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Statistical speech reconstruction for larynx-related dysphonia has achieved good performance using Gaussian mixture models and, more

recently, restricted Boltzmann machine arrays, however deep neural network-based systems have been hampered by the limited amount of

training data available from individual voice-loss patients. We propose a novel deep neural network structure that allows a partially supervised

training approach on spectral features from smaller datasets, yielding very good results compared to the current state-of-the-art.

1. Introduction: In this paper, larynx-related dysphonia refers

to those who have undergone a partial laryngectomy or who

have larynx damage, impaired brain function or nerve lesion (e.g.

laryngeal palsy), or are avoiding phoned speech due to a prescribed

period of voice rest [1, 2]. This leads them to produce medical

whispers – a subset of whispering for medical reasons – where

the vocal cords do not vibrate as they would for spoken utterances,

even when producing vowels and other phonemes that are normally

voiced. Such whispers exhibit reduced energy compared to speech

and are easily obscured by background noise, thus the need for

speech reconstruction. Simple prosthetic aids have been available

since the invention of the robotic sounding electrolarynx (EL)

in the 1920s, but much recent research has focussed on two

approaches to whisper-to-speech conversion (WSC) [1], namely

codec-based and statistical voice conversion (SVC) methods. The

former use parametric conversion frameworks which decompose

whisper input and then reconstruct into normal speech without

model training or use of a priori information. These include the

CELP (code excited linear prediction) and MELP (mixed excitation

linear prediction) based reconstruction technique [2, 3] plus direct

conversion methods [4, 1].

Codec-based systems are fast, efficient and simple to set up

but exhibit unnatural pitch, and mean opinion scores (MOS)

seldom exceed 3.5. SVC based methods using Gaussian mixture

models (GMMs) [5] reconstruct much more normal sounding

speech from whispers using a priori data to build joint whisper-

speech models. However current systems are limited in only

modelling compressed Mel-cepstral coefficients, failing to model

inter-dimensional correlation due to the restriction of a diagonal

covariance matrix when the training data is limited [6]. As a result,

speech converted from whispers using a GMM usually sounds

‘muffled’ with unusual pitch contours.

The authors previously introduced a WSC framework using

arrays of restricted Boltzmann machines (RBM) [6] acting on

spectral envelope information, allowing much higher dimensional

spectral information than GMM methods. This also modelled inter-

dimensional spectral correlation (due to full connectivity between

hidden and visible layers). It improved on baseline GMM-based

system in terms of both intelligibility and naturalness [6], however

its architecture was significantly more complex than GMM systems,

and much slower since it had to convert each frame individually

using a gradient descent algorithm.

This letter presents a new approach to improve quality while

reducing complexity, shown in Fig. 1. Rather than operate multiple

RBM arrays to learn spectral feature mappings, we propose a single

deep neural network (DNN) structure. Unsupervised training is

used first to create two separate Gaussian-Bernoulli RBMs; one for

whisper spectral features and one for frame-alighted speech spectral

features, effectively performing feature coding. These trained

RBMs are then stacked back-to-back – a two-layer Bernoulli-

Bernoulli neural network is sandwiched between the RBMs to form

a DNN stack. The middle layers are then trained in a supervised

fashion to form a fully connected mapping from whisper features to

frame-aligned speech features.

2. background: GMM-based WSC methods were pioneered by

Toda et.al [5] to convert non-audible murmur (NAM) signals into

speech with more normal sounding characteristics. The authors

subsequently extended their techniques to convert whisper-like

speech from post partial laryngectomy patients, transforming

acoustic features of whispers into normal sounding speech after

Figure 1 RBM networks fist trained on time-aligned whisper and speech

spectral features (top), then used to train feature mapping network weights

(bottom).
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being suitably trained with parallel utterance data (i.e. spoken and

whispered versions of the same speech). State-of-the-art variants [7]

made use of up to three GMMs: one to convert the source spectral

features into target spectral features, another to convert the same

source spectral features into a pitch excitation, and the last one

to generate additional aperiodic components that are found in the

target speech (which can enhance naturalness). Converted speech is

typically synthesised by STRAIGHT [8], using estimated spectral

features, pitch, and aperiodic components. Quality tends to be good

although these methods suffer from over-smoothing of detailed

characteristics in the reconstructed spectra, leading to muffled

speech. Unnatural prosody can arise too, due to the difficulty

in estimating f0 from the whisper spectrum. Apart from these

disadvantages, complexity is high due to the three GMMs needed,

and because systems require STRAIGHT for re-synthesis.

In a recent system developed by the authors [6], the over-

smoothing effect was mitigated through the use of RBM

arrays which could model a much higher resolution spectral

envelope than commonly achieved by the mel-cepstra of GMM

systems. The RBM system also decoupled the voiced/unvoiced

classification from the pitch estimation, allowing for smoother

pitch reconstruction. This performance gain, however, came at a

substantial computational cost.

3. Motivation for the proposed technique: The motivation

to utilise a deep neural network architecture for the whisper-to-

speech conversion task is simple: DNNs have shown their ability

to infer discriminative features in a number of related domains

including ASR [9], language identification (LID) [10] and machine

hearing [11]. They have also been applied to the field of SVC [12]

as well as speech enhancement [13]. Therefore, we began to train

DNN-based WSC regression models using minimum mean squared

error objective criteria on spectral envelope features. We followed

standard RBM-based pre-training methods using the contrastive

divergence (CD) algorithm and back-propagation (BP) error-based

fine-tuning. The results, however, were systems prone to over-

fitting due to the limited parallel data from each speaker1. DNN

performance was disappointing, as results will indicate in Section 9.

Without obtaining significantly more training data, one potential

improvement would be to use supervised training, which is more

effective than unsupervised training. Unfortunately supervision

requires labelled data, which we do not have. However we propose

a novel semi-supervised DNN architecture in this letter which

first uses unsupervised training to perform feature coding, and

then uses that coding to enable supervised training. Specifically,

we begin by training two separate RBMs on whisper and voiced

speech spectral envelopes respectively. These are trained in an

unsupervised fashion, and can thus use large scale databases

from many speakers. The RBMs output identically sized sets

of binary features from spectral envelope inputs. Frame-aligned

binary features from each RBM are then used as inputs to train

a fully connected mapping network, in a supervised fashion, that

effectively translates the RBM-extracted Bernoulli feature spaces

between the two speech modes. We will see that this method

reconstructs much better speech than a single DNN of equivalent

size, trained in a wholly unsupervised fashion using the same data.

It also outperforms existing GMM and RBM techniques.

4. Whisper-to-speech conversion using standard DNN: The

most direct application of DNN for WSC is a network where the

input layer data is original whisper features, and the output layer

data maps to parallel normal speech features. We implemented such

a system, trained using parallel frame-aligned spectral envelope

1 Parallel training data means high quality recordings of a patient

speaking sentences with a normal voice, and speaking the same

sentences after laryngectomy. This is difficult to obtain in practice

from patients who have already lost the ability to speak naturally.

data. To reduce the over-smoothing of reconstructed spectra,

dynamic features and maximum output probability parameter

generation (MOPPG) algorithms were deployed. These have been

demonstrated in both GMM and multiple RBM based WSC tasks

to be effective at reducing over-smoothing [14].

Assume that Xt = [xt,∆xt] are the static and dynamic features

of whispers, while the corresponding parallel features from normal

speech are Yt = [yt,∆yt]. When training the DNN using error

back-propagation through minimum mean square error criteria, the

objective function for system θ is:

J(θ) =−
1

2T

T
∑

t=1

D
∑

k=1

{

Ŷtk(θ)− Ytk

}2

(1)

The output layer of the DNN has D nodes, computed in a

forward layer-wise direction. During whisper-to-speech conversion,

the output from time 0 to T would be Ŷ = {Ŷt} where 1≤ t≤ T .

According to the MOPPG algorithm, the converted static feature ŷ
is computed as follows:

ŷ= (CTD(Y )W )−1CTD(Y )−1Ŷ (2)

Where C is a transformation matrix that maps static features into

static and dynamic combined features, and Y =Cy. While D(Y )

can be estimated from:

D(Y ) =Σ(Y Y ) − Σ(Y X)Σ(XX)−1

Σ(XY ) ≈Σ(Y Y )
m (3)

since the elements of covariance matrix Σ(Y X) are close to zero.

The DNN implementation is shown in Fig. 2.

Figure 2. A standard DNN implementation for performing WSC.

The application of DNNs to whisper-to-speech reconstruction

can simplify the training and operating process compared to the

use of multiple RBMs [6]. However in practice the DNNs trained

from the same data set as the GMM and multiple RBM systems are

prone to over-fitting due to insufficient training data. This will be

reflected in the results reported later in Section 8.

5. Training data: For WSC tasks, training data consists of

parallel sentences of whisper and target speech. Thus, models are

trained with the same sentences whispered as well as spoken, with

the aim of the training being to convert whispers into target speech.

Systems are speaker-dependent and trained for one user at a time

and sufficient good quality parallel whisper/speech data must be

prepared for each user, then aligned at a frame-level. Unfortunately

lack of training data is endemic for WSC systems, particularly as

the primary target users are patients with larynx damage who can

no longer produce normal speech on demand. Contrast this with the

fact that DNNs require a large amount of training data in order to

learn the numerous internal parameters of deep fully-interconnected

layers. The apparent mismatch between amount of training data

and DNN requirements motivates the novel semi-supervised DNN

proposed in the next section.

6. The proposed semi-supervised DNN: The core idea of

the proposed semi-supervised DNN combines unsupervised and

supervised training methods together within a single composite

deep network. With reference to Fig. 1, the first stage is to

train two separate Gaussian-Bernoulli RBMs on whisper and

corresponding parallel (frame-aligned) speech features using the

2 Healthcare Technology Letters, pp. 2–5
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unsupervised Contrastive Divergence algorithm [12]. In practice

each RBM can model their respective feature space quite well,

mapping from Gaussian to Bernoulli space. The number of nodes

in the hidden layer is much lower than the number of nodes in

the visible layers, which effectively performs a feature coding

or information compression procedure. This aspect is crucial in

reducing the subsequent training requirements of the supervised

layer which will be added later. Coding implies that input data

can be reconstructed from the corresponding hidden data, with the

degree of reconstruction precision being dependent upon both the

degree of redundancy in the training data and the dimensionality

of both layers. Assuming, as before, that X and Y are whisper

and speech spectral data (both static and dynamic spectral envelope

features) from time 1 to time T , time aligned on a frame-by-frame

basis. The hidden nodes ĥx corresponding to X can be computed

as follows:

ĥx
tk =

{

1, P (hx
tk = 1|Xt, θX)≥ 0.5

0, P (hx
tk = 1|Xt, θX)< 0.5

for 1≤ t≤ T (4)

where P (hx
tk = 1|Xt, θX) =Ber

(

hx
tk|

∫
(WT

tkXt + c)
)

and∫
(x) = 1/(1 + exp(−x)) is the logistic function. The hidden data

ĥy can be obtained in a similar way. After ĥx and ĥy are obtained,

they are subsequently used as training data for the hidden middle

layers of the mapping DNN (the meat in the sandwich), trained

in a supervised fashion using the BP algorithm as illustrated in

Fig. 3. Finally, the resulting semi-supervised DNN can be obtained

by stacking the two unsupervised RBMs and the middle network

together as shown on the right hand side in Fig. 1.

This semi-supervised training method not only significantly

reduces the number of parameters that need to be trained by the BP

algorithm, but also stabilises the parameters of the middle hidden

layers compared to standard DNN training methods, in part due

to the already coded Bernoulli input which is thought to have the

effect of separating the mapping and feature extraction functions of

the network.

7. Semi-supervised DNN training: In detail, training firstly

involves spectral features being extracted from corresponding

whispered and spoken utterances. Secondly, the features are then

aligned using dynamic time warping (DTW) since, although the

utterances were spoken by the same person, there are significant

timing differences between whispering and speaking [15], and

these must be corrected to provide frame-level feature alignment.

Thirdly, two RBMs are trained separately using normalised whisper

spectral data and normalised speech spectral data, both in an

unsupervised fashion. Fourthly, the middle network in the DNN

is trained with data passed through the two RBMs. This is

supervised training. Finally, the two RBMs and middle mapping

network are concatenated together to form a complete DNN. During

WSC operation, spectral feature vectors consisting of concatenated

static and dynamic spectral envelope features, are extracted from

whispers, input to the DNN, and an output obtained by computing

layer-wise in an upward direction with respect to the bottom right

network in Fig. 1. Finally, converted static spectral envelopes are

Figure 3 The semi-supervised DNN training methodology showing the two-

pass training arrangement in the shaded box to the right.

obtained using the MOPPG algorithm, and the reconstructed speech

is synthesised from the static spectral envelope combined with an

estimated f0 obtained using the same method as in [6].

8. Performance evaluation: The effectiveness of the system

is evaluated for speaker dependent WSC using both objective

and subjective criteria with results compared to a baseline GMM

system [5], the more recent RBM array structure [6] and the

direct DNN implementation from Section 4. For fairness, each

system makes use of identical pitch contour reconstruction data,

and thus the performance comparison is based on spectral feature

reconstruction fidelity.

Parallel speech and whisper data are obtained from the wTIMIT

open-source whisper corpus on a per-speaker basis. Testing data

comprises 15 utterances selected randomly from the 450 utterances

of a single speaker in wTIMIT, with the remaining 435 utterances

used as a training set (approximately 15 minutes worth). Frame size

is 40 ms, with an overlap of 35 ms, and 513 log spectral envelope

parameters per frame (i.e. DC and 512 frequency bins). In addition,

25-order Mel-cepstra are simultaneously extracted from each frame

– these are used for both objective scoring as well as for the DTW

alignment (since the spectral envelope dimensionality is so large it

makes DTW almost unworkable).

The standard DNN implementation has input and output layers

with 1026 nodes comprising 513 spectral features and 513
differential features. The network contains two hidden layers of

dimension 1024. When training the DNN in its supervised fine-tune

stage through the BP algorithm, the learning rate is 0.5. A weight

decay strategy is not used for this system.

During the RBM based layer-wise pre-training, the batch size

is set to 10, with a single Gibbs sampling step, and learning rate

of 0.0001. RBM training is iterated 100 times with a momentum

term of 0.5 for the first five iterations and 0.9 for the following 95

iterations.

The proposed semi-supervised DNN input and output layers have

identical dimension to the standard DNN system, namely 1026. It

comprises three hidden layers with dimensions of 1024, 512, and

1024. This has been chosen to ensure that the number of trainable

parameters in the proposed semi-supervised DNN match those of

the standard DNN. Additionally, the training configuration for the

two RBMs and middle mapping network in the semi-supervised

DNN is exactly the same as that used in the standard DNN. Thus

the training data, training settings, number of training parameters

and feature dimensionality is the same between the two systems.

Any difference in performance is thus achieved solely by the

novel mapping structure and partially supervised training that this

structure makes possible.

The detailed configuration of the GMM and multiple RBM array

WSC systems used for comparison are as described in [6], but in

this case will use the same training and evaluation data set as the

DNNs above.

In the subjective and objective evaluations that follow, there

are thus six possible items of comparison: input whispers,

corresponding speech, and reconstructed speech from GMM, RBM,

DNN and semi-supervised DNN (semi-DNN). Each of these six can

thus be compared for all utterances.

Subjective evaluation: Six naive student volunteers with normal

hearing participated in binary preference listening tests to evaluate

the four WSC models. In each sitting, every listener was presented

with a set of randomly sequenced pairs of recordings and asked to

state their preference between the two recordings, or to indicate ‘no

preference’. The recordings were sentences reconstructed from the

four systems under evaluation. Four binary tests conducted in this

way per sentence can therefore subjectively discriminate between

each of the four models. This was repeated for all evaluation

sentences for each listener.

Objective evaluation: For objective scoring, cepstral distortion

is used to evaluate the spectral distance between whispers, the

Healthcare Technology Letters, pp. 3–5 3
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converted speech from different models and the parallel normal

speech. The DTW algorithm is used to align 25-order mel-cepstra

of source speech and target speech and hence provide a frame-

level alignment for parallel comparison. During testing, the mel-

cepstra of reconstructed speech from the RBM, standard DNN and

proposed semi-supervised DNN models were generated directly

from the reconstructed spectral envelope output.

To explore further, three other objective methods were also

applied; symmetrical Itakura-Saito (IS) distance (i.e. the average

IS distance in both directions), log-likelihood ratio (LLR) and

segmental SNR [15]. These were computed between each of the

DTW-aligned reconstructed outputs from the four models plus the

whisper input, and the corresponding speech recording.

9. Results: The subjective evaluation results are reported in

Table 1. Each row records the mean two-way preference of the

6 listeners on each of 15 utterances. Each column identifies the

proportion of preferences reported for a particular WSC method,

apart from the last column which indicates where listeners were

unable or unwilling to express a preference.

Beginning with the top of the table, the first three rows indicate

a very significant preference for the proposed semi-supervised

DNN over either GMM, DNN or multiple RBMs. In particular,

comparing rows 1 and 4 the preference for GMM is reduced from

43% to 13% through the adoption of the novel semi-supervised

training architecture. This result very clearly demonstrate the

effectiveness of the proposed technique.

Cepstral distortion (CD) scores, reported in Table 2, indicate

that all four models improve on the correspondence of the whisper

input to matching speech in a spectral distance sense. However,

the semi-supervised DNN and RBM models do not score as well

as the GMM and DNN reconstruction, in marked contrast to the

subjective results. This matches the findings of the RBM-GMM

evaluation in [6] and highlights a difference between objective and

subjective evaluation. To explore further, Fig. 4 plots the mean IS,

LLR and segmental SNR scores – these are objective measures

of the similarity of the given signal to the corresponding speech

(smaller meaning more similar). Apart from segmental SNR, all

methods improve on the whispers, with the proposed semi-DNN

method performing well in each evaluation.

10. Further analysis: To provide additional insight into these

systems, Fig. 5 plots the LPC-derived spectral envelope for an

example utterance (0.5s of voiced speech and the corresponding

time-aligned sections from the whisper and reconstructed outputs).

All models have significantly transformed the whisper spectrum

(background shading) to become much more similar to that of

the corresponding voiced speech (thick dark line). Assuming that

the spectral peaks represent formants, then formant location and

amplitude of the reconstructed output closely follows that of the

speech. The semi-supervised DNN output is arguably slightly

closer than the other methods (apart from the peak at about 2.5 kHz

which the RBM method matches more closely).

A different utterance is explored in Fig. 6, with spectrograms

of each of the six signals plotted for comparison. The different

timescale on the speech spectrum is needed to align it to the whisper

and reconstructed speech which are of a different duration. Note

the finely detailed formant tracks throughout the recording, and the

improved contrast of the semi-supervised DNN formant spectra.

Table 1 Results of the four binary subjective evaluation tests.

GMM RBM DNN Semi-DNN No Preference

13.3 — — 70.0 16.7

— — 3.3 77.8 18.9

— 13.3 — 43.3 43.3

43.3 — 32.2 — 24.4

Figure 4 Mean objective performance scores obtained from symmetrical

Itakura-Saito distance measure, segmental SNR and log-likelihood ratio.
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Figure 5 Comparison of the spectral envelope shape of each method for a

short section of voiced speech.

11. Conclusion and future work: This letter has proposed a new

method of constructing a DNN for performing statistical whisper-

to-speech conversion. This has been compared and evaluated

against a direct standard DNN implementation, as well as against

state-of-the-art GMM and RBM methods, demonstrating excellent

performance for both subjective and objective criteria. However the

major benefit of the system is that, for the first time, it enables

partially supervised training of a statistical WSC DNN system,

This is important for enabling future healthcare implementations.

Having already suffered voice loss, patients are unable to record

the extensive and high quality parallel speech and whisper

utterance databases required for DNN, GMM and RBM training.

The proposed semi-supervised DNN system still requires parallel

training data but only needs enough to train a single mapping

network, rather than an entire system: The high dimensional feature

coding input and output layers can be trained using different

material that is not speaker-specific. This helps to unlock the

potential of high quality DNN methods for future practical WSC

systems.
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