-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Kent Academic Repository

Kent Academic Repository
Full text document (pdf)

Citation for published version

Bai, Xiaojing and Lu, Gang and Hossain, Md Moinul and Szuhanszki, Janos and Daood, Syed
Sheraz and Nimmo, William and Yan, Yong and Pourkashanian, Mohamed (2017) Multi-mode
Combustion Process Monitoring on a Pulverised Fuel Combustion Test Facility based on Flame
Imaging and Random Weight Network Techniques. Fuel. ISSN 0016-2361.

DOI
https://doi.org/10.1016/).fuel.2017.03.091

Link to record in KAR
http://kar.kent.ac.uk/61163/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR e

Kent Academic Repository


https://core.ac.uk/display/80841864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Title: Multi-mode Combustion Process Monitoring on a Pulverised Fuel Combustion Test

Facility based on Flame Imaging and Random Weight Network Techniques

Authors:

Address:

Xiaojing Bat" 2, *GangLu?, Md Moinul Hossaif, Janos SzuhansZkiSyed Sheraz

Daood, William Nimma®, Yong Yart, Mohamed Pourkashanian

- School of Control and Computer Engineering,
North China Electric Power University,

Beijing, 102206, China

2 School of Engineering and Digital Arts,
University of Kent,
Canterbury,

Kent CT2 7NT, UK

3 Energy 2050 Group,

Department of Mechanical Engineering,

University of Sheffield,

Sheffield, S10 2TN, UK

Email: xb9@kent.ac.uk, g.lu@kent.ac.uk, m.hossain@kent.ac.uk,
J.szuhanszki@sheffield.ac.uk, s.daocod@sheffield.ac.uk, w.nimmo@sheffield.ac.uk,

y.yan@kent.ac.ukm.pourkashanian@sheffield.ac.uk



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

ABSTRACT
Combustion systems need to be operated under a range of different conditions to meet
fluctuating energy demands. Reliable monitoring of the combustion process is crucial for
combustion control and optimisation under such variable conditions. In this paper, a monitoring
method for variable combustion conditions is proposed by combining digital imaging, PCA-
RWN (Princimal Component Analysis and Random Weight Network) technigBased on
flame images acquired using a digital imaging system, the mean intensity values of RGB (Red,
Green, and Blue) image components and texture descriptors computed based on the grey-level
co-occurrence matrix are used as the colour and texture features of flame image$edthees
are treatedas the input variables of the proposed PCA-RWN model for multi-mode process
monitoring. In the proposed model, the PCAigsd to extract the principal component features
of input vectors. By establishing the RWN model for an appropriate principal component
subspace, the computing load of recognising combustion operation conditions is significantly
reduced In addition, Hotelling’s T?> and SPE (Squared Prediction Error) statistics of the
corresponding operation conditions are calculated to identify the abnormalities of the
combustion. The proposed approaslevaluated using flame image datasets obtained on a 250
kWi air- and oxy-fuel Combustion Test Facility. Variable operation conditions were achieved
by changing the primary air and SA/TA (Secondary Air to Territory Air) splits. The results
demonstrate that, for the operation conditions examined, the condition recognition success rate
of the proposed PCA-RWN model is over 91%, which outperforms other machine learning
classifiers with a reduced training time. The results also show that the abnormal conditions
exhibit different oscillation frequencies from the normal conditions, and than@ SPE

statistics are capable of detecting such abnormalities.

Keywords: fossil fuelcombustion, multi-mode process monitoring, flame image, principal

components analysis, random weight network.
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1. Introduction

In power generation industries, boilers are required to operate under optimised conditions to
maintain high combustion efficiency and low emissions. Abnormal combustion states caused by
drifts or faults in a combustion system can result in not only reduced efficiency and increased
emissions but also enormous negative impact on the health of the system. The recent trend of
using a variety of fuels, including low-quality coals, coal blends, and co-firing biomass and coal,
has further exacerbated this isl, 2]. Hence, the combustion process monitoring has received

considerable attention.

Flame imaging incorporating soft-computing algorithms is considered t@ psomising
technical approach to monitoring the combustion process as it provides the operators with
reliable, 2b (two-dimensional) measurements about the furrﬁke [3]. Several studies have been
carried out for combustion process monitoring based on flame imaging techniques. Sﬂ et al. [1]
applied KPCA (Kernel Principal Component Analysis) for the diagnosis of abnormal operation
conditions on a heavy oil-fired combustion test facility. Chen e{ @l. [4] proposed an online
predictive technique for furnace performance monitoring based on dynamic imaging and the
combination of Hidden Markov Model and multiway PCA. et al. ] and Chen et a[[S]

constructed an extreme learning machine using flame image features to recognise the burning

state (i.e., over burning, normal burning, or under burning) in a rotary kiln. Wang arE Ren [6]
also suggestedflame imaging and machine learning based method for recognising combustion
conditions in a pulverised coal-fired rotary kiln. These methods are designed for detecting the
process under individual operation conditiares, the single-mode process where only a normal

condition is considered.
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However, modern combustion systems often operate under variable conditions (i.e., multi-mode
process) according to the demand for energy. This means that the combustion process can be
normal or abnormal under each conditidhe single-mode process monitoring method will fail

to distinguish abnormalities from normal deviations in a multi-mode process. Therefore, multi-
mode process monitoring techniques are required to recognise reliably the operation condition
and assess the state (normal or abnormal) of the process under variable operation conditions.
Existing multi-mode monitoring approacheande divided into three categories, i.e. global-
model, adaptive-model and local-model. The global-model builds generally an uniform model
for all operations to achieve the process monitoring. Shang ﬂ al. [7] used slow featurs analysi
and classical statistics for the concurrent monitoring of operation condition deviations and
process dynamics anomalies. Ma etE|. [8] and Wang aI. [9] employed the standardisation
method to transform the multi-mode data to an uniform distribution, which then inceparat

PCA modelfor the fault detection of multi-mode processes. Whereas, describing all kinds of
operation conditions through an uniform model is challenging, especially for the conditions with
significant distinction. The adaptive model adjusts model parameters adaptively and updates the
model with operation conditioll]. Lee et [10] extracted process knowledge based on
if-then rules for detecting the change in operation conditions. Ge andng [12] proposed an
adaptive local model approach to online monitoring of nonlinear multiple mode processes with
non-Gaussian information. In an adaptive model, the modelling update speed is essential and the
monitoring performance is mainly determined by the model selection. In a multi-mode
combustion process, however, some conditions show significant differences and the dynamic
behaviours of flames lead to the complexity of the features extracted from flame images. It is
thus very difficult to build appropriate global or adaptive models to achieve multi-mode process
monitoring in a combustion system. The local model recognises the operation conditions using
clustering methods and builds multiple models for each operation conditizsets dhe state.

Feital et al.] presented a multimodal mibdg and monitoring method for multivariate

4
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multimodal processes based on the maximum likelihood PCA and a component-wise
identification of operating modes. Yang et E|[14] proposed an aligned mixture probabilistic
PCA to exploit within-mode correlations for the fault detection of multi-mode chemical
processes. Howevean flame imaging based combustion monitoring, the features extracted from
flame images, which are considered as input variables, suffer from various noises from either the
imaging system or the combustion process as well as abnormalities combustion process.

As a consequence, it is challenging to determine the most suitable model for every new sample
using the existing multi-mode monitoring approaches. Appropriate methods are therefore
required for recognising the combustion operation conditions and detecting the combustion

State.

In this paper, a flame imaging and PCA-RWN (PCA-Random Weight Network) based multi-
mode technique is proposed to achieve combustion process monitoring under variable
conditions. In the PCA-RWN model, a global PCA model for all operation conditions is built to
extract the features from flame images, and an RWN model is constructed for recognising the
operation conditions. Cross-validation is used to select the optimal number of principal
components of the PCA and the hidden nodes of the RWN. The PCA-RWN model can reduce
significantly the computing overhead of the RWN model. This is achieved by dividing the inputs
of the RWN model intoa PCA based feature space and the optimised number of principal
components are adaptively selected to obtain the optimal recognition performance of operation
conditions. Following the recognition of the operation conditidotelling’s T2 and SPE are

used to detect the combustion abnormalities. The performance of the proposed technique is
evaluated using flame images obtained on the 25@ &w and oxy-fuel CTF (Combustion Test
Facility) at the UKCCSRC PACT (Pilot Scale Advanced Capture Technology) Core Facilities.

Experimental results show that the proposed PCA-RWN based multi-mode process monitoring
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method is feasible and effective for detecting the abnormalities of combustion processes under

variable operations.

2. Methodology
2.1 Overall strategy
Fig. 1 shows the scheme of the PCA-RWN based multi-mode combustion process monitoring
method. The scheme has three main steps, i.e. feature calculation, feature extraction and process
monitoring. Firstly, flame images are pre-processed to reduce the noises by emgplogwvigg
average filter. Filtered flame images are then used to compute the aotbtexture features of
the flame. Secondly, the PCA model is built to extract the useful feature variables from the
calculated features of the filtered flame images. Principal component feature spaces with
different numbers of principal components are then considered, and the extracted features with
various dimensions are taken as the inputs of the RWN model to perform the fitting tasks.
Subsequently, processing is taken to search for the minimum-error and to select the well-trained
RWN with the optimal numbers of principal components and hidden nodes according to the
fitting errors of the RWN model. By using the certain well-trained PCA-RWN, the combustion
operation condition of the targeted test flame image is recognised, and multiple variable
statistics indices, the?Bnd SPE (Squared Prediction Error), are finally calculated to identify the

State.

Flame images . - ™ \

(Condition 1- S) ! RWN ~:

| Condition \ '

e S|

; A . T " ] !
: Colour ;= ' | T2, & SPE statistic 5
i features | "\ | Global i !
i | Pre-processing b PCA L ) :
' IZ> Texture :E> b State ;
i features [ i identification :
\ lculati o Feature i Process monitorin /
\\______fia?:cy_ria_c_:?_c_ti_a_t_lgf\ _____ -~ \__extraction ./ g
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Fig. 1 Scheme of PCA-RWN based multi-mode combustion process monitoring.

2.2 Principal component analysis based feature extraction

In general as one essential step in the flame visualisation, flame images are sedrtent
identify the flame regiosusing edge detection or @hgrey-level threshold meth015].
Regarding coal combustion under variable operation condiitassyery challenging to allocate
precisely the boundary of the flame region in a very short time due to the dynamic nature of the
flame. The inaccurate segmentation of the flame region will lead to inaccurate feature extraction,
and thus poor monitoring performance. In this study, therefore, the colour and texture features of
flame images are computed without any prior image segment&tichis way, the adverse
effects of flame image processing are significantly reduced. The colour features and texture

features are calculated as follows

Step 1.0riginal flame images need to be filtered to reduce noise agsimgving average filter
. The ith filtered image, i , is represented as,

_ 1w—1
li==) li.
s : (1)

whereli represents the corresponding original flame image to thdiltered image. w is the
number of images used in the moving average filter. In this study, w is selected as 10 lzased on
number of trials to ensure that noise in the images is effectively removed within the period of

acceptable processing time.

Step 2.Assume colour featusdr, fy and § are the mean intensity values of R (Red), G (Green),

and B (Blue) images of the flame, respectively, the colour features are then calculated as,
u \

fo=> Y i(p.a)/ulv ce{r, g,
Pt : (2)
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whereir, ig, andip stand for the intensity matrices of R, G, @&dnages, respectively. u and v
are the height and width of the flame image, respectively. p and q indicate the pixel position in

the flame image (1, 2,..., u, and &1, 2,..., v), respectively.

Step 3.A total of 14 texture features based on the grey-level co-occurrence matrix proposed by
Haralick et aI are introduced, i.e., energy)(fcontrast @), correlation (), sum of variance
squares g, inverse difference moment)fsum average §), sum variance {f, sum entropy

(fs), entropy (§), difference variance 1), difference entropy {f), information measure of
correlation | (f2), information measure of correlatidin(fis), and the maximum probability. .

These features represent the texture characteristics of flame images and have been found
effective in flame classificatioﬂﬂ% more detailed description and associated calculation

of the grey-level co-occurrence matrix based texture features can barfdGhend [17.

Therefore, for a filtered flame image, the feature vectortioflame imaged, is defined as,

d =[f0, 01010, e N=17

3)
The feature matrix for thets-(s=1,2,..., S, Sis the number of total conditions) conditiDg,is

denoteds,

D, =[d, d7, ..., d;p], (4)

where na stands for the sample number under the s condition. As a multivariate statistic model,
the PCA models employed to project the feature space of flame images into two orthogonal
subspaces and reduce the dimension of feature vectors. Based on the vectors of image features

shown in (3) and (4), the PCA model is descriagd

XP'+E=D:=[D;, Dy, ..., D" ()

where X stands for the score matri®, the loading matrix, and& the residual matrix. The
singular value decomposition of the correlation matri®¢i9], i.e.=, is given by

T _ = T
UAU =Z=Z=DD /m’ (6)

8
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where U=[u1, uz, -, un] represents alN*N unitary matrix, A is the diagonal matrix of
eigenvalues, m=mme+...+me. If the number of principal components is n, the loading matrix
P:=Pn is represented as the matrix consisting of the front n eigensentarked a$n=[u1, Uz,

“*, Un]. The principal component information, i.e. the score madriaf D is calculatedas

X =DR, 7)

2.3 Random weight network (RWN)

A RWN was originally proposed in [20, 21], where it was named as Extreme Learning Machine,

for training a Feed-forward Neural Network, especially a Single-Hidden-Layer Feed-forward

Network. In the RWN, parts of the hidden-node parameters are randomly generated based on

probability distributions rather than well-tuned according to learning algori. The

RWN has shown prominent performances at a much faster learning speedswitturfen

intervention in both theory and applications.

m
Let D6 Wbz be the given training samples with input&€ R" and target outputgeRM, where

M is the dimension of the output. LeeRM denote the real outputs ofh-training samplen

RWN model. The random weight network moaalepresenteds,
L
D B +b)=0,i=12--,m

= ; (8)
where L stands for the number of hidden nadebke RWN modeld(.) stands for the activation
function, w; ER" and SieRM represent the input and output weights of thie fidden node,
respectivelyy; is the threshold of theti hidden node. The training processiago obtain the

optimal output weight matri¥@ , which can minimise the empirical error of the RWN model,

i.e.,

p=argminy o )y,
P | 9
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ﬁ:H o ’ (10)
whereH’ stands for the Moore-Penr eneralised inverse]|22]; andH is,

3&’%‘1“‘%5{ &wLxl

H= : . :
Pl@ Xy +by) - dlo X, +0) ’ (11)

and,

O=[o", o2',..., om'] "€ R™M, (12)

2.4 PCA-RWN based combustion process monitoring

As described in the previous sections, the woémd texture features are calculated from filtered
flame images, as given in (3n order to recognise combustion operation conditions, row
vectors in score matriX in (7), i.e. the features extracted by the PCA, are treated as the inputs
of the RWN model. Assume the dimension of original feature vectors is N, the number of
principal components is n, and the output dimension is 1, for a samplehimperation
condition,the inputs and target outputs of the RWN maslekpressed as,

{( Xi(n)v yi(n)) | )ﬁ(n):q R el Y(OZSED}n,\ii,il, (13)

where S stands for the total number of combustion conditions.

A PCA-RWN based operation condition recognition

A parallel model structure with N irrelevant single RWN models is constructed using the
different number of input vectors. The n-th RWN model in the model structure can be

represented as,

L
> AP0 +57) =g,
L , (14)

10
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wheres®, wj™ and K" are the output weight, input weight and thresholdtbfjidden node in
the n-th RWN model, respectivelyxi{’} stand for the input vectors. All RWN models share the
same outputs {§ the number of hidden nodes L, and activation funcdzp), i=1, ..., m,
j=1,...,L, n=1,..., N. The RWN models are built through the following steps,
e Calculate the loading matriceB{} with the different numbers of principal components,
and initialise the input vectors{V=diPn} and output vectors §, i=1, ..., m n=1, ...,
N.
e Assign randomly the input weighis®™ and thresholds;® of the N single RWN models,
respectively, j=1,.., L, n=1,..., N.
e Calculate the hidden layer output medés H™ of the N single RWN models,
respectively, n=1,.., N.

pV=H™'o

e (alculate the output weights of the N single RWN models as, n=1, ..., N.

e Seclect the well-trained RWN with the optimal number of principal components and

hidden nodes.

In order to make sure that the selected PCA-RWN model has satisfactory performance and
robustness, k-fold cross validati is used to determine the appropriate RWN model and the
parameters of the PCA-RWN model. In the k-fold cross validation, the training samples are
randomly split into k mutually exclusive subsets (the folds) of equal size. The model is trained
and tested for k times, and for each time, the model is trained by k-1 subsets and tested by the
rest. The cross-validation estimatorcvE which indicates the average error of operation

condition recognition committed by the n-th PCA-RWN, is calculated by,

1 m
Eo(L ) ==D 14" (8")- I
! mi . (15)

The optimal principal componentsand hidden nodes numberdre selected using,

[Lo. ne] =arg minf Ecy (L. ] 6

11
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The final well-trained modas,

LO A~
0 =¢ (Xi)=2ﬂj(rb)q)(wj(rb))§-r +t?(rb))
= : (17)

where @ stands for the final outputs ofhi-training sample.

B. State identification based oA @nd SPE statistics

T2 and SPE are calculated and compared with their control litoitassesghe state of the
combustion, following the recognition of the operation conditichadd SPE are defined as
,
TS =IWa PoxIE< S (18)
SPE = k- PSngﬁsfs’ (19)

whereAs is the diagonal matrix of eigenvalues of the corresponding condRidn,the loading

o.

2 2
matrix. % stands for thés statistic control limit of the ¢h operation condition ands is the

2 2
control limit of SPE A detailed description ofs and #s calculations can be fourid .

The statistics will be above the control limits if there are abnormalities, and vice versa, and

therefore the monitoring of the combustion process state is achieved.
3. Results and discussion

3.1 Experimental setup and test conditions

In order to evaluate the proposB@A-RWN model for monitoring the combustion conditipns
experimental tests were carried out on a 250nk&if- and oxy-fuel CTF located at the
UKCCSRC PACT Core Facilities. Fig. 2 shows the overview of the CTF and the installation of
the flame imaging system. The CTF consists of a down fired single burner furnace with an inner

diameter of 0.9 m. The burner, mounted on top of the rig inside the quarl section, is a scaled

12
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version of a commercial LoWOx burner with a primary annulus for introducing pulved$uel
and carrier gas. The swirled secondary and tertiary annuli are to deliver the rest of the oxidizer
to ensure the completion of the combustion. The burner is also equipped with an internal air

splitting system to control the secondary and tertiar{SYTA) ratio.

Gas Tanks

-
{] o,mix 'l'

Heat Exchanger ;i
 f—_;) g
Oxyfuel Gas % h LE ‘ Camera
Mixing System ‘;;; f E §
Coal/biomass 250kW Oxyfuel - % '8
Feeder Combustion Rig ; 2
o
(a) Overview of the 250kWCTF. (b) Site installation of the flame imaging
system.

Fig. 2 Experimental setup.

The flame imaging system usidd consists of an optical probe (protectedabyater-air cooled

jacket) and an industrial RGB digital camera with a resolution of 256x320 pixels and a frame
rate up to 200 frames per second. The probe was installed at the viewport on the section of the
furnace. It is equipped with a 9@ngle of view objective lens, which allows the burner quarl

and primary reaction zone of flame to be fully visualized.

Two test programmes were conducted using the pulverised El Cerrejon coal. The ultimate and
proximate analysis along with calorific value data of the coal tested are summarised in Table 1.
During the tests, the fuel loading was maintained at the 200kWu firing rate, and target exit Oz
concentration was 3.5% on a dry basis. In the first test, three different primary air supplies were
used, with the primary air flows of 18%, 20%, and 22% to the total air flow. In the second test,

five different SA/TA split positions were examined, utilising the burner’s internal SA/TA split

13
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slide. At the initial SA/TA split position ‘0’, all flow went through the secondary annulus,
whereas with an increasing split position the SA/TA ratio decreases. Computational Fluid
Dynamics (CFD) simulations were used to determine the SA/TA flows at the typically used split
positions of 3 and 4 to be 48/55 and 45/55, respectively . The detailed test programmes are
illustrated in Table 2. Fig. 3 shows the flame images captured for different primary air flows
under the furnace load of 200 kW and SA/TA split 3 whilst Fig. 4 presents the flame images for
different SA/TA splitter positions under the furnace load of 200 kW and the primary air of 20%.
Note, in this study, all the computations were carried out in Matlab R2015a environment in a

personal computer with an 15-63317U processor, 1.7 GHz CPU and 4 GB RAM.

Table 1 Ultimate and proximate analysis and calorific value data of the EIl Cerrejon coal.

Ultimate analysis (%, as received Proximate analysi€b, asreceived )
Carbon 73.57 Fixed carbon 54.92
Hydrogen 5.04 Volatile matter 37.84
Oxygen (by diff.) 11.31 Ash 1.43
Nitrogen 2.47 Moisture 5.81
Sulphur 0.37

Gross calorific value (MJ/kg) 30.79

Net calorific value (MJ/kg) 29.57

Table 2 Test programmes.

Test Primary air (%) SA/(EZ/S%trEZZI)t v
18
: 20 3 (48/55)
2
1
2
2 20 3 (48/55)
4 (45/55)
5

14
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Fig. 3 Flame images for different primary air flows under the SA/TA split of 3 (48/55).

2 3 4 5

Fig. 4 Flame images for different SA/TA splits under the primary air of 20%.

3.2 Combustion process monitoring for different primary air flows

In Test 1 (Table 2), flame image features calculated from 2800 flamesroagesch condition,

as shown in Tdb 2, were used as the training data of the proposed PCA-RWN model. 14-fold

cross validation was introduced to select the proper parameters of the PCA-RWN model to
ensure satisfactory performance of the condition recognition, i.e. the number of principal

components and hidden nod&ke cross-validation estimator of 14 trials is shown in Fig. 5.

It can be seen that the cross-validation estimator of the PCA-RWN is strongly related to the
numbers of principal components and hidden nodes. With the increase of hidden node number,
the cross-validation estimator decreases in general. The cross-validation estimator remains
constant around 0.13 with slight disturbances when the number of hiddereactiees to 20. In
addition, it decreases with the number of principal components and achieves the bottom when
the principal component number is 8 with 25 hidden nodes, with which the optimal performance

of the proposed PCA-RWN is reached. Then, the cross-validation estimator decreases when the

15
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number of principal components is in the range of 9 to 17, which is possibly because the
increased principal components may introduce more noise and abnormalities. In the PCA-RWN
model studied, the optimal number of principal componisr@sand the number of hidden nodes

is 25.

o
o

Hidden Nodes: —e— 5 —+— 35
—&— 15 —— 45
—o— 25 Q

o o
w IS

Cross-validation estimator (Arbitrary)
o
[

o
-

1 3 5 7 9 1M1 13 15 17
Number of principal components

Fig. 5 Cross-validation estimator of the PCA-RWN with different number of

hidden nodes and principal components for the primary air flow test

Colour and texture features for a total of 600 flame images evenly distributed under three
conditions were employed as the test data of the PCA-RWN model, including 100 abnormal
samples for the primary air of 18%, which were selected from abnormal events. Figs. 6 and 7
show the results for the operation condition recognition and state monitoring using the PCA-

RWN for different primary air flows.

It can be seen from Fig. 6 that the PCA-RWN model can recognise the combustion operation
conditions with a success rate up to 99%. There are some false recognitions which occur under
the primary air of 18% and 20%, but, from a practical engineering perspective, these failures in
the condition recognitions are acceptable. Following recognising the operation conditioris, the T
and SPE statistics are calculated for monitoring the state of the corresponding operation (Fig. 7)
When the primary air ratio is 18%, thé ahd SPE are under the control limits for the first 100

16
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samples. The ’Tand SPE are above the control limits for sample 101-200, indicating these
flames are under an abnormal state. In the primary air of 20% and 22%, there is no abnormal
state. The results have suggested that the proposed PCA-RWN can effectively recognise the

operation conditions and thé and SPE are useful to detect the abnormalities.

22% |

20% = h

18% .

Primary air (recognition result)

1 200 400 600
Samples

18%

A
v
v

20% . 22% ,
|

< g b

|
|
Primary air (test conditions)

Fig. 6 Operation condition recognition under different primary air flows.

T statistic 12 conirol limit

e JJ\LJ‘\J\.AA/‘U]M‘\. M

0 100 200 300 400 500 600
Samples

w SPE statistic i
o100 / SPE control limit
a :

= = ————r——r—r\*'-- —_———

0 100 200 300 400 500 600
Samples

20%

18%

* g b

o le »|
: —> | >|
Primary air

Fig. 7 State monitoring under different primary air flows.
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3.3 Combustion process monitoring for differentTatios

In Test 2 (Table 2), flame image features extracted from 2800 samples (per condition) from
SA/TA splits 1 to 5 were used to train the PCA-RWN model. Fig. 8 shows the results of the 14-
fold cross validation estimator for different PCA-RWN parameters. In this test, the trend of
cross-validation estimator is similar to that in Test 1, and the optimal number of principal

components and hidden nodes is 11 and 65, respectively.

0.6

Hidden Nodes: —&— 5 —— 65
-8 25 —— 85

—— 45

05

04

03

Cross-validation estimator (Arbitrary)

0.1

1 3 5 7 9 1 13 15 17
Number of principal components

Fig. 8 Cross-validation estimator of the PCA-RWN with the different number of

hidden nodes and principal components for the SA/TA split test.

In the test stage, a total of 1000 flame images acquired from fivé@ ASAplits (200 per
operation conditiopwith 100 abnormal samples in SAA split 1 and SATA split 4 are used as

the test data. Fig. 9 shows the condition recogniikimg the PCA-RWN for different SATA

splits. It can be seen that the false condition recognitions are more than that in Test 1. The
reason is that the flames under the differenfT®Asplits are very similar, which makésmore

difficult to recognise the operation condition with a high success ratePCAeRWN model

can distinguish the conditions with a success rate about 93%. Some false recognition results may
lead to false alarms that lead thfeof SPE above the control limitBig. 10 shows the results of

the state monitoring. The 7> and SPE are above the control limits from 1-60 and 701-800 where

the abnormalities occurr.
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Fig. 9 Operation condition recognition for different/$A splits.
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Fig. 10 State monitoring for different $PA splits.

3.4 Flame oscillation frequency

As the flame oscillation is closely associated with combustion stability, and consequently
combustion efficiency and pollutant emissions, the oscillation frequency of flame has widely
been studieﬁ?, 28T he oscillation frequency of the flame can therefore be usadsiesshe

effectiveness of the proposed PCA-RWN model. The oscillation frequency of a flame is defined

19



10

11

12

13

14

15

16

17

18

19

as the weighted average frequency of the flame signal over the entire frequencwhemgehe
weighting factoris the power densi of the individual frequency componZBj.this study,

the oscillation frequency of the flame was calculated using the average grey-values of the flame
images. The flame images which were used as the training data for each condition (2800 images
per condition were equally divided into 14 groups in sequence and the oscillation frequency
range of these 14 flame image groups are considered to be the appropriate range for normal
flames. Figs. 11(a) and 11(b) show that the averaged oscillation frequenciesiasthtitard
deviations of the flames that were used as training data, as well as the oscillation frequencies of
flames that were also used as the test data. The flame oscillation frequencies of the nosmal state
are included in the frequency range of the training data. The oscillation frequencies of the flame
under abnormal states are beyond the range, such as under the primary air of T@¥spE&

1 and 4. These results are consistent with that derived from the PCA-RWN model, suggesting
that the proposed multi-mode process monitoring approach is effective for recognising the

normal and abnormal states of combustion process.

ini Test Test ini Test Test
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40 O raining £ (Normal) (Abnormal) 40 O ¢ (Normal) = (Abnormal)
N N
z . z }
% 30L ‘} o % % 30| { 1}1_ : }r
c Br c o . o
() S [ (0] — » 5
> 2 2 =) i i N “
s o o s ] 5 : :
E 20} o o E 201} o o : <
c i < c <,
= =t 3
E E 4 4 :’
g 1or g 1of 4k :
0 0 N
18 20 22 2 3 5
Primary air (%) SA/TA split
(a) Different primary air flows. (b) Different SA/TA splits.

Fig. 11 Flame oscillation frequency.

3.5 Comparison of the PCA-RWN with other machine learning classifiers
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To further evaluate the performance of the proposed PCA-RWN model for multi-mode
combustion process monitoring, the recognition success rate (i.e. the ratio of correctly
recognied flame image and the total number of images) and the system time for the training
process of the model are compared with that of other machine learning classifiers used widely in
mode recognition, including Kernel Support Vector Machine (KS [29], Neural Network
(NN) and k-Nearest Neighbour classifieN{k) . A total of 2000 images are randigm
selected from the test data set and equally split into 10 groups for different operation conditions.
The success rate of condition recognition and the training time required for the 10 groups are
summarised in Tdb 3. As can be seen, the PCA-RWN performs the best among the models in
terms of the average recognition success rate and the training time, which means that the
robustness of the PCA-RWN model is high enough for different test flame images. The reduced

system time of the training process also allows the model to be updated swiftly.

Table 3 Comparison of PCA-RWN with other machine learning classifiers.

Test 1 Test 2

Success rat@)  Training time (s) Success rat@) Training time (s)

PCA-RWN 92.9+0.9 0.11+0.07 91.3+1.2 0.48+0.04
PCA-KSVM 92.7+0.7 10.08+0.82 87.1+0.3 31.94+1.86
PCANN 91.7£1.5 5.76+£3.11 75.1+2.6 29.97+9.37
PCA-KNN 75.2+0.8 0.34+0.69 70.9+0.6 0.32+0.09

4. Conclusions
In this study, a multi-mode combustion process monitoring technique based on flame imaging,
PCA and RWN principles has been proposed ig@pplicability has been examined in an
industrial combustion environment. Flame images acquired from the digital imaging system are

denoised using moving average filter. A global PCA-RWN model has been built to extract

21



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

colour and texture features which are then used to recognise the combustion operation condition.
The cross-validation has been proved to be effective to select the optimal parameters of the
PCA-RWN model. The T and SPE statistics have been calculated for identifying the
combustion state of the corresponding conditions. The proposed method has been evaluated on
an industrial-scale pulverised coal fired combustion test facility under different operation
conditions. The results have demonstrated that, for both variable primary air flow and SA/TA
ratio operation conditions, the condition recognition success rate of the PCA-RWN model is
over 91%, which is at least 4% higher than that of other machine learning classifiers with a
reduced training time. The &ind SPE indices have also been proved to be effective and reliable
in detecting the abnormalities. It can therefore be concluded that the proposed PCA-RWN model
for multi-mode process monitoring is promising for recognising the condition and state of
practical combustion processes. The PCA-RWN can also potentially be applied to recognise

untrained conditions so as to achieve completely unsupervised combustion process monitoring.
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