through an absorbent material, this allows for significant 

enrichment in the levels of trace VOCs permitting a greater sampling sensitivity, and 

may allow discrimination to be achieved at earlier time points.  

Based on the type of VOCs identified from this study, the trapping performance of 

the PDMS seems to suggest it is predominately suited for the trapping of polar 

compounds and has little or no affinity towards non-polar chemical species. 

Alternative adsorbent material such as Tenax-TA would allow trapping of both polar 

and non-polar VOCs permitting a much greater range of VOCs to be captured, 

thereby generating a more detailed snap shot of the VOCs present in the HS during 

spoilage/contamination.  

Finally with respect to VOC analyses, the PDMS patches give a very characteristic 

background signature. These features, whilst not desirable (siloxane peaks), were 
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found to be highly reproducible in terms of intensity and retention time All the 

siloxane peaks were identified and matched by retention time and fragmentation 

profiles, these were then used as land marks for chromatographic alignments, after 

which they were all removed from the data set prior to analysis. In the future, the use 

of internal standards spiked directly in the HS prior to sampling should be introduced 

in order to account for small variations in adsorption capacity between PDMS 

patches and would also aid in identifying erroneous samples.  

The second part of this discussion section summarises the result of the metabolite 

profiling study conducted in parallel with the VOC work.  As mentioned previously 

it is assumed that S. typhimurium proliferate using different metabolic processes in 

comparison to natural spoilage. Therefore metabolite profiling was employed to 

investigate the intracellular metabolic differences between S. typhimurium and 

natural spoilage for discrimination and elucidation of the possible metabolic 

pathways that are involved.  

A variation of parallel factor analysis (PARAFAC2) and a paired two sample 

Wilcoxon signed rank test were employed to analyse the data, in order to identify 

any significant changes in the metabolite profile between the two types of spoilage. 

Initial findings suggest that discrimination was possible after 36 h. However, due to 

the large number of time points (classes) and low number of observations (biological 

replications), the statistical weight of the result was somewhat limited. Therefore for 

greater statistical significance to be obtained, a second more detailed experiment 

with only 4 time points (0, 24, 48, 72 h), but with greater analytical and biological 

replicates, was conducted  

As mentioned earlier in this discussion section the spoilage study has multiple 

significant trends incorporated in its experimental design. Therefore, a three way 

model would be more appropriate to analyse this type of multi-way data, permitting 

the effect of influential trends to be investigated individually. PARAFAC2 was 

utilised rather than CPCA which was employed in the VOC profiling study. This 

was because the initial metabolite profiling study was analysed using PARAFAC2 

therefore, for the sake of consistency and comparison with the first study, it was also 

employed for the final spoilage experiment. 
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Half of the metabolites were shown to be significantly different across time points. 

This is likely to be the effect of increasing bacterial population on the surface during 

the course of the experiment. This trend is easier to visualise using the Hotelling T
2
 

statistics where a significant difference between the two types of 

spoilage/contamination is observed after 24 h with a p < 0.05 (Chapter 5 Fig. 3). 

This trend was consistence with the result obtained from the parallel VOC 

measurements and strongly inferred that two distinct metabolic processes were 

taking place between S. typhimurium compared to natural spoilage microflora. In 

each time point the TVC between the two types of spoilage were equivalent to each 

other, therefore the observed separation was not due different bacterial load 

influence but rather as a result of different metabolite profiles being detected.   

This work clearly demonstrates the utility of metabolite profiling as a potential tool 

for the early detection of S. typhimurium contamination without the need for 

conventional microbiology approaches. The data were consistent with the VOC 

profiling and demonstrated that discrimination can be achieved using either approach 

within 24 h from the onset of contamination. In order to further improve our 

understanding of S. typhimurium proliferation, the next step would be how best to 

integrate and correlate the two different levels of metabolite data (VOC and 

metabolites profiling) together into a single coherent framework. Moreover the 

information acquired from the metabolite profiling study could be used to help 

identify potential metabolic pathways used specifically by S. typhimurium, as both 

studies confirmed that S. typhimurium utilised distinctly different metabolic process 

compared to natural spoilage.  

8.4 Comparison of SERRS and SERS for 

the analysis of aqueous dyes.  
Following on from the theme of food analysis in the previous section, banned or 

illicit chemicals (which may cause potential health problems) are sometimes 

intentionally spiked into foodstuffs to enhance their visual appearance and hence 

also increase their commercial value. This final discussion section will focus on the 

analysis of aqueous dyes using enhanced vibrational spectroscopy. The first part 

details a method development protocol using surface enhanced resonance Raman 
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scattering (SERRS) for the characteristion of the triphenylmethane dye methyl green 

in water. This analysis protocol was then further adopted and chemometrics 

incorporated for the quantification of the banned azo dye Sudan-1 using surface 

enhanced Raman scattering (SERS).  

SERRS and SERS are variations of Raman spectroscopy (RS) in which the normally 

weak Raman scattering signal is significantly amplified by several orders of 

magnitude. In SERRS two separate mechanism of enhancement are involved. In the 

first the applied excitation frequency is tuned to be sufficiently close, to the 

molecular absorption maxima of the analyte. The subsequent Raman signal is 

significantly amplified via the resonance effect to give greater signal intensity 

compared to conventional Raman scattering (Mikhonin and Asher 2006, Tuschel 

2010). In the second mechanism this signal intensification is further amplified by 

coupling the analyte to metallic nanoparticles to give surface enhancements, 

permitting a combined enhancement factor of approximately 10
14
 to be achieved for 

certain analytes (Roger 1996, Nie and Emery 1997).  

Methyl green is a triphenylmethane dye widely used in the field of histology for the 

straining of DNA, RNA, nuclei and other cellular components (Umemura 2003); it 

has been used in biopsies of pyroninophilic cells (Zhu 2007) and for the 

investigation of cartilage development in human embryos (Lee 2000). Literature 

regarding the characterisation of methyl green is somewhat limited; this may be due 

to the difficulty of acquiring an Raman spectra because of the inherently high 

fluorescence background from this dye.  

Preliminary result demonstrates that the protocol was sufficiently robust and can be 

successfully applied to the analysis and characterisation of methyl green with a LOD 

in the ppb range. The fluorescence effect within the methyl green SERRS spectra 

was significantly quenched by the silver nanoparticles and utilised for subsequent 

enhancement. Other spectroscopic methods for the detection of methyl green have 

recently been reported in the literature using resonance Raman spectroscopy (RRS) 

and tungstate ion resonance Rayleigh scattering with a LOD reported to be 800ppb 

and 18 ppb respectively (Yu 2010).  

Triphenylmethane dyes are extensively used in the textile industry (Culp and Beland 

1996), in particular malachite green is used for the colouring of wool, silk and nylon. 
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It is also widely employed as a disinfectant in both the aquaculture (Schnick 1988) 

and poultry industries (Girigoswami and Mandal 2002), this is due to its 

effectiveness in controlling fungal growth, its low price and commercial availability.  

However, because of its ubiquitous used concerns regarding its environmental 

impact and possible introduction into the human food chain has been questioned. 

The toxicity and mutagenic properties of triphenylmethane dyes have been well 

documented since the early 1990s (Nilsson 1993), various triphenylmethane dyes 

namely gentian violet and malachite green have been shown to be highly 

carcinogenic (Culp 2005, Docampo and Moreno 1990) inducing lung, renal and 

hepatic tumours in mice. In 2005 malachite green was subsequently banned in the 

USA and Europe (Srivsatava 2004); however, it is still illegally used in some regions 

around the world, therefore the development of detection methods are necessary in 

order to monitored its relative concentrations in aquacultural and poultry live stock 

deem for human consumption (Jiang 2009). 

The work presented concerning the analysis and characterization of methyl green 

could in theory be applied to the detection of other triphenylmethane dyes with little 

modification. Each dye may have a slightly different pH requirement for generating 

optimal SERRS response, but this can be identified in the initial pH profiling step 

and modifications can be made to the protocol accordingly. Due to the similar 

chemical structure of all triphenylmethane dyes is it likely that most if not all will 

exhibit similar high fluorescence backgrounds, the use of SERRS has shown to be 

effective at quenching these effects and capable to generating detailed SERRS 

spectra.  

The next section details the application of the same analysis protocol for the 

characterization of azo dye Sudan-1 (1-phenylazo-2-naphthol) using an alternative 

Raman system. Sudan-1 is a bright red dye, is also a known human carcinogen and 

has been subsequently banned from human consumption worldwide. However 

despite this, several high profile health scares in India, China and England involving 

this dye have been well documented. Many screening methods for the detection of 

Sudan-1 have been reported but few are spectroscopic based and require samples to 

be sent back for laboratory analysis using predominately HPLC-based methods. As 

such they require some degree of sample pre-processing and extraction protocols; 
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here we present an alternative method for the rapid screening of Sudan-1 using a 

portable Ahura defender Raman spectrometer. 

 

Figure 15 PCA scores plot of the Sudan-1 SERS responses.  The arrow indicates a parabolic non 

linear relationship was observed from high to low concentration. 

The PCA scores plot (Figure.15) displays a parabolic relationship from high to low 

concentration (x-axis from left to right).  This separation with respect to 

concentration could not be fully accounted for within PC1, and PC2 demonstrates 

some minor influence; in addition, the technical variations of the sample analysis 

were also captured by PC2. The initial loading from PC1 (Chapter 7, Figure 4B) 

indicates that many vibrational bands within the Sudan-1 SERS spectra may be 

important for quantitative analysis. Thus, the SERS responses observed in this study 

shows a non-linear relationship and this may be due to saturation of the nanoparticles 

at higher concentrations of the dye.  

This study went on to demonstrate that the detection and quantification of Sudan-1 

using a portable Raman spectrometer with SERS was success. In addition, this study 

also highlighted the advantages of using multivariate approach over traditional linear 

regression method for calibration. Future work will include the optimisation of the 

extraction procedures from complex food matrices prior to detection to reduce 

background interference and hence to improve sensitivity.  
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The gold nanoparticles used in this study were recognised to have more 

homogeneous morphologies when compared with silver, and this should be better for 

reproducible SER(R)S. The LOD of Sudan-1 using the Ahura defender with SERS 

was calculated to be 480 ppb, this was an order of magnitude higher than HPLC and 

lab-based Raman systems using SERRS/SERS (Shadi 2001; Shadi 2003). However, 

this is more of a technical issue regarding the portable system design rather than low 

sensitivity, and is likely to be due to insufficient laser power. Increased sensitivity 

could be achieved by utilising longer integrated times and increasing laser intensity; 

however, due to the limited dynamic range of the detector, saturation at high 

concentrations was often a problem, therefore there was a compromise between the 

system’s upper and lower dynamic range, the overall laser excitation intensity and 

sample concentrations suitable for quantification. Improvements in the system’s 

software interfaces such as greater flexibility with the acquisition parameters and 

laser attenuation controls would have further enhanced sensitivity. Incorporation of 

SERS databases and online data pre-processing step (baseline correction) to aid in 

the identification and comparison of unknown chemicals would also extend the 

range and application of the system.  

Despite the above, it was demonstrated that a portable Raman Ahura system 

combined with SERS is capable of onsite detection of Sudan-1 in the ppm to ppb 

range with little sample preparation required; moreover, the portable system is 

robust, rapid and straight forward to use. 

The optimal pH for providing the most intense Raman signal in both SERRS/SERS 

studies was determined to be approximately pH 2.0; the reason for this is unclear as 

the calculated pKa and pKb are very different (Figure 16) but several explanations 

can be offered to account for this: 

(1) Poly-L-lysine was used in both studies.  This polymer induces 

aggregation of the nanoparticles whilst bringing the analyte into close 

proximately to the metal through electrostatic attraction. The enhancement 

factor observed with poly-L-lysine are likely to be the consequence of 

increase aggregation, providing a larger surface area for which the analyte 

can bind to and promote increased localised hot spot formations for signal 

enhancement. 

(2) Within the acidic environment of the SERRS/SERS solution, the amine 

and hydroxyl groups of the Sudan-1 and the secondary and tertiary amines 
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group of the methyl green will become protonated. The positively charged 

amine groups present in both dye molecules will bind to soft metals such as 

silver or gold due to the charge attraction effects when sufficiently close to 

each other in solution.  

(3) The negatively charged citrates surrounding the nanoparticles will 

become more readily displaced within a proton rich environment.  When 

analytes are in close proximately to the nanoparticles (brought about by the 

aggregation process), the citrates will be easily displaced therefore 

facilitating formation of analyte-metal complex. Similar observations have 

been reported in previous studies of dyes employing SERS/SERRS where a 

pH dependence of those analyte was also demonstrated (Shadi 2001; Shadi 

2003; Shadi 2004). 

 

SERS and resonance SERS are rapid and sensitive techniques for the analysis for 

aqueous dyes in very dilute concentrations with minimal sample pre-processing.  The 

Raman spectra provide a unique fingerprint of the analyte which gives specific 

molecular information. The use of multivariate data analysis for exploratory analyses 

and quantification offer more robust results to be obtained compared to conventional 

univariate approaches.  This is because the entire spectrum is utilised rather than 

only focusing on a selective vibrational band.  

SERRS is the combined effect of both resonance and surface enhancements. Whilst 

it may offer higher signal amplification compared to conventional SERS, it is not as 

widely applicable as the compatibility with the applied excitation frequency and the 

analyte’s molecular adsorption maxima cannot always to be matched. However, 

SERRS does not require complete overlap of the applied excitation wavelength and 

adsorption maxima of the analyte, and some SERRS enhancements can be observed 

even if there is only a partial overlap.  In addition, SERRS has significant advantages 

for the analysis of chromophores which are often difficult to characterise by RS due 

to their high fluorescence background. The use of silver or gold nanoparticles in 

combination with SERRS shows that fluorescence can be efficiently quench by the 

nanoparticles (Graham 2006).  
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Figure 16 Chemical structure of Sudan-1 and Methyl green with it calculated pKa and pKb values. 

 

The manner in which the metal particles are synthesised and their resultant 

composition has a substantial effect on the subsequent enhancement observed (Jain 

2006), as variations in particle sizes and structural morphology from batch to batch 

will have a significant impact upon the reproducibility of the data. Therefore it is 

crucial to have a reproducible and robust method of synthesising nanoparticles. 

Experimentation in Raman spectroscopy is often required to be conducted using the 

same batch of nanoparticles and if practical within the same day to minimises any 

technical and temporal variations. However in large scale experiments, involving 

high number of samples, this may not always be possible. The experimental 

parameters in which aggregations was induced prior to signal acquisition, 

aggregation rate, pH environment and solution composition will all have a 

significant contributions towards the reproducibility of the Raman spectra (Lee 

1982).  

Much effort has been focused on the development of a suitable substrate surface for 

signal enhancements in SERRS/SERS studies, however the substrate surface which 
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offers higher enhancement often suffer from reproducibility issues as the formation 

of localised surface hot spots is not always homogeneous (Ruan 2007,Gopinath 

2009). Whereas substrates which offer moderate enhancements generally have 

higher reproducibility as the conditions can be more easily replicated. The most 

important metal substrates used in SERRS/SERS studies at present are generally 

gold and silver based. Enhancements using silver nanoparticles trend to be greater, 

generating 10 to 10
3
 fold higher signal compared to gold nanostructures (Garica de 

Abajo 2007), therefore it is typically used for most small molecule characterisation 

studies while gold is more often utilised in bio-analysis and structural studies 

(Kneipp 2006, Sha 2008) due to its greater biocompatibility. The excitation 

frequency is different for the two types of nanoparticles; silver can be excited by a 

broader frequency compared to gold (Zhao, 2008). Gold nanoparticles exhibit a 

surface plasmon frequency at ~ 500-550 nm (Jain 2006) while silver exhibits a lower 

surface plasmon frequency at ~ 400-415nm (Guzmán 2009), upon aggregation the 

plasmonic shift in the gold nanoparticles display new absorption bands of higher 

frequency in the region of 530 nm while for silver display this shifts to lower 

frequencies in the region of 390 nm. The nanoparticle suspensions offer a better 

alternative to a metallic surface due to their increased surface area; since the 

nanoparticles are suspended in solution they also benefit from the effect of Brownian 

motion, where the SERRS/SERS spectra observed represents an averaged effect. 

8.5 Conclusion 

Metabolic VOC profiling is a novel field of analysis within metabolomics. The 

VOCs emitted from biological samples not only provide a variety of detail chemical 

information but also permits correlation to biological origin as well as physiological 

status. Metabolic VOC profiling is a non-invasive method and this analysis can be 

readily applied to real time profiling of a large range of samples and concentration 

types.  This approach has as a variety of promising applications in microbiology, 

plant science, food analysis, agriculture, disease diagnostics and personalized 

healthcare.  

 

The PDMS membranes employed in Chapters 3 and 4 are inexpensive, robust and 

highly versatile; hundreds of these can be cleaned and stored in a stable manner for 
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several days. Parallel sampling can also be readily achieved using PDMS. The 

surface composition of the PDMS and its observed trapping performance indicates 

that it is predominately suited for the collection of polar compounds (Sanchez-

Palomo 2005; Riazanskaia 2008). Alternative surfaces such as Tenax-TA are 

available and these permit the capture of both polar and non polar VOCs; however, 

they are more labour intensive as they require the use of DHS methodology with 

specialised equipment.  

 

VOC profiling is a challenging method of analysis, where greater emphasis must be 

placed on robust and reproducible HS sampling (Jia 2007). Once the VOCs are 

collected the trapped analytes are prone to degradation and contamination. Sufficient 

care must be taken to minimise this (Riazanskaia 2008) as the samples are only 

stable for a few days. Therefore all samples must be analysed as soon as possible 

(less than 48 h).  This necessitates a robust sampling and introduction procedure to 

ensure good biological and analytical reproducibility. In HS sampling the use of 

thermal desorption has allowed a reasonable degree of high throughput capacity to 

be achieved through semi-automation, which helps towards ensuring reproducibility.  

 

As discussed in Chapter 2 DMS is a promising technique for the rapid analyses of 

volatile materials. As Py-GC/DMS was studied, technically speaking the pyrolysate 

generated using Py-GC/DMS are not VOCs but thermally decomposed fragments 

generated under inert atmosphere within a highly controlled condition.  However, 

DMS could potentially be the method of choice for VOC screening surpassing MS-

based platforms; this is due to its ability to operate at ambient pressure with good 

sensitivity (Krebs 2005). Nevertheless, at present DMS is more suited for qualitative 

rather than quantitative analysis due to its comparative low resolution compare to 

MS and issues with peak identification.  

 

Robust and coherent theoretical descriptions of the ion chemistry and the mode of 

operation for DMS are extensively available (Nazarov 2006; Krylov 2007; Krylov 

2009), and experimental data are highly consistence with predictive models (Krylov 

2010). The technique is still in development but is fast maturing, the small size of the 

DMS detector (the current generation are less than 1cm
2
) and its low power 

consumption permits portability and holds great potential for deployment as a field 
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sensor for real time and on site monitoring (Griffin 2006). Recently DMS has been 

successfully incorporated into MS-based platforms functioning as an orthogonal 

method of chromatographic separation in a similar manner to GC or LC with 

promising results (Levin 2007; Coy 2010; Manard 2010). DMS originally evolved 

from ion mobility spectrometry (IMS) and these two techniques are closely linked, 

IMS has also been successfully integrated with modern MS systems (Wu 1999) and 

offers a real alternative to GC (Dwivedi 2010).  

 

Currently mass spectrometry is one of the most developed fields of analysis in 

metabolomics and is highly powerful tool generating detailed structural and chemical 

information. The detector employed in Chapters 3-5 was relatively obsolete by 

comparison to modern MS detectors, it had a significantly lower scan rate, capacity 

and linear dynamic range, as such low intensity ions were not likely to be detected. 

Whilst more sophisticated mass analyzers would allow considerably higher 

resolution mass spectra to be obtained, MS based analytical methods are not without 

drawbacks, MS has a lower throughput capacity and requires significant pre-

processing prior to data analysis. This point is clearly highlighted in Chapters 3-6 

which lead to the development of appropriate data preprocessing methodologies. 

 

Raman spectroscopy is an alternative analytical approach which is rapid and non-

destructive, and able to generate detailed spectra of the sample in various matrices. 

Raman spectroscopy is useful when target analytes are in very low concentrations 

and when quantification is necessary. The weak Raman signal can be significantly 

amplified by resonance and surface enhancement effects, as demonstrated by the 

work presented in Chapters 6 and 7. SERRS and SERS are ideal for analysing 

aqueous solutions in a rapid and quantitative manner. The recent development of tip 

enhanced Raman scattering (TERS) (Pettinger 2007; Chaigneau 2010) in which an 

ultra fine tip composed of a SERS active metal is brought within close proximity to 

the sample (within the nanometer range), results in signal enhancement factors of up 

to 5 x10
9
 compared to conventional Raman scattering (Neacsu 2006). This novel 

variation of Raman spectroscopy holds great potential for generating highly detailed 

spatial SERS measurements and could also be used for the characterization of 

peptides, DNA and RNA (Domke 2007; Bailo and Beckert 2008). 
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The current analytical platforms employed in metabolomics generate an immense 

quantity of complex chemical data and conventional methods like simple visual 

inspection are no longer feasible or even practical. The use of multivariate analyses 

in combination with univariate statistics is becoming a standard practice in 

metabolomics to derive valid analyses and hence robust results. The intensive use of 

chemometrics at all levels presented in Chapters 2-7 has allowed rapid and efficient 

processing of immense quantities of complex data in a relatively short period of 

time. The use of unsupervised cluster analysis allows the visualisation and 

identification of potentially significant trends within data sets which are consistent 

with the experimental design and biology. These may be subsequently validated 

through supervised analysis methodologies. 

 

The application of suitable chemometrics to different types of data structures, is 

essential in order to obtain valid, reliable and objective results. By taking into 

consideration the advantages and limitations of the data analysis techniques, 

appropriate improvement/adjustment in the experimental design can be 

implemented.  

Chemometrics is however not an end in itself, as no amount of detailed 

understanding, experience and smart application of it can address an ill-conceived 

experimental design with poorly collected data (e.g., inadequate sampling procedure, 

atypical responses, lack of metadata and incorrect class information), with 

inadequate biological and analytical replications. In most cases the number of 

samples per class is lower than one would want and this often results in a large 

biological variation which cannot be accounted for or constrained; such variation can 

and does have significant effects upon the quality of data and the statistical relevance 

of the results obtained. Therefore robust and suitable experimental design, with 

diligent sampling and data collection in conjugation with suitable data analysis 

methodology, is crucial to yielding valid and interesting results.  

 

The analysis of VOCs is a complementary profiling tool within the metabolomics 

toolbox, and one of its great attractions is that it permits the characterisation of 

biological samples in a rapid and non-invasive manner. The technique provides 

detailed chemical information regarding the VOC composition present above the 

headspace of the sample and these molecules can be used to interrogate the 
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biological system under analysis. In conclusion, the work presented in this thesis has 

demonstrated the utility of VOC profiling and like all metabolomics analyses its 

value is only realised when chemometrics processing is applied. I believe that VOC 

analysis is a valuable additional approach for non-invasive analysis of many 

biological systems.  
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Supplementary information for Chapter 3 
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Supplementary Material 

 

Table A Summary of instrumentation parameters 

Thermal desorber 

Primary desorption flow 50cm3 min-1 
Primary split Splitless 

Primary desorption temperature 180˚C 

Primary desorption time 5 min 

Cold trap volume 19 µl 

Cold trap temperature -10˚ C 

Cold trap packing Tenax TA/Carbograph 1TD 

Secondary desorption flow 1cm3 min-1 

Secondary split 50:1 

Trap heating rate 100˚C min-1 

Secondary desorption temperature 300˚C 

Secondary desorption time 3min 

Gas Chromatograph 

Column flow 1cm3  min-1 
Initial column temperature 70 °C 

Time that initial column temperature was held  1min 

Column heating rate 3°C min-1 

Final Column temperature 230°C 

Time that final column temperature was held  10 min 

Ion Trap Mass Spectrometer 

Ionisation EI mode 10µA 
Scan range 30 to 400m/z 

Scan time 1s 

Trap temperature 200°C 

Manifold Temperature 90°C 

Transfer line temperature 260°C 

Filament and Multiplier delay 30s 
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Figure 6.  Distance heat map plot. The distance between each pair of samples are 

represented by a colour as indicated by the colour bar on right (red to blue). The higher the 

distance, the lower (bluer) the similarity between two samples. The 5 different subjects, each 

subject has 3 samples from each class respectively, were labeled by numbers from 1-5 and 

samples from the sample class (e.g. Boundary, Control or Lesion) were placed together. Since 

each subject has 3 samples for each class, the 3x3 blocks in the diagonal of the picture represent 

the similarities between the samples from the same subject and also the same class which 

thereby show the reproducibility of the sampling methodology.   
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Supplementary information for Chapter 4 
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Fig. S-1: Block loadings plot of the first CPCA model. 



 

 

Fig. S-2: Block loadings plot of the second CPCA model. 
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Fig. S-3: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass spectrum 
of the target peak. 

 

5

6

7

8

9

10

11

12

 0h  0h 24h 24h 48h 48h 72h 72h
N   C N  C N C N  C 

 

Lo
g 1

0 (
Pe

ak
 A

re
a)

 

(a) 

(b) 

(c) 



 

 

Fig. S-4: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass spectrum 
of the target peak. 
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Fig. S-5: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass spectrum 
of the target peak. 
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Fig. S-6: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass spectrum 
of the target peak. 
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Fig. S-7: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass spectrum 
of the target peak. 
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Fig. S-8: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass spectrum 
of the target peak. 
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Fig. S-9: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass spectrum 
of the target peak. 

0

2

4

6

8

10 

12 

14 

 0h   0h 24h 24h 48h 48h 72h 72h 
N   C N  C N  C N  C 

 

Lo
g 1

0 (
Pe

ak
 A

re
a)

 

(a) 

(b) 

(c) 



 

 

Fig. S-10: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-11: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-12: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-13: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-14: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-15: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-16: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-17: (a) Box-whisker plot; (b) Standard mass spectrum; (c) Extracted mass 
spectrum of the target peak. 
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Fig. S-18: (a) Box-whisker plot; (b) Extracted mass spectrum of the target peak. No 
satisfactory matching can be found. 
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Fig. S-19: (a) Box-whisker plot; (b) Extracted mass spectrum of the target peak. No 
satisfactory matching can be found. 
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Fig. S-20: (a) Box-whisker plot; (b) Extracted mass spectrum of the target peak. No 
satisfactory matching can be found. 
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