Kent Academic Repository Full text document (pdf)

Citation for published version

Skinner, Mark F. and Skinner, Matthew M. (2017) Orangutans, enamel defects and developmental health: a comparison of Borneo and Sumatra. American Journal of Primatology, 79 (8). e22668. ISSN 0275-2565.

DOI

https://doi.org/10.1002/ajp.22668

Link to record in KAR

http://kar.kent.ac.uk/61312/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: **researchsupport@kent.ac.uk**

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html

American Journal of Primatology

Orangutans, enamel defects and developmental health: A comparison of Borneo and Sumatra

Journal:	American Journal of Primatology
Manuscript ID	AJP-16-0179.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Skinner, Mark; University of York, Archaeology Skinner, Matthew; University of Kent, School of Anthropology and Conservation; Max Planck Institute for Evolutionary Anthropology, Human Evolution
Keywords:	Pongo pygmaeus, P. abelii, infancy, dentition, stress

2		
3 4 5	1	Title: Orangutans, enamel defects, and developmental health: A comparison of Borneo and
6 7	2	Sumatra
8 9	3	
10	1	Authors: Mark F. Skinnorl
12 13	т	Autors. Mark F. Skinner
14 15	5	Matthew M. Skinner ^{2,3}
16 17	6	
18 19 20	7	1. Correspondence should be addressed to: <u>mskinner@sfu.ca</u> , +44 07583 412295,
21 22	8	Department of Archaeology, King's Manor, University of York, York, United
23 24 25	9	Kingdom, YO1 7EP
25 26 27	10	2. School of Anthropology and Conservation
28 29	11	University of Kent
30 31 32	12	Marlowe Building
33 34	13	Canterbury, UK, CT2 7NR
35 36 37	14	3. Department of Human Evolution
38 39	15	Max Planck Institute for Evolutionary Anthropology
40 41 42	16	Leipzig, Germany, 04103
42 43 44	17	
45 46	18	Text pages: 35 (including bibliography), 6 figures, 6 tables
47 48 49	19	
50 51	20	Abbreviated title: enamel hypoplasia in orangutans
52 53	21	
54 55 56	22	
57		
59 60		

23 ABSTRACT

Orangutans (*Pongo* sp.) show among the highest occurrence of three types of developmental enamel defect. Two are attributed to nutritional factors that reduce bone growth in the infant's face early in development. Their timing and prevalence indicate that Sumatra provides a better habitat than does Borneo. The third type, repetitive linear enamel hypoplasia (rLEH) is very common but its etiology is not understood. Our objective is to draw attention to this enigmatic, episodic stressor in the lives of orangutans. We are concerned that neglect of this possible marker of ill health may be contributing, through inaction, to their alarming decline in numbers. Width and depth of an LEH are considered proxies for duration and intensity of stress. The hypothesis that Bornean orangutans would exhibit relatively wider and deeper LEH was tested on 163 independent episodes of LEH from 9 Sumatran and 26 Bornean orangutans measured with a NanoFocus AG ' μ surf Mobile Plus' scanner. Non-normally distributed data (depths) were converted to natural logs. No difference was found in width of LEH among the two island taxa; nor are their differences in width or depth between the sexes. After controlling for significant differences in LEH depths between incisors and canines, defects are, contrary to prediction, significantly deeper in Sumatran than Bornean animals (median =28µm, 18µm, respectively). It is concluded that repetitive LEH records an unknown but significant stressor present in both Sumatra and Borneo, with an average periodicity of six months (or multiples thereof) that lasts about six to eight weeks. It is worse in Sumatra. Given this

1		
2		
4 5	44	patterning, shared with apes from a wide range of ecological and temporal sources,
6 7 8	45	rLEH is more likely attributable to disease than to malnutrition.
9 10	46	
11 12 13	47	Key words: Pongo pygmaeus; P. abelii; infancy; dentition; stress
14 15	48	
16	1.9	
17 18 19	50	RESEARCH HIGHLIGHTS
20 21	51	Orangutans are disappearing for largely known reasons. Most dental defect types
22 23 24	52	support Sumatra being deemed a better habitat than Borneo. However, one enigmatic
25 26	53	defect, repetitive linear enamel hypoplasia, occurs on both islands but is more severe
27 28 29	54	in Sumatra.
30 31	55	
32 33 34		
35 36		
37 38 20		
40 41		
42 43		
44 45 46		
47 48		
49 50 51		
52 53		
54 55		
56 57 58		
59 60		

INTRODUCTION

Orangutans from Borneo and Sumatra are Critically Endangered having lost 80% of their numbers in just three generations due mostly to habitat loss, habitat fragmentation and illegal hunting [IUCN, 2017]. Our purpose here is to draw attention to an enigmatic, episodic marker of stress in the lives of orangutans, termed repetitive linear enamel hypoplasia, so as to enlist assistance from field primatologists to help find its cause. We are concerned that neglect of this possible marker of ill health may. inadvertently, be contributing to their decline through inaction. Abnormal dental formation provides a record of developmental stress in young hominoids. In an evaluation of three types of dental defect (repetitive linear enamel hypoplasia (rLEH), localized hypoplasia of the primary canine (LHPC), maxillary lateral incisor defect (MLID)) among five large apes (orangutans, mountain and lowland gorillas, chimpanzees and bonobos), orangutans have the highest or second highest prevalence [Skinner, 1986a; Guatelli-Steinberg and Skinner, 2000; Skinner and Newell, 2003; Tsukamoto, 2003; Skinner and Hopwood, 2004; Guatelli-Steinberg et al., 2012; Skinner, 2014a; Hannibal, 2016; Skinner et al., 2016]. These findings suggest that, albeit for unknown reasons, orangutans are remarkably stressed in infancy. Given the perilous nature of orangutans in the wild, there is an urgent need to document and understand developmental stress in infancy as recorded in their teeth.

- **Developmental defects of enamel**

59 60

2		
4 5	77	There is a strong link between developmental health of growing orangutans and
6 7 8	78	habitat quality [Knott, 1998; Delgado and van Schaik, 2000]. Enamel formation has
9 10	79	been the subject of numerous studies, e.g. [Osborn, 1981; Nanci, 2012]. Hypoplastic
11 12	80	defects of enamel are usually attributed to metabolic stress that results in abnormal
13 14 15	81	secretion of matrix prior to full mineralization of the enamel. It is widely accepted that
16 17	82	enamel hypoplasia is a non-specific marker of systemic stress [Goodman and Rose,
18 19	83	1990]. However, this rather bleak assessment can be mitigated somewhat by
20 21 22	84	distinguishing among the (admittedly complex) etiologies of different types of
23 24	85	hypoplastic defects as well as by asking whether the timing, severity, prevalence and
25 26	86	epidemiology of a defect type may be sufficiently distinctive as to suggest a specific
27 28 29	87	etiology. Our study is designed to explore the striking patterning of rLEH among
30 31	88	orangutans in the hope of elucidating etiology.
32 33	89	
34 35 36	90	Timing of bone mass defects
37 38	91	'Localized hypoplasia of the primary canine' (LHPC) and 'maxillary lateral incisor
39 40 41	92	defect' (MLID) share a common proximate etiology-insufficient bone growth in the
42 43	93	face-but are created at different times in infancy (Fig. 1). Both LHPC and MLID are
44 45 46	94	crypt fenestration defects in which reduced bone growth in the face leads to creation
40 47 48	95	of an enamel defect prior to eruption [Skinner, 1986b; Skinner and Hung, 1989;
49 50	96	Skinner et al., 2014].
51 52 52	97	
53 54 55	0R	I HPC is caused by fenestration of the labial crunt wall normally protecting the
56 57	90	Line is caused by remestration of the fabral crypt wall, normally protecting the
58		

99	unerupted, forming milk canine crown, when cranio-facial bone growth in the infant
100	fails to keep up with crown formation [Skinner and Newell, 2003]. In humans and
101	apes, the affected part of the tooth crown, exposed to trauma through a fenestration,
102	forms in the months shortly after birth [Skinner and Newell, 2003; Stojanowski and
103	Carver, 2011]; consequently it is assumed that, among breast-feeding cohorts, LHPC
104	reflects condition of the mother as much as the infant. Approximately 91% of
105	orangutans are affected [Lukacs, 2001]. Notably, there is no difference between
106	Sumatran and Bornean orangutans in the occurrence of LHPC.
107	
108	The second crypt fenestration defect, MLID, is attributed to abnormal contact of the
109	labial surface of the somewhat less-formed upper lateral incisor crown with the
110	incisal edge (or fenestration margin) of the more mineralized central incisor through a
111	fenestrated inter-crypt boney septum in under-developed jaws with pre-eruptive
112	dental crowding [Hannibal, 2016; Skinner et al., 2016]. MLID is created in the first few
113	years of an orangutan's life (ca. 2-5 years) when the infant is increasingly reliant on
114	foraging for itself. We define infancy as that period during which lactation occurs [van
115	Noordwijk et al., 2013] which lasts as long as 5.5 years in Bornean orangutans and 6-
116	7.5 years in Sumatran [van Noordwijk et al., 2009]. Notably, almost all incisor and
117	canine crown formation occurs within this age span except perhaps for the cervical
118	fifth of the male canine [Beynon et al., 1991]. Orangutans are markedly affected (59%)
119	by MLID but the lesion is far more common in Bornean orangutans (71%) than
120	Sumatran (29%) [Skinner et al., 2016].

121	
122	Considering the occurrence of both LHPC and MLID, it can be concluded that: a)
123	nutrition for infants from both islands is more adequate when the infant is more fully
124	reliant on breast milk than in later infancy; and b) Sumatra provides a more suitable
125	nutritional habitat for infants than does Borneo. The latter inference is well supported
126	in the literature. There are several lines of ecological evidence indicating that Sumatra
127	provides a superior habitat for orangutans due, fundamentally, to volcanically-derived
128	soils [Wich et al., 2011]. In Sumatra there are more months in the year with high fruit
129	availability and a trend towards shorter low fruit periods [Delgado and van Schaik,
130	2000; Marshall et al., 2009; Wich et al., 2011]. Unlike Bornean orangutans, Sumatran
131	orangutans spend more time on high quality foods like fruit and insects and a lower
132	percentage on bark and vegetation. Moreover, Sumatran orangutans seem less reliant
133	on fallback foods than are Bornean, being able to find figs and fruit year round
134	[Russon et al., 2009]. In Borneo, there are months where fruit is a minor part of the
135	diet while in Sumatra fruit is always a major part of the diet [Morrogh-Bernard et al.,
136	2009]. Not surprisingly, therefore, orangutan population density is higher in Sumatra
137	[van Schaik et al., 2009].
138	(Figure 1 about here)
139	
140	Timing of repetitive linear enamel defects
141	The third type of enamel defect (linear enamel hypoplasia) is a more direct
142	manifestation of abnormal secretion in which transverse furrows of thinned enamel

143	are created. All ape samples, including fossil forms, commonly show several furrows
144	on the incisor and canine dental crowns. The remarkable ubiquity of repetitive LEH in
145	time and space, spanning millions of years (Miocene to present) and thousands of
146	kilometers from Spain to China and Africa [Skinner et al., 1995; Skinner and
147	Roksandič, 1995; Guatelli-Steinberg and Skinner, 2000; Brunet et al., 2002], suggests
148	that a pervasive and common stressor may underlie the phenomenon. However, we
149	should be explicit that the etiology of rLEH cannot as yet be attributed with
150	confidence to malnutrition and/or disease, the fundamental agents behind the
151	metabolic stress associated with enamel hypoplasia [Goodman and Rose, 1990].
152	
153	LEH have been reported in the canine teeth of orangutans among whom they tend to
154	commence at about 2.5 years of age [Skinner and Hopwood, 2004] and recur
155	throughout crown formation [Skinner, 2014b] (up to about six to nine years of age
156	depending on sex [Beynon et al., 1991; Schwartz and Dean, 2001] (Fig. 1). Among
157	orangutans in general the stressful events recur on average about every six or twelve
158	months: Sumatran animals showing significantly more annual episodes of stress while
150	Bornean animals show more semi-annual episodes [Skinner, 2014b]: a pattern
160	interpreted to provide mild support for Support heing the better babitat. However
160	Sumatran orangutane are reported to show more LEH defects per tooth [Custelli
101	Stainbarg et al. 2012] which accord in compatible with their longer cycle (but which
162	Steinberg et al., 2012], which seems incompatible with their longer cycle (but which
163	may reflect different subjective thresholds of LEH visibility between investigators,
164	reinforcing our contention that measurement of LEH furrows should be pursued).

165	
166	Roughly 83% of orangutans from museum collections show \geq 1 episodes of LEH per
167	tooth [Hannibal and Guatelli-Steinberg, 2005]. When nearly all individual apes in both
168	Sumatra and Borneo are affected by rLEH, another way has to be found to measure
169	comparative developmental stress in an informative manner. A more telling test of
170	island differences would be to measure, not the prevalence or periodicity of the
171	episodic stress events, but their duration and intensity. We hypothesize that width
172	and depth measurements of LEH serving as proxies for duration and intensity of
173	stress, respectively, will be less in Sumatran orangutans, a prediction based on Borneo
174	being deemed the poorer habitat.
175	
176	METHODS
177	Specimens of extant animals examined in this study consist only of skeletal remains
178	from museum collections; all animals were dead prior to our study. Proposed
179	examination was approved by curators of museums listed in Table I. All examinations
180	were performed at the institution and no hard tissue was removed or transported.
181	This research adheres to the American Society of Primatologists principles for the
182	ethical treatment of primates.
183	
184	Orangutans in this study have been previously described [Skinner, 2014b]. They come
185	from three museums in Germany and one in Holland whose collections were
186	examined in 1999 and 2000. The animals were taken from the wild in the late 19^{th} and
	 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

187	early 20^{th} century; hence provenience information is imprecise or, in a few cases,
188	unknown. The majority of the Bornean animals come from the Sintang and Sekelau
189	region in eastern West Borneo. The Sumatran animals are from the far north end of
190	the island near Atjeh (Aceh) and Deli. Here we employ a species distinction between
191	the two island populations (P. abelii in Sumatra and P. pygmaeus in Borneo) reflecting
192	the marked genetic and morphological differences between the two island taxa
193	[Goossens et al., 2009].
194	(Table I about here)
195	
196	Animals for the previous study [Skinner, 2014b] were chosen because they showed
197	countable perikymata between two or more episodes of LEH on a single tooth (incisor
198	or canine). Where defects were demonstrably bilateral, the antimere with more
199	visible features on the outer enamel surface was chosen. An individual counts only
200	once. Here we report LEH defects on an enlarged sample of teeth from the same
201	animals to include slightly worn, but measurable, LEH with uncountable perikymata.
202	Still, the sample (Table I) is biased towards younger individuals with comparatively
203	little labial wear, and purposefully excludes animals whose teeth show only a single
204	episode of LEH, since the latter animals did not afford an opportunity to study the
205	interval between episodes and, hence, LEH periodicity. We acknowledge that sample
206	sizes are disparate and that for Sumatra (N=9 animals), small. However the sample
207	sizes for repetitive LEH events, whose occurrence we consider to be independent of a
208	previous event, are reasonably large (N=30 for Sumatra and 133 for Borneo).

American Journal of Primatology

Skinner 11

209 Nevertheless, any inferences made in our study will need to be tested against other210 and larger samples before firm conclusions can be drawn.

212 Terminology

Usages of the word 'stress' are considered so discordant that hopes of a standard definition are forlorn [King and Murphy, 1985]. Our definition is not as strict as theirs-that vital physiological function must be impaired-but we do consider that reduced cellular secretion of enamel matrix, sufficient to affect contour of the outer enamel surface, qualifies as indicative of physiological stress. While methods employed in this study are a deliberate move away from a subjective threshold of perception of a hypoplastic furrow towards measurement, we employ the term 'salience' to mean the subjective visibility of depressions in the outer enamel surface (conflating width and depth), often enhanced by vegetable staining, since this threshold has historically guided our researches and has formed the basis of communication among scholars. We should be clear however that the salience of linear enamel hypoplasia, whether objectively or subjectively assessed, reflects the host animal's experience of stress mediated by many factors, not stress *per se*. In other words, measurements of enamel hypoplasia do not measure stress at all-they measure the response to stress; but forging a link between stress and enamel defects is challenging. LEH reflects the potential interaction, during development, of many factors (e.g., individual immunocompetence, foraging efficiency, food acquisition skills and social rank); meteorological influences (e.g., seasonality, insolation, rainfall cycles); and abiotic

4 5	231	factors (e.g., soil type) with a variety of stressors (e.g., disease, malnutrition)
6 7 8	232	[Eckhardt and Protch von Zieten, 1993; Guatelli-Steinberg, 1998, 2000; Guatelli-
9 10	233	Steinberg and Skinner, 2000; Guatelli-Steinberg, 2001; Chollet and Teaford, 2010;
11 12 12	234	Kirchoff, 2010]. Historically, there has been acceptance of a simple separation of
13 14 15	235	defects into narrow or wide [Sarnat and Schour, 1941; Corruccini et al., 1985;
16 17	236	Bermudez de Castro and Perez, 1995] with little or no concern for depth; and, yet,
18 19 20	237	depth contributes to the salience of an LEH. The latter authors speculated that narrow
21 22	238	and wide grooves might represent infection and dietary deficiency, respectively.
23 24 25	239	Blakey et al. [1994] used the phrase 'major growth arrests' to describe very wide
26 27	240	defects. Similarly, Ensor and Irish observed what they termed 'continuous chronic
28 29	241	enamel hypoplasia' and captured the phenomenon with the concept of 'total
30 31 32	242	hypoplastic area' [1995]. Many authors have invoked a threshold of 0.4 to 0.5mm
33 34	243	width of defect to distinguish shorter (acute) and longer episodes of stress
35 36 37	244	[Hutchinson and Larsen, 1988; Ensor and Irish, 1995; Duray, 1996; Vann, 2008].
38 39	245	There seems to be general acceptance that the width of a hypoplastic defect provides
40 41	246	a reasonable estimate of duration of a stress event or events. Here, we draw a clear
42 43 44	247	distinction between widths and depths.
45 46	248	
47 48 40	249	Width
49 50 51	250	The accepted method for estimating duration of stress in humans is to count the
52 53	251	number of perikymata in the occlusal wall of a defect and multiply this figure by the
54 55 56 57 58	252	known or inferred Retzius periodicity in days [Hillson and Bond, 1997]. We question

American Journal of Primatology

Skinner 13

253	the generalization, made by Hubbard and colleagues [2009], that perikymata counting
254	is more accurate than measuring defect widths, mostly because in chimpanzee,
255	bonobo and orangutan canine teeth, at least, perikymata spacing is more uniform
256	throughout most (ca. middle 80%) of the crown than it is in human canine teeth [Dean
257	and Reid, 2001; Guatelli-Steinberg et al., 2012; O'Hara, 2016]. In our study, 94% of
258	LEH occur within crown deciles four through nine. According to a recent study by
259	O'Hara [2016] the median number of perikymata among these deciles ranges from
260	only 26 to 28 per decile. Also, a recent study reports a range of only nine or ten days
261	per perikyma in both Sumatran and Bornean orangutans [Smith, 2016]. Consequently,
262	we feel that measurements of the width of LEH defects should give a reasonable
263	estimate of duration of stress (as qualified above) in each taxon. Both perikymata
264	count and width are proxies for time. Fundamentally, it is much easier to obtain a
265	sufficiently large sample to detect differences between populations by measuring
266	widths than counting perikymata. As Hubbard and colleagues observe:
267	"Bioarchaeologists are faced with the choice of using a more accurate method
268	(perikymata counting) on a small sample (given the small number of defects with
269	continuously visible perikymata within them), or using a potentially less accurate
270	method (measuring defect widths) on a larger sample" [2009:178]. Here we have
271	elected to eschew perikymata counts in favour of width measurements, on an
272	enlarged sample.
273	

274 We define 'width' as a direct measure, along an imaginary line joining the two

а

et

275	shoulders of a hypoplastic defect, taken from the occlusal shoulder to a place
276	orthogonal to the deepest point of a defect, taken in an occlusal-cervical axis. This
277	amounts to roughly half the width of most furrows. In our view, enamel deposition
278	after the end of a stressful episode restores normal enamel contour; consequently,
279	width of what can be termed the 'recovery of normal enamel contour phase' is a
280	function of both enamel geometry and depth of the furrow but is not necessarily
281	informative of the actual time required to recover from stress [Hillson and Bond,
282	1997]. For the purposes of this study, we do not distinguish between plane-form
283	versus furrow-form defects. Our study is based on furrow-form defects but it is
284	conceivable that some of the more worn LEH without countable perikymata in the
285	occlusal wall are actually plane-form defects.
286	
287	Depth
288	Depth is deemed by us to be an indirect measure of the intensity of stress (as
289	mediated by anatomical factors-e.g., occlusal vs. cervical location [Hillson and Bond,
290	1997; Hubbard et al., 2009], environmental factors [Chollet and Teaford, 2010] and
291	individual frailty [King and Ulijaszek, 1999]). How do we know that the more severe a
292	stressor, the deeper will be a hypoplastic defect? Numerous studies support the
293	inference that there is a dose-dependent reaction of secretory phase ameloblasts to
294	increasing levels of a stressor: e.g., a) fluoride [Suckling and Thurley, 1984; Kierdorf e
295	al., 2004]; b) reduced age at death [White, 1978; Cook and Buiskstra, 1979; Goodman
296	and Armelagos, 1988; Duray, 1996]; c) reduced availability of fat soluble vitamins

American Journal of Primatology

3		
4 5	297	(Mellanby M. 1929 cited in [Mellanby, 1941; Goodman et al., 1991] although the effect
6 7 8	298	here may be due to decreased bone growth impinging on the dental crown); d)
9 10	299	parasitism [Suckling et al., 1986]; e) maternal hyperglycemia in diabetic rats [Silva-
11 12	300	Sousa et al., 2003]; and f) seasonal insolation [Zadsinska et al., 2013].
13 14 15	301	
16 17	302	The notable unevenness along the floor of an LEH furrow [Boyde, 1970] necessitates
18 19 20	303	multiple measurements; with the instrument described below, we take 516
21 22	304	measurements over a space of 1600 microns. We define depth as the orthogonal
23 24 25	305	distance from a plane connecting the two high points on the margins of a defect to its
25 26 27	306	deepest point. In this study, measurements are un-scaled since there are no
28 29	307	differences in average enamel thickness between island taxa [Smith et al., 2012].
30 31 32	308	
33 34	309	Impressions and casts
35 36 37	310	Enamel was cleaned of surface residue with dilute acetone. Molds of enamel surfaces
38 39	311	affected with rLEH were taken in Coltene President Plus Jet impression material,
40 41	312	supported by Coltene Lab Putty and polysiloxane activator (Coltene ${ m I\!R}$, Cuyahoga
42 43 44	313	Falls, Ohio, USA). Casts were made in Araldite MY 753 epoxy resin with XD 716
45 46	314	hardener (Ciba-Geigy®, Toms River, New Jersey, USA). Close-up photographs of each
47 48 49	315	tooth cast were combined into a photomontage with Adobe Photoshop Elements 10
50 51	316	(Adobe®, San Jose, California, USA).
52 53	317	
54 55 56	318	Identification of LEH events
57 58		
59 60		

3		
4 5	319	Irregularities of the enamel surface were visualized in the first instance under oblique
6 7 8	320	lighting at low magnification (ca. 6X). Macroscopically visible LEH are the focus of our
9 10	321	study. Our threshold for a measurable LEH does not include every minor vicissitude
11 12	322	involving, for example, just a single perikyma. Low power (ca. 10-15X) pictures of a
13 14 15	323	whole crown were recorded and the rLEH provisionally numbered consecutively
16 17	324	starting at the apex: 1, 2, and so on. The task of matching LEH between low and high
18 19 20	325	magnification pictures was accomplished by noting small irregularities (e.g.,
20 21 22	326	scratches) or imperfections in the cast (e.g., bubbles) that could be located on both
23 24	327	images. A visual comparison was made of LEH salience between scanner
25 26 27	328	photomontages and the lower power photographs and sketches, and a final decision
28 29	329	made as to the location and number of LEH events (Table II). Only one tooth per
30 31 32	330	individual was employed so as to avoid statistical redundancy (i.e., where one event
33 34	331	might be recorded on both an incisor and canine from a single individual); canines
35 36	332	being given preference as they typically show more LEH per crown.
37 38 39	333	(Table II about here)
40 41	334	Instruments
42 43	335	Epoxy casts were examined with a ' μ surf Mobile Plus' optical scanner (OS) and
44 45 46	336	analysed with μ soft Analysis Premium 6.2 software from NanoFocus® AG
47 48	337	(Oberhausen Germany) This instrument enables the analysis of 3-D structures and
49 50 51	338	geometries in the micrometer and nanometer range. The precise 3-D topography is
52 53	330	computed from the acquisition of a large number of confectal filtered height sections
54 55	270	(tunically >600) The OS consists of a compact confocal probe mounted on a stable I
56 57 58	540	(typicany 2000). The 05 consists of a compact comotal probe mounted off a stable L-

2 3		
4 5	341	stand with motorized movement to focus in the z-axis (maximum resolution = 1 nm).
6 7 8	342	The sample to be measured is secured to an x/y precision measurement table. For
9 10	343	contactless measurement of surface topography, a sample is positioned on the
11 12 12	344	measurement table and the confocal unit moved stepwise in the z axis. In this
13 14 15	345	instrument, magnification was usually performed with a 10X lens that provides a
16 17	346	square field of view 1600 μm on a side. Width and depth measurement outputs are
18 19 20	347	averages, calculated by the instrument, from 516 measurements over this space. Prior
21 22	348	to trigonometric analysis, scanner images were leveled, missing points filled in, and
23 24 25	349	form removed. The latter step optimizes measurement of defect depth by minimizing
26 27	350	the effect of object curvature.
28 29	351	
30 31 32	352	Data Manipulation (trigonometry)
33 34	353	It was deemed desirable to determine true depths, not depth in relation to the
35 36 37	354	instrument plane, since the object's surface is rarely level or completely flat. This is
38 39	355	performed trigonometrically from width and depth measures originally taken
40 41 42	356	orthogonal to the instrument's plane (Fig. 2).
42 43 44	357	(Figure 2 about here)
45 46	358	
47 48 49	359	Anatomical factors
50 51	360	As illustrated by Guatelli-Steinberg [2001, 2003], where striae of Retzius emerge at an
52 53 54	361	acute angle with the outer enamel surface (typical of more occlusal imbricational
54 55 56 57 58 59 60	362	enamel compared to cervical, especially in incisors), all else being equal, LEH width

363 occlusally is increased and apparent salience, decreased. In order to expedite
364 comparisons of defect salience between taxa, we first compare measures of defect
365 width and depth among crown deciles.

Since we would like to know if LEH salience compared along the crown reflects real differences in the intensity of experienced stress or simply constraints of enamel geometry, we need to measure the obligatory effect on furrow depth created by a narrowing of an incremental stria of enamel. A simple trigonometric calculation (ratio of sine angles) shows that changing stria angle from 10° (near the occlusal tip of a canine tooth) to 45° (nearer the cervix) [Guatelli-Steinberg et al., 2012], reduces depth of a defect at the cervix to about 0.72 of the depth near the occlusal tip. The lesson here is that, in furrow-form defects where incremental striae are narrowed, the same amount of stress will produce shallower defects near the cervix. Consequently, we suggest, as a reasonable threshold, that only if more cervically-located LEH are deeper than defects near the occlusal tip, is a real difference in the felt intensity of stress being signaled.

380 Statistical analysis

381 Preliminary analysis, using Kolmogorov-Smirnov and Shapiro-Wilks tests, showed
382 that width measures are normally distributed while depths are not, being significantly
383 left skewed (Fig. 3, Table III). Consequently, statistical analysis of difference between
384 mean widths relies on parametric (two-tailed Student's t, ANOVA) tests on original

3		
4 5	385	values; while depths are evaluated with non-parametric tests (Mann-Whitney and
5 7 8 9 10	386	Kruskall-Wallis) on original values or, alternatively, original values are converted to
	387	natural logs so that the normalized distribution can be evaluated with parametric
11 12	388	tests. Given significant variation in LEH measures between tooth types (incisors and
13 14 15	389	canines) original measurements are also converted to z-scores (value minus mean for
16 17 18 19 20 21 22 22	390	a particular combination of tooth type divided by standard deviation for that
	391	category) in order to maximize sample size. Alpha is set at 0.05.
	392	(Table III about here)
23 24	393	(Figure 3 about here)
25 26	204	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	394 395	RESULTS
	396	Anatomic Variables: Crown decile, Sex, Tooth type
	397	Our goal is to see if LEH defects are, as hypothesized, wider and deeper in Bornean
	398	orangutans; i.e., that Sumatra provides the better developmental habitat for infant
	399	orangutans. Firstly, however, we need to test whether one has to control for basic
	400	anatomical variables: location of LEH within the tooth crown (crown deciles
41 42	401	numbered from occlusal to cervical), sex (male vs. female) and tooth type (incisors vs.
43 44 45	402	canines). Sample sizes are not sufficient to test each sub-group separately; so, initially,
46 47	403	we consider simply each variable by itself, lumping the other variables. The following
48 49	404	analysis of difference between means (for each of the three variables of crown
50 51 52	405	location, sex and tooth type) employs parametric tests for widths and non-parametric
53 54	406	statistics for depth (Table IV). We found that measures of LEH width do not vary
55 56 57	407	significantly among deciles, sex, or tooth types. Depths vary significantly only between
58 59		

	American Journal of Primatology
	Skinner
408	tooth types (Fig. 4). Subsequent analyses of both width and depth ignore LEH locati
09	and sex. Since depths are not only non-normally distributed but also vary as a funct
10	of tooth type, statistical analysis requires control of these variables.
11	(Table IV about here)
12	(Figure 4 about here)
413	
414	Given relative stasis in the maternal contribution to the infant orangutan's diet [var
415	Noordwijk et al., 2013], the growing infant must rely increasingly on its own
416	resources (both foraging ability and immunity to disease). Thus, it can be predicted
417	that later LEH events will be more severe. However, as noted above, the depth of ar
418	LEH is naturally decreased towards the cervix of a tooth due to the angle with whic
419	striae reach the outer enamel surface. In our study of the canine teeth, the ratio of
420	decile 4 (more occlusal) to decile 9 (more cervical defect) median depths is 0.49-
¥21	notably less than the value of 0.72 predicted by enamel geometry-suggesting that the
422	intensity of the stressor in real terms increases with age of the animal (albeit
423	episodically) thus agreeing with the prediction.
424	
425	Island variable
426	It was shown in Table IV that width and depth of LEH furrows do not vary
427	significantly as a function of their location on a tooth crown. If larger or different
428	samples were obtained this finding may not be confirmed, in which case it would be
429	desirable to know whether the distribution of LEH along the crown does or does no
	John Wiley, 9 Conc
	John Wiley & Johns

American Journal of Primatology

1 2		Skillier 21
3 4 5	430	differ between island populations. It is clear from Figure 5 and Table V that both
6 7	431	island samples in this study show the same distribution of LEH along the crown.
8 9 10	432	(Figure 5 about here)
10 11 12	433	(Table V about here)
13 14	434	
15 16 17	435	In this study, widths and depths of LEH are considered to be proxies for duration and
18 19	436	intensity of felt stress, respectively. There is no difference in measures of width
20 21 22	437	between the Bornean and Sumatran orangutans; but there is a clear difference in
22 23 24	438	depths (Table VI). LEH defects among Sumatran orangutans are significantly deeper
25 26	439	than those for Bornean orangutans-difference between medians = $10.0\mu m$. However,
27 28 29	440	it must be remembered that, while there are no significant differences in depths from
30 31	441	different portions of the crown, depths do differ between tooth types (slightly but
32 33 34	442	significantly deeper on canines) (Fig. 4). For this reason, Table VI includes a section in
35 36	443	which depth measures are expressed as z-scores (that is, deviation of either a natural
37 38 20	444	log of depth or untransformed measure from the mean for each sub-group of tooth
39 40 41	445	type (incisors and canines)) and subjected to parametric and non-parametric tests of
42 43	446	difference in means. This manipulation permits lumping of both tooth types,
44 45 46	447	confirming that depths are significantly shallower on average in Bornean orangutans
47 48	448	(Student's t=-2.487, df=161, P=0.014; Mann-Whitney=-2.509, P=0.012) (Fig. 6).
49 50 51	449	(Table VI about here)
52 53	450	(Figure 6 about here)
54 55	451	
56 57 58		
59 60		
		John Wiley & Sons

452	While our purpose here is not to convert measured LEH widths directly into precise
453	measures of duration, but to compare two samples for relative durations, we can
454	nevertheless ask if the observed mean widths are at all compatible with what we
455	know about perikymata widths and Retzius periodicity. In our study, mean width of a
456	single perikyma is $73\mu m$ for incisors (N=4 in mid-crown third) and $69\mu m$ for canines
457	(N=3 in mid and cervical thirds) (cf., mean of 68 to $84\mu m$ reported by O'Hara [2016]).
458	Dividing mean width by the corresponding perikyma widths noted above yields a
459	rough estimate of 4.9 and 5.5 perikymata per LEH, respectively, which (assuming that
460	one perikyma represents nine to ten days [Schwartz et al., 2001; Smith, 2016]),
461	suggests stress lasts six to eight weeks in both island taxa.
462	
463	DISCUSSION
464	Our hypothesis that Bornean orangutans would show wider and deeper hypoplastic
465	defects than do Sumatran orangutans is not supported by our results. However, there
466	are several caveats that must be considered before accepting such results. Firstly, our
467	study is of specifically <u>repetitive</u> linear enamel hypoplasia, not LEH in general; i.e., this
468	cohort may be biased towards more susceptible individuals. Secondly, in that widths
469	of LEH do not differ between the island samples but depths do, we have to ask
470	whether these simply reflect Type II and Type I errors, respectively. The relative cost
471	of a Type I error is more than that for a Type II error since, for the latter, a real
472	difference will manifest itself after further studies [Toft and Shea, 1983]. To avoid
473	Type I error one can invoke a higher alpha value than, say, 1 in 20 (0.05). As may be

American Journal of Primatology

Skinner 23

seen in Table VI, the observed P value for island orangutan differences in depth is <0.02, meeting this requirement. Thirdly, we can use power analysis to determine if our sample sizes are adequate. Depths of LEH are much more variable than are widths (Table III); consequently, selection of an adequate sample size, in which both will be compared between populations, will be dictated by variability in depths. Depths, however, are not normally distributed. Power analysis assumes a normal distribution. Natural log transformation of observed depths normalizes the distribution from which one can determine the median, and difference between the median and 68th percentile of the distribution. Antilogs of these values (18.6µm and 7.4µm, respectively) approximate the mean and standard deviation of a normal distribution. Power analysis indicates that sample sizes required to detect a real difference in mean depths of LEH between two populations (with a SD of 7.4µm and optional delta value of 5µm) are 35 LEH for each island taxon. Our sample of Sumatran orangutan LEHs is 30, a bit below the required minimum. However, it is permissible [Motulsky, 1995] to reduce the required size of one sample by 25% (from, say, N=35 Sumatran orangutans to N=26) if one doubles the size of the other; i.e., to N= \geq 70 Bornean. In our case, the Bornean sample is 133 events, which means our study samples should be quite sufficient to detect a minimum difference in mean depths, between samples, of only 5µm. Our observed difference in mean and median LEH depth values between island populations of orangutans is 10.2µm and 10.0µm, respectively. We conclude that our findings are robust, with the caveats noted above.

Both island taxa exhibit LEH of similar duration (six to eight weeks on average). This

Skinner 24

497	result is surprising in that previously published estimates of duration of 'whole
498	furrows' (including width as defined in this study and the recovery of enamel contour
499	phase) were on the order of six to seven weeks [Skinner and Hopwood, 2004]; in
500	other words, the current results suggest that stress lasts longer than previously
501	thought.
502	
503	Contrary to expectation, Sumatran orangutans show significantly deeper/more severe
504	LEH compared to Bornean (median =28µm, 18µm, respectively). While, conceivably,
505	Bornean orangutans, who show more reliance on abrasive fall-back foods, might wear
506	away more enamel surface, the amount of wear required to render uncountable
507	perikymata, which are only about one micron in surface relief, is so minimal that the
508	effect on furrow depth is probably not germane to our study. As noted in the
509	introduction, there are very few published measurements of LEH depth in non-human
510	primates. Interestingly, median depth of LEH among only three Fongoli chimpanzees
511	(18 LEH), with a marked dry season, is $32\mu m$ (excluding plane-form defects) [Skinner
512	and Pruetz, 2012], only slightly more than in Sumatran orangutans (median = 28μ m).
513	The shallower LEH of Bornean orangutan LEH compared to both Sumatran
514	orangutans and Fongoli chimpanzees remains to be understood.
515	
516	We may ask 'How consistent are the studies of enamel hypoplasia in providing
517	support for the notion that Sumatra provides a better habitat?' They are not. As
	John Wiley & Sons

i age i		American coantai or rinnatology
1 2		Skinner 25
3 4 5	518	reviewed earlier LHPC, attributed to facial bone thinning in early infancy, does not
6 7	519	differ between the islands while MLID, attributed to undergrowth of the maxilla, is
8 9 10	520	significantly worse in Bornean orangutans. Together, these findings suggest that, as
11 12 13 14 15 16 17 18 19 20	521	the growing infant is forced by static maternal milk reserves [van Noordwijk et al.,
	522	2009] to forage for itself, cranio-facial growth falters more in Borneo (supporting the
	523	notion). However, the current study shows that LEH furrows do not differ in width
	524	(equated here with duration) between the island populations; whereas depth
20 21 22	525	(equated with intensity of stress) is significantly more marked in Sumatran
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	526	orangutans (contradicting the notion).
	527	
	528	The genesis for our research is the alarming decline in numbers of orangutans; their
	529	high rates of different types of developmental defect of enamel in comparison to other
	530	large apes; and, most particularly, the observation that orangutans from both Sumatra
	531	and Borneo commonly show repetitive episodes of linear enamel hypoplasia whose
	532	cause is unknown. If we can accept the support provided by crypt fenestration defects,
	533	that nutrition for orangutans is indeed better in Sumatra, we could conclude that
	534	more severe rLEH among Sumatran orangutans must be attributed to that other major
45 46	535	cause of enamel hypoplasia-disease. If our results are valid then we can direct future
46 47 48 49 50 51 52 53	536	research and fieldwork towards detecting a disease stressor in orangutan habitats
	537	with a mean duration of about two months and a periodicity of six months (or
	538	multiples thereof), but one which is more severe in Sumatra.
54 55 56	539	
57 58		
59 60		
		John Wiley & Sons

-
2
3
4
5
0
6
7
8
g
10
10
11
12
13
1/
45
15
16
17
18
10
19
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
12
43
44
45
46
47
10 10
40 40
49
50
51
52
52
53
54
55
56
57
57
58
59

60

1

540 **ACKNOWLEDGMENTS**

541 David Hopwood assisted with careful collection of data for which we are very grateful.542

543 **REFERENCES**

544 Bermudez de Castro JM, Perez PJ. 1995. Enamel hypoplasia in the Middle Pleistocene
545 hominids from Atapuerca (Spain). American Journal of Physical Anthropology
546 96:301-314.

547 Beynon AD, Dean MC, Reid DJ. 1991. Histological study on the chronology of the

- 548 developing dentition in Gorilla and Orangutan. American Journal of Physical
 549 Anthropology 86:189-203.
- 550 Blakey ML, Leslie T, Reidy JP. 1994. Frequency and chronological distribution of
 - dental enamel hypoplasia in enslaved African Americans: A test of the weaning
 hypothesis. American Journal of Physical Anthropology 95:371-383.
- 553 Boyde A. 1970. The surface of the enamel in human hypoplastic teeth. Archives of Oral

554 Biology 15:897-898.

- 555 Brunet M, Fronty P, Sapanet M, de Bonis L, Viriot L. 2002. Enamel hypoplasia in a
- 556 Pliocene hominid from Chad. Connective Tissue Research 43(2-3):94-97.
- 557 Chollet MB, Teaford MF. 2010. Ecological stress and linear enamel hypoplasia in
 - 558 *Cebus*. American Journal of Physical Anthropology 142:1-6.
- 559 Cook DC, Buiskstra JE. 1979. Health and differential survival in prehistoric
- 560 populations: Prenatal dental defects. American Journal of Physical
- 561 Anthropology 51:649-664.

American Journal of Primatology

2 3		
4 5	562	Corruccini RS, Handler JS, Jacob KP. 1985. Chronologic distribution of enamel
6 7 8	563	hypoplasias and weaning in a Caribbean slave population. Human Biology 57:
9 10	564	699-711.
11 12	565	Dean C, Reid DJ. 2001. Perikymata spacing and distribution on hominoid anterior
13 14 15	566	teeth. American Journal of Physical Anthropology 116:209-215.
16 17	567	Delgado J, Roberto A. , van Schaik CP. 2000. The behavioral ecology and conservation
18 19 20	568	of the Orangutan (<i>Pongo pygmaeus</i>): A tale of two islands. Evolutionary
20 21 22	569	Anthropology:201-218.
23 24	570	Duray SM. 1996. Dental indicators of stress and reduced age at death in prehistoric
25 26 27	571	Native Americans. American Journal of Physical Anthropology 99:275-286.
28 29	572	Eckhardt RB, Protch von Zieten R. 1993. Enamel hypoplasia as indicators of
30 31 32	573	developmental stress in pongids and hominids. Human Evolution 8:93-99.
33 34	574	Ensor BE, Irish JD. 1995. Hypoplastic area method for analyzing dental enamel
35 36 37	575	hypoplasia. American Journal of Physical Anthropology 98:507-517.
38 39	576	Goodman AH, Armelagos GJ. 1988. Clinical stress and decreased longevity in a
40 41	577	prehistoric population. American Anthropologist 90:936-944.
42 43 44	578	Goodman AH, Martinez C, Chavez A. 1991. Nutritional supplementation and the
45 46	579	development of linear enamel hypoplasias in children from Tezonteopan,
47 48 ⊿9	580	Mexico. American Journal of Clinical Nutrition 53:773-781.
50 51	581	Goodman AH, Rose JC. 1990. Assessment of physiological perturbations from dental
52 53	582	enamel hypoplasia and associated histological structures. Yearbook of Physical
54 55 56	583	Anthropology 33:59-110.
57 58		
59 60		

3		
4 5 6	584	Goossens B, Chikhi L, Jalil MF, James S, Ancrenaz M, Lackman-Ancrenaz I, Bruford MW.
6 7 8	585	2009. Taxonomy, geographic variation and population genetics of Bornean and
9 10	586	Sumatran orangutans. In: Wich SA, Utami ASS, Mitra ST, van Schaik CP, editors.
11 12 13	587	Orangutans: Geographical variation in behavioral ecology and conservation.
14 15	588	Oxford: Oxford University Press. p 1-14.
16 17 19	589	Guatelli-Steinberg D. 1998. Prevalence and etiology of linear enamel hypoplasia in
10 19 20	590	nonhuman primates: University of Oregon.
21 22	591	Guatelli-Steinberg D. 2000. Linear enamel hypoplasia in gibbons (<i>Hylobates lar</i>
23 24 25	592	<i>carpenteri</i>). American Journal of Physical Anthropology 112:395-410.
26 27	593	Guatelli-Steinberg D. 2001. What can developmental defects of enamel reveal about
28 29 20	594	physiological stress in nonhuman primates? Evolutionary Anthropology
30 31 32	595	10:138-151.
33 34	596	Guatelli-Steinberg D. 2003. Macroscopic and microscopic analyses of linear enamel
35 36 37	597	hypoplasia in Plio-Pleistocene South African hominins with respect to aspects
38 39	598	of enamel development and morphology. American Journal of Physical
40 41 42	599	Anthropology 120:309-322.
43 44	600	Guatelli-Steinberg D, Ferrell RJ, Spence J. 2012. Linear enamel hypoplasia as an
45 46	601	indicator of physiological stress in great apes: Reviewing the evidence in light
47 48 49	602	of enamel growth variation. American Journal of Physical Anthropology
50 51	603	148(2):191-204.
52 53		
54 55 56		

American Journal of Primatology

3		
4 5	604	Guatelli-Steinberg D, Skinner MF. 2000. Prevalence and etiology of linear enamel
6 7 8	605	hypoplasia in monkeys and apes from Asia and Africa. Folia Primatologica
9 10	606	71:115-132.
11 12	607	Hannibal DL. 2016. An Unusual Hypoplastic Defect of the Permanent Maxillary Lateral
13 14 15	608	Incisors in Great Apes. American Journal of Primatology. p 1-9.
16 17	609	Hannibal DL, Guatelli-Steinberg D. 2005. Linear enamel hypoplasia in the great apes:
18 19	610	analysis by genus and locality. American Journal of Physical Anthropology
20 21 22	611	127:13-25.
23 24	612	Hillson S, Bond S. 1997. Relationship of enamel hypoplasia to the pattern of tooth
25 26 27	613	crown growth: A discussion. American Journal of Physical Anthropology
28 29	614	104:89-103.
30 31	615	Hubbard A, Guatelli-Steinberg D, Sciulli PW. 2009. Under restrictive conditions, can
32 33 34	616	the widths of linear enamel hypoplasias be used as relative indicators of stress
35 36	617	episode duration? American Journal of Physical Anthropology 138:177-189.
37 38 20	618	Hutchinson DL, Larsen CS. 1988. Determination of stress episode duration from linear
39 40 41	619	enamel hypoplasias: A case study from St. Catherines Island, Georgia. Human
42 43	620	Biology 60(1):93-110.
44 45	621	IUCN. 2017. The IUCN Red List of Threatened Species. Version 2016-3. Downloaded
40 47 48	622	on 06 January 2017.
49 50	623	Kierdorf H. Kierdorf II. Richards A. Josephsen K. 2004. Fluoride-induced alterations of
51 52 53	624	enamel structure: an experimental study in the miniature nig. Anatomy and
53 54 55	625	Embryology 207:463-474
56 57	025	Lindi yology 207.403-474.
58 59		
60		

3		
4 5 6	626	King JR, Murphy ME. 1985. Periods of Nutritional Stress in the Annual Cycles of
6 7 8	627	Endotherms: Fact or Fiction? American Zoologist 25(4):955-964.
9 10	628	King S, Ulijaszek SJ. 1999. Invisible insults during growth and development. In: Hoppa
11 12	629	RD, FitzGerald CM, editors. Human Growth in the Past: Studies from Bones and
13 14 15	630	Teeth. Cambridge: Cambridge University Press. p 161-182.
16 17	631	Kirchoff CA. 2010. From Birth to Bones: Skeletal Evidence for Health, Disease, and
18 19	632	Injury in the Gombe Chimpanzees: University of Minnesota.
20 21 22	633	Knott CD. 1998. Changes in orangutan caloric intake, energy balance, and ketones in
22 23 24	634	response to fluctuating fruit availability. International Journal of Primatology
25 26	635	19(6):1061-1079.
27 28	636	Lukacs IR 2001 Enamel hypoplasia in the deciduous teeth of great apes: variation in
29 30 31	637	provalence and timing of defects. American Journal of Physical Anthropology
32 33	(20	116.100 200
34 25	638	116:199-208.
35 36 37	639	Marshall AJ, Lacy R, Ancrenaz M, Byers O, Husson SJ, Leighton M, Meijaard E, Rosen N,
38 39	640	Singleton I, Stephens S et al. 2009. Orangutan population biology, life history
40 41	641	and conservation. Perspectives from population viability analysis. In: Wich SA,
42 43 44	642	Utami ASS, Mitra ST, van Schaik CP, editors. Orangutans: Geographical
45 46	643	variation in behavioral ecology and conservation. Oxford: Oxford University
47 48	644	Press. p 311-326.
49 50 51	645	Mellanby H. 1941. The effect of maternal dietary deficiency of vitamin A on dental
52 53	646	tissues of rats. Journal of Dental Research 20:489-509.
54 55		
56		
57 58		
59 60		

American Journal of Primatology

1 2		Skillier 51
3 4 5	647	Morrogh-Bernard HC, Husson SJ, Knott CD, Wich SA, van Schaik CP, van Noordwijk
6 7 8	648	MA, Lackman-Ancrenaz I, Marshall AJ, Kanamori T, Kuze N et al. 2009.
9 10	649	Orangutan activity budgets and diet. A comparison between species,
11 12	650	populations and habitats. In: Wich SA, Utami ASS, Mitra ST, van Schaik CP,
13 14 15	651	editors. Orangutans: Geographical variation in behavioral ecology and
16 17	652	conservation. Oxford: Oxford University Press. p 119-133.
18 19 20	653	Motulsky H. 1995. Intuitive Biostatistics. New York: Oxford University Press. 386 p.
21 22	654	Nanci A. 2012. Ten Cate's Oral Histology: Development, structure and Function.
23 24 25	655	Amsterdam: Elsevier.
25 26 27	656	O'Hara MC. 2016. Investigating the regularity of linear enamel hypoplasia in Bornean
28 29	657	and Sumatran orangutans and in a primate community from Sabah, Borneo.
30 31 32	658	Columbus: Ohio State University.
33 34	659	Osborn JW. 1981. Dental Tissues. In: Osborne JW, editor. Dental Anatomy and
35 36 37	660	Embryology. Oxford: Blackwell. p 155-209.
38 39	661	Russon AE, Wich SA, Ancrenaz M, Kanamori T, Knott CD, Kuze N, Morrogh-Bernard
40 41	662	HC, Pratje P, Ramlee H, Rodman P et al. 2009. Geographic variation in
42 43 44	663	orangutan diets. In: Wich SA, Utami ASS, Mitra ST, van Schaik CP, editors.
45 46	664	Orangutans: Geographical variation in behavioral ecology and conservation.
47 48 49	665	Oxford Oxford University Press. p 135-156.
50 51	666	Sarnat BG, Schour I. 1941. Enamel hypoplasia (chronologic enamel aplasia) in relation
52 53	667	to systemic disease: A chronologic, morphologic and etiologic classification.
54 55 56	668	Journal of the American Dental Association 28:1989-2000.
57 58		
59 60		

1 2		Skiimer S
3 4 5	669	Schwartz GT, Dean MC. 2001. Ontogeny of canine dimorphism in extant hominoids.
6 7	670	American Journal of Physical Anthropology 115:269-283.
9 10	671	Schwartz GT, Reid DJ, Dean C. 2001. Developmental aspects of sexual dimorphism in
11 12	672	hominoid canines. International Journal of Primatology 22:837-859.
13 14 15	673	Silva-Sousa YTC, Peres LC, Foss MC. 2003. Enamel hypoplasia in a litter of rats with
16 17	674	alloxan-induced Diabetes Mellitus. Brazilian Dental Journal 14(2):87-93.
18 19 20	675	Skinner MF. 1986a. Enamel hypoplasia in sympatric chimpanzee and gorilla. Human
20 21 22	676	Evolution 1:289-312.
23 24	677	Skinner MF. 1986b. An enigmatic hypoplastic defect of the deciduous canine.
25 26 27	678	American Journal of Physical Anthropology 69:59-69.
28 29	679	Skinner MF. 2014a. Crowding defects of enamel: Will we ever understand them? 16th
30 31 32	680	International Symposium on Dental Morphology. Zagreb: Bulletin of the
33 34	681	International Association for Paleodontology. p 97.
35 36 27	682	Skinner MF. 2014b. Variation in perikymata counts between repetitive episodes of
37 38 39	683	linear enamel hypoplasia among orangutans from Sumatra and Borneo.
40 41	684	American Journal of Physical Anthropology 154:125-139.
42 43 44	685	Skinner MF, Dupras TL, Moya-Sola S. 1995. Periodicity of linear enamel hypolasia
45 46	686	among Miocene Dryopithecus from Spain Journal of Paleopathology 7:195-
47 48 40	687	222.
49 50 51	688	Skinner MF, Hopwood D. 2004. An hypothesis for the causes and periodicity of
52 53	689	repetitive linear enamel hypoplasia (rLEH) in large, wild African (Pan
54 55 56		
57 58		
59 60		
		John Wiley & Sons

American Journal of Primatology

1 2		Skiiner 55
3 4 5	690	troglodytes and Gorilla gorilla) and Asian (Pongo pygmaeus) apes. American
6 7	691	Journal of Physical Anthropology 123:216-235.
8 9 10	692	Skinner MF, Hung JTW. 1989. Social and biological correlates of localized enamel
11 12	693	hypoplasia of the human deciduous canine tooth. American Journal of Physical
13 14 15	694	Anthropology 79: 159-175.
16 16 17	695	Skinner MF, Newell EA. 2003. Localised hypoplasia of the primary canine in bonobos,
18 19 20	696	orangutans and gibbons. American Journal of Physical Anthropology 120:61-
20 21 22	697	72.
23 24 25	698	Skinner MF, Pruetz JD. 2012. Reconstruction of periodicity of repetitive linear enamel
25 26 27	699	hypoplasia (rLEH) from perikymata counts on imbricational enamel among
28 29	700	dry-adapted chimpanzees (<i>Pan troglodytes verus</i>) from Fongoli, Senegal.
30 31 32	701	American Journal of Physical Anthropology 149:468-482.
33 34	702	Skinner MF, Rodrigues AT, Byra C. 2014. Developing a pig model for crypt
35 36 37	703	fenestration-induced localized hypoplastic enamel defects in humans.
38 39	704	American Journal of Physical Anthropology 154:239-250.
40 41 42	705	Skinner MF, Roksandič M. 1995. Malaria in Chinese fossil apes. In: Xia W, Zhang Y,
42 43 44	706	editors. Beijing: China Forestry Publishing House.
45 46	707	Skinner MF, Skinner MM, Pilbrow VC, Hannibal DL. 2016. An enigmatic hypoplastic
47 48 49	708	defect of the maxillary lateral incisor in recent and fossil orangutans from
50 51	709	Sumatra (Pongo abelii) and Borneo (Pongo pygmaeus). International Journal of
52 53 54	710	Primatology 37:548-567.
55 56		
57 58 59		
60		

1	
2	
3	
4	
5	
ю 7	
ן 8	
g	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 11	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
00 56	
57	
58	
59	
60	

7	/11	Smith TM. 2016. Dental development in living and fossil orangutans. Journal of Human
7	/12	Evolution 94:92-105.
7	/13	Smith TM, Kupczik K, Machanda Z, Skinner MM, Zermeno JP. 2012. Enamel thickness
7	'14	in Bornean and Sumatran orangutan dentitions. American Journal of Physical
7	715	Anthropology 147:417-426.
7	/16	Stojanowski C, Carver CL. 2011. Inference of emergent cattle pastoralism in the
7	717	southern Sahara desert based on localized hypoplasia of the primary canine.
7	718	International Journal of Paleopathology 1(2):89-97.
7	719	Suckling G, Elliott DC, Thurley DC. 1986. Macroscopic appearance and associated
7	20	histological changes in the enamel organ of hypoplastic lesions of sheep incisor
7	21	teeth resulting from induced parasitism. Archives of Oral Biology 31:427-439.
7	22	Suckling G, Thurley DC. 1984. Histological, macroscopic and microhardness
7	23	observations of fluoride-induced changes in the enamel organ and enamel of
7	24	sheep incisor teeth. Archives of Oral Biology 29(3):165-255.
7	25	Toft CA, Shea PJ. 1983. Detecting community-wide patterns: estimating power
7	26	strengthens statistical inference. The American Naturalist 122(5):618-625.
7	27	Tsukamoto SA. 2003. The Prevalence and Timing of Enamel Hypoplasia in the Bonobo,
7	28	Pan paniscus [Coolidge, 1933] [Masters]. Burnaby: Simon Fraser University.
7	29	van Noordwijk MA, Sauren SEB, Abulani A, Morrogh-Bernard HC, Atmoko SSU, van
7	730	Schaik CP. 2009. Development of independence: Sumatran and Bornean
7	731	orangutans compared. In: Wich SA, Atmoko SSU, Setia TM, Schaik CPv, editors.

American Journal of Primatology

1 2		Skillier 55
3 4 5	732	Orangutans: Geographic Variation in Behavioral Ecology and Conservation.
6 7	733	Oxford: Oxford University Press. p 189-203.
9 10	734	van Noordwijk MA, Willems EP, Atmoko SSU, Kuzawa CW, van Schaik CP. 2013. Multi-
11 12 12	735	year lactation and its consequences in Bornean orangutans (Pongo pygmaeus
13 14 15	736	wurmbii). Behavioral Ecology and Sociobiology 67:805-814.
16 17	737	van Schaik CP, Marshall AJ, Wich SA. 2009. Geographic variation in orangutan
18 19 20	738	behavior and biology. Its functional interpretation and its mechanistic basis. In:
21 22	739	Wich SA, Utami ASS, Mitra ST, van Schaik CP, editors. Orangutans: Geographical
23 24 25	740	variation in behavioral ecology and conservation. Oxford: Oxford University
26 27	741	Press. p 351-361.
28 29 20	742	Vann SL. 2008. Recording the Facts: A Generic Recording System for Animal
30 31 32	743	Palaeopathology: University of Leicester.
33 34	744	White TD. 1978. Early hominid enamel hypoplasia. American Journal of Physical
35 36 37	745	Anthropology 49(1):79-83.
38 39	746	Wich SA, Vogel ER, Larsen MD, Fredricksson GM, Leighton M, Yeager CP, Brearley FQ,
40 41 42	747	van Schaik CP, Marshall AJ. 2011. Forest fruit production is higher on Sumatra
42 43 44	748	than on Borneo. PLoS Biology 6(6):1-9 e21278.
45 46	749	Zadsinska E, Kurek M, Borowska-Struginska B, Lorkiewicz W, Rosset I, Sitek A. 2013.
47 48 49	750	The effect of the season of birth and of selected maternal factors on linear
50 51	751	enamel thickness in modern human deciduous incisors. Archives of Oral
52 53 54	752	Biology 58:951-963.
54 55 56	753	
57 58		
59 60		

Table I. Individual animals

		Sex		
<u>Taxon</u>	Male	Female	<u>Unknown</u>	<u>Total</u>
Pongo abelii P. pygmaeus ssp. P. p. pygmaeus P. p. wurmbii P. p. morio Total	$5^{1,2,3} \\ 3^{4} \\ 7^{5,6} \\ 1^{8} \\ \frac{1^{10}}{17} $	$ \begin{array}{r} 4^{2,3} \\ 2^{4} \\ 8^{5,6,7} \\ 3^{8,9} \\ - \\ 17 \end{array} $	- 1 ⁵ - - 1	9 5 16 4 <u>1</u> 35

1. Zoological State Museum, Munich-2 males

2. Senckenberg Institute, Frankfurt-2 males, 3 females

3. Naturalis, Leiden-1 male, 1 female

4. Senckenberg Institute, Frankfurt-3 males, 2 females

5. Anthropological State Museum, Munich-6 males, 6 females, 1 unknown

6. Zoological State Museum, Munich-1 male, 1 female

7. Naturalis, Leiden-1 female

8. Naturalis, Leiden-1 male, 2 females

9. Zoological State Museum, Munich-1 female

10. Zoological State Museum, Munich-1 male

Table II. Teeth examined

		Independ	lent LEH	
<u>Island</u>	Sex	Incisor	Canine	Total
Borneo	Male Female Unknown	32 31	30 31 9	62 62 9
Sumatra	Male Female	6 <u>2</u> 71	11 <u>11</u> 99	17 <u>13</u> 163

Table III. Descriptive statistics for measurements of Width (μm) and Depth (μm) (all variables combined)

							Test of Normality			
							K	$K-S^1$	S	$-W^2$
Measure	<u>N</u>	<u>Median</u>	Mean	<u>SD</u>	CV	<u>Skewness</u>	Value	<u>P value</u>	Value	<u>P value</u>
Onset Width	163	369.0	378.3	150.0	39.7	0.420	0.048	0.200	0.982	0.036
Depth	163	18.61	23.3	15.6	67.0	1.294	0.139	< 0.0001	0.885	< 0.0001

- ilk's 1. Kolmogorov-Smirnov
- 2. Shapiro-Wilk's

1
2
2
3
4
5
ĉ
6
7
8
0
9
10
11
10
12
13
14
15
10
10
17
18
10
19
20
21
22
~~
23
24
25
26
20
27
28
20
29
30
31
32
02
33
34
35
26
30
37
38
20
53
40
41
42
10
43
44
45
16
40
41
48
49
50
50
51
52
52
55
54
55
56
57
זכ רכ
58
50

Table IV. Tests of difference in mean measures (µm) for anatomic variables: parametric for widths, non-parametric for depths

Variable				Statistic		
<u>A. Crown decile</u>				t-test ¹ /ANOVA ² ; M-		$W^3/K-W^4$
Width	<u>N</u>	<u>Mean</u> ± <u>SD</u>	<u>Median</u>	<u>Value</u>	<u>df</u>	<u>P value</u>
three	2	207.5±95.51	207.5			
four	18	361.7±141.6	342.1			
five	25	370.9±183.9	355.1			
six	27	344.8±136.7	322.0			
seven	32	413.9±134.9	424.8			
eight	25	362.3±140.9	356.9			
nine	24	387.1±141.6	372.6			
ten	8	437.2±197.9	436.2	1.091^{2}	7	0.371
Depth						
three	2	9.41±4.43	9.41			
four	18	18.35±12.94	15.28			
five	25	19.99±11.35	18.18			
six	27	21.49±12.67	20.05			
seven	32	26.39±19.79	17.77			
eight	25	27.64±18.93	17.96			
nine	24	25.09±13.75	21.67			
ten	8	23.13±16.17	20.93	7.2044	7	0.408
<u>B. Sex</u>						
Width						
Male	79	361.9±148.0	355.7			
Female	75	392.3±155.8	384.1	-1.243 ¹	152	0.216
Depth						
Male	79	22.5±14.4	18.0			
Female	75	24.8±17.2	19.3	-0.642 ³		0.521
<u>C. Tooth type</u>						
Width						
Incisor	71	360.5±166.8	347.1			
Canine	92	392.0±135.0	382.6	-1.330 ¹	161	0.185
Depth						
Incisor	71	21.2±16.1	16.6			
Canine	92	24.8±15.0	21.1	-2.149 ³	-	0.032

1. Students 't'

2. Analysis of variance

3. Mann-Whitney

4. Kruskall-Wallis

Table V. Distribution of independent LEH per decile compared between the two island samples of orangutans (sexes and tooth types combined)

		Isla	nd	
	Borneo ¹		Sun	natra ¹
<u>Decile</u>	<u>N</u>	<u>Percent</u>	<u>N</u>	<u>Percent</u>
One Two Three Four Five Six Seven Eight Nine Ten Total 1. Pearso	2 15 20 23 26 19 20 <u>6</u> 131 on Chi	1.5 11.5 15.3 17.6 19.9 14.5 15.3 4.6 Square=1	3 5 4 6 4 2 30 .545	10.0 16.7 13.3 20.0 20.0 13.3 6.7 , df=7, P=0.981

Table VI. Tests of difference in means of LEH measures for Island variable: width measures (normally distributed) are untransformed values. Depths (non-normally distributed) are expressed as z scores of <u>natural log</u> of depth (parametric test) and <u>untransformed</u> depth (non-parametric test), permitting in both cases combination of incisors and canines.

Measure		<u>Island</u>	<u>N</u>	<u>Mean±SD</u>	Median	Value	<u>df</u>	<u>P</u>
Width	Original	Borneo Sumatra	133 30	374.7±152.7 394.1±138.6	364.0 376.7	-0.640 ¹	161	0.523
Depth	LogN tooth type Untransformed tooth type	Borneo Sumatra Borneo Sumatra	133 30 133 30	-0.0908±0.940 0.4025±1.151	-0.0280 0.5985 -0.3222 0.3033	-2.487 ¹ -2.509 ²	161 -	0.014 0.012
1. Si 2. M	tudent's t Iann-Whitney U							

Fig. 1. Approximate age of creation of different types of enamel defects in orangutan infancy. LHPC (localized hypoplasia of the primary canine) and MLID (maxillary lateral incisor defect) are crypt fenestration defects reflecting undergrowth of the jaws. The etiology of rLEH (repetitive episodes of linear enamel hypoplasia) is not known (modified from van Noordwijk et al. 2003).

101x76mm (600 x 600 DPI)

Fig. 2. Conversion of measurements of LEH furrows, relative to the plane of the scanner instrument, to measures of width and depth using trigonometry. Measures 'a' plus 'b' equals distance between two shoulder peaks, 'a'=distance of occlusal peak to deepest point of furrow, 'b'=distance from deepest point of furrow to cervical peak, 'c'=vertical difference in height between two shoulder peaks, 'd'=depth of furrow from higher peak. Vertical scale is greatly exaggerated for illustrative purposes.

101x77mm (600 x 600 DPI)

Fig. 3. Distribution of raw measurements (µm) of width and depth of episodes of linear enamel hypoplasia (combined tooth types, sexes, crown deciles and taxa). Widths are normally distributed while depths are decidedly non-normally distributed.

83x45mm (600 x 600 DPI)

Fig. 4. Dispersion (quartiles) of raw measurements (μm) of width and depth separated by tooth type and island source (sexes combined). There is no statistically significant difference of width measurements among sub-groups(decile, sex, tooth type) but depth measurements do differ significantly between incisors and canine tooth types necessitating control of this variable in subsequent analyses (see Table IV).

59x23mm (600 x 600 DPI)

Fig. 5. Distribution of LEH among canine crown deciles. Approximate duration (months) of each decile is derived, with permission, from O'Hara [2016] and age at each decile is reconstructed by further recourse to Beynon et al. [1991]

101x76mm (600 x 600 DPI)

Fig. 6. LEH measurements compared between Bornean and Sumatran orangutans. Widths are raw measures combined all sub-groups of sex, decile and tooth type. Depths are normalized through natural log transformation and converted to z scores so as to combine tooth types. LEH from Sumatran orangutan animals are significantly deeper.

101x67mm (600 x 600 DPI)