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ABSTRACT 23 

Orangutans (Pongo sp.) show among the highest occurrence of three types of 24 

developmental enamel defect. Two are attributed to nutritional factors that reduce 25 

bone growth in the infant’s face early in development. Their timing and prevalence 26 

indicate that Sumatra provides a better habitat than does Borneo. The third type, 27 

repetitive linear enamel hypoplasia (rLEH) is very common but its etiology is not 28 

understood. Our objective is to draw attention to this enigmatic, episodic stressor in 29 

the lives of orangutans. We are concerned that neglect of this possible marker of ill 30 

health may be contributing, through inaction, to their alarming decline in numbers. 31 

Width and depth of an LEH are considered proxies for duration and intensity of stress. 32 

The hypothesis that Bornean orangutans would exhibit relatively wider and deeper 33 

LEH was tested on 163 independent episodes of LEH from 9 Sumatran and 26 34 

Bornean orangutans measured with a NanoFocus AG ‘ȣsurf Mobile Plus’ scanner. 35 

Non-normally distributed data (depths) were converted to natural logs. No difference 36 

was found in width of LEH among the two island taxa; nor are their differences in 37 

width or depth between the sexes. After controlling for significant differences in LEH 38 

depths between incisors and canines, defects are, contrary to prediction, significantly 39 

deeper in Sumatran than Bornean animals (median =28μm, 18μm, respectively). It is 40 

concluded that repetitive LEH records an unknown but significant stressor present in 41 

both Sumatra and Borneo, with an average periodicity of six months (or multiples 42 

thereof) that lasts about six to eight weeks. It is worse in Sumatra. Given this 43 
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patterning, shared with apes from a wide range of ecological and temporal sources, 44 

rLEH is more likely attributable to disease than to malnutrition.  45 

 46 

Key words: Pongo pygmaeus; P. abelii; infancy; dentition; stress 47 

 48 

  49 

RESEARCH HIGHLIGHTS 50 

Orangutans are disappearing for largely known reasons. Most dental defect types 51 

support Sumatra being deemed a better habitat than Borneo. However, one enigmatic 52 

defect, repetitive linear enamel hypoplasia, occurs on both islands but is more severe 53 

in Sumatra.  54 

  55 
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INTRODUCTION 56 

Orangutans from Borneo and Sumatra are Critically Endangered having lost 80% of 57 

their numbers in just three generations due mostly to habitat loss, habitat 58 

fragmentation and illegal hunting [IUCN, 2017]. Our purpose here is to draw attention 59 

to an enigmatic, episodic marker of stress in the lives of orangutans, termed repetitive 60 

linear enamel hypoplasia, so as to enlist assistance from field primatologists to help 61 

find its cause. We are concerned that neglect of this possible marker of ill health may, 62 

inadvertently, be contributing to their decline through inaction. Abnormal dental 63 

formation provides a record of developmental stress in young hominoids. In an 64 

evaluation of three types of dental defect (repetitive linear enamel hypoplasia (rLEH), 65 

localized hypoplasia of the primary canine (LHPC), maxillary lateral incisor defect 66 

(MLID)) among five large apes (orangutans, mountain and lowland gorillas, 67 

chimpanzees and bonobos), orangutans have the highest or second highest prevalence 68 

[Skinner, 1986a; Guatelli-Steinberg and Skinner, 2000; Skinner and Newell, 2003; 69 

Tsukamoto, 2003; Skinner and Hopwood, 2004; Guatelli-Steinberg et al., 2012; 70 

Skinner, 2014a; Hannibal, 2016; Skinner et al., 2016]. These findings suggest that, 71 

albeit for unknown reasons, orangutans are remarkably stressed in infancy. Given the 72 

perilous nature of orangutans in the wild, there is an urgent need to document and 73 

understand developmental stress in infancy as recorded in their teeth.  74 

 75 

Developmental defects of enamel 76 
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There is a strong link between developmental health of growing orangutans and 77 

habitat quality [Knott, 1998; Delgado and van Schaik, 2000]. Enamel formation has 78 

been the subject of numerous studies, e.g. [Osborn, 1981; Nanci, 2012]. Hypoplastic 79 

defects of enamel are usually attributed to metabolic stress that results in abnormal 80 

secretion of matrix prior to full mineralization of the enamel. It is widely accepted that 81 

enamel hypoplasia is a non-specific marker of systemic stress [Goodman and Rose, 82 

1990]. However, this rather bleak assessment can be mitigated somewhat by 83 

distinguishing among the (admittedly complex) etiologies of different types of 84 

hypoplastic defects as well as by asking whether the timing, severity, prevalence and 85 

epidemiology of a defect type may be sufficiently distinctive as to suggest a specific 86 

etiology. Our study is designed to explore the striking patterning of rLEH among 87 

orangutans in the hope of elucidating etiology. 88 

 89 

Timing of bone mass defects  90 

 ‘Localized hypoplasia of the primary canine’ (LHPC) and ‘maxillary lateral incisor 91 

defect’ (MLID) share a common proximate etiology-insufficient bone growth in the 92 

face-but are created at different times in infancy (Fig. 1). Both LHPC and MLID are 93 

crypt fenestration defects in which reduced bone growth in the face leads to creation 94 

of an enamel defect prior to eruption [Skinner, 1986b; Skinner and Hung, 1989; 95 

Skinner et al., 2014].  96 

 97 

LHPC is caused by fenestration of the labial crypt wall, normally protecting the 98 
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unerupted, forming milk canine crown, when cranio-facial bone growth in the infant 99 

fails to keep up with crown formation [Skinner and Newell, 2003]. In humans and 100 

apes, the affected part of the tooth crown, exposed to trauma through a fenestration, 101 

forms in the months shortly after birth [Skinner and Newell, 2003; Stojanowski and 102 

Carver, 2011]; consequently it is assumed that, among breast-feeding cohorts, LHPC 103 

reflects condition of the mother as much as the infant. Approximately 91% of 104 

orangutans are affected [Lukacs, 2001]. Notably, there is no difference between 105 

Sumatran and Bornean orangutans in the occurrence of LHPC.  106 

 107 

The second crypt fenestration defect, MLID, is attributed to abnormal contact of the 108 

labial surface of the somewhat less-formed upper lateral incisor crown with the 109 

incisal edge (or fenestration margin) of the more mineralized central incisor through a 110 

fenestrated inter-crypt boney septum in under-developed jaws with pre-eruptive 111 

dental crowding [Hannibal, 2016; Skinner et al., 2016]. MLID is created in the first few 112 

years of an orangutan’s life (ca. 2-5 years) when the infant is increasingly reliant on 113 

foraging for itself. We define infancy as that period during which lactation occurs [van 114 

Noordwijk et al., 2013] which lasts as long as 5.5 years in Bornean orangutans and 6-115 

7.5 years in Sumatran [van Noordwijk et al., 2009]. Notably, almost all incisor and 116 

canine crown formation occurs within this age span except perhaps for the cervical 117 

fifth of the male canine [Beynon et al., 1991]. Orangutans are markedly affected (59%) 118 

by MLID but the lesion is far more common in Bornean orangutans (71%) than 119 

Sumatran (29%) [Skinner et al., 2016].  120 
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 121 

Considering the occurrence of both LHPC and MLID, it can be concluded that: a) 122 

nutrition for infants from both islands is more adequate when the infant is more fully 123 

reliant on breast milk than in later infancy; and b) Sumatra provides a more suitable 124 

nutritional habitat for infants than does Borneo. The latter inference is well supported 125 

in the literature. There are several lines of ecological evidence indicating that Sumatra 126 

provides a superior habitat for orangutans due, fundamentally, to volcanically-derived 127 

soils [Wich et al., 2011]. In Sumatra there are more months in the year with high fruit 128 

availability and a trend towards shorter low fruit periods [Delgado and van Schaik, 129 

2000; Marshall et al., 2009; Wich et al., 2011]. Unlike Bornean orangutans, Sumatran 130 

orangutans spend more time on high quality foods like fruit and insects and a lower 131 

percentage on bark and vegetation. Moreover, Sumatran orangutans seem less reliant 132 

on fallback foods than are Bornean, being able to find figs and fruit year round 133 

[Russon et al., 2009]. In Borneo, there are months where fruit is a minor part of the 134 

diet while in Sumatra fruit is always a major part of the diet [Morrogh-Bernard et al., 135 

2009]. Not surprisingly, therefore, orangutan population density is higher in Sumatra 136 

[van Schaik et al., 2009].  137 

 (Figure 1 about here) 138 

 139 

Timing of repetitive linear enamel defects 140 

The third type of enamel defect (linear enamel hypoplasia) is a more direct 141 

manifestation of abnormal secretion in which transverse furrows of thinned enamel 142 
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are created. All ape samples, including fossil forms, commonly show several furrows 143 

on the incisor and canine dental crowns. The remarkable ubiquity of repetitive LEH in 144 

time and space, spanning millions of years (Miocene to present) and thousands of 145 

kilometers from Spain to China and Africa [Skinner et al., 1995; Skinner and 146 

Roksandič, 1995; Guatelli-Steinberg and Skinner, 2000; Brunet et al., 2002], suggests 147 

that a pervasive and common stressor may underlie the phenomenon. However, we 148 

should be explicit that the etiology of rLEH cannot as yet be attributed with 149 

confidence to malnutrition and/or disease, the fundamental agents behind the 150 

metabolic stress associated with enamel hypoplasia [Goodman and Rose, 1990].  151 

 152 

LEH have been reported in the canine teeth of orangutans among whom they tend to 153 

commence at about 2.5 years of age [Skinner and Hopwood, 2004] and recur 154 

throughout crown formation [Skinner, 2014b] (up to about six to nine years of age 155 

depending on sex [Beynon et al., 1991; Schwartz and Dean, 2001] (Fig. 1). Among 156 

orangutans in general the stressful events recur on average about every six or twelve 157 

months; Sumatran animals showing significantly more annual episodes of stress while 158 

Bornean animals show more semi-annual episodes [Skinner, 2014b]; a pattern 159 

interpreted to provide mild support for Sumatra being the better habitat. However, 160 

Sumatran orangutans are reported to show more LEH defects per tooth [Guatelli-161 

Steinberg et al., 2012], which seems incompatible with their longer cycle (but which 162 

may reflect different subjective thresholds of LEH visibility between investigators, 163 

reinforcing our contention that measurement of LEH furrows should be pursued).   164 

Page 8 of 47

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Skinner 

 

9

 165 

Roughly 83% of orangutans from museum collections show ≥1 episodes of LEH per 166 

tooth [Hannibal and Guatelli-Steinberg, 2005]. When nearly all individual apes in both 167 

Sumatra and Borneo are affected by rLEH, another way has to be found to measure 168 

comparative developmental stress in an informative manner. A more telling test of 169 

island differences would be to measure, not the prevalence or periodicity of the 170 

episodic stress events, but their duration and intensity. We hypothesize that width 171 

and depth measurements of LEH serving as proxies for duration and intensity of 172 

stress, respectively, will be less in Sumatran orangutans, a prediction based on Borneo 173 

being deemed the poorer habitat.  174 

 175 

METHODS 176 

Specimens of extant animals examined in this study consist only of skeletal remains 177 

from museum collections; all animals were dead prior to our study. Proposed 178 

examination was approved by curators of museums listed in Table I. All examinations 179 

were performed at the institution and no hard tissue was removed or transported. 180 

This research adheres to the American Society of Primatologists principles for the 181 

ethical treatment of primates. 182 

 183 

Orangutans in this study have been previously described [Skinner, 2014b]. They come 184 

from three museums in Germany and one in Holland whose collections were 185 

examined in 1999 and 2000. The animals were taken from the wild in the late 19th and 186 
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early 20th century; hence provenience information is imprecise or, in a few cases, 187 

unknown. The majority of the Bornean animals come from the Sintang and Sekelau 188 

region in eastern West Borneo. The Sumatran animals are from the far north end of 189 

the island near Atjeh (Aceh) and Deli. Here we employ a species distinction between 190 

the two island populations (P. abelii in Sumatra and P. pygmaeus in Borneo) reflecting 191 

the marked genetic and morphological differences between the two island taxa 192 

[Goossens et al., 2009].  193 

(Table I about here) 194 

 195 

Animals for the previous study [Skinner, 2014b] were chosen because they showed 196 

countable perikymata between two or more episodes of LEH on a single tooth (incisor 197 

or canine). Where defects were demonstrably bilateral, the antimere with more 198 

visible features on the outer enamel surface was chosen. An individual counts only 199 

once. Here we report LEH defects on an enlarged sample of teeth from the same 200 

animals to include slightly worn, but measurable, LEH with uncountable perikymata. 201 

Still, the sample (Table I) is biased towards younger individuals with comparatively 202 

little labial wear, and purposefully excludes animals whose teeth show only a single 203 

episode of LEH, since the latter animals did not afford an opportunity to study the 204 

interval between episodes and, hence, LEH periodicity. We acknowledge that sample 205 

sizes are disparate and that for Sumatra (N=9 animals), small. However the sample 206 

sizes for repetitive LEH events, whose occurrence we consider to be independent of a 207 

previous event, are reasonably large (N=30 for Sumatra and 133 for Borneo). 208 
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Nevertheless, any inferences made in our study will need to be tested against other 209 

and larger samples before firm conclusions can be drawn.  210 

 211 

Terminology 212 

Usages of the word ‘stress’ are considered so discordant that hopes of a standard 213 

definition are forlorn [King and Murphy, 1985]. Our definition is not as strict as theirs-214 

that vital physiological function must be impaired-but we do consider that reduced 215 

cellular secretion of enamel matrix, sufficient to affect contour of the outer enamel 216 

surface, qualifies as indicative of physiological stress. While methods employed in this 217 

study are a deliberate move away from a subjective threshold of perception of a 218 

hypoplastic furrow towards measurement, we employ the term ‘salience’ to mean the 219 

subjective visibility of depressions in the outer enamel surface (conflating width and 220 

depth), often enhanced by vegetable staining, since this threshold has historically 221 

guided our researches and has formed the basis of communication among scholars. 222 

We should be clear however that the salience of linear enamel hypoplasia, whether 223 

objectively or subjectively assessed, reflects the host animal’s experience of stress 224 

mediated by many factors, not stress per se. In other words, measurements of enamel 225 

hypoplasia do not measure stress at all-they measure the response to stress; but 226 

forging a link between stress and enamel defects is challenging. LEH reflects the 227 

potential interaction, during development, of many factors (e.g., individual 228 

immunocompetence, foraging efficiency, food acquisition skills and social rank); 229 

meteorological influences (e.g., seasonality, insolation, rainfall cycles); and abiotic 230 
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factors (e.g., soil type) with a variety of stressors (e.g., disease, malnutrition) 231 

[Eckhardt and Protch von Zieten, 1993; Guatelli-Steinberg, 1998, 2000; Guatelli-232 

Steinberg and Skinner, 2000; Guatelli-Steinberg, 2001; Chollet and Teaford, 2010; 233 

Kirchoff, 2010]. Historically, there has been acceptance of a simple separation of 234 

defects into narrow or wide [Sarnat and Schour, 1941; Corruccini et al., 1985; 235 

Bermudez de Castro and Perez, 1995] with little or no concern for depth; and, yet, 236 

depth contributes to the salience of an LEH. The latter authors speculated that narrow 237 

and wide grooves might represent infection and dietary deficiency, respectively. 238 

Blakey et al. [1994] used the phrase ‘major growth arrests’ to describe very wide 239 

defects. Similarly, Ensor and Irish observed what they termed ‘continuous chronic 240 

enamel hypoplasia’ and captured the phenomenon with the concept of ‘total 241 

hypoplastic area’ [1995]. Many authors have invoked a threshold of 0.4 to 0.5mm 242 

width of defect to distinguish shorter (acute) and longer episodes of stress 243 

[Hutchinson and Larsen, 1988; Ensor and Irish, 1995; Duray, 1996; Vann, 2008]. 244 

There seems to be general acceptance that the width of a hypoplastic defect provides 245 

a reasonable estimate of duration of a stress event or events. Here, we draw a clear 246 

distinction between widths and depths.  247 

�248 

Width 249 

The accepted method for estimating duration of stress in humans is to count the 250 

number of perikymata in the occlusal wall of a defect and multiply this figure by the 251 

known or inferred Retzius periodicity in days [Hillson and Bond, 1997]. We question 252 
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the generalization, made by Hubbard and colleagues [2009], that perikymata counting 253 

is more accurate than measuring defect widths, mostly because in chimpanzee, 254 

bonobo and orangutan canine teeth, at least, perikymata spacing is more uniform 255 

throughout most (ca. middle 80%) of the crown than it is in human canine teeth [Dean 256 

and Reid, 2001; Guatelli-Steinberg et al., 2012; O'Hara, 2016]. In our study, 94% of 257 

LEH occur within crown deciles four through nine. According to a recent study by 258 

O’Hara [2016] the median number of perikymata among these deciles ranges from 259 

only 26 to 28 per decile. Also, a recent study reports a range of only nine or ten days 260 

per perikyma in both Sumatran and Bornean orangutans [Smith, 2016]. Consequently, 261 

we feel that measurements of the width of LEH defects should give a reasonable 262 

estimate of duration of stress (as qualified above) in each taxon. Both perikymata 263 

count and width are proxies for time. Fundamentally, it is much easier to obtain a 264 

sufficiently large sample to detect differences between populations by measuring 265 

widths than counting perikymata. As Hubbard and colleagues observe: 266 

“Bioarchaeologists are faced with the choice of using a more accurate method 267 

(perikymata counting) on a small sample (given the small number of defects with 268 

continuously visible perikymata within them), or using a potentially less accurate 269 

method (measuring defect widths) on a larger sample” [2009:178].  Here we have 270 

elected to eschew perikymata counts in favour of width measurements, on an 271 

enlarged sample. �272 

  273 

We define ‘width’ as a direct measure, along an imaginary line joining the two 274 
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shoulders of a hypoplastic defect, taken from the occlusal shoulder to a place 275 

orthogonal to the deepest point of a defect, taken in an occlusal-cervical axis.  This 276 

amounts to roughly half the width of most furrows. In our view, enamel deposition 277 

after the end of a stressful episode restores normal enamel contour; consequently, 278 

width of what can be termed the ‘recovery of normal enamel contour phase’ is a 279 

function of both enamel geometry and depth of the furrow but is not necessarily 280 

informative of the actual time required to recover from stress [Hillson and Bond, 281 

1997]. For the purposes of this study, we do not distinguish between plane-form 282 

versus furrow-form defects. Our study is based on furrow-form defects but it is 283 

conceivable that some of the more worn LEH without countable perikymata in the 284 

occlusal wall are actually plane-form defects.  285 

 286 

Depth  287 

Depth is deemed by us to be an indirect measure of the intensity of stress (as 288 

mediated by anatomical factors-e.g., occlusal vs. cervical location [Hillson and Bond, 289 

1997; Hubbard et al., 2009], environmental factors [Chollet and Teaford, 2010] and 290 

individual frailty [King and Ulijaszek, 1999]). How do we know that the more severe a 291 

stressor, the deeper will be a hypoplastic defect? Numerous studies support the 292 

inference that there is a dose-dependent reaction of secretory phase ameloblasts to 293 

increasing levels of a stressor: e.g., a) fluoride [Suckling and Thurley, 1984; Kierdorf et 294 

al., 2004]; b) reduced age at death [White, 1978; Cook and Buiskstra, 1979; Goodman 295 

and Armelagos, 1988; Duray, 1996]; c) reduced availability of fat soluble vitamins 296 
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(Mellanby M. 1929 cited in [Mellanby, 1941; Goodman et al., 1991] although the effect 297 

here may be due to decreased bone growth impinging on the dental crown); d) 298 

parasitism [Suckling et al., 1986]; e) maternal hyperglycemia in diabetic rats [Silva-299 

Sousa et al., 2003]; and f) seasonal insolation [Zadsinska et al., 2013].  300 

 301 

The notable unevenness along the floor of an LEH furrow [Boyde, 1970] necessitates 302 

multiple measurements; with the instrument described below, we take 516 303 

measurements over a space of 1600 microns. We define depth as the orthogonal 304 

distance from a plane connecting the two high points on the margins of a defect to its 305 

deepest point. In this study, measurements are un-scaled since there are no 306 

differences in average enamel thickness between island taxa [Smith et al., 2012].  307 

 308 

Impressions and casts 309 

Enamel was cleaned of surface residue with dilute acetone. Molds of enamel surfaces 310 

affected with rLEH were taken in Coltene President Plus Jet impression material, 311 

supported by Coltene Lab Putty and polysiloxane activator (Coltene® , Cuyahoga 312 

Falls, Ohio, USA). Casts were made in Araldite MY 753 epoxy resin with XD 716 313 

hardener (Ciba-Geigy®, Toms River, New Jersey, USA). Close-up photographs of each 314 

tooth cast were combined into a photomontage with Adobe Photoshop Elements 10 315 

(Adobe®, San Jose, California, USA).  316 

 317 

Identification of LEH events 318 
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Irregularities of the enamel surface were visualized in the first instance under oblique 319 

lighting at low magnification (ca. 6X). Macroscopically visible LEH are the focus of our 320 

study. Our threshold for a measurable LEH does not include every minor vicissitude 321 

involving, for example, just a single perikyma. Low power (ca. 10-15X) pictures of a 322 

whole crown were recorded and the rLEH provisionally numbered consecutively 323 

starting at the apex: 1, 2, and so on. The task of matching LEH between low and high 324 

magnification pictures was accomplished by noting small irregularities (e.g., 325 

scratches) or imperfections in the cast (e.g., bubbles) that could be located on both 326 

images. A visual comparison was made of LEH salience between scanner 327 

photomontages and the lower power photographs and sketches, and a final decision 328 

made as to the location and number of LEH events (Table II). Only one tooth per 329 

individual was employed so as to avoid statistical redundancy (i.e., where one event 330 

might be recorded on both an incisor and canine from a single individual); canines 331 

being given preference as they typically show more LEH per crown. 332 

(Table II about here) 333 

Instruments 334 

Epoxy casts were examined with a ‘ȣsurf Mobile Plus’ optical scanner (OS) and 335 

analysed with ȣsoft Analysis Premium 6.2 software from NanoFocus® AG 336 

(Oberhausen, Germany). This instrument enables the analysis of 3-D structures and 337 

geometries in the micrometer and nanometer range. The precise 3-D topography is 338 

computed from the acquisition of a large number of confocal filtered height sections 339 

(typically ≥600). The OS consists of a compact confocal probe mounted on a stable L-340 
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stand with motorized movement to focus in the z-axis (maximum resolution = 1 nm). 341 

The sample to be measured is secured to an x/y precision measurement table. For 342 

contactless measurement of surface topography, a sample is positioned on the 343 

measurement table and the confocal unit moved stepwise in the z axis. In this 344 

instrument, magnification was usually performed with a 10X lens that provides a 345 

square field of view 1600μm on a side. Width and depth measurement outputs are 346 

averages, calculated by the instrument, from 516 measurements over this space.  Prior 347 

to trigonometric analysis, scanner images were leveled, missing points filled in, and 348 

form removed. The latter step optimizes measurement of defect depth by minimizing 349 

the effect of object curvature. 350 

 351 

Data Manipulation (trigonometry) 352 

It was deemed desirable to determine true depths, not depth in relation to the 353 

instrument plane, since the object’s surface is rarely level or completely flat. This is 354 

performed trigonometrically from width and depth measures originally taken 355 

orthogonal to the instrument’s plane (Fig. 2).  356 

(Figure 2 about here) 357 

 358 

Anatomical factors 359 

As illustrated by Guatelli-Steinberg [2001, 2003], where striae of Retzius emerge at an 360 

acute angle with the outer enamel surface (typical of more occlusal imbricational 361 

enamel compared to cervical, especially in incisors), all else being equal, LEH width 362 
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occlusally is increased and apparent salience, decreased. In order to expedite 363 

comparisons of defect salience between taxa, we first compare measures of defect 364 

width and depth among crown deciles. 365 

  366 

Since we would like to know if LEH salience compared along the crown reflects real 367 

differences in the intensity of experienced stress or simply constraints of enamel 368 

geometry , we need to measure the obligatory effect on furrow depth created by a 369 

narrowing of an incremental stria of enamel. A simple trigonometric calculation (ratio 370 

of sine angles) shows that changing stria angle from 10o (near the occlusal tip of a 371 

canine tooth) to 45o (nearer the cervix) [Guatelli-Steinberg et al., 2012], reduces depth 372 

of a defect at the cervix to about 0.72 of the depth near the occlusal tip. The lesson 373 

here is that, in furrow-form defects where incremental striae are narrowed, the same 374 

amount of stress will produce shallower defects near the cervix. Consequently, we 375 

suggest, as a reasonable threshold, that only if more cervically-located LEH are deeper 376 

than defects near the occlusal tip, is a real difference in the felt intensity of stress 377 

being signaled.  378 

 379 

Statistical analysis 380 

Preliminary analysis, using Kolmogorov-Smirnov and Shapiro-Wilks tests, showed 381 

that width measures are normally distributed while depths are not, being significantly 382 

left skewed (Fig. 3, Table III). Consequently, statistical analysis of difference between 383 

mean widths relies on parametric (two-tailed Student’s t, ANOVA) tests on original 384 
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values; while depths are evaluated with non-parametric tests (Mann-Whitney and 385 

Kruskall-Wallis) on original values or, alternatively, original values are converted to 386 

natural logs so that the normalized distribution can be evaluated with parametric 387 

tests. Given significant variation in LEH measures between tooth types (incisors and 388 

canines) original measurements are also converted to z-scores (value minus mean for 389 

a particular combination of tooth type divided by standard deviation for that 390 

category) in order to maximize sample size. Alpha is set at 0.05.  391 

(Table III about here) 392 

(Figure 3 about here) 393 

 394 

RESULTS 395 

Anatomic Variables: Crown decile, Sex, Tooth type  396 

Our goal is to see if LEH defects are, as hypothesized, wider and deeper in Bornean 397 

orangutans; i.e., that Sumatra provides the better developmental habitat for infant 398 

orangutans. Firstly, however, we need to test whether one has to control for basic 399 

anatomical variables: location of LEH within the tooth crown (crown deciles 400 

numbered from occlusal to cervical), sex (male vs. female) and tooth type (incisors vs. 401 

canines). Sample sizes are not sufficient to test each sub-group separately; so, initially, 402 

we consider simply each variable by itself, lumping the other variables. The following 403 

analysis of difference between means (for each of the three variables of crown 404 

location, sex and tooth type) employs parametric tests for widths and non-parametric 405 

statistics for depth (Table IV). We found that measures of LEH width do not vary 406 

significantly among deciles, sex, or tooth types. Depths vary significantly only between 407 
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tooth types (Fig. 4). Subsequent analyses of both width and depth ignore LEH location 408 

and sex. Since depths are not only non-normally distributed but also vary as a function 409 

of tooth type, statistical analysis requires control of these variables. 410 

(Table IV about here) 411 

(Figure 4 about here) 412 

 413 

Given relative stasis in the maternal contribution to the infant orangutan’s diet [van 414 

Noordwijk et al., 2013], the growing infant must rely increasingly on its own 415 

resources (both foraging ability and immunity to disease). Thus, it can be predicted 416 

that later LEH events will be more severe. However, as noted above, the depth of an 417 

LEH is naturally decreased towards the cervix of a tooth due to the angle with which 418 

striae reach the outer enamel surface. In our study of the canine teeth, the ratio of 419 

decile 4 (more occlusal) to decile 9 (more cervical defect) median depths is 0.49-420 

notably less than the value of 0.72 predicted by enamel geometry-suggesting that the 421 

intensity of the stressor in real terms increases with age of the animal (albeit 422 

episodically) thus agreeing with the prediction.  423 

 424 

 Island variable 425 

It was shown in Table IV that width and depth of LEH furrows do not vary 426 

significantly as a function of their location on a tooth crown. If larger or different 427 

samples were obtained this finding may not be confirmed, in which case it would be 428 

desirable to know whether the distribution of LEH along the crown does or does not 429 
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differ between island populations. It is clear from Figure 5 and Table V that both 430 

island samples in this study show the same distribution of LEH along the crown. 431 

(Figure 5 about here) 432 

(Table V about here) 433 

 434 

In this study, widths and depths of LEH are considered to be proxies for duration and 435 

intensity of felt stress, respectively. There is no difference in measures of width 436 

between the Bornean and Sumatran orangutans; but there is a clear difference in 437 

depths (Table VI). LEH defects among Sumatran orangutans are significantly deeper 438 

than those for Bornean orangutans-difference between medians = 10.0μm. However, 439 

it must be remembered that, while there are no significant differences in depths from 440 

different portions of the crown, depths do differ between tooth types (slightly but 441 

significantly deeper on canines) (Fig. 4).  For this reason, Table VI includes a section in 442 

which depth measures are expressed as z-scores (that is, deviation of either a natural 443 

log of depth or untransformed measure from the mean for each sub-group of tooth 444 

type (incisors and canines)) and subjected to parametric and non-parametric tests of 445 

difference in means. This manipulation permits lumping of both tooth types, 446 

confirming that depths are significantly shallower on average in Bornean orangutans 447 

(Student’s t=-2.487, df=161, P=0.014; Mann-Whitney=-2.509, P=0.012)  (Fig. 6). 448 

(Table VI about here) 449 

(Figure 6 about here) 450 

 451 
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While our purpose here is not to convert measured LEH widths directly into precise 452 

measures of duration, but to compare two samples for relative durations, we can 453 

nevertheless ask if the observed mean widths are at all compatible with what we 454 

know about perikymata widths and Retzius periodicity. In our study, mean width of a 455 

single perikyma is 73μm for incisors (N=4 in mid-crown third) and 69μm for canines 456 

(N=3 in mid and cervical thirds) (cf., mean of 68 to 84μm reported by O’Hara [2016]) . 457 

Dividing mean width by the corresponding perikyma widths noted above yields a 458 

rough estimate of 4.9 and 5.5 perikymata per LEH, respectively, which (assuming that 459 

one perikyma represents nine to ten days [Schwartz et al., 2001; Smith, 2016]), 460 

suggests stress lasts six to eight weeks in both island taxa.  461 

 462 

DISCUSSION 463 

Our hypothesis that Bornean orangutans would show wider and deeper hypoplastic 464 

defects than do Sumatran orangutans is not supported by our results. However, there 465 

are several caveats that must be considered before accepting such results. Firstly, our 466 

study is of specifically repetitive linear enamel hypoplasia, not LEH in general; i.e., this 467 

cohort may be biased towards more susceptible individuals. Secondly, in that widths 468 

of LEH do not differ between the island samples but depths do, we have to ask 469 

whether these simply reflect Type II and Type I errors, respectively. The relative cost 470 

of a Type I error is more than that for a Type II error since, for the latter, a real 471 

difference will manifest itself after further studies [Toft and Shea, 1983]. To avoid 472 

Type I error one can invoke a higher alpha value than, say, 1 in 20 (0.05). As may be 473 
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seen in Table VI, the observed P value for island orangutan differences in depth is 474 

<0.02, meeting this requirement. Thirdly, we can use power analysis to determine if 475 

our sample sizes are adequate. Depths of LEH are much more variable than are widths 476 

(Table III); consequently, selection of an adequate sample size, in which both will be 477 

compared between populations, will be dictated by variability in depths. Depths, 478 

however, are not normally distributed. Power analysis assumes a normal distribution. 479 

Natural log transformation of observed depths normalizes the distribution from 480 

which one can determine the median, and difference between the median and 68th 481 

percentile of the distribution. Antilogs of these values (18.6μm and 7.4μm, 482 

respectively) approximate the mean and standard deviation of a normal distribution. 483 

Power analysis indicates that sample sizes required to detect a real difference in mean 484 

depths of LEH between two populations (with a SD of 7.4μm and optional delta value 485 

of 5μm) are 35 LEH for each island taxon. Our sample of Sumatran orangutan LEHs is 486 

30, a bit below the required minimum. However, it is permissible [Motulsky, 1995] to 487 

reduce the required size of one sample by 25% (from, say, N=35 Sumatran orangutans 488 

to N= 26) if one doubles the size of the other; i.e., to N=≥70 Bornean. In our case, the 489 

Bornean sample is 133 events, which means our study samples should be quite 490 

sufficient to detect a minimum difference in mean depths, between samples, of only 491 

5μm. Our observed difference in mean and median LEH depth values between island 492 

populations of orangutans is 10.2μm and 10.0μm, respectively. We conclude that our 493 

findings are robust, with the caveats noted above.  494 

 495 
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Both island taxa exhibit LEH of similar duration (six to eight weeks on average). This 496 

result is surprising in that previously published estimates of duration of ‘whole 497 

furrows’ (including width as defined in this study and the recovery of enamel contour 498 

phase) were on the order of six to seven weeks [Skinner and Hopwood, 2004]; in 499 

other words, the current results suggest that stress lasts longer than previously 500 

thought.  501 

 502 

Contrary to expectation, Sumatran orangutans show significantly deeper/more severe 503 

LEH compared to Bornean (median =28μm, 18μm, respectively). While, conceivably, 504 

Bornean orangutans, who show more reliance on abrasive fall-back foods, might wear 505 

away more enamel surface, the amount of wear required to render uncountable 506 

perikymata, which are only about one micron in surface relief, is so minimal that the 507 

effect on furrow depth is probably not germane to our study. As noted in the 508 

introduction, there are very few published measurements of LEH depth in non-human 509 

primates. Interestingly, median depth of LEH among only three Fongoli chimpanzees 510 

(18 LEH), with a marked dry season, is 32μm (excluding plane-form defects) [Skinner 511 

and Pruetz, 2012], only slightly more than in Sumatran orangutans (median = 28μm). 512 

The shallower LEH of Bornean orangutan LEH compared to both Sumatran 513 

orangutans and Fongoli chimpanzees remains to be understood.    514 

 515 

We may ask ‘How consistent are the studies of enamel hypoplasia in providing 516 

support for the notion that Sumatra provides a better habitat?’ They are not. As 517 
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reviewed earlier LHPC, attributed to facial bone thinning in early infancy, does not 518 

differ between the islands while MLID, attributed to undergrowth of the maxilla, is 519 

significantly worse in Bornean orangutans. Together, these findings suggest that, as 520 

the growing infant is forced by static maternal milk reserves [van Noordwijk et al., 521 

2009] to forage for itself, cranio-facial growth falters more in Borneo (supporting the 522 

notion). However, the current study shows that LEH furrows do not differ in width 523 

(equated here with duration) between the island populations; whereas depth 524 

(equated with intensity of stress) is significantly more marked in Sumatran 525 

orangutans (contradicting the notion).  526 

 527 

The genesis for our research is the alarming decline in numbers of orangutans; their 528 

high rates of different types of developmental defect of enamel in comparison to other 529 

large apes; and, most particularly, the observation that orangutans from both Sumatra 530 

and Borneo commonly show repetitive episodes of linear enamel hypoplasia whose 531 

cause is unknown. If we can accept the support provided by crypt fenestration defects, 532 

that nutrition for orangutans is indeed better in Sumatra, we could conclude that 533 

more severe rLEH among Sumatran orangutans must be attributed to that other major 534 

cause of enamel hypoplasia-disease. If our results are valid then we can direct future 535 

research and fieldwork towards detecting a disease stressor in orangutan habitats 536 

with a mean duration of about two months and a periodicity of six months (or 537 

multiples thereof), but one which is more severe in Sumatra.  538 

 539 
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Table IV. Tests of difference in mean measures (μm) for anatomic variables: parametric for 

widths, non-parametric for depths 

 

Variable    Statistic 

A. Crown decile    t-test1/ANOVA2�����
�
����

	 

Width  N     Mean±SD Median Value df P value 

 three 2 207.5±95.51 207.5    

four 18 361.7±141.6 342.1    

five 25 370.9±183.9 355.1    

six 27 344.8±136.7 322.0    

seven 32 413.9±134.9 424.8    

eight 25 362.3±140.9 356.9    

nine 24 387.1±141.6 372.6    

ten 8 437.2±197.9 436.2 1.0912 7 0.371 

 Depth        

 three 2 9.41±4.43 9.41    

four 18 18.35±12.94 15.28    

five 25 19.99±11.35 18.18    

six 27 21.49±12.67 20.05    

seven 32 26.39±19.79 17.77    

eight 25 27.64±18.93 17.96    

nine 24 25.09±13.75 21.67    

ten 8 23.13±16.17 20.93 7.2044 7 0.408 

       

B. Sex       

Width       

Male 79 361.9±148.0 355.7    

Female 75 392.3±155.8 384.1 -1.2431 152 0.216 

Depth       

Male 79 22.5±14.4 18.0    

Female 75 24.8±17.2 19.3 -0.6423 - 0.521 

       

C. Tooth type       

Width       

Incisor 71 360.5±166.8 347.1    

Canine 92 392.0±135.0 382.6 -1.3301 161 0.185 

Depth       

Incisor 71 21.2±16.1 16.6    

Canine 92 24.8±15.0 21.1 -2.1493 - 0.032 
 

 

1.� Students ‘t’ 

2.� Analysis of variance 

3.� Mann-Whitney 

4.� Kruskall-Wallis 
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Table V. Distribution of independent LEH per decile compared between the two 

island samples of orangutans (sexes and tooth types combined) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Pearson Chi Square=1.545, df=7, P=0.981 

 Island 

 Borneo1 Sumatra1 

Decile N Percent N Percent 

     

One     

Two     

Three 2 1.5   

Four 15 11.5 3 10.0 

Five 20 15.3 5 16.7 

Six 23 17.6 4 13.3 

Seven 26 19.9 6 20.0 

Eight 19 14.5 6 20.0 

Nine 20 15.3 4 13.3 

Ten 6 4.6 2 6.7 

Total 131  30  
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��������	�Tests of difference in means of LEH measures for Island variable: width measures 

(normally distributed) are untransformed values. Depths (non-normally distributed) are 

expressed as z scores of natural log of depth (parametric test) and untransformed depth 

(non-parametric test), permitting in both cases combination of incisors and canines. 
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