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Abstract

We give an overview of the scripting languages used in existing cryptocurren-

cies, and in particular we review in some detail the scripting languages of Bitcoin,

Nxt and Ethereum, in the context of a high-level overview of Distributed Ledger

Technology and cryptocurrencies. We survey different approaches, and give an

overview of critiques of existing languages. We also cover technologies that might

be used to underpin extensions and innovations in scripting and contracts, including

technologies for verification, such as zero knowledge proofs, proof-carrying code

and static analysis, as well as approaches to making systems more efficient, e.g.

Merkelized Abstract Syntax Trees.

1 Introduction

Distributed Ledger Technology (DLT) has recently attracted attention from individu-

als and start-ups, as well as commercial organisations and national and international

institutions [18]. DLT offers the possibility of securely recording information in a

non-centralised, distributed way, and building on this it is possible to construct not only

distributed databases, but also to record the results of transactions that have financial

value, most notably cryptocurrencies. Various kinds of scripting languages have been

introduced that allow users to write smart contracts that describe these transactions.

In this paper, we give an overview of the scripting languages used in existing

cryptocurrencies, and in particular we review the scripting languages of Bitcoin, Nxt and

Ethereum, in the context of a high-level overview of Distributed Ledger Technology and

cryptocurrencies. We also cover technologies that might be used to underpin extensions

and innovations in scripting and contracts, including technologies for verification, such

as zero knowledge proofs, proof-carrying code and static analysis, as well as approaches

to making systems more efficient, e.g. Merkelized Abstract Syntax Trees. A survey of

research issues for Bitcoin and cryptocurrencies in general at the end of 2015 is provided

by [7].
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In surveying a cross-section of the work in the field, it is striking to see a wide

variety of different approaches to scripting.

• Some scripting languages are Turing-incomplete: Bitcoin script has no facilities

for looping or recursion, for example; whilst others, such as Ethereum script,

are Turing-complete, at least in principle, supporting looping constructs. On the

other hand, they lose completeness in practice because of run-time bounds placed

on the possible execution time, stack size and so on.

• Bitcoin and Ethereum provide a low-level computation model by means of a

virtual machine, into which it is possible to compile a higher-level language, such

as Ethereum’s Solidity; other systems, including Nxt, provide a higher-level API

in a general purpose language (here JavaScript).

• Another approach sees DLT transactions as fitting into a wider business process

model, and would propose deriving them by transformation of a language such

as BPMN, or finite state machines.

• Finally, it is possible to use virtualization technology to isolate computations, as

is done in Hyperledger with Docker containers.

While we have talked about scripting languages as if they were general purpose pro-

gramming languages, they can also go beyond this in providing particular facilities

including randomness, name registration, anonymity, incentive alignment, control of

transactionality and so on. Because of this, we see interactions between the language

and the general DLT infrastructure on which it is built:

scripting language

DLT infrastructure

Obviously, the DLT infrastructure pretty much shapes the scripting language, but

there can be interactions in the reverse direction too. In particular, exploring the way in

which randomness is provided in Ethereum, shows that the typical use of timestamps as

a source of randomness can provide a potential attack mechanism. We give an overview

of this and other potential security vulnerabilities towards the end of the paper.

In order to give some context, we provide brief introductions and references with

information about the different cryptocurrencies and decentralised systems, but the

main aim of this work is to overview their scripting languages and related technologies.

We begin by giving introductions to Bitcoin scripting in context in Section 2 and do

the same for Ethereum and Nxt in Sections 3 and 4. Other DLT systems are surveyed

in Section 5, and other approaches to scripting in Section 6. Section 7 presents some

critiques of existing systems, and Section 8 presents a number of technologies that

might contribute to the next generation of blockchain scripting. Section 9 concludes

the paper.
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2 Bitcoin

Bitcoin is the first widely-used implementation of a decentralised cryptocurrency and

introduced the decentralised consensus mechanism of a blockchain.

Bitcoin’s blockchain is a back-linked list of blocks of transactions [2]. Each block

within the blockchain is identified by a hash, generated using the SHA256 cryptographic

hash algorithm on the header of the block. Each block also references a previous block,

known as the parent block, through the “previous block hash” field in the block header.

In other words, each block contains the hash of its parent inside its own header. The

sequence of hashes linking each block to its parent creates a chain going back all the

way to the first block ever created, known as the genesis block.

In essence, it can be considered like a public log that, in the case of Bitcoin, is

used to keep track of transactions. Assuming that the miners that represent more

than 50% of the computing power that contributes to the creation of new blocks for

the blockchain are “honest”, and that the hash functions used are irreversible and

unpredictable, information in the blockchain becomes statistically harder to revoke as

new blocks are added on top of it.

Changing a block implies recreating all the blocks on top of it, since every block

(except the genesis block) contains the hash of the previous block. Creating a block is

costly because it requires a proof-of-work, which only allows miners to create blocks

proportionally to their computing power (as compared to that of the rest of miners);

and only the longest chain is considered valid, so it is out of reach for a single agent to

replace the main chain, as long as no single agent controls more than 50% of the total

computing power.

2.1 Proof-of-work

Proof-of-work is a mechanism that is used to ensure that a distributed consensus is

achieved without either the presence of a central authority or the requirement that a set

of participating users are identified in some way.

Proof-of-work is implemented as a requirement for each block in the blockchain

to have a hash smaller than a given target number. This target number is determined

through a calculation that is carried out every 2016 blocks (roughly two weeks), and

aims to ensure that, independently of the global amount of computing power, a new

block will be generated roughly every 10 minutes in average.

2.2 Guarantees

The design of the Bitcoin system means that it is able to provide a range of guaran-

tees, under an explicitly-articulated set of assumptions. In this section we explain the

guarantees, together with the cryptographic mechanisms used to support them.

The algorithm used for hashing the blocks in the blockchain is double SHA256,

which consists in applying SHA256 twice to the header of the block. Since the hash

function is considered irreversible under reasonable assumptions, the most efficient

known way of obtaining a hash that is smaller than the target is by brute force, that

is, by repeatedly trying different inputs until one that complies is found. In order to
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alter the resulting hash, the input of the hashing function is to be modified by changing

a reserved field called a nonce (or alternatively other parts of the header). Users that

perform the work to create new blocks are called miners.

2.2.1 Decentralised agreement

In the case of Bitcoin, agreement on the creation of blocks is achieved thanks to the

difficulty of block creation: the computing power necessary to “hijack” the creation

of a new, alternative, consensus is highly unlikely to be achieved by a single miner or

cartel of miners.

2.2.2 Verifiability

Another guarantee provided by Bitcoin is the possibility for users to unilaterally verify,

without trusting anyone else, that a block, and hence the whole blockchain, is valid (that

it conforms with the rules). This latter property is possible since every block includes

a hash of the previous block, and the first block (or genesis block) is hard-coded in the

source code of Bitcoin clients.

2.2.3 Probable irrevocability

On the other hand, the irrevocability of transactions is only guaranteed eventually by

the assumption that at least 50% of the Bitcoin mining power comes from honest users.

Honest users will accept the longest blockchain as the true one and build upon it, thus,

assuming most mining power is honest, it becomes increasingly unlikely that a dishonest

agent will be able to create a fork from an old block so that the new fork is longer than

the true one. If this were not the case, then a malicious user would be able to revert

transactions by creating a fork, but even in this case it would still be impossible to get

invalid blocks to be accepted by honest users, thanks to verifiability.

Because the difficulty of block creation is variable, when we talk about the longest

chain or blockchain we actually mean the one with the highest combined difficulty,

not the one with the highest number of blocks. Otherwise, it would be possible for a

malicious user to create an isolated chain to which only him can contribute and thus,

the difficulty of this chain would be lower (since it adapts to the total processing power

of the miners of the chain). By having a chain with lower difficulty, an attacker would

be able to create blocks very fast and potentially obtain a chain with more blocks than

the globally accepted chain.

2.3 Mining

There are two incentives for miners. On the one hand, each block gives an amount of

fresh bitcoins to the miner that created it. On the other hand, each transaction typically

contains a transaction fee (which is specified implicitly as the bitcoins unspent in the

transaction), the taxes of all transactions in the block also go to the miner.

In the case of Bitcoin, the prize for creating a block, other than the fees, is reduced

by half every 210,000 blocks (roughly every four years), it was originally 50 bitcoins

and at the time of writing is 12.5 bitcoins.
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2.4 Merkle tree

In order for it to be possible to prove that a transaction exists in the blockchain without

transferring the whole blockchain, the transactions are stored in a structure called

Merkle tree. Such a tree stores transactions at leaf nodes, and inner nodes contain the

combined hashes of their immediate subtrees. This makes it possible to prove that a

transaction has been hashed without having to rehash all the transactions of a block,

only the sequence of hashes called Merkle path, obtained by traversing the tree from

the root to the relevant leaf node.

2.5 Transactions

Blocks in the blockchain collect transactions. These transactions transfer bitcoins or

unspent transaction outputs (UTXOs) between users. But the effective owner of a

particular amount of bitcoins is not specified in the transaction; rather, the transaction

declares, for each unspent output, a program written in Script (see Section 2.6); whoever

wants to spend that output must provide an input to the program that makes it succeed

(that is, return zero).

Typically, this program provides a cryptographic challenge that only the owner can

solve, for example, providing a signature made with the private key of the owner, but

it could be any program. For example, a program can check that several people have

signed a transaction, that a subset of a set of people have signed a transaction, or even

that a transaction provides the solution to a puzzle.

2.6 Script

The language used for creating scripts in Bitcoin is called “Script”. Script is a Forth-like

bytecode stack-based language but, unlike Forth, Script is designed purposely so that

its execution is guaranteed to terminate. Scripts consist of a sequence of instructions,

and these are executed linearly, with no jumps backwards; hence, execution time is

bounded above by execution time is bounded above by the length of the script after

the instruction pointer. This limitation prevents denial of service attacks on the nodes

validating the blocks.

Script provides a set of more than a hundred primitives that allow [46]:

• The addition of constants to the stack.

• Some basic conditional flow control, that is non-looping, but lazy (not requiring

the evaluation of both alternatives).

• Stack manipulation (including basic alternative stack access).

• String manipulation (mostly disabled in the standard client implementation [17]).

• Bitwise manipulation (mostly disabled).

• Some basic 32-bit arithmetic with overflow (multiplication and division disabled).

• Some basic cryptographic primitives for hashing and signature verification.
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• Two primitives for delaying and expiring uncommitted transactions, with respect

to time or the current height of the blockchain.

Some characteristics that are available in Forth but are not available in Script include

variables, arrays, functions and loops.

Usually, stack based systems only allow access to the few top items in the stack,

which forces programs to recalculate values that may have already been evaluated. In

Forth, it is possible to declare variables and arrays, so these allow random access, but

these functionalities are not available in Script. Nevertheless, Script provides a pair of

instructions that allow random read access to the stack:

• OP_PICK: copy an item from arbitrarily deep on the stack to the top.

• OP_ROLL: move an item from arbitrarily deep on the stack to the top.

These primitives allow random read access to values that have been calculated previously

in the script, but Script does not provide any primitives that allow random write access

to either of the stacks.

By using these random access instructions and the alternative stack, it is possible to

write a script in Script that efficiently emulates a particular Turing machine performing

a finite number of steps bounded by the length of the script. However, it seems it would

not be possible to efficiently emulate a RASP machine, and this emulation does not

imply that the language is Turing complete: to execute a looping program it is necessary

to unroll it the number of times that it loops, and this can only be done for a single

specific input, rather than an arbitrary input configuration on the tape.

2.6.1 Limitations

In practice, many limitations have been imposed that avoid the construction of scripts

that diverge from the ones considered standard, some of these limitations are:

• A limitation on the size of the blocks (which is set to roughly 1MB at the time of

writing [6])

• A limitation on the length of the scripts (which is set to 512 bytes for each element

and 10.000 bytes per script at the time of writing [29])

• A limitation on the number of opcodes (which is set to 201 for most op-codes at

the time of writing [32])

• Many disabled opcodes [46]

Nevertheless, there does not seem to be any explicit limitation to the size of the stack,

which is formally unnecessary because it is restricted implicitly by the limitations to

the length of the script.
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2.6.2 Pay to script hash (P2SH)

There is an extension to Bitcoin that allows the payment to scripts by providing its hash

as destination address. This makes it easier for users to use non-standard scripts since

they can transfer funds to them like a normal address, and scripts can be created by a

different user. It could potentially be used to split scripts into several transactions and

allow more complicated types of contracts but, in practice, there is a limitation that

forbids the recursive use of P2SH (it does not work to point a P2SH script to another

P2SH script).

3 Ethereum

Ethereum is a blockchain based cryptocurrency system that aims to provide a decentral-

ised general purpose computer. Its underlying currency is called ether. The programs

that run on this decentralised computer are usually referred to as smart-contracts and

are automatically enforced through the blockchain validation process that is carried out

by all full nodes independently.

Full nodes are those that download and validate the whole blockchain, these nodes

do not need to trust any other node, since they can validate the whole transaction history.

In contrast, because the size of the blockchain is considerable (roughly 89 GB at the

time of writing), portable devices often use so called lightweight clients, which only

store part of the blockchain and rely on full nodes to validate transactions.

3.1 General structure

Unlike Bitcoin, the Ethereum scripting mechanism allows for looping behaviour through

the use of both jumps and recursive calls. If this were the only difference with Bitcoin,

a malicious attacker could perform a successful DoS (Denial of Service) attack by

sending a transaction that loops forever, since smart-contracts are validated by every

node. In order to avoid this problem, Ethereum also introduces a limit to the execution

time of each transaction that is called gas.

3.1.1 Gas

Gas is an amount of ether, paid in advance when a transaction is issued, that covers

the cost of executing the transaction. If a transaction runs out of gas while it is being

executed, the transaction will be rolled-back but the gas consumed will not be not

returned.

Because creating transactions requires their creators to specify and allocate the

maximum amount of gas that they are willing to pay, the miners have the opportunity

of detecting transactions that will take too long to validate without actually having to

compute their result.
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3.1.2 Contracts

In addition to carrying out computations and transferring ether, it is also possible for

transactions to create standalone contracts that are saved in the blockchain and can store

ether, data, executable code, can communicate with other contracts and even create new

ones in turn.

Basically contracts act as users, with the difference that they cannot initiate trans-

actions (they are reactive). This limitation was imposed in order to avoid DoS attacks

against existing contracts. With this design, the gas required to execute the code

triggered by a transaction must be initially paid by the user that issued the transaction in

the first place. But contracts may programmatically choose to refund legitimate users

so, effectively, it is possible to have contracts that users can use for free.

3.1.3 Blockchain

The structure and workings of the blockchain in Ethereum are very similar to those

of Bitcoin, but there are two fundamental differences: state information and uncle

incentivization.

State information In Bitcoin, all transaction history is stored in the blockchain, and

in order to find whether an amount of bitcoins are unspent, it may be necessary to

consult blocks that are located deep in the blockchain. Thus, in order to know whether

a transaction is invalid, it is necessary to have a complete copy of the blockchain or to

ask someone that does.

In Ethereum, every block contains a snapshot with information about all of the

unspent ether, active contracts, and so on. For this reason, it is possible to prune old

nodes to store only their headers, this allows for important savings and reduces the need

for lightweight nodes.

Uncle incentivization Validating blocks potentially gives miners a competitive dis-

advantage since they take longer to start hashing. This, combined with the reduced

block generation time of Ethereum (currently about 15 seconds) can lead some miners

to skip the validation of some or all transactions.

In order to palliate this problem, Ethereum offers a reward to uncles, that is, blocks

that do not make it into the blockchain but are, nevertheless, valid.

3.2 Scripting

The code of Ethereum’s smart-contracts is written in bytecode and executed into a

virtual machine called EVM. EVM has a fixed word size of 32 bits and is untyped for

simplicity.

3.2.1 Storage

Unlike Bitcoin, Ethereum’s EVM provides a single stack limited to 1024 elements, but

it provides two additional types of storage:
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• Temporary storage (memory), which is a byte array and isdeleted at the end of

the execution of each transaction.

• Permanent storage, which is a word-indexed key-value dictionary, and is preserved

on the blockchain between executions, but which can be deallocated explicitly.

3.2.2 Jump operations

Ethereum’s EVM language provides both conditional and unconditional jump opera-

tions. In order to allow for easier and efficient implementations of JIT-compilers [16],

these jump operations can only target parts of code marked as jump destinations.

3.2.3 Contract operations

Contracts are virtual entities that reside in the blockchain and can store ether and

bytecode, can send and receive messages and ether, and create other contracts. Unlike

external accounts managed by users, contracts cannot initiate transactions: they are

reactive.

Creation New contracts can be directly created by users or by other contracts through

the CREATE bytecode operation.

Calls Contracts can send messages to other contracts or accounts through the use of

the call operations. These allow to send ether, to execute the code of another contract,

to stipulate a maximum amount of gas for the code executed by the call (which may

be smaller than the gas available at the time of the call), and can pass and receive

information.

Contracts in Ethereum have a single block of bytecode that is executed by calls,

but high level languages like Solidity automatically define a function selector at the

beginning of the block that redirects calls to the appropriate part of the bytecode.

Suicide In order to save storage space, Ethereum allows contracts to delete themselves

when they are no longer necessary. In order to promote this, part of the cost of creating

contracts is refunded when the suicide operation is called.

3.2.4 Inspection operations

Ethereum’s EVM allows contracts to access several kinds of meta information about the

blockchain, about the contracts themselves, and even about the code of other contracts,

which can be copied to memory.

3.2.5 Logging operations

Another functionality provided by the EVM is logging. There is a set of bytecodes that

allow smart-contracts to log values. These logs are returned as the “receipt” that results

from processing the transaction, but they are not explicitly stored in the blockchain [51].
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3.2.6 High-level languages

In addition to EVM bytecode, several high level languages that are compiled to it exist.

The most popular ones are probably:

• Solidity – Solidity is a contract-oriented, high-level language whose syntax is

similar to that of JavaScript. Solidity is statically typed, supports inheritance,

libraries and complex user-defines types among other features [48].

• Serpent – Serpent, as suggested by its name, is designed to be very similar to

Python; it is intended to be maximally clean and simple, combining many of

the efficiency benefits of a low-level language with ease-of-use in programming

style, and at the same time adding special domain-specific features for contract

programming [47].

4 Nxt

Nxt is designed to be a general foundation for DLT-based economic transactions. It is

inspired by the success of Bitcoin, but aims to provide more performance and scalability

through being based on proof of stake rather than proof of work.

The NRS (Nxt Reference Software) uses a client-server architecture. The NRS

server is a Java application with two interfaces: one for communicating with other

servers through the Internet (forming a network of nodes), and one for responding

to requests from clients through its API (Application Program Interface). The client

component of the NRS is a browser-based, user-friendly interface to the NRS server

(via the API), often referred to as the Nxt Wallet.

As with other blockchain systems, anyone is able to install and run the software. The

system is open source, and, as with other projects, the core developers act as gatekeepers

for system changes. Individual users can modify instances of the software, but as with

other blockchain systems, changes on a collection of installed instances with more than

50% of the stake would be required to mount on the integrity of the whole system.

It is possible to write JavaScript plugins for the client, but these do not extend the

core functionality at all, and facilitate e.g. visualisation or block exploration.

There are proposals for a successor to Nxt, Ardor, and this is expected to be

released in the first half of 2017. This will separate the notions of tokens for “forging”

and for (user) “transactions”; this is intended to support more efficient operation of the

blockchain. The current situation with a single blockchain will become one in which

there is both a single “infrastructural” blockchain which takes care of forging tokens

as well as the overall consistency and progress of the chain, together with many child

chains, which can perform operations in their own currencies.

4.1 Programmability

Crucially, the programmability of the system is provided through a “fat” high level API,

which is accessible from Nxt clients through a REST interface. The API provides func-

tionality supporting various kinds of transactions, and the transactions are categorised
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into types and subtypes “for modular growth and development of the Nxt protocol”.

Each type dictates required and optional parameters, as well as the “processing method”

of the operation.

The whitepaper explicitly says that “the core software doesn’t support any form

of scripting language”; rather, users are expected to work with the built in transaction

types and transactions that support some 250 primitive operations in a number of areas,

including basic payments; an alias system (for strings that can be stored on the block-

chain, representing e.g. URIs); messaging (messages can be sent between accounts,

but also represent structured data by means of JSON objects); exchanging assets; buy-

ing and selling through a digital goods store; infrastructure; phasing operations, etc.1

Scriptability of the API is given by <script> at the client side, but this does not allow

any access to any more fundamental levels of the implementation.2

In conclusion, while there is no scripting functionality in the core, it is possible

to build functionality by putting together API calls in JavaScript. This will produce a

sequence of transactions in the API. In contrast to systems with a lower-level VM, an

attack would have to be by means of these API functions, rather than a general VM-code

program. The security of the system therefore rests on (open source) implementations

of this API: is each of the operations secure, and is there no way of putting together

an attack through a sequence of API calls? While the VM allows a broader range of

potential scripts, there is a conceptual cost in understanding the scope of possibilities

presented by a large and more complex high-level API.

5 Other DLT systems

Since the development of Bitcoin, numerous different alternative cryptocurrencies or

alt-coins have been created. These can be classified by their relationship to Bitcoin

[50]:

• They may be implemented within Bitcoin, and be called meta-coins.

• They may have their own blockchain but be linked to the blockchain of Bitcoin

(or other cryptocurrency). These include side-chains and blockchains that rely

on merged mining.

• They may be inspired by Bitcoin but implemented in a completely independent

way.

5.1 Meta-coins

Meta-coins are mechanisms that are implemented on top of Bitcoin, and can be seen

as specific ways of using and interpreting Bitcoin. They benefit from the stability

of its blockchain, which guarantees their irrevocability, and they will generally have

additional rules that interpret the meaning of Bitcoin transactions and may ignore those

1The API is fully documented here: http://nxtwiki.org/wiki/The_Nxt_API

2Some details of coding are found here: https://nxt.org/category/coding/ which gives some

examples of <script>s.
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that do not make sense (invalid transactions from the point of view of the meta-coin),

but they are transparent to other Bitcoin users.

They may store the information as part of Bitcoin transactions (this can be done in

several ways [14]), or they may just store a hash of their data and store the actual data

somewhere else.

In this section, we review three examples of meta-coins.

5.1.1 Coloured coins

Coloured coins [9] assign extra meaning to bitcoins, even though the idea can be

applied to other cryptocurrencies and even to physical currencies. They may be used,

for example, as a means to getting a bitcoin UTXO to represent the ownership of a

real-world item (e.g: a piece of land, a share of an enterprise, or a ticket to a concert).

Of course, coloured coins do not, by themselves, enforce this “extra meaning”, it is

required that some authoritative organisation or convention recognises them.

5.1.2 Type-coin

Type-coin [13] is a mechanism for general-purpose affine-commitment. It is related to

coloured coins (see Section 5.1.1) in that it can be used for representing affine resources

similarly to how coloured coins represent assets, but it is more expressive because it

can express predicates using affine logic. Type-coin is implemented on top of Bitcoin

and its state is interpreted by applying a set of rules to Bitcoin’s blockchain.

5.1.3 Counterparty

Counterparty [11, 12] provides the functionality of Ethereum as a meta-coin. The

internal currency (XCP) is allocated through “proof of burn” of bitcoins, that is, in

order to obtain XCP units users send bitcoin to a special address that is unspendable.

Transactions are encoded as normal bitcoin transactions and they are validated by using

the rules specified in the source-code of Counterparty’s client.

5.2 Sidechains and merged mining

Some systems have their own blockchain but it is linked to Bitcoin’s through techniques

such as 2way-pegging or merged mining. These techniques aim to enhance Bitcoin by

providing new functionalities while reusing some of its strong properties:

2way-pegging allows the direct conversion of bitcoin to an alternative currency and

back, by temporarily locking the funds through a script. This works in the same way

as “proof of burn” but it can be reversed and, thus, allow the exchange of currency

in both directions. This mechanism has not been widely adopted; it has been notably

implemented in RootStock and there exist some other experimental projects.

Merged mining aims to reuse the mining power of Bitcoin to add security to a

blockchain that is less popular. It works by adding the hash of some or all of the blocks

in the blockchain of the alternative cryptocurrency to those of Bitcoin’s.
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5.2.1 RootStock

Rootstock [42] works as a sidechain of Bitcoin with 2way-pegging, bitcoins can be

transferred to Rootstock blockchain and they become “rootcoins” (RTC), and rootcoins

can be transferred back into Bitcoin blockchain. Rootstock provides similar function-

ality to that of Ethereum. In the paper [43], the authors claim that the Roostock VM

(RVM) is op-code level compatible with EVM (the Ethereum VM).

The native currency of Rootstock (RTC) is used to pay miners of Rootstock block-

chain for executing the contracts. Rootstock also supports merge mining Bitcoin and

Rootstock simultaneously, and offers some protection mechanisms, like checkpoints

and increased maturity time for mined coins (period during which recently mined coins

cannot be used), against DoS by Bitcoin miners.

5.2.2 Namecoin

Namecoin [35] started as a fork of the Bitcoin software and aims at providing a decent-

ralised system to register names. It can be used as alternative for DNS and currently

can be used for resolving the .bit domains. It charges a small fee for registering names

and it requires owners to update them roughly once every 250 days, otherwise they

expire. Namecoin has its own blockchain but it is linked to Bitcoin in that it provides

the possibility of merged mining with it.

5.3 Tezos

Tezos [22, 21] is a cryptocurrency that, at the time of writing, is under development,

but authors provide a detailed specification of its scripting language and an explanation

of the system.

Tezos claims to be the first cryptocurrency that is democratically-amendable. It

provides an explicit mechanism for deciding on future modifications of its own protocol,

and initially it considers a voting mechanism and a trial period.

The scripting language of Tezos is stack-based but includes high-level primitives

like lambdas, sets, maps, and some for context specific tasks; and it provides a full

specification to aid formal verification of contracts. It also provides functionalities

aimed at increasing readability of bytecode like the labelling of elements in the stack

and the nesting of primitive expressions. To solve the problem of script-based DoS,

Tezos defines a fixed limit for the number of computation steps per program.

Tezos also allows the creation of contracts stored in the blockchain that can store an

amount of currency and data (up to 16KB), and are controlled by a user or “manager”.

Contracts without currency are automatically destroyed.

Tezos’ Contract Script Language is the most conservative of the new blockchain

languages. It’s a stack language, much like Bitcoin Script. However, unlike Bitcoin

Script, Tezos’ language is statically typed. Additionally, it has a detailed specification,

including a formal operational semantics for the stack machine. This makes it easy to

construct formal verifications in Coq and related tools. The main drawback of Tezos’

language is that, like Bitcoin script and Forth, it’s hard to program in. Stack languages

are notoriously difficult to use, making it undesirable as user-facing language.
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5.4 Hawk

Hawk [30] is a decentralised smart contract system that anonymises transactions, and

provides mechanisms that simplify the task of hiding the inputs and participants in

smart contracts (see Section 8.3), through the use of cryptographic commitments, zero-

knowledge proofs (see Section 8.4), and the use of a third-party or manager.3

The work in [30] can be seen to provide a foundation for smart contracts à la

Ethereum, but with the possibility of making the participants and values in the trans-

actions private, in the style of Zerocash, with mint and pour operations. It presents an

abstraction of what the blockchain can be seen to provide (in Section II-A), and how

computation proceeds in it (Section II-C), including immediate and delayed computa-

tions, which are represented via “ticks” on the chain.

The description of contracts is done by using an abstraction that allows for the

declaration of private and public parts, and can be compiled to a lower level implement-

ation that uses zero-knowledge proofs or SNARKs for hiding the inputs of the private

parts. Transactions are programmed in three phases: freeze, compute and finalize.

The system provides two levels of description for computations: the more abstract

programs and the more concrete functionality, with a wrapper going from the former

to the latter. This wrapper can be seen as encapsulating some of the general context,

including timers, pseudonyms and ledgers, and these “ideal” programs can be seen in

some way as a specification of the lower level ones.

The protocols described in the paper [30] are formally proven secure under the

Universal Composability framework, against the abstraction of the blockchain provided.

At the time of writing there is no publicly available implementation of Hawk.

6 Other ideas for scripting

Other approaches to scripting are possible: in particular, it is possible to generate

scripts from other artefacts, including business process modelling (BMP) languages,

and finite-state machines; we look at these here.

6.1 Compilation from a higher-level language

While programming languages or virtual machines are a suitable programming medium

for some, in other domains more specialised, domain-specific languages are used in

practice. A key example is that of business process description, and there is work on

translating specifications written in such languages into blockchain scripting languages,

such as Solidity.

6.1.1 BPMN: The OMG Business Process Model and Notation

BPMN is used for describing real-world business processes, such as a supply chain,

which require the collaboration of a number of entities. Tracking and validating such a

3Note, however, that the manager cannot affect the result of the execution of scripts other than by aborting

in the middle of the process, see Section 7.5.
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process can be achieved with DLT, using blockchain as both a synchronisation primitive

and an immutable audit trail. Systems like these are typically described in a language

like BPMN [8]. Recent work [49] shows how BPMN specifications can be translated

into smart contracts in Solidity, which form part of a larger runtime system that can

monitor and orchestrate the execution of the process, as well as providing other services

to the process, such as payment escrow.

6.1.2 Data-Aware Processes

Further to the work in the previous section, another evaluation of the possibilities of

using blockchain in this area [26] argues that this sort of ‘artefact-based’ approach

is suitable for data-rich real-world processes, too, and in particular it can be seen to

provide possibilities for rich conceptual modelling and verification. In particular, the

authors argue that realistic systems involve data, taking their models beyond the purely

finite-state machine, requiring machine-assisted proof or automated technology such

as model checking. These approaches, which are already used to verify BPM systems,

should be extensible to blockchain-based systems.

6.2 Finite State Machines

A DSL for FSMs describing blockchain transactions is discussed in a Nxt forum [19]; it

is not clear that this has been taken any further, but may link with the Bamboo proposal

in Section 7.2.

6.3 Hyperledger: Dockerized chaincode

The Hyperledger [27] consortium, which involves IBM and the Linux Foundation

among other organisations, aims to build general purpose DLT technology, with making

many aspects of the system pluggable, including, for example, confidentiality and (even)

the consensus mechanism.

Scripting in this model uses chaincode, which first had a binding in the Google Go

language (and is set to have Java and JavaScript bindings too). This makes the model

similar to that of Nxt, but the difference in Hyperledger is that chaincode is isolated

into Docker containers, thus providing some guarantees automatically. Each chaincode

instance can define persistent state variables that are stored on the blockchain, and are

updated when the transaction is invoked; the totality of this storage is called the world

state.

6.4 Logic rules

There is a history of using a variety of logics to describe contracts, and [28] builds

on this to examine the feasibility of using logic to describe smart, blockchain-based,

contracts. This is done through exploring a typical example, first in pseudocode and

then in Formal Contract Logic (FCL), a deontic, defeasible logic, implemented in the

defeasible logic engine SPINdle. Once the approach is established, the paper also

examines the trade-offs between performing (parts of) the computations on and off the
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blockchain. It concludes by arguing that a case for feasibility has been made, but notes

that a substantial challenge to adoption is the relatively inefficiency of logic execution

mechanisms.

6.5 Process Calculi

Other languages have emerged, as well. Synereo’s Rholang is based on a more formally

well-understood system, Process Calculus, and it has a published specification [41].

This makes it potentially amenable to formal verification with tools such as Coq, and to

rich typing systems such as linear session types. However, Rholang is also reflective[33],

in the sense that data can be represented by processes, which may pose problems for

both those options. Additionally, many programmers do not have any familiarity with

process calculus, which would add to both learning overhead and also comprehension

overhead.

On the other hand, use of communicating processes in Rholang underlines the point

(also made by the proposal) that “social” contracts are inherently concurrent artefacts,

and so it is desirable that this concurrency is not lost through sequentialisation when

modelling them.

7 Critiques of existing systems

When programming, developers usually focus on normal usage; however, in a scenario

where money is involved and the programs developed have to interact with potentially

malicious agents, it is crucial to understand the unanticipated possibilities that the

language affords, including any default behaviours of the programs, and any potentially

unspecified aspects.

In this section, we consider a series of observed security problems that follow this

pattern.

7.1 Reentrancy

Reentrancy is the correct behaviour of a function or method in the event of it being

called in the middle of its own execution. Reentrancy is guaranteed for those functions

that are referentially transparent, that is, they do not have side effects or access to global

variables.

In cases where a function calls another function over which we do not have control,

we must consider the possibility that the remote function will call our function back

again, thus we cannot assume that our function call will act atomically [3, 31].

In Ethereum, payments are implemented through a call to an unknown function.

Because we usually do not intend the called function to execute any code, we want to

limit the gas of the call to a low value. Failing to do so, allows a malicious recipient to

execute arbitrary code after the payment.

One example of when this would be a problem is if we have a “withdraw” function

that retrieves money from an account and does so by first sending money to the user

and then subtracting the amount from the balance. A malicious user could cause the

16



payment call to execute the “withdraw” function recursively and he would be able to do

so until the bank runs out of funds since the balance will not be updated. This security

issue has been infamously illustrated by the DAO attack [31].

There are several problems in this example: one is the lack of reentrancy, another

one is the unintended execution of arbitrary code.

Nevertheless, we can imagine that isolating the logic from the side-effects would

help avoid this kind of problem.

7.2 Bamboo: improving Ethereum-style reentrancy

Yoichi Harai has developed an improved language Bamboo, [23] based on the Ethereum

approach to contracts; in particular, his language improves its reentrancy behaviour. He

attributes the deficiencies of Ethereum to the absence of message queues to contracts,

as implemented in Erlang, for instance.

“In EVM, when contract A calls contract B, contract B can call back into

contract A. At this point, two executions of contract A exist, which do share

the storage but do not share the program counter. So the reasoning is

almost as complicated as having two threads on the same program. Both

EVM and Solidity have this nasty property.”

“In Bamboo the program execution is always at a single point, even in case

of reentrancy. The snippet

sleep_after_calling(B)

with reentrancy { ... code_reentrant ... };

... code_continued ...

sends a message to the callee B. Usually, when the callee B returns, the

execution continues in code_continued. If the callee B calls back our

contract, the execution is trapped into code_reentrant. This prevents

some code far away from changing the state while our contract is calling

callee B.” [24]

While this approach allows the called code to be more well-behaved, the problem of the

callee reentering an already called function remains and, arguably, this is still something

to be addressed.

7.3 Implicit runtime exceptions

Exceptions represent behaviour which is not the intended one. Because of their nature,

exceptions are good candidates to cause behaviours in programs that were not considered

by their developers. If we want to help developers make their code predictable we must

study how to help them be aware of all kinds of exceptions that can occur.

Ethereum’s EVM handles exceptions by simply returning 0 whenever a call fails

[38]. Contract developers are expected to verify return values in the calling function.

In this section, we study some examples of exceptions that have allowed attacks in

Ethereum in the past and we suggest some ideas that scripting languages may implement

in order to mitigate this kind of problem.
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7.3.1 Stack overflow

In Ethereum, the act of sending a message (which can be caused by a function call in

Solidity) increases the size of the stack. Because the execution of a function can be the

result of another function call, we cannot make assumptions about the amount of stack

space remaining, thus, any call can potentially produce an exception. Furthermore, if

the exception is not automatically propagated and the programmer forgets to check for

errors, the execution will continue as if it was a normal execution, which allows for

potential malicious attacks [15].

7.3.2 Out of gas exception

As we saw in Section 3.1.1, the execution effort of contracts in Ethereum is controlled

by gas. When you issue a transaction, you may be able to predict the gas that is going

to be needed (assuming there are no race conditions). But code that is part of a contract

stored in the blockchain may have any amount of gas available when called by an

external agent. Thus, execution can potentially suffer an out-of-gas exception at any

point.

Ethereum implements a good fallback for this cases, since transactions are rolled

back when they run out of gas. But it introduces uncertainty when calling foreign

functions which may not succeed if insufficient gas is provided [15]. We cannot know

for sure how much gas is going to be necessary for a foreign call to be executed. This

suggests that it could be useful to find mechanisms to limit the execution time without

using gas, and that it would reduce uncertainty to be able to guarantee preconditions on

the execution of transaction (so as to prevent race conditions).

7.3.3 Dealing with exceptions

There are several ideas that a scripting language could implement in order to try to

make errors derived from unexpected runtime exceptions more difficult, some of these

solutions affect the design of the low level scripting language since high order languages

may not be able to enforce atomicity [31]:

• [31] suggests propagating the exceptions through callers and reverting the state,

and providing a proper mechanism to control exceptions.

• We may want to have a way of describing the way exceptions will be handled

for each scenario. We may want the execution to carry on and ignore failing

operations, or we may want to rollback everything if any operation fails, but we

probably want to define this explicitly or at least have a fallback that is easy to

predict.

• We may want to force the developer to define explicitly the exceptional behaviour

whenever there is a chance for it to occur.
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7.4 No reimbursement

A possible issue that, while less severe, may be just as frustrating for users, is incomplete

handling of preconditions. Again, it is usually the case that developers focus on the

normal execution flow, and when preconditions of a contract are not met, even if the

execution is aborted, the user may not be returned the money invested in the contract

[15, 38]. Furthermore, even if the user checks that the preconditions are met before

sending a transaction, it is possible that a race condition changes this fact, thus forcing

the user to face a risk when issuing a transaction.

Making transaction execution deterministic [31] can certainly avoid the uncertainty

for users, but there is no easy way of enforcing that this kind of errors do not occur. One

possible path of research would be to find a way of writing programs that analyses the

sum of incomes and outcomes for each user and makes variations to this sum explicit.

7.5 Unilateral abortion

In complex multi-stage contracts, it is possible for users to stop collaborating on the

execution of contracts if, for example, doing so would be against their interest [15].

Because of this, contracts must be designed with the possibility of eventual non-

cooperation in mind for each step. Usually, non-cooperation can be punished by storing

a deposit for each participant that is forfeited if they choose to not cooperate, and by

establishing deadlines for each step of the protocol [30].

On the other hand, deadlines necessarily pose a risk for users, that may suffer a DoS

that prevents then from cooperating and, thus, loose the deposit even if they are willing

to cooperate.

Again, there is no obvious way of preventing this mistakes from happening, but it

should be possible to find a way to design contracts that allows to specify deposits and

timeouts for users and automatically punishes users when they do not cooperate and, for

example, rollback the whole protocol for the rest. Even though any of these solutions

would probably require many considerations and calibrations specific to the scenario.

7.6 Unpredictable state

Because transactions are processed in chunks (blocks), the order in which unprocessed

transactions will be processed is unknown. The order is decided by the miner that is

successful at a certain point in time. Since smart-contracts may depend on context (the

state of the blockchain), it is not unusual for their result to be unpredictable [15, 3].

One possible solution to the unpredictability could be to establish a particular

context as a precondition for transactions to be executed, or to use the expected output

as a precondition [31]. But this could potentially slow down highly interactive contracts

and force users to resend transactions many times.

Another consequence is that, if there is any benefit on being the first in creating

a transaction that contains a secret, an attacker could intercept a transaction with the

secret and make their own transaction by using the secret, and potentially get their

transaction to be recorded first in the blockchain. We can imagine this would be an

important issue for a system that registers names like Namecoin (see Section 5.2.2)

19



since attackers could see that a user is trying to register a name and then register it

themselves and later charge a ransom to the user for releasing it.

The reasons why attackers may be able to get a copy of a transaction to appear

earlier in the blockchain than the original one include: luck, paying higher fees, and

controlling enough network or mining power and using it to discard or difficult the

propagation of the user’s transaction.

But that is not the only consequence of unpredictability, some properties can be

directly manipulated by miners without the need of controlling the network, like is

the case of timestamps [31] in Ethereum, which are allowed a margin of up to 900

seconds due to the latency and potential lack of synchronisation between the different

nodes. Allowing the language to provide this kind of unreliable information can trick

developers into a false sense of security which may lead to bugs like using timestamps as

seeds for randomness [31], so it may be a wise design decision not to provide them. [31]

suggests using the block height number as a replacement and translating the expressions

that use timestamps in terms of block height numbers (since the expected time between

blocks is known).

The problem of secret stealing can be solved by using cryptographic commitments

or zero-knowledge proofs (see Section 8.4).

7.7 Secrecy

Nor Ethereum, nor Bitcoin provide anonymity to users by default, other than the option

of using pseudonyms, but that does not usually prevent by itself the use of analysis

techniques to analyses data.

In addition, many contracts implementing multi-player games, require that some

fields are kept secret for a while: for instance, if a field stores the next move of a player,

revealing it to the other players may advantage them in choosing their next move.

In such cases, to ensure that a field remains secret until a certain event occurs, the

contract has to exploit suitable cryptographic techniques [3]. Some of these techniques

have been mentioned in Sections 5.4 and 8.4.

7.8 Immutable bugs

Immutability can be both seen as desirable and as undesirable depending on the circum-

stance. Clearly, the fact that data in the blockchain is immutable is a conscious design

choice, but it becomes a problem when what is immutable is a bug [3]. The challenge is

not really technical but bureaucratic, in that it would be necessary to find a convenient

and convincing way of deciding how to decide about the changes, upgrades and fixes of

contracts, and in general of the rules in a decentralised crypto-system. We have already

seen in Tezos (see Section 5.3) an approach to the later, the default solution provided for

fixes in contracts was to have a designated manager for contracts. But we can see that

having a manager is a limitation if we want to trust no-one, or maybe we are interested

in trusting a scheme of the type N-out-of-M, which would require some script that does

the validation.
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7.9 Lost ether

Another consequence of immutability is currency sent to addresses whose key is not

known [3] due, for example to a mistake. If standard cryptographic assumption hold, this

currency is statistically impossible to recover and is lost forever (burned). In addition

to the economical loss, this produces a burden on the blockchain because the unspent

currency cannot be forgotten, since there is no proof that it is actually unspendable (as

far as everyone knows someone could actually have the key).

In order to reduce the likelihood of this happening, in the context of Bitcoin,

Base58Check is often used which adds redundancy to addresses, so that a small typo

cannot produce a different valid address [2].

7.10 Non-randomness

Some scripts require a safe source of randomness during execution [3]. When the

execution environment is a blockchain, the problem translates into finding a source of

randomness that is globally available, independently verifiable, and unpredictable.

The blockchain seems to be a good source for such randomness, since the hashes of

new blocks are difficult to predict. But using it as source of randomness opens the gate

for potential manipulation by the miners. Thus, finding a safe way of using the entropy

in the blockchain as a source of randomness is an open and actively researched problem

[40].

7.11 Turing completeness or not?

A Turing complete scripting language is capable – in principle at least – of allowing all

computable functions to be scripted in the language. This means that the execution of

some scripts will not terminate (for some inputs), and even for those that do terminate,

execution times can be indefinitely large. So, it would appear that choosing a Turing

incomplete language would be appropriate. While this is true, Turing incompleteness is

not sufficient in itself.4 For example, computation times can be super-exponential even

for primitive recursion (with higher types), as evidenced by the Ackermann function.

Even without recursion, putting a priori bounds on execution time can be problematic

in scenarios where contracts can invoke each other, and calls can be symbolic.

8 Technologies

8.1 Verifiable computation

Verifiable computation [37] is a technique that allows the generation of proofs of

computation – that is proofs that the evaluation of a program has a specified result –

that can be verified faster than the time that it would take to do the actual computation.

This allows the outsourcing of computation to untrusted parties.

4This argument is made in the context of Ethereum in the white paper: https://github.com/

ethereum/wiki/wiki/White-Paper#computation-and-turing-completeness
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In Pinoccio [37], authors claim to have achieved a “nearly practical” way of doing

this, as opposed to previous ways that, while asymptotically would work for some

input, in practice they have an infeasible constant factor (hundreds of years for small

computations).

In Geppetto [10], authors describe additional techniques for improving the efficiency

of the approach. The work in the paper is for a practical C compiler, based on LLVM,

and introduces a number of advanced techniques that aim to reduce power overhead

and increase the scope of the work. The Geppetto work is built on top of the Pinocchio

system, which also underlies zero knowledge proofs (see Section 8.4).

Verifiable computation has, at least, one interesting application to smart contracts:

they would allow miners to do the computations only once and generate a proof of

computation, and verifiers would only need to verify that the proof is correct. This

would allow for more expensive contracts to be run, since they would not increase the

time required to validate the blockchain proportionally.

Potentially, computations could be carried out directly by the users sending the

transactions, but this would potentially require transactions to be recomputed in case

their context changes (which could happen as a result of a race condition in the process

of adding them to the blockchain, see Section 7.6).

8.2 Verifiable bounds and reusable libraries

Even if we cannot give a proof of computation, it would be useful to supply a proven

upper bound for the amount of computation that a program will require. This way, we

can calculate a minimum amount of gas that would guarantee the contract to execute,

which would avoid the out-of-gas exception completely (with the security implications

this has, see Section 7.3.2).

Contracts are usually designed and reused many times with small changes to their

parameters and inputs. Even if the automatic verification of general contracts is not

possible, it may be possible for some contracts to manually prove or provide formulas

that verifiably calculate the amount of time required to execute a given contract, or even

to prove that execution is correct (as is the case with NP problems, whose solutions can

be verified in polynomial time). Such reusable and verifiable formulas can be stored in

the blockchain.

8.3 Multiparty computation

Secure multiparty computation (MPC) protocols, allow a group of mutually distrusting

parties to compute a joint function f on their private inputs. Typically, the security

of such protocols is defined with respect to the ideal model where f is computed by a

trusted party [1].

The aspects that can be guaranteed in different settings vary, the basic protocols

allow simple emulation of the computation, but Bitcoin has been used successfully

[1, 4] to enforce the results of computations and penalise in cases of non-cooperation

(see Section 7.5).
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8.4 Zero knowledge

Zero knowledge proofs are a cryptographic mechanism of proving the possession of a

specific bit of knowledge without revealing that bit of knowledge. It has been shown

[20] that it is possible to interactively demonstrate with zero knowledge the possession

of a solution for the 3-colouring problem of a graph and by extension any NP-complete

problem.

Zerocoin [34] and Zerocash [45] use zero knowledge proofs to add anonymity to

bitcoin transactions without adding any trusted parties. The algorithm allows users to

mint a number of zero-coins into a pool and to later redeem different ones, but ensures

than each user cannot redeem more coins that he or she has minted without revealing

any links between the inputs and the outputs.

Zero knowledge proofs are also integrated in Hawk (see Section 5.4)) to ensure

anonymity.

8.5 Proof-carrying code / proof of computation

In proof-carrying code [36] program code – in the original example, machine code – is

accompanied by a proof that the code satisfies certain properties, such as terminating in

a given period of time. The proof is defined in such a way that it can be checked by the

recipient, and such a check is substantially cheaper than the recipient making the proof

for themselves. Moreover, the recipient need not trust the sender: the proof provides the

essential evidence that something is the case, rather than having to trust the veracity of

another agent in the system. Assuming that the proof format is published, the recipient

can indeed write a proof checker for him or herself, and need not trust a third party to

supply one.

This does have a major drawback, however: not only will implementors of the

blockchain system need to understand and implement a programming language, they

will also need to understand and implement a full blown proof checker. Just using proof

assistants like Coq is described by programming language implementors as requiring a

PhD, nevermind constructing one. Now, while this is not really true, it does convey the

complexity of the task. On the other hand, this may be a good thing, as it creates a hurdle

for those wanting to develop a validator, and may deter all but the most determined (and

skilled), thus avoiding the production of poorly designed validator software that could

threaten the blockchain network.

A related concept is proof of computation, where a proof accompanies a value: in

such a case the value is purported to be the result of evaluating a given expression, and

the proof provides evidence that this is the case.

8.6 Use of combinators

Combinators are higher-order functions, which could be in an untyped functional lan-

guage (like the λ-calculus) or a typed language (such as Haskell). Sets of such functions

form combinator libraries, and they have been used to define small domain specific lan-

guages (DSLs); well-known examples include parsing libraries and hardware descrip-

tion. [39] studies how combinators can be used to represent typical financial contracts.
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It aims to define a combinator language that is closer to the terminology that is used in

financial contexts.

The model is of contracts with two parties: the holder and the counter-party. Seen

as existing over time, with a horizon (expiry date), and potential constraint on the

acquisition date. Contracts can be combined through conjunction, disjunction and one

after the other (sequentially), as well as being able to “swap polarity” as it were. Shown

how complex contracts can be described using the DSL: including “American”- and

“European”-style options.

The paper [39] presents, in addition to the combinator library itself, a valuation

of contracts, based on stochastic machinery, and a concrete implementation of this

valuation machinery.

8.7 Use of polymorphic dependent types and algebraic side-effects

Dependent types allow users to declare more expressive types for their programs. In-

deed, through the “Curry-Howard” isomorphism, types can be identified with proposi-

tions in predicate logic, and members of those types with proofs of those propositions.

For these reasons, an expressive language might be an appropriate vehicle for guarantee-

ing that smart contracts have certain properties by design. The paper [38] investigates

this, and in particular examines how Idris, with its combination of dependent types and

algebraic effects, can be used to good effect in this space. In particular, it manages to

model handling of both gas and global state in a safer way.

In a little more detail, it proposes using dependent and polymorphic types, and

algebraic side-effect declarations to prevent them. The intention is to avoid unexpected

outcomes by declaring the expected outcomes and side-effects explicitly. The paper also

provides a translation from Idris to Serpent, the Python-style high-level language for

Ethereum. Finally, the paper looks at some common problems of contract development,

but these are taken directly from [15], discussed in Section 7. In evaluating the work,

the paper concludes that process calculi, plus behavioural types, might provide a better

solution.

8.8 Formal verification of contracts

“Proving programs correct” has been discussed for more than thirty years, but is coming

of age. Some work has been done on applying this to smart contracts, too, with two

notable examples of verification of Ethereum contracts.

The first approach [5] uses F*5, which is an ML-like functional programming lan-

guage aimed at program verification, to verify Ethereum contracts, written in Solidity.

It presents three different ways of attacking the problem.

• First it presents a system Solidity*, written in OCaml, and which translates

programs written in Solidity to F*, (constituting a “shallow” embedding of the

language). It is then possible to verify properties of the translated functions. This

5https://www.fstar-lang.org
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work detected some re-entrancy problems, as well as unchecked calls to send,

and it was evaluated on a small number of source-level scripts.6

• EVM bytecode can be decompiled into F*, using another tool called EVM*,

which is also written in OCaml. It is possible then verify properties of the code,

e.g. gas consumption, running in a lightweight interpreter of a subset of the

instruction set.

• Given the two translations, it is also possible to show the equivalence of the

Solidity* and EVM* translations, at least when Solidity source code is available.

The Ethereum Virtual Machine (EVM) has also been formalised [25] in the Isa-

belle/HOL proof assistant, and aspects of the behaviour of a typical contract – the

Deed contract, which is a part of the Ethereum Name Service – have been verified.

In particular, the safety property that “only the registrar can decrease the balance” has

been formally established.

As should be expected, one of the benefits of such a formalisation is that [25]

contains a clear statement of the set of assumptions under which the result holds, and

these represent the result of a serious conceptual modelling exercise. The report points

to further work,7 such as validating the EVM implementation and formalisation of Gas,

so that liveness properties (“something good happens”) can be proved in addition to the

existing safety property (“nothing bad happens”).

8.9 Static analysis of contracts

Some errors can be easily checked by applying static analysis tools. This approach

has been explored extensively for programming languages like C. But in particular

we would like to highlight its application as a quick fix to Ethereum EVM languages

through the Oyente tool [31], which can be used both for finding errors in contracts

that are written by the user, and to allow users to avoid using buggy contracts that are

already deployed.

8.10 Merkelized Abstract Syntax Trees

MAST (Merkelized Abstract Syntax Trees) [44] is a proposal for allowing Bitcoin

transaction validation scripts to be stored in partially-hashed form.

The existing structure of a Bitcoin validation script is simply a Script program

consisting of a sequence of Script operations. However, there is a logical structure to

Script programs, as in all programs, which has tree form. In particular, every conditional

operation causes the program to branch into two logical subprograms, one for the case

that the condition was true, and one for the case that the condition was false.

For any given script, a successful validation involves passing down to a leaf block

of code in such a tree, having passed or failed the tests accordingly. All other branches

of the tree are irrelevant for the validation in question.

6Note that the vast majority of Ethereum scripts on the blockchain are only available as EVM code.

7More is said about this on reddit: https://www.reddit.com/r/ethereum/comments/59wr6w/

formal_verification_of_deed_contract_in_ethereum/
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The MAST proposal takes advantage of this fact, and proposes to replace all of the

irrelevant branches with their hashes, thereby eliminating from validation scripts all

portions of the script that are not required to perform the validation.

Implementing MAST in a completely new blockchain ought to be simple. There is a

major caveat, however. MAST relies on the fact that evaluation of code involves simply

running through a list of operations to perform once, in the obvious order. The possible

execution paths correspond directly to the program branches. Richer programming

constructs such as loops, recursion, defined functions, etc. make it harder, possibly

impossible, to use MAST. This arises because the parts of the program that are relevant

to a computation, and therefore to a validation, cannot be delineated at the outset as

one of a handful of paths to a leaf node in the code tree. Instead, the relevant paths are

determined by execution and may involve many scattered parts of the program. It may

still be possible to use MAST in this setting, however, but it’s an open question as to

how precisely to do that.

9 Conclusion

In this paper, we have surveyed some representative examples of the advanced use of

cryptocurrencies and blockchains beyond their basic usage as a payment method, and

we have focused in existing scripting solutions, their strengths and weaknesses, and

some existing solutions for known problems with them.

We have seen that, while there have been many diverse efforts in different directions,

there are still many open questions, no universal solutions, and lots of room for future

research and experimentation.

We are very grateful to Input|Output Hong Kong8 for funding the work that led

to this paper. Lior Yaffe kindly apprised us of details of the Nxt system, and Maria

Christakis and Valentin Wüstholz made a number of useful comments an earlier version

of the paper.
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