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Abstract 
 

The aim of the research presented in this thesis is to study different approaches to the parallel 

optimization of digital signal processing algorithms and optical coherence tomography 

methods. The parallel approaches are based on multithreading for multi-core and many-core 

architectures. The thesis follows the process of designing and implementing the parallel 

algorithms and programs and their integration into optical coherence tomography systems. 

Evaluations of the performance in terms of latency and scalability of the proposed parallel 

solutions are presented. 

 The digital signal processing considered in this thesis is divided into two groups. The 

first one involves generally employed algorithms operating with digital signals. Those 

include forward and inverse discrete Fourier transform, cross-correlation, convolution and 

others. 

 The second group involves optical coherence tomography methods, which incorporate 

the aforementioned signal processing algorithms. These methods are used to generate cross-

sectional, en-face and confocal images. Identifying the optimal parallel approaches to these 

methods allows improvements in the generated imagery in terms of performance and content. 

The proposed parallel accelerations lead to the generation of comprehensive imagery in real-

time. Providing detailed visual information in real-time improves the utilization of the optical 

coherence tomography systems, especially in areas such as ophthalmology. 
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Chapter 1 
 

Introduction 
 

 

The concept of parallel computing spans the architecture of the processing units and the 

design of the programming tools, which utilize them. These programming tools include 

operating system support, programming language specifications, and libraries. To extract 

optimal performance from a parallel architecture, computer algorithms and programs need to 

reflect the characteristics, capabilities, and limitations of the utilized hardware and software 

components. Parallel approaches need to consider the computational costs of launching 

parallel threads of control, the overheads of the thread management, and the underlying 

memory model. 

 

 

1.1 Motivation 

 

In 2004, Intel Corporation announced the cancelation of the release of two of its processors, 

namely Tejas and Jayhawk. They were supposed to replace Pentium 4 and Xeon processors. 

The constant increase of the processors' clock rate approached the physical limitations of the 

technology [1]. In a Communications of the ACM, Moshe Vardi described this phenomenon 

as unresolvable without major technological changes [2]. Later on, Intel introduced the multi-

core architecture with the release of their first Core Duo processor. 

 Nevertheless, increased number of processing cores does not translate automatically 

into increased performance. A performance gain from a multi-core architecture requires 

significant redesign of the algorithms and the programs. In [3], Sutter’s widely cited article, 
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the author could not stress that enough. Based on this report, the following key points can be 

identified: 

 1. Continuation of the performance growth depends on concurrent and multithreaded 

applications. 

 2. One of the primary reasons for employing concurrency is the logical separation of 

portions of the code. 

 3. The other one is the performance achieved by taking advantage of multiple 

processors. 

 4. Some applications are naturally parallelizable and others are not. 

 

 Considering the scope of the digital signal processing (DSP), these key points can be 

extended as follows: 

 - There is a constant demand for increased performance. For example, an improved 

quality of imagery leads to increased size of data, or signal, and increased amount of 

computations, but still within the same real-time requirement. 

 - In almost all cases in practice, DSP is not performed independently, for its own sake. 

Usually, it is part of a larger system with multiple components, each one with its own specific 

task. An optical coherence tomography (OCT) system for example, during operation acquires 

data, generates samples, reads user inputs, applies DSP algorithms, and displays images. The 

logical separation of the DSP from the rest of the system, which otherwise would be part of 

the data acquisition software, contributes to the stability of the overall system and the 

readability of the source code. 

 - The parallel architectures of the multi-core central processing unit (CPU) and many-

core graphics processing unit (GPU) allow multithreaded programs to take advantage of them 

and to improve the performance. 

 - DSP algorithms perform the same computations on all data points from the digital 

signals. In most cases, the processing of each data point is completely independent from the 

rest. In the scope of this thesis, the integration is the only exception. This makes DSP a good 

example of naturally parallelizable algorithms. 

 Considering these points, DSP algorithms appear as good candidates to take 

advantage of parallel optimizations and as a result, to maximize their performances. 

 Motivated by the aforementioned points, this research studies the parallel 

optimization of DSP algorithms and OCT methods. Considering the current parallel 

computing technology, this research investigates different parallel approaches and identifies 
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those, which lead to optimal performance and improved imagery in the OCT systems. 

 

1.2 Scope 

 

The scope of the research presented in this thesis is parallel optimization based on 

multithreading for the multi-core (CPU) and many-core (GPU) architectures. Although 

different in their nature, both the CPU-based and the GPU-based parallel threads deliver 

accelerated computations, due to their simultaneous execution. This forms a basis for 

comparisons between these two approaches. 

 The multithreading solutions implement general DSP algorithms, such as Fourier 

transform, cross-correlation and convolution. These algorithms are used in OCT methods, 

such as the conventional Fourier domain (CFD) method and the newly introduced Master-

Slave Interferometry (MSI) method [4]. 

 The study presented in this thesis reflects the current state of the parallel computing 

technology and the performance it offers. Aspects of this technology are taken into account, 

such as the multi-core and many-core architectures, the coarse-grained and fine-grained 

parallelism, the programming language support, and the overheads caused by the thread 

management. The integration of the parallel solutions into real-time systems, such as OCT, is 

also considered. 

 

1.3 Application Area 

 

The practical application area of this research is optical coherence tomography. The purpose 

of the parallel optimization is to enable OCT systems to process digital signals and visualize 

OCT images in real-time. OCT systems, along other medical imaging technics such as 

radiology and magnetic resonance imaging (MRI), are able to image semitransparent objects 

below the surface. These technologies are employed to visualize the internal structures of 

tissues. They are used to assist in diagnosis and surgery [5]. 

 OCT systems are employed to generate two types of images, namely cross-sectional 

and en-face. The cross-sectional images display multiple depths, while the en-face images 

visualize a single depth, as seen in Figure 1.1. 

 Chapter 3 presents a closer look at the OCT systems, their main components, the 

employed DSP algorithms and OCT methods, and the generated images. 
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Figure 1.1: One cross-sectional (right) and four en-face (left) OCT images of a human eye. 

The four red lines on the right indicate the position in depth of the en-face images 

 

 

1.4 Parallel Programming Model 

 

The algorithms and methods presented in this thesis are designed for OCT systems operating 

in real-time, which is processing the signals and visualizing the images while the system is 

imaging the object. In these systems, the data is generated by data acquisition software and 

after processing is handled by a visualization tool. These systems have a single source of data 

and a single destination for the result. Therefore, a shared memory parallel programming 

model, implemented on the same computer system as the data acquisition software and the 

visualization tool, is more viable than a distributed solution communicating over a network. 

 

 

1.5 Fast Fourier Transform Libraries 

 

Forward and inverse discrete Fourier transforms are crucial building blocks in the digital 

signal processing, as they provide the transition from time domain to frequency (Fourier) 

domain. By definition, the complexity of the discrete Fourier transform is O(N2). This 

indicates a computationally intensive algorithm. Significant efforts to optimize the Fourier 
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transform resulted in a collection of algorithms, denoted as Fast Fourier Transform (FFT). A 

popular example of FFT algorithm is the Cooley-Tukey FFT [6]. It reduces the number of 

operations to O(N×Log(N)), here N is the size of the input data. The mathematical 

foundations of this algorithm can be traced back to Carl Friedrich Gauss (1777-1855) [7]. 

This algorithm is implemented in the Fast Fourier Transform in the West (FFTW) library, 

introduced in [8], and in the cuFFT library [9], developed at NVIDIA Corporation. 

 Two approaches to parallelization, denoted as coarse-grained and fine-grained, are 

developed and presented in Chapters 4 and 5. 

 The coarse-grained approach launches parallel threads created by the application 

programming interface (API) provided by the operating system. In this approach, the digital 

signal is equally divided among the parallel threads. Each parallel thread performs all 

processing steps on its corresponding part of the signal, including multiple FFTs. The 

parallelization process equally divides these multiple FFTs among the parallel threads. As a 

result, the FFT is parallelized by the API, rather than the multithreading support provided by 

the employed FFT implementation, which is FFTW [10]. Therefore, this research does not 

evaluate the parallel capabilities of the FFTW library. The FFT is included into a 

parallelization, which is designed for the studied DSP algorithms and OCT methods. 

 The fine-grained approach targets the many-core architecture of the GPU. It is 

developed as an NVIDIA CUDA C application and uses the NVIDIA FFT library, cuFFT, 

which is designed for the CUDA programming model. This library utilizes the parallel 

capabilities of CUDA-enabled GPUs [9]. 

 

 

1.6 Original Contribution 

 

A number of CPU-based and GPU-based multithreaded approaches to widely adopted DSP 

algorithms are presented in Chapter 4 of the thesis. A comparison between these two parallel 

approaches is presented. Also, the parallel approaches are compared with their corresponding 

sequential implementations. The optimal parallel approach is identified for every case. 

 Parallel optimizations of two OCT methods, based on the aforementioned approaches, 

are presented in Chapter 5. To the best of the author's knowledge, the first report of real-time 

generation of MSI-based cross-sectional images implemented on the GPU was published in 

[11]. Subsequently, one of the first reports of the generation of up to 40 en-face images in 
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real-time based on the same OCT method were published in [12] and [13]. 

 A comprehensive GPU-enabled OCT imagery is presented in Chapter 6 of the thesis. 

It consists of multiple en-face images, accompanied by one confocal and two cross-sectional 

images. All images are generated simultaneously on the same volumetric data. These images, 

delivered in real-time, provide detailed information about the studied objects. This improves 

significantly the utilization of the OCT systems, especially in areas such as ophthalmology. 

In this area, comprehensive OCT imaging can improve the process of diagnosis and assist in 

real-time imaging during surgery and ablation [5]. 

 The contributions of this thesis can be summarized as follows: 

 - Demonstration of the computational capabilities of the multi-core and many-core 

architectures to perform DSP algorithms and OCT methods 

 - Identification of the optimal parallel approaches to these algorithms and methods 

 - Improvements of the operation of OCT systems in terms of: 

  - Performance 

   - Achieved real-time performance, presented in Chapter 5 

  - Content 

   - Comprehensive OCT imagery, presented in Chapter 6 

 

 

1.7 Terminology 

 

A large amount of books, textbooks, journal articles and conference papers involving parallel 

computing and signal processing are published. Some variations of the terminology used in 

these areas can be observed. 

 In [14] and [15], the term multithreading is used to describe a programming 

paradigm, in which a single process is divided into multiple parallel threads. Concurrency is 

based on the ability of these threads to advance independently, but not necessarily 

simultaneously. Parallel optimization, based on multithreading for multi-core and many-core 

architectures, presumes simultaneous execution of the threads. Some form of serialization 

may occur in the case of a larger number of parallel threads, which depends of the parallel 

capabilities of the targeted architecture. 

 This thesis follows the aforementioned terminology. It considers parallel optimization 

as the transformation of an existing sequential algorithm or program into a parallel one. In 
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most cases in practice including this research, the transformation targets a specific parallel 

environment, such as specific parallel architectures and programming language support. An 

expected and desired result of the parallel optimization is an improved performance, as 

discussed in numerous published books and articles, including [3], [16] and [17]. 

 The terms "sequential" or "serial" are used interchangeably in [18] to describe 

programming paradigm. 

 In this thesis, tread of control generalizes the notion of logically separated 

instructions organized as functions or kernels. They have the ability to advance 

independently. Examples for specific implementations are: 

 - Processes launched by executable binaries or routines, such as fork and spawn 

 - Threads running on host processors (multi-core CPU) 

 - Threads launched on the GPU by kernels 

 - Fibers, lightweight threads 

 The computations presented in this research are applied on digital signals. Although 

most of the presented algorithms can be applied on more general type of data, the scope 

considered in this thesis is digital signals generated synthetically or by an OCT system. 

 The presented computations are divided into DSP algorithms and OCT methods. The 

DSP algorithms perform mathematical operations on signals, such as Fourier transform, 

cross-correlation and others. The OCT methods consist of a number of DSP algorithms 

applied on digital signals generated by OCT systems. 

 The GPU-based fine-grained approaches discussed in this thesis are designed for 

NVIDIA GPUs. Therefore, the terminology concerning GPU computing used in this thesis is 

influenced by the terminology introduced by the NVIDIA Corporation. 

 

 

1.8 Structure of the Thesis 

 

Chapter 2 discusses the foundations of multithreading. It is presented from the point of view 

of parallel acceleration of DSP algorithms and OCT methods. 

 Chapter 3 presents generalized view of the signal processing. The chapter also 

describes the principles of the optical coherence tomography. Two OCT methods, based on 

the discussed signal processing algorithm, are presented. 

 Chapter 4 follows the development of different approaches to parallel optimizations 
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of the aforementioned DSP algorithms. Their performances are reported and compared. 

 Similarly, Chapter 5 proposes parallel optimizations of the discussed OCT methods. 

These methods are employed to generate cross-sectional, en-face and confocal images. The 

goal of the parallel approaches is to reach image generation in real-time. 

 Chapter 6 presents a comprehensive OCT imaging solution, which is based on the 

outcomes from the previous chapters. The comprehensive imagery combines the previously 

presented OCT images. This solution is successfully integrated into a working OCT system 

and operates in real-time. 

 Chapter 7 concludes the results from the previous chapters. It also provides some key 

directions for future development in the area of parallel computing and optical coherence 

tomography. 
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Chapter 2 
 

Background on Multithreading 
 

 

2.1 Introduction 

 

This chapter considers the body of work built around multithreading as a technique for 

parallel implementations, designed for multi-core and many-core architectures. The 

comparison between these two parallel approaches, although different in their nature, is based 

on an accelerated performance, result of a simultaneous execution of multiple threads. 

 Until mid-2000, the larger part of the computing community expected improved 

performance delivered from every new line of processing units. As expected, this power 

growth became unsustainable, [1], [3], [17]. Further improvements of the performance of the 

single-core processors came with a significant increase in the consumed power, as noted in 

[19]. 

 The utilization of multi-core and many-core processing architectures by parallel 

solutions is currently the primary route to achieve improved performance, with 

multithreading being one of the predominant techniques to achieve this [20]. An improved 

performance based on parallel threads requires the following four key elements: 

 1. Parallel architecture. Single-core architecture would improve a performance of a 

multithreaded application, if the parallel threads overlap different activities, such as I/O and 

compute intensive operations. In all other cases, improved performance requires multi-

processing architecture [20]. 

 2. Operating system support. In most cases, this support comes in the form of a 

preemptive scheduling of processes and threads. In addition, the operating system may 
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provide API support, such as the Microsoft Windows API [21]. 

 3. Programming language support. Apart from calling the aforementioned API 

functionality, if presented with any, the language support may be implemented as part of the 

language specification (Java), or as an additional library (POSIX Threads). 

 4. Parallelized code. This aspect is within the responsibilities of the design and the 

implementation of parallel algorithms and programs. Otherwise, the performance of a 

sequential program would not be affected by the aforementioned parallel capabilities, [3]. 

 Currently, there are no generally applicable solutions, which automatically transform 

existing sequential computer programs into parallel ones. This is due to a number of 

obstacles, such as loops with unknown at compile time number of iterations and flow of 

control depending on the input. Attempts are made, but without significant success [22]. 

Therefore, if parallelism is needed, it has to be explicitly implemented as part of the 

algorithm. 

 There are two cases in the execution of a parallel computer program, depending on 

the number of threads of control and the number of processing units: 

 1. The number of threads of control is larger than the number of processing units. This 

case is referred as concurrency. A scheduling mechanism implemented by the operating 

system organizes the switching between the tasks. If the switching is fast enough, the 

execution of the multiple threads of control will resemble simultaneous execution [23]. 

 2. The number of threads of control is smaller than or equal to the number of 

processing units. This case is referred as true simultaneous execution or true parallelism. In 

this case, the operating system ensures that each thread of control runs on a separate 

processing unit [14]. 

 

 

2.2 Parallel Architectures 

 

The simultaneous utilization of a number of processing units by a number of independent 

sequences of instructions underpins the notion of parallel computing. The processing units 

are usually incorporated on a single chip and the sequences of instructions as processes or 

threads. The collection of these processing units, along with their ability to share resources 

and communicate comprises the parallel architecture. 

 A number of classifications for parallel architectures exist. These classifications can 
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be based on the employed memory model and the instruction-data relation, among others. 

The following section presents the Flynn taxonomy and its relevance to the contemporary 

multi-core and many-core architectures. 

 

 

2.2.1 Flynn Taxonomy 

 

This classification is proposed in 1966 by Michael Flynn in [24] and further developed in 

[25]. It applies not only to parallel architectures, but also to computer architectures in general. 

It recognizes the following classes: 

1. Single Instruction Single Data (SISD). The case describes the classical von Neumann 

architecture based on the sequential execution of instructions [26]. 

2. Single Instruction Multiple Data (SIMD). This case illustrates the simultaneous execution 

of the same instruction on a number of operands, or data points. 

3. Multiple Instruction Single Data (MISD). In this case, a number of operations are 

performed on the same data. An argument exists, that at the completion of each stage the data 

are modified, hence cannot be treated as the same data. 

4. Multiple Instruction Multiple Data (MIMD). This class describes the multi-core 

architectures, where different threads of control can advance independently and in parallel on 

multiple processing cores. 

 

 

2.2.2 Single Instruction Multiple Threads 

 

This classification was introduced by the NVIDIA Corporation in correspondence with the 

Flynn taxonomy. It describes an architecture which underpins the utilization of the GPU for 

general purpose computing [27]. It is employed in NVIDIA Tesla, first GPU dedicated solely 

to general purpose computations, designed to act like a parallel co-processor, rather than 

graphics adapter. 

 In this architecture, the parallel threads are grouped into warps. Each warp consists of 

32 threads. The threads within a wrap are scheduled to run synchronously, unless some 

threads diverge from the common execution path [28]. This architecture corresponds to the 

aforementioned SIMD class, as discussed in [27] and [29]. 
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 This paradigm reaches optimal performance, if all threads within a single warp follow 

the same execution flow. Threads are not prohibited by the language specification from 

branching out of the warps. However, this could reduce the performance. 

 

 

2.3 Scalability in Parallel Computing 

 

 

The notion of scalability applied in this thesis, characterizes the improvements in the 

performances of the proposed parallel solutions, as discussed in [26 p. 63]. In the scope of 

this research, the goal of the parallel optimization is to deliver real-time operation of the OCT 

systems. The real-time criterion of an OCT system is defined as the time window, within 

which the processing and the image generation need to complete. Therefore, the 

performances are measured in terms of latency and speed-up. 

 

 Two cases of scalability are identified in [22 pp. 56-57], namely strong and weak 

scalability: 

 1. A number of parallel optimizations are applied on a task processing a fixed size of 

data. A scalable parallel solution is expected to improve its performance when the number of 

parallel threads of control increases, Figure 2.1.A. 

 2. An increase of the data is followed by a proportional increase of the parallel threads 

of control. A scalable solution is expected to absorb the increased amount of data and to 

increase its latency at a slower rate, compared with the sequential implementation of the task, 

Figure 2.1.B. 

 

 These two cases of scalability are observed in cross-sectional and en-face imaging in 

OCT, presented in Chapter 5. In Figures 5.2 and 5.3 the size of the processed data is fixed. 

The data is divided equally among various numbers of parallel threads. In Figures 5.9 and 

5.10 the size of the processed data is connected with the number of parallel threads. 
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Figure 2.1: Two cases of scalability (S) of parallel solutions, strong scalability (A) and weak 

scalability (B), introduced by John Gustafson in [30] 

 

 

2.4 Granularity in Parallel Computing 

 

An important aspect of the parallelization process is how the computations are distributed 

among the parallel threads of control. This concept is denoted as granularity. It distinguishes 

two cases: coarse-grained and fine-grained parallelism [16]. These cases have more 

recognizable meaning in a comparative sense, rather than being used independently. 

Considering a job that is subject to parallelization, the coarse-grained approach will divide it 

into a smaller number of larger tasks, while the fine-grained approach will divide it into a 

larger number of smaller tasks. The question of granularity stays in almost all cases of 

parallel optimization. 

 On a parallel architecture, a task improves its performance by its division among a 

number of threads of controls. On the other hand, the creation of these threads consumes 

resources needed by the thread management. The choice of granularity is a trade-off between 

these two factors. 

 Additional factor is the communication between the threads. This communication is 

directly related to the nature of the job. Cases with intensive communications between the 

threads would achieve optimal performance with a smaller number of threads. 

 Chapters 4 and 5 of the thesis propose coarse-grained and fine-grained approaches to 

DSP algorithms and OCT methods. The granularity in these parallel optimizations observes 
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the nature of the digital signals, especial the ones generated by OCT systems. Those signals 

consist of sub-signals, called channeled spectra, and data points. The coarse-grained and 

fine-grained parallel approaches reflect this division of the signals into sub-signals. 

 

 

2.5 Processes and Threads 

 

The two primary techniques for parallelism are processes and threads. Different in their 

nature, these two techniques find different applications. 

 In general, running a computer program results in the creation of a process. In 

multitasking operating systems, multiple processes can run concurrently, sharing the system 

resources. These multiple processes are initiated by different programs. Also, a single 

program can fork or spawn into more than one process. Every process has at least one thread. 

 The key components of the process are virtual address space, an image, and the 

context of the process, which holds a number of attributes describing the process, such as 

process ID, current state, priority and ownership. Switching between processes involves 

switching between contexts. 

 Multiple threads of execution can exist within a single process. These threads share 

the same virtual address space, context and global variables. Therefore, creating a new thread 

does not involve creating new virtual address space and context. As a result, a multithreaded 

solution would consume less resources and less time in switching between concurrent 

threads, as noted in [23]. 

 On the other hand, threads do not provide the same level of independence and 

isolation, as processes do. Unstable threads can affect other threads from the same process, 

which makes parallelizing via processes in some cases the preferable choice. Table 2.1 

presents a comparison between processes and threads. 

 

Table 2.1: Process and thread comparison 

 Processes Threads 

Virtual Address Space Separate Shared 

Data Exchange IPC Global variables 

Synchronization IPC Global variables/API 

Priority Yes Yes 
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 In most cases, a given DSP algorithm processes a specific type of data generated by a 

single data source. In this case, the level of independence and isolation provided by the 

parallel processes is unnecessary. It would require more complex tools to cooperate and 

increase the overheads without improving the processing itself. Threads, on the other hand, 

are less isolated and easier to cooperate. This makes the threads the choice for the CPU-based 

parallelization of the DSP algorithms presented in this thesis. 

 

 

2.6 Types of Multithreading Support 

 

The implementation of a parallel algorithm as a multithreaded program requires support from 

the programming language. This support may be implemented in one of the three following 

fashions: 

 1. Multithreading support provided by the language specification. Examples for this 

case are Java, C# and Ada. 

 2. Library. This case usually applies to a languages initially developed without 

multithreading support. A prominent example for this case is the standard C language and the 

POSIX Thread (pthread) library [31]. 

 3. API. In some cases multithreading is supported by the operating system via API. 

For example, Microsoft API provides multithreading which can be used from programming 

languages part of the Visual Studio integrated development environment [21]. 

 In [32], possible issues with the library-based multithreading are identified and 

discussed. These issues may occur when the compiler reorders some operations for 

optimization purposes, without considering the parallel execution of the threads. In this case, 

unexpected or incorrect results may arise, if two or more threads access the same variable, or 

memory location, concurrently. 

 The same issue is observed in NVIDIA CUDA, which assumes weekly-ordered 

memory model. If necessary, this can be avoided by adding calls to __threadfence_block for 

threads from the same thread block and __threadfence for threads from different thread 

blocks. These calls act as memory fencing and ensure the ordering of the memory operations, 

as described in [28]. 

 This case does not occur in multithreaded implementations of the DSP algorithms 

studied in this research for two main reasons: 
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Thread 1 
Input data point a1 
Local variable ri 
Result R1 

Tread 2 
Input data point a2 
Local variable ri 
Result R2 

 1. Each parallel thread processes one or more data points. All data points are 

independent from each other. The processing steps performed by one parallel thread do not 

interfere with the processing steps performed by the rest of the threads. This case is known as 

embarrassingly parallel, as discussed in [33 p. 14]. In this research, the only exception is the 

Integration step, where multiple parallel threads contribute to the same result. In this case, 

synchronization is ensured by introducing barriers. 

 2. In the employed DSP algorithms, each step f in Figure 2.2 uses the result from the 

previous step. In other words, the argument of the current function is the result of the 

previous one. This prevents the compiler from reordering the operations. 

 

 

  r1 =f1 (a1) r2 = f2 (r1)     ...       R1 = fn (rn-1) 

 

 

  r1 = f1 (a2) r2 = f2 (r1)     ...       R2 = fn (rn-1) 

 

Figure 2.2: Two threads processing data concurrently 

 

 These two points do not take into account the parallelized implementation of the 

discrete Fourier transform provided by NVIDIA. It is assumed that this implementation took 

into account the problem discussed in [32]. Extensive tests conducted by a wide community 

using CUDA, including this research, acknowledge the correctness of this FFT 

implementation. 

 

 

2.7 Multithreading Support for Shared Memory Model 

 

This research considers parallel optimization designed for DSP algorithms. In most cases in 

signal processing, there is one source of data, which is usually the data acquisition software. 

Also, the output signal generated as a result of the signal processing is usually handled by one 

module, which purpose is to visualize or store the result. Therefore, a parallelized signal 

processing algorithm expects all parallel threads to have equal access to the input and output 

data. This requires parallel optimization based on a shared memory model, Figure 2.3. A 
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shared-memory SIMD architecture was presented in [34] as a sub-class of the 

abovementioned Flynn taxonomy. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Multithreading based on shared memory 

 

 The following section lists some of the most popular languages and libraries, 

available for multithreaded applications that support the shared memory model. This list is by 

no mean exhaustive. The discussed languages and libraries target the multi-core architecture 

of the CPU and the many-core architecture of the GPU. In the cases of POSIX and Microsoft 

API, the shared memory is the collection of the global variables of the process launching the 

parallel threads. In the CUDA case, the shared memory is the global GPU memory. 

 The GPU-based fine-grained approaches to the DSP algorithms and OCT methods 

presented in Chapters 4 and 5 yields optimal performances. These approaches are 

implemented as solutions integrated into an OCT system, presented in Chapter 6.The result is 

a comprehensive imagery delivered in real-time. Therefore, this chapter pays special attention 

to the employed NVIDIA CUDA programming model. 

 

 

2.7.1 POSIX Threads and gcc 

 

A prominent example of a library-based support for multithreading is the POSIX Threads 

library. This library extends the capabilities of the standard C language, provided by the gcc 

(GNU Compiler Collection) [31]. This library can be linked with C/C++ programs, compiled 

with gcc. In a multithreaded program, all threads have access to the global memory. A 

number of semaphore functions can be used to implement critical sections. 
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 In a POSIX multithreaded solution, new thread is created by pthread_create function. 

Thread attributed, such as user-defined stack size and scheduling priority, can be passed to 

the newly created thread. If not specified, the newly created thread loads default values for 

these attributes. 

 The pthread_join function suspends the calling thread, which is normally the main 

thread of the process, until the referred thread terminates. The two functions, pthread_create 

and pthread_join can be used to implement the fork-join multithreaded paradigm. 

 

 

2.7.2 Microsoft API 

 

A set of API functions provided by Microsoft extend the capabilities of the Visual C++ 

language to allow multithreaded applications [21]. The two main routines supporting the 

multithreading are CreateThread and WaitForMultipleObject. These API correspond to the 

aforementioned POSIX functions pthread_create and pthread_join. 

 

 

2.7.3 OpenMP 

 

OpenMP (Open Multi-Processing) provides multithreading support based on API [35]. It is 

designed primarily for C/C++ programming languages, but also supports FORTRAN 

programs. It supports various platforms, including POSIX compliant operating systems and 

Microsoft Windows. The utilization of OpenMP divides the program into two sections, 

sequential and parallel. Its parallelism is based on the fork-join paradigm, Figure 2.4. 

 

 

 

 

 

 

 

 

Figure 2.4: Parallel programming with OpenMP 
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 In both POSIX and Windows environment, OpenMP allows control over the number 

of parallel threads in two different ways: by the environment variable 

OMP_NUM_THREADS and by the function omp_set_num_threads ( int N ). 

 Besides data-based parallelism, OpenMP can be used to implement task-based 

parallel solutions. This feature allows the implementations of consumer-producer types of 

problems. 

 The OpenMP includes parallel features, such as critical sections and reduction, as 

discussed in [18 pp. 32-36]. In a C/C++ program, these features are accessible by using the 

#pragma omp parallel clause, with keywords critical and reduction. 

 

 

2.7.4 OpenCL 

 

OpenCL (Open Computing Language) is an API-based language extension, which provides 

the C/C++ language with multithreading capabilities [36]. This framework, developed by the 

Khronos Group [37], supports variety of parallel architectures, including multi-core CPU, 

GPU, field programmable gate arrays (FPGA), and digital signal processors. Its performance 

is often compared with NVIDIA CUDA, [38], [39]. In [40], the comparison includes FPGA 

and Advanced Micro Devices (AMD) graphics accelerators. Unlike CUDA, OpenCL is not 

vendor locked-in, which makes it more portable. The portability is implemented by an 

abstract layer, SYCL [41]. In the scope of the general purpose GPU (GPGPU) computing, 

this abstract layer hides some hardware features, which are otherwise exposed by the 

NVIDIA CUDA programming model. As noted in [42], the increased portability affects the 

performance unless specifically tuned kernels, which are functions designed to run on a 

parallel architecture, are developed. 

 OpenCL allows kernels to be compiled in offline and in online mode. When compiled 

in online mode, also denoted as runtime, the compiler has the ability to take advantage of the 

features of the targeted architecture, as discussed in [43]. This increases the portability of the 

programs developed using OpenCL. On the other hand, this approach may lead to the 

distribution of the source code to other computer systems, which in some cases is unwanted 

effect. 
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2.7.5 NVIDIA CUDA 

 

The CUDA programming model, introduced by NVIDIA, is designed to allow C/C++ and 

FORTRAN style solutions to extract improved performance from the NVIDIA GPUs. With 

the added GPU-based parallel capabilities, CUDA can also be considered as an extension or 

thin film to these standardized programming languages. With its multiple libraries, such as 

cuFFT, CUDA Math Library, cuSparse and others, CUDA finds applications in many areas 

of science and engineering. 

 The CUDA programming model is designed to utilize the NVIDIA GPU architecture, 

which is based on multiple streaming multiprocessors (SM). Each SM has local memory and 

a number of single-precision and double-precision processing units, denoted as CUDA cores. 

Successive architectures increase the overall number of processing units incorporated on a 

single GPU, and thus provide scalability to existing software solutions. 

 

2.7.5.1 Historical Overview 

 

This section presents some of the key events that mark the evolution of the GPU architecture 

and its impact on the high performance computing. These events span more than a decade, 

which saw the spread of GPU computing from the 3D rendering industry to almost every area 

of parallel computing. 

 The term graphics processing unit (GPU) was coined by the NVIDIA Corporation in 

1999 with the release of the NVIDIA GeForce 256 graphic card [44]. Designed primarily for 

fast 3D rendering, the GPU targeted the gaming industry. 

 In 2007, the NVIDIA Corporation introduced the CUDA programming model. Its 

purpose was to enable programs to run parallelized code on the many-core architecture of 

CUDA-capable GPUs. The programming model was built around the CUDA C, an extension, 

or a thin film, of the standard C language. Besides C, CUDA provides extensions to 

FORTRAN and Python. 

 With the release of Tesla GPU in 2007, NVIDIA introduced a new line of GPU-based 

parallel co-processors. In 2008, the TSUBAME Supercomputer, the first high performance 

computer based on Tesla GPU, was announced. A performance of 4.8 TFLOPS the GPU-

based TSUBAME 2.0 was reported in [45]. 

 The idea of a parallel co-processor offloading computationally intensive tasks from 
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the CPU was embraced by Intel with the release of the Xeon Phi co-processor in 2012. It was 

supported by Intel Parallel Studio, a development environment built around the Intel C++ 

Compiler, which further solidified Intel position in the massively parallel solutions. 

Currently, NVIDIA Tesla and Intel Xeon Phi remain primary competitors in the desktop-

based high performance computing market. 

 The Kepler architecture, incorporated in the GK110 GPU, was introduced in 2012. It 

kept the same number of parallel threads per warp, which is 32, but increased the number of 

warps per multiprocessor from 48 to 64 [46]. Also, the number of thread blocks in one-

dimensional GPU grid was increased from 216-1 to 232-1. 

 In 2016, NVIDIA released the Pascal architecture implemented in the Tesla P100 

GPU [47]. Among other improvements, this architecture incorporated streaming 

multiprocessors with 32 double precision CUDA cores. It increased the number of streaming 

multiprocessors from 24, in Tesla GM200, to 56. 

 

2.7.5.2 Host Code and Device Code 

 

The execution of a program written in CUDA C is carried out by a host and a device. The 

host, being the CPU, loads the entry point of the program, which is the main function in 

C/C++. The device, being the GPU, executes the parallel threads specified (defined) by 

specialized functions, called kernels. A device can be any CUDA enabled GPU. The NVIDIA 

Corporation supports a list of these GPUs. The separation between the host code and the 

device code is specified by the following three qualifiers of the function types: 

 __global__ specifies a kernel execute by the device. It can be called both from the 

host and the device. 

 __device__ specifies a kernel execute by the device. It can be called only from 

another kernel. 

 __host__ specifies a function execute by the host. It can be called only by another 

host function, including the main function. 

 

2.7.5.3 Kernels, Threads and the GPU Grid 

 

The multithreading on the GPU is implemented by calling a specialized type of functions, 

called kernels. The calls to these kernels specify the number of parallel threads to be launched 
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on the GPU. 

 The kernel call has two parameter lists: the first one defines the GPU grid and the 

second one defines the actual parameters of the kernel: 

 CUDAKernel <<< ParameterList1 >>> ( ParameterList2 ) ; 

 The first parameter list consists of maximum four elements: 

 1. Dimension of the GPU grid. The GPU grid consists of one, two or three 

dimensional array of thread blocks. Its dimension is specified by a variable of the type dim3. 

A one-dimensional GPU grid can also be specified by a constant. 

 2. The number of parallel threads per thread block. 

 3. The size of the shared memory. This is per block shared memory accessed from all 

threads from the same thread block. This parameter is optional. 

 4. The identifier of the stream. This parameter is also optional and not used in the case 

of a single stream application. 

 The second parameter list consists of the actual parameters of the kernel. Normally, 

these parameters are pointers to variables (addresses) on the global GPU memory. These 

addresses are obtained from cudaMalloc functions. These functions, called by a host 

function, allocate memory for the variables on the global GPU memory. 

 

 The kernel calls in CUDA are asynchronous, that is, the control returns to the main 

thread running on the host before the threads launched by the kernel complete their 

execution. As a result, the overall latency t of a number of kernels Ki is usually smaller than 

the sum of the latencies of the individual kernels, Equation 2.1. 

ଵሻܭሺݐ  ൅ ଶሻܭሺݐ ൅ ൅ڮ ௡ሻܭሺݐ ൐ ଵǢܭሺݐ ڮଶǢܭ Ǣܭ௡ሻ (2.1) 

 

 

 The maximum number of GPU-based parallel threads is equal to the number of 

threads per thread block multiplied with the maximum number of thread blocks in each 

dimension of the three dimensional GPU grid. The actual number of parallel threads per grid 

depends on the micro-architecture of the GPU. Currently, the maximum number of threads 

per thread block is 1024, and the maximum number of thread blocks per GPU grid dimension 

is 232-1 in Kepler and Maxwell architectures. 
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2.7.5.4 CUDA Memory Hierarchy 

 

Computations performed by CUDA on the GPU require the data to be in the GPU memory. 

The only exception is the zero-copy paradigm. This requires data copy over the PCI Express 

bus, which becomes the most significant bottleneck in the GPU Computing, which is 

discussed in [48]. The CUDA memory hierarchy consists of GPU global memory, per-block 

shared memory, local thread memory, and register memory. These types of memory are 

significantly different in terms of capacity and access time. The correct utilization of the 

memory hierarchy is crucial for achieving optimal performance. 

 

 Register Memory 

 Variables residing in register memory are private to the threads. This type of memory 

has the fastest access time and the smallest capacity. Scalar variables are normally stored in 

the register memory. Arrays which size is known at compile time may also be stored in the 

register memory, subject to array size and availability.  

 

 Local Memory 

 This memory is private to the threads. Variables in the local memory have the lifetime 

of the thread. A variable declared in a kernel, which launches multiple parallel threads, has a 

local copy in each thread. 

 The following set of special variables, residing in the local memory, can be used to 

construct a global index to identify all threads from the GPU grid: 

 threadIdx identifies the thread within a thread block. The maximum number of 

threads is 1024, therefore this variable can hold integer values from 0 to 1023. 

 blockIdx identifies the thread block within the grid. More specifically, this variable 

identifies the thread block according to each dimension of the thread block. The maximum 

number of dimensions is three. The corresponding X, Y and Z dimensions are identified with 

blockIdx.x, blockIdx.y and blockIdx.z. 

 blockDim denotes the number of thread blocks on each dimension. Like the blockIdx, 

the corresponding identifiers are blockDim.x, blockDim.y and blockDim.z. 

 A thread can be fully identified by the following constructions: 

 - One-dimensional grid: 

  ThreadGlobalIndex = blockDim.x * blockIdx.x + threadIdx.x ; 



25 

 

 - Two-dimensional grid: 

  ThreadGlobalIndex =  

   gridDim.x * blockDim.x * blockIdx.y + blockDim.x * blockIdx.x + 

threadIdx.x ; 

 Identifying threads within the GPU grid allows the partition of the data and the 

assignment of each partition to a particular thread. This technique implements data 

parallelism, as noted in [49]. 

 

 Shared Memory 

 Variables declared with the __shared__ specifier are stored in per-block shared 

memory. The shared memory is incorporated on the streaming multiprocessor. All threads 

belonging to the same thread block have equal access to the shared memory. To ensure this, 

no thread block can be divided between multiple streaming multiprocessors. The lifetime of 

the shared variables is the same as the lifetime of the thread block [50], [46]. 

 

 Global Memory 

 The global GPU memory corresponds to the main memory in the CPU-bound 

computations. It can be accessed only by the tools dedicated for graphics processing, such as 

OpenGL, Direct3D, OpenCL, and CUDA. In CUDA, variables are allocated in the global 

GPU memory using the cudaMalloc and freed using cudaFree functions. The second 

function prevents some possible memory leakage. Both functions are called from the host. In 

most cases in practice, the size of the data processed by GPU threads exceeds the capacity of 

the aforementioned levels of memory hierarchy. These data normally reside in the global 

GPU memory. Therefore, its capacity and access speed is crucial for the overall performance 

of the GPU computations. The memory characteristics, in terms of capacity and access time, 

vary in different GPU generations and are described in the corresponding documentations, 

including [46] and [50]. 

 

2.7.5.5 CUDA FFT Library 

 

The NVIDIA CUDA programming environment includes a number of libraries aiding 

scientific and engineering solutions, such as nvGRAPH, cuSPARSE, CUDA Math Library, 

and others. One of the most popular CUDA libraries with impact in numerous scientific areas 
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is the CUDA FFT library, cuFFT [9]. This library is extensively used in this research. Its 

performance, due to the utilization of the parallel resources of the GPU, contributes to the 

performances of the GPU-based optimizations, presented in this thesis. 

 The cuFFT library follows an interface similar to the FFTW library. It implements the 

Cooley-Tukey FFT algorithm, which has complexity of O(N×Log(N)). Table 2.2 presents the 

transforms available in the cuFFT library. 

 

Table 2.2: NVIDIA cuFFT transforms 

Transform Type Dimension Data type 

Forward 
Real to complex 

1D, 2D, 3D 
Single precision, 

double precision 

Complex to complex 

Inverse 
Complex to real 

Complex to complex 

 

 Reflecting the scope of this research, the input and output data involved in the FFT is 

equivalent to the input and output digital signals. The FFT can be applied once on a signal, or 

multiple times (batch transform) on a number of signals. 

 The following are two examples of single and multiple (N transforms) forward 1D 

real to complex transform using single precision data type. The implementation is based on 

the following steps: 

 

 1. Allocate GPU memory for the input and output digital signals. 

 cufftReal *InputSignal; cufftComplex *OutputSignal; 

 cufftReal *InputSignalMultiple; cufftComplex *OutputSignalMultiple; 

 
 cudaMalloc(&InputSignal,SignalSize*sizeof(cufftReal)); 

 cudaMalloc(&OutputSignal,(SignalSize/2+1)*sizeof(cufftComplex)); 

 

 cudaMalloc(&InputSignalMultiple,N*SignalSize*sizeof(cufftReal)); 

 cudaMalloc(&OutputSignalMultiple,N*(SignalSize/2+1)*sizeof(cufftComplex)); 

 

 Due to the non-redundant transform, the size of the output signal is equal to 

SignalSize/2+1. The next Chapter 3 discusses this feature of the FFT implementation. 

 

 2. Initialize the FFT plan 

 Generally, there are two types of FFT plans, for single and for multiple transform. 

The multiple transform applied the same type of transform repeatedly over multiple digital 

signals. This type of transform is more used in practice, than the single transform. 
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 cufftHandle SingleFFTPlan; 

 cufftHandle MultipleFFTPlan; 

 

 cufftPlan1d(&SingleFFTPlan,SignalSize,CUFFT_R2C,1); 

 Arr[0]=(int)SignalSize; 

 cufftPlanMany(&MultipleFFTPlan,1,Arr,NULL,1,0,NULL,1,0,CUFFT_R2C,N); 

 

 Additionally, the cufftPlanMany call can specify the distance between two successive 

input and output data points (stride) and the distance between two successive signals. In this 

case, stride equal to 1 and distance between signals equal to 0 indicate that all data points will 

be processed. 

 

 

 3. Initialize the digital signal 

 The FFT operates with data residing in the GPU memory. Therefore, the initialization 

is implemented by the following kernels, which initialize two sinusoidal signals: 

 

__global__ void InitSignal(cufftReal *InputSignal) 

{ 

 int i; 

 i=threadIdx.x; 

 InputSignal[i]=(cufftReal)(sin((2*3.14*i)/SignalSize)); 
} 

__global__ void InitMultipleSignals(cufftReal *InputSignalMultiple) 

{ 

 int i; 

 i=blockIdx.x*blockDim.x+threadIdx.x; 
 InputSignalMultiple[i]=(cufftReal)(sin(N*((2*3.14*i)/SignalSize))); 

} 

InitSignal<<<1,SignalSize>>>(InputSignal); 

InitMultipleSignals<<<N, SignalSize>>>(InputSignalMultiple); 

 

 

 4. The actual transform can be performed after the initialization of the FFT plan and 

the input data: 

 

 cufftExecR2C(SingleFFTPlan, InputSignal, OutputSignal); 

 cufftExecR2C(MultipleFFTPlan, InputSignalMultiple, OutputSignalMultiple); 

 

 After the completion of the transform, the variables OutputSignal and 

OutputSignalMultiple will hold the result, which is the discrete Fourier transform of the 

digital signals InputSignal and InputSignalMultiple, presented with complex numbers. In 

other words, the result can be treated as the input signal in the Fourier domain. 



28 

 

 5. Release the resources allocated for the transforms. 

 The call cudaFree releases the memory allocated on the GPU for the input and output 

signals. Also, resources allocated for the transforms are freed by the cufftDestroy call. Calling 

these functions after the transform and when the variables are no longer necessary prevents 

memory leak. 

 

 cufftDestroy(SingleFFTPlan); 

 cufftDestroy(MultipleFFTPlan); 

 cudaFree(InputSignal); cudaFree(OutputSignal); 
 cudaFree(InputSignalMultiple); cudaFree(OutputSignalMultiple); 

 

 A complete specification of the cuFFT functionality is published in [9]. This FFT 

implementation is employed in various research fields and compared with other FFT 

libraries. In [45], the CUDA FFT improved the performance of the multi-GPU TSUBAME 

system. In [51], a reduced computation time on a Tyan-based barebone server is reported. A 

comparison between FFTW and cuFFT used in OCT is presented in [52], where the observed 

performance gain from the GPU utilization depends on the size of the processed signal. 

 An FFT algorithm designed for the GPU is proposed in [53]. It demonstrates further 

improvements in the performance, which is compared with the NVIDIA cuFFT and the FFT 

developed as part of the Intel Math Kernel Library (MKL). This implementation of FFT is 

optimized for the Intel multi-core and many integrated core (MIC) architectures. 

 

 

2.8 Summary 

 

This chapter presented multithreading as programming model for parallel optimization. The 

multithreading was presented with the premise of parallel acceleration of the DSP algorithms 

and OCT methods. These algorithms and methods are presented in the next Chapter 3. Due to 

the nature of the operation of the OCT system, the parallelization expects a shared memory 

model, where each parallel thread has equal access to the data, that is the input and output 

signals. 
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Chapter 3 
 

Background on Digital Signal Processing 
 

 

3.1. Introduction 

 

Signals surround people. They are different in their nature, travel through different media, 

and have different characteristics. Signals carry information, which can be extracted by 

mathematical manipulations. These mathematical manipulations are the foundations of the 

signal processing algorithms. They bring meaning and usefulness to the signals. 

 There are three major groups of signals, analog (continuous), discrete and digital. 

Analog signals either occur naturally, or are generated by analog equipment. They can be 

divided into the following types: 

 - Electromagnetic radiation, including radio waves and visible light 

 - Electrical current 

 - Mechanical waves 

  - Surface waves, such as ocean waves and seismic waves 

  - Longitudinal waves, such as sound and vibration 

 - Spatial signal, such as images 

These signals can be subject to mathematical manipulations, called analogue signal 

processing. They can be processed by analog equipment, such as analog electronic boards. 

 Computer systems (digital processors), due to their digital nature, cannot process 

analog signals. In this case, the signals need to be digitized first. This is done by sampling 

and quantization. 

 A signal can be represented as a function of one or more independent variables [54]. 
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A light ray can be presented as sinusoid electromagnetic wave which changes over time t. In 

this case t parameterizes the signal. In image processing, the signal represents the intensities 

of the points from a two or three dimensional space. These points are parameterize by their x, 

y, and z coordinates. 

 This research is focused on the single-variable signals generated by OCT systems and 

processed by OCT methods. These OCT methods consist of signal processing algorithms, 

which are presented and discussed in this chapter. 

 

 

3.2 Sampling 

 

Analog signal f parameterized by a real variable t is defined for every value of t within an 

interval, t א [a, b] . If the analog signal is considered as a continuous function f(t), this 

interval can be treated as its domain. 

 The sampling process converts the analog signal defined for every value of its 

parameter t into a sequence of individual samples of this signal, collected at a certain values 

of t. The resulting signal, called discrete signal, is defined for a certain t equal to t0, t1, ... , tn-1. 

The difference between successive values of t (tk - tk-1) is denoted as a sampling interval and 

the frequency at which these values are collected is denoted as sampling frequency or 

sampling rate. The resulting discrete signal is not defined outside these values. This process 

results in a significant loss of information. 

 The Nyquist-Shannon theorem, also called the sampling principle, sets conditions in 

the sampling process in order to minimize this loss of information, as presented in [55] and 

[56]. This theorem states that a signal with a limited bandwidth, which is the difference 

between the highest and the lowest frequencies of the signal, can be reconstructed from its 

discrete-time domain, if the sampling frequency is greater than or equal to two times the 

bandwidth, Equation 3.1. A widespread sampling technique is sample and hold, as discussed 

in [57]. 

௦௙ݍ݁ݎܨ  ൒ ʹ ൈ  ௕௪ (3.1)ݍ݁ݎܨ

Where: 

Freqbw is the bandwidth of the signal 

Freqsf is the sampling frequency 
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3.3 Quantization 

 

The sampling process results in a sequence of values extracted from the continuous signal at 

certain frequencies. These values remained unchanged during the sampling process. The 

quantization step converts these samples into the allowed values of a certain data type, 

chosen to represent the analog signal. This data type is usually integer of floating point. 

Figure 3.1 illustrates the sampling and quantization process. 

 

 

A      B 

 f      f 

 

 

      t      t 
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         f 

       D 

        f0   f1   f2    ...   fn-1 

      t 

 

 

 

 

Figure 3.1: Digitizing an analog continuous signal (A) by sampling (B) and quantizing (C). 

The result is a sequence of values from a certain data type (D) 

 

 The analog-to-digital converter board in the OCT system used in this research 

generates digital signals presented as 12-bit integers. As both OCT methods employed in this 

research operate in Fourier domain, the 12-bit integer digital signals are converted by the data 

acquisition software into the data types required by the utilized FFT libraries. 
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3.4 Time Domain and Fourier (Frequency) Domain 

 

Time domain and frequency domain are the two ways to represent signals. Time domain 

represents the change of the value of the signal in respect to time. In image processing, the 

corresponding domain is spatial domain, which represents the signal (intensity) with respect 

to position (coordinates). The frequency domain represents the signal with respect to 

frequency. A signal F in the frequency domain is represented with complex numbers Fk. Each 

complex number contains the amplitude and phase of the corresponding frequency, Equations 

3.2 and 3.3 [55 p. 112]. 

௞݁݀ݑݐ݈݅݌݉ܣ  ൌ ௞ሻܨሺ݁ݑ݈ܸܽ݁ݐݑ݈݋ݏܾܣ ൌ ට൫ܴ݁ሺܨ௞ሻ൯ଶ ൅ ൫݉ܫሺܨ௞ሻ൯ଶ (3.2) 

௞݁ݏ݄ܽܲ   ൌ ܶܽ݊ିଵ ቆ݉ܫሺܨ௞ሻܴ݁ሺܨ௞ሻቇ (3.3) 

 

 The mathematical tools to transform analog continuous-time signals from time 

domain to frequency domain are Fourier transform and Laplace transform. The corresponding 

transforms for discrete-time signals are discrete Fourier transform (DFT) and Z transform. 

 

 The utilization of DFT in OCT methods, such as the CFD and MSI, made discrete 

Fourier transform a central DSP algorithm in OCT. A number of programming environments 

provide tools to calculate the DFT of digital signals, making the Fourier transform accessible 

to implement and integrate into various systems. 

 

 

3.5 Fourier Transform 

 

The Fourier transform, named after Jean-Baptiste Joseph Fourier (1768-1830), is the 

mathematics tool to transform a signal from time domain to frequency domain. Equations 3.4 

and 3.5 present the forward and inverse Fourier transform of a continuous signal f(t). In the 

case of a time-domain signal, the argument t of the function f represents time and the 

argument k of its Fourier transform F represents frequency [58 pp. 37-38]. 
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ሺ݇ሻܨ ൌ න ݂ሺݐሻ݁ିଶగ௜௞௧݀ݐஶ
ିஶ  (3.4) 

 

݂ሺݐሻ ൌ න ሺ݇ሻ݁ଶగ௜௞௧݀݇ஶܨ
ିஶ  (3.5) 

 

 The discrete Fourier transform (DFT), presented in [58 p. 42] and illustrated by 

Equations 3.6 and 3.7, is the corresponding transform applied on discrete signals. It converts 

a finite set of samples xn, into a set of complex values Xk, which represent the amplitudes and 

phases of the corresponding frequencies, as illustrated in Equations 3.2 and 3.3. 

 

ܺ௞ ൌ ෍ ൤ݔ௡ ൬   ൬ʹܰ݊݇ߨ ൰ െ ݅    ൬ʹܰ݊݇ߨ ൰൰൨ேିଵ
௡ୀ଴ ൌ ܴ݁ሺܺ௞ሻ ൅  ሺܺ௞ሻ (3.6)݉ܫ

 

ܺ௞ ൌ ෍ ௡݁ିଶగ௜௞௡ேேିଵݔ
௡ୀ଴  (3.7) 

 

 The inverse discrete Fourier transform is presented in Equation 3.8. It differs from the 

forward DFT by the coefficient 1/N and the sign of the exponent. 

 

௡ݔ ൌ ͳܰ ෍ ܺ௞݁ଶగ௜௞௡ேேିଵ
௞ୀ଴  (3.8) 

 

 The complexity of the DFT is O(N2). A direct implementation of the DFT is reported 

in [59], where its slow performance, due to the large number of operations and the utilized 

platform, is noted. 

 A class of DFT algorithms, denoted as Fast Fourier Transform, are developed with the 

aim to reduce the complexity of the DFT. One of the most wide-spread DFT algorithms is 

proposed by Cooley and Tuckey in [6]. 

 A number of FFT implementations, such as NVIDIA cuFFT, FFTW, National 

Instruments’ LabVIEW and MathWorks’ MATLAB FFT, employ this algorithm in their FFT 

libraries. 
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3.5.1 Redundancy and Normalization in FFT 

 

The software implementations of the FFT can generate non-redundant, redundant, normalized 

and un-normalized transform. 

 In non-redundant FFT, the relation between the size of the signal in time domain, 

MTD, and the size of the signal in Fourier domain, MFD, is presented by Equation 3.9. 

ி஽ܯ  ൌ ʹ஽்ܯ ൅ ͳ (3.9) 

 

As seen, the size of the signal in Fourier domain is approximately half the size in time 

domain. 

 

 In the case of redundant FFT, the signal has the same size in time domain and in 

Fourier domain. In redundant FFT, the seconds half of the signal in Fourier domain mirrors 

its first half, as shown in Equation 3.8, where H is the mid index of the signal in both time 

domain and Fourier domain. 

ுା௜ܦܨܵ  ൌ ுି௜Ǣܦܨܵ ݅ ݁ݎ݄݁ݓ ൌ ڮǡܪ ǡܯ െ ͳǢܪ ൌ ܯʹ Ǣܯ ൌ ஽்ܯ ൌ  ி஽ (3.10)ܯ

 

 In normalized FFT, applying forward FFT and then inverse FFT (IFFT) on a signal 

results into the original signal, Equation 3.11. 

௞ݔ  ൌ ௞ሻ൯Ǣݔሺܶܨܨ൫ܶܨܨܫ ݇ ൌ Ͳǡڮ ǡܯ െ ͳ (3.11) 

 

 In un-normalized FFT the result after applying first forward and then inverse FFT is 

multiplied, or scaled, by the number of data points M in the digital signal in time domain, 

Equation 3.12. 

 

ܯ  ൈ ௞ݔ ൌ ௞ሻ൯Ǣݔሺܶܨܨ൫ܶܨܨܫ ݇ ൌ Ͳǡܯڮ െ ͳ (3.12) 

 

 Both the FFTW and CUFFT libraries, used in this chapter, perform non-redundant 
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and un-normalized transforms. MATLAB and LabVIEW implementations, on the other hand, 

perform redundant and normalized FFT. Figures 3.2, 3.3 and 3.4 illustrate time domain signal 

and its corresponding redundant and non-redundant FFT. 

 

 

 

 

 

 

 

 

Figure 3.2: Sinusoidal signal in time domain with 1024 data points 

 

 

 

 

 

 

 

 

Figure 3.3: Signal in Fourier domain after 

redundant Fourier transform (1024 data points) 

Figure 3.4: Signal in Fourier domain after 

non-redundant Fourier transform (513 

data points) 

 

 

3.6 Cross-Correlation 

 

Cross-correlation is a fundamental signal processing algorithm. It can be applied both on 

analog and digital signals. Equation 3.13 presents the definition of cross-correlation denoted 

with · between two continuous functions, or analog signals, f and g, where ݂ҧ is the complex 

conjugate of f [55 p. 56]. 

ሺ݂ ή ݃ሻሺܮሻ ൌ න ݂ҧሺݐሻ݃ሺݐ ൅ ஶݐሻ݀ܮ
ିஶ  (3.13) 
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 The cross-correlation between two functions or signals can be considered as a 

function of the lag, denoted with L in Equation 3.13. The lag is a shift, or delay, applied on 

one of the signals. If these signals are defined in time domain, the lag signifies a delay in 

time. 

 

 

3.6.1 Cross-Correlation Theorem 

 

The cross-correlation theorem, presented in Equation 3.14, allows the calculation of the 

cross-correlation between two signals f and g using forward and inverse Fourier transforms 

[55 p. 359]. This allows the implementation of cross-correlation by using FFT libraries such 

as the NVIDIA CUFFT and FFTW. 

 ݂ ή ݃ ൌ ܶܨܫ ቀܶܨሺ݂ሻതതതതതതതത൫ܶܨሺ݃ሻ൯ቁ (3.14) 

 

 As a signal processing algorithm, the cross-correlation has applications in many areas. 

Those areas include adaptive optics problems in optical telescopes, as discussed in [60], 

where cross-correlation between a reference image and an acquired "raw" image is employed. 

 Another application of the cross-correlation is the MSI OCT method, which is based 

on cross-correlation between two signals, a Mask signal representing a particular depth and a 

signal generated by the OCT system in real-time. Sequential and parallel implementations of 

this cross-correlation based method are presented in Chapter 5. 

 Real-time generation of multiple en-face OCT images based on the cross-correlation 

based MSI method is reported in [13]. Each point from the en-face images is a result of one 

cross-correlation. Up to 40 en-face images of 200×192 points are reported, which amounts to 

1536000 cross-correlations. Similar approach is presented in [12], where the MSI method is 

used to generate cross-sectional images. Both cases reach the real-time criterion by 

implementing the cross-correlation on the GPU. 

 

3.7 Convolution 

 

The convolution is a central signal processing algorithm. Like the aforementioned cross-

correlation, it is applied between two functions or signals. The convolution, denoted with *, 
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between to signals, or functions, f and g is defined in Equation 3.15. In a mathematical sense, 

the convolution between two real-valued functions measures the amount of overlapping of 

the areas closed between the functions and the X axis. Like the cross-correlation, the 

convolution is a function of the lag L. 

 

ሺ݂ כ ݃ሻሺܮሻ ൌ න ݂ሺݐሻ݃ሺܮ െ ஶݐሻ݀ݐ
ିஶ  (3.15) 

 

 Convolution has a specific meaning when applied in signal processing, where it is 

used to calculate the output of a linear system based on the input and the impulse response of 

that system, as illustrated in Equation 3.16. In analog systems, the impulse response in 

question is the response of the linear system to a delta function. Parameterized by an 

independent variable t, the delta function has infinite value at t=t0 (usually t0=0) and zero at 

all other values for t. The corresponding function in digital signals is Kronecker delta. In this 

case, the function has value of 1 at point t0 and 0 for all other t. 

 ௞ܻ ൌ ܺ௞ כ  ௞ (3.16)ܫ

 

Where: 

Xk is the input signal, 

Yk is the output signal, 

Ik is the impulse response of the linear system. 

 

 The impulse response fully characterizes any linear system [57]. The convolution 

allows the calculation of the output signal of a linear system based on any input signal and 

known impulse response. 

 

 

3.7.1 Convolution Theorem 

 

The Convolution Theorem, defined in Equation 3.17, allows the calculation of convolution 

between two signals or functions by using forward and inverse Fourier transforms [61 pp. 

951-952]. 
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 ݂ כ ݃ ൌ  ሺ݃ሻ൯ (3.17)ܶܨሺ݂ሻܶܨ൫ܶܨܫ

 

 Considering Equations 3.14 and 3.17, the computation of cross-correlation and 

convolution follow a similar route, despite their theoretical differences. 

 Convolution as a signal processing tool has applications in many areas. In image 

processing it is frequently used for edge detection and image segmentation, as reported in 

[62]. 

 

 In audio signal processing, convolution is used to reconstruct the reverberation of a 

physical space, such as room or hall, caused by a sound. The reverberation is the result of the 

convolution between the sound and the impulse response, which is a prerecorded sound 

characterizing the physical space. 

 

 

3.8 Window Functions 

 

 

Signals generated by real-time systems over a long period of time require some form of 

partitioning, in order to be processed, [58]. This partitioning divides the input signal into a 

number of sub-signals. In many cases in practice, the partitioned signals need to have some 

properties, such as retaining the periodicity. This is done by applying mathematical 

transformations on the partitioned signals, called window functions. In addition, a key 

purpose of the window functions is to improve the signal-to-noise ratio. 

 

 

3.8.1 Rectangular Window 

 

 

A basic example of a window function is the rectangular window. In this function, window 

boundaries W1 and W2 are defined. The data points within the window retain their values, 

while the data points outside the window are set to zero, as shown in Figure 3.5. 
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Figure 3.5: Rectangular window 

 

 

Applied on a signal in Fourier domain, this window function is used to avoid lower and 

higher frequency samples, depending on the case and how W1 and W2 are defined. 

 

 

3.8.2 Hann Window and Hamming Window 

 

Fourier transforms, especially the ones employed in OCT, assume periodicity of the signals. 

A discontinuity of this periodicity results in an increased noise in the signals. Hann and 

Hamming window functions provide solution to this problem [63]. 

 The Hann Window, named after Julius Ferdinand von Hann (1839-1921) [64], is 

illustrated by Equation 3.18. 

 

ሺ݊ሻݕ  ൌ ͲǤͷ ൈ ሺ݊ሻݔ ൈ ቆͳ െ ݏ݋ܿ ൬ ܰ݊ߨʹ െ ͳ൰ቇ (3.18) 

 

 

Where: 

x is a partition of the input signal 

y is the windowed signal 

N is the number of data points (samples) in the partition, n = 0, ..., N-1 
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 Hamming Window, proposed by Richard Wesley Hamming (1915-1998), is a 

modified version of the Hann Window. It is expressed by Equation 3.19, using the same 

notation as in Equation 3.18. 

 

ሺ݊ሻݕ  ൌ ሺ݊ሻݔ ቆͲǤͷͶ െ ͲǤͶ͸ ൈ ݏ݋ܿ ൬ ܰ݊ߨʹ െ ͳ൰ቇ (3.19) 

 

 

 Both Hann and Hamming windows gradually reduce the amplitudes of the signal at 

the end points. Doing so ensures continuity of the periodicity of the signals. Otherwise, a 

spectral leakage can be observed in the Fourier domain of the signal, where energy from one 

frequency leaks to the neighboring frequencies, which results in increased level of noise in 

the signal, as discussed in [58] and [65 pp. 540-541]. Figure 3.6 illustrates the effect of Hann 

window on a sinusoid signal. A corresponding Hamming window applied on the same signal 

would result in a signal with similar shape. 

 

 In OCT methods, the resolution, or sharpness, of the images depends on the peaks of 

the signals. In CFD OCT method, a peak without leakage results in images with better axial 

resolution [4]. 

 

 The difference between the Hann Window and the Hamming Window is the behavior 

of the windowed signal at the end points, when n=0 and n=N-1. In Hann windows, the 

endpoints are equal to zero. In Hamming window, on the other side, the endpoints are close 

to zero, but do not reach it, as seen in Equations 3.18 and 3.19. 

 

 The aforementioned window functions increase the signal-to-noise ratio when used in 

OCT methods and improve the quality of the generated images. The choice of the window 

function depends on the signals generated by the OCT system and is based on the qualities of 

the resulting images. This choice can be made after direct observation of the cross-sectional 

and en-face images. 
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Figure 3.6: Sinusoid signal with discontinuity in the periodicity (A), its corresponding Fourier 

transform (B), the sinusoid signal after Hamming Window (C) and the corresponding signal 

after Fourier transform (D). The width of the peak in the signal in Fourier domain (B) 

displays leakage to the neighboring frequencies which is eliminated in the signal in (D) 

 

3.9 Digital Signal Processing in OCT 

 

Optical coherence tomography has the ability to image semitransparent objects, such as 

biological tissues, layers below the surface. It is based on the properties of the 

electromagnetic radiation at specific frequencies to penetrate semitransparent materials and to 

reflect visual information about the material [66]. It has application in two main areas: 

ophthalmology [67] and art investigation [68]. Currently, there are two major types of OCT: 

time domain OCT and Fourier domain OCT. Fourier domain OCT can be spectral domain 

and swept source. 

 The system employed in this research is a swept source Fourier domain OCT system 

with Alazartech digitizer and a National Instruments' LabVIEW Virtual Instrument (VI) 

project, acting as data acquisition software and user interface. 
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3.9.1 Operation of OCT Systems 

 

The operating of a typical OCT system is based on the Michelson Interferometer [69 pp. 16-

18], as illustrated in Figure 3.7. Two scanning mirrors, horizontal (fast) and vertical (slow) 

guide low energy near-infrared electromagnetic ray along the surface of the object. Normally, 

a triangular waveform is employed to drive the scanning mirrors while they traverse the 

surface of the object [11]. 

 Semitransparent objects reflect the light from the surface and layers below the 

surface. The reflected light is captured by a photo detector, which is transformed into 

electrical signal. The electrical signal is digitized by analog-to-digital converter, or digitizer, 

which is usually implemented as an extension board, connected to a computer system via an 

expansion slot, such as the PCI Express. 

 Data Acquisition software, such as LabVIEW VI project, captures the digital signal 

and makes it available for further processing, storing and visualizing. The LabVIEW project 

also controls the scanning mirrors and synchronizes them with the data acquisition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Main components in OCT, where 1 denotes the object, 2 the scanned point, 3 the 

points below the surface, 4 scanning mirrors, 5 beam splitter, 6 reference mirror 
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3.9.2 Imaging in OCT 

 

For every scanned point from the surface of the object, OCT systems acquire an array of data 

points, denoted as channeled spectrum. This channeled spectrum has sinusoidal shape, as 

shown in Figure 4.1.B. It holds the reflectivity, or intensity, of the points which are located 

below the scanned point. All channeled spectra, acquired during a single scan of a line or an 

area along the surface of the object, are denoted in this research as one OCT frame and thus 

extending the notation of frame employed in [58] for the partitioning of a larger, theoretically 

infinite signal into frames. Cross-sectional and en-face images can be obtained by applying 

mathematical transformations on the OCT frames, known as OCT methods, as shown in 

Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Imaging in OCT systems 

 

3.9.2.1 Cross-Sectional OCT Imaging 

 

During cross-sectional imaging, only the horizontal (fast) scanning mirror operates. The 

vertical (slow) mirror is in a fixed position. As a result, the electromagnetic ray traverses a 

line on the surface of the object and collects one channeled spectrum for every scanned point 

along that line. The horizontal scanning mirror in the OCT system used in this research 

operates at a frequency of 100 Hz. The system acquires new cross-sectional OCT frame every 

10 milliseconds. 
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3.9.2.2 En-Face OCT Imaging 

 

During en-face imaging both scanning mirrors operate. In this case, the electromagnetic ray 

traverses an area from the surface of the object. As a result, multiple lines, each one 

consisting of multiple channeled spectra, are collected. In the OCT system studied in this 

research the vertical scanning mirror operates at 1.25 Hz, or new en-face OCT frame is 

acquired every 800 milliseconds. 

 Multiple cross-sectional images can be extracted from the en-face OCT frame. They 

can be horizontal and vertical, as presented in Chapter 6 and in [12]. 

 

3.9.3 OCT Methods 

 

The aforementioned OCT methods transform the OCT frames into cross-sectional and en-

face images. Two OCT methods are studied in this research, namely the CFD and the MSI. 

Both of them employ discrete Fourier transform. These methods calculate the intensities of 

points from particular depths. These intensities can be scaled to the gray-scale interval and 

visualized. 

 The aforementioned partitioning of the digital signal into sub-signals is applied in 

OCT, where these sub-signals are denoted as channeled spectra. The channeled spectra are 

signals with fixed size M before DFT and with size M' after DFT. In a non-redundant FFT 

M'=M/2+1. The OCT system studied in this research generates channeled spectra with 

M=1024 data points before DFT and M'=513 data points after DFT. 

 

3.9.3.1 CFD OCT Method 

 

This method, presented in Equation 3.20, is widely used in Fourier domain OCT systems. It 

consists of the following steps: 

1. Apply discrete Fourier transform on the channeled spectrum 

2. Apply absolute value on result 

3. Multiply with a gray-scale coefficient (GSC) to obtain a value from the gray-scale interval 

௜ݐ݊݅݋ܲ  ൌ ܥܵܩ ൈ ȁܶܨܦሺܵܥሻȁǢ ݅ ൌ Ͳǡڮ ǡܯԢ െ ͳ (3.20) 
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 Theoretically, in Fourier domain OCT the depth is resolved by inverse discrete 

Fourier transform [70], [71]. However, due to the similarities between the forward and 

inverse DFT, both transforms generate identical images. This allows both CFD and MSI OCT 

methods to start with the same signal processing steps, as illustrated in Figure 5.7. 

 Applied on one channeled spectrum with M data points, this method generates 

M'=M/2+1 intensities due to the none-redundancy of the employed FFT. Figure 3.9 presents a 

channeled spectrum with 1024 data points, as acquired by an OCT system. Figure 3.10 

presents the result of the CFD OCT method, applied on this channeled spectrum. It has 513 

data points from the gray scale interval [0..255], which corresponds to the intensities of 513 

points below the scanned point, as seen in Figure 3.7. 

 

 

 

 

 

 

 

 

Figure 3.9: Channeled spectrum with 1024 data points acquired from an OCT system while 

imaging semitransparent object with reflectivity from multiple depths 

 

 In Figure 3.10, the first values are set to zero. These values correspond to low-

frequency noise, denoted in some literature as DC noise. 

 

 

 

 

 

 

 

 

 

Figure 3.10: Output signal presenting the gray-scale values generated by applying CFD OCT 

method on the channeled spectrum from Figure 3.9 
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3.9.3.2 MSI OCT Method 

 

This method is proposed in [4]. Improvements brought by this method are presented and 

discussed in [72] and [73]. The application of this method in ophthalmology is discussed in 

[74] and [75]. Its GPU-based parallel implementation is proposed in [13]. The method is 

based on cross-correlation between two signals, the channeled spectrum and a previously 

recorded digital signal, called Mask. These two signals need to be equal in size. Equation 

3.21 illustrates the method. 

஽ݐ݊݅݋ܲ  ൌ ܥܵܩ ൈ ෍หܶܨܦܫ൫ܶܨܦሺܵܥሻ ൈ  ஽ሻതതതതതതതതതതതതതത൯ห (3.21)ܵܯሺܶܨܦ

 

 Mask signals are obtained by using a flat mirror as an object. They are presented in 

arbitrary units. Each Mask signal represents a particular depth D. This depth is determined by 

the difference in the optical path lengths between the beam splitter and the reference mirror 

on one side and the beam splitter and the object on the other [4]. Obtaining images from 

multiple depths requires multiple Mask signals. Figure 3.11 presents two mask signals 

corresponding to two different depths. 

A 

 

 

 

 

 

 

B 

 

 

 

 

 

 

Figure 3.11: Two Mask signals (A) and (B) before and after DFT, representing two different 

depths 
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 The Mask signals presented in Figure 3.11 can be considered as channeled spectra 

obtained while imaging a flat mirror with two different optical paths lengths. In these 

channeled spectra the reflectivity is from one depth, the surface of the mirror at its current 

position. An OCT system employing this method requires a set of Mask signals permanently 

stored in the memory. The peaks in Figure 3.11 directly correspond to the intensity, or the 

brightness, of the surface of the imaging mirror. The thicknesses of these peaks represent the 

axial resolution of the OCT system, or the resolution in depth. This thickness, and 

consequently the resolution, can be altered by applying a window function. 

 The cross-correlation algorithm used in the MSI OCT method measures the level of 

similarity between the channeled spectra generated by the OCT system while imaging and 

object and the Mask signal. The Mask has maximum intensity from one particular depth. The 

resulting reflectivity, or the intensity, from that particular depth will be quantified by the 

cross-correlation, e.g. higher cross-correlation corresponds to higher intensity and vice-versa. 

The level of similarity has a numerical value, which after scaling represents a value on the 

gray-scale interval. This value corresponds to the reflectivity from a particular depth below 

the scanned point. 

 In the CFD OCT method, as seen in Equations 3.20, one Fourier transform of the 

channeled spectrum of M data points results in M' intensities, or points, which can be 

visualized after calculating the absolute value and the gray-scale value. In the MSI OCT 

method, on the other hand, the intensity of one point from a particular depth is generated by 

one cross-correlation between a channeled spectrum and a Mask signal. This cross-

correlation consists of two forward and one inverse discrete Fourier transforms, as seen in 

Equation 3.21. This is a significant increase in the amount of computations in the MSI OCT 

method. 

 

3.9.4 Parallel Acceleration in OCT 

 

Significant efforts are made to improve the images generated by OCT systems. These efforts 

can be divided into two groups: hardware solutions and numerical solutions. The numerical 

solutions come in the form of new algorithms and methods. The MSI is an example for such 

method. These numerical solutions are applied on considerable amount of data generated by 

OCT systems. On the other hand, the introduction of additional computations does not 
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change the real-time criteria of the OCT systems. 

 Therefore, the OCT systems are expected to benefit from the parallelization of these 

numerical solutions. A significant improvement of the performance is expected particularly 

from the parallel computations on the GPU. But the introduction of the GPU Computing in 

OCT brings two main challenges in the form of performance overheads: 

 1. A GPU application, for example one written in CUDA C, is not a data acquisition 

software. It relies on other software to provide the data. These two software solutions need to 

be able to communicate with each other and exchange considerable amount of data. 

 2. The GPU processes data which is residing on the global GPU memory. These data 

need to be transferred over the PCI Express bus. Even the newly introduced unified address 

space does not eliminate the need for this copy. 

 The aim is to implement these numerical solutions on the GPU with minimum 

latency, which will not prevent the real-time operation of the OCT system. This is a 

significant challenge, both to the GPU architectural design and the design and 

implementation of the parallel algorithms and programs. 

 A number of efforts in this direction are made. For example, in [71], an image of 

1024×512 is processed with the rate of 27.9 frames per second. The processing is accelerated 

by the CUDA FFT library. 

 A GPU-implemented interpolation was reported in [76], where three approaches to 

interpolation are compared, namely nearest neighbor, linear and spline. The interpolation was 

followed by FFT and absolute value, which are the steps of the CFD OCT method. The 

proposed solution allowed improvements to cross-sectional images of size 1024×1024 pixels 

and resulted in 25 Hz rate of processing and display. 

 A performance improvement by the factor of 39 is reported in [77]. In this case, the 

GPU performed linearization and FFT, which resulted in real-time generation of cross-

sectional images with size of 1024×512 pixels. 

 The aforementioned cases of GPU utilization in OCT improve the generation of a 

single cross-sectional image generated by signal processing steps equivalent to the CFD OCT 

method. The improvement of the performance depends on the processing steps, the size of the 

processed data, and the architecture of the GPU. Figure 3.12.A illustrates the generalized 

concept of these approaches. 

 Chapter 5 and Chapter 6 of the thesis present coarse-grained CPU-based and fine-

grained GPU-based parallel implementations of both CFD and MSI methods. Figure 3.12.B 

illustrates the GPU-based parallel optimization of the MSI method, which leads to 
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comprehensive imagery, presented in Chapter 6, consisting of 40 en-face, one confocal and 

two cross-sectional images, which amounts to 1775104 processed points in total 

(40×200×192+200×192+200×512+192×512). Besides the parallelization efforts, this result is 

also contributed by the lower real-time requirement for en-face OCT imaging, which is 800 

milliseconds. This result also depends on the utilized GPU architecture. 
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Figure 3.12: GPU utilization in OCT 

 

 

3.10 Summary 

 

This chapter presented some of the most popular digital signal processing algorithms and 

their applications in OCT. Two OCT methods, the CFD and the MSI, employing the DSP 

algorithms are presented. Both of them operate in the Fourier domain. The CFD method is 

well established and widely used in Fourier domain OCT systems. The newly introduced MSI 

method brings some improvements in the operation and the output of the OCT system, but 

increases significantly the amount of the computations. 

 Regardless of the employed OCT method, the real-time criterion of the OCT system 

remains the same. Sequential processing of MSI OCT results in up to four en-face images 

generated in real-time, as reported in [72]. This amount of en-face images in the case of 

ophthalmology is not sufficient. Increased number of images in sequential implementation 
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will result in skipped frames and delays. It will prevent the OCT system from generating 

images in real-time. This reduces the efficiency of the OCT system if used in ophthalmology, 

where the patient voluntarily and involuntarily blinks and changes sight direction. 

 Various parallel approaches to DSP algorithms and OCT methods are presented in the 

next Chapters 4 and 5. Their performances, in terms of latency and speed-up, are measured 

and reported. These optimizations are expected to absorb the increased computations of the 

more intensive MSI OCT method and to improve the overall performance of the OCT 

system. 
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Chapter 4 
 

Parallel Optimization of Digital Signal 

Processing Algorithms 
 

 

4.1 Introduction 

 

This chapter explores how multithreading for multi-core and many-core architectures 

improve the performance of a number of DSP algorithms. The selected algorithms are widely 

used in many different areas, such as communications, image, audio and video processing. 

The parallelized implementations are compared with sequential implementations, carried out 

by a single thread of execution. 

 The parallelism, described in this chapter, is achieved by multithreading. The basic 

principle of the multithreading programming model is the division of a larger and more 

complex task into a number of smaller and simpler tasks, called threads, and the concurrent, 

and where possible simultaneous, execution of these threads. 

 The parallel optimizations proposed in this chapter derive from sequential algorithms. 

These algorithms are based on well-known and widely used digital signal processing 

theorems. 

 The multi-core approach, based on a multi-core CPU, is developed as Microsoft 

Visual C++ multithreaded application utilizing the Windows API multithreading support. Its 

performance is measured on Intel Core i7 5820K CPU with 6 cores, at 3.30 GHz and 4 GB of 

RAM. The many-core approach, based on the GPU, is implemented as an NVIDIA CUDA C 

application. Its performance is measured on NVIDIA Tesla K40 GPU with 2880 CUDA 
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cores and 12 GB of onboard memory. 

 The aim of this chapter is to identify optimal approaches to the DSP algorithms. 

These DSP algorithms form the basis in the OCT methods, presented in the next Chapter 5. 

The overall aim is to integrate these OCT methods into working OCT system. This 

integration determined the choice of the aforementioned programming environments. 

 

 

4.2 Techniques for Measuring the Performance 

 

The performances of the parallel approaches are evaluated by measuring the elapsed time. 

The time needed by a single thread of execution to complete the signal processing tasks is 

considered as a baseline. This single-threaded performance is utilized in presenting the speed-

up introduced by the parallel optimizations. 

 In order to confirm the obtained performance data, the elapsed time is measured using 

two different techniques, the Performance Counter and GetSystemTime function. Both 

approaches reported virtually identical processing times. 

 

 

4.2.1 Performance Counter 

 

This counter can be used to monitor the performance of the computations, as shown in 

Algorithm 4.1. It can be accessed by using the following Windows Application Programming 

Interface (API) functions: 

 - QueryPerformanceFrequency, retrieves the number of cycles per seconds of the 

performance counter 

 - QueryPerformanceCounter, provides the current value of the performance cycle 

counter 

 On Intel Core i7 running Microsoft Windows 7, the frequency of the counter is 

3,220,839 cycles per second. This allows a maximum resolution of approximately 3 

microseconds. This frequency allows sub-millisecond measurement of the performance, as 

demonstrated in Algorithm 4.1. 
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Algorithm 4.1:  Utilization of performance counter 

1: QueryPerformanceFrequency ( &Frequency ) 

2: CyclesPerMillisecond = Frequency.QuadPart / 1000 

3: CyclesPerMicroseconds = Frequency QuadPart / 1000000 

4: QueryPerformanceCounter ( &StartTime ) 

5: CodeToMeasure 

6: QueryPerformanceCounter ( &EndTime ) 

7: ExecutionTimeInCycles = EndTime.QuadPart - StartTime.QuadPart 

8: ExecutionTimeInMilliseconds = ExecutionTimeInCycles /CyclesPerMillisecond 

9: ExecutionTimeInMicroseconds = ExecutionTimeInCycles / CyclesPerMicroseconds 

 

 

4.2.2 GetSystemTime 

 

 

The GetSystemTime is a Microsoft Windows API function, which retrieves the current system 

time and stores it in a predefined structure SYSTEMTIME with the following two-byte 

fields: wYear, wMonth, wDayOfWeek, wDay, wHour, wMinute, wSecond, wMilliseconds. 

The highest possible resolution in this approach is milliseconds. Algorithm 4.2 illustrates its 

usage. 

 

 

 

Algorithm 4.2:  Utilization of GetSystemTime 

1: GetSystemTime ( &StartTime ) 

2: CodeToMeasure 

3: GetSystemTime ( &EndTime ) 

4: StartTimeInMilliseconds = StartTime.wMilliseconds + 1000×StartTime.wSeconds 

  + 1000×60×StartTime.wMinutes + 1000×60×60×StartTime.wHour 

5: EndTimeInMilliseconds = EndTime.wMilliseconds + 1000×EndTime.wSeconds 

  + 1000×60×EndTime.wMinutes + 1000×60×60×EndTime.wHour 

6: ProcessingTimeInMilliseconds = EndTimeInMilliseconds - StartTimeInMilliseconds 
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4.2.3 Measuring the Performance of the GPU 

 

In this chapter, the reported time of the GPU-based computations does not include the time to 

transfer the data to and from the global GPU memory over the PCI Express bus. This chapter 

compared the computations on the CPU and the GPU with data already available for 

processing. Algorithm 4.3 illustrates the measurement of the latency of the GPU-based 

computations. In this case, both the aforementioned GetSystemTime and Performance 

Counter can be used. 

 

Algorithm 4.3:  Measurement of GPU Latency 

1: cudaDeviceSynchronize ( ) 

2: SaveCurrentTime ( &StartTime ) 

3: CodeToMeasure ( kernels ) 

4: cudaDeviceSynchronize ( ) 

5: SaveCurrentTime ( &EndTime ) 

 

 

4.3 Format and Size of the Digital Signal 

 

 

The DSP algorithms, studied in this chapter, find application in the area of OCT, among 

others. Therefore, the size and structure of the digital signals employed in this chapter are 

influenced by the signals in the OCT systems. As described in Chapter 3, the OCT systems 

generate OCT frames at a certain rate. These frames are divided into multiple channeled 

spectra. An OCT frame consisting of multiple channeled spectra corresponds to the more 

general notion of a digital signal consisting of multiple sub-signals. 

 The algorithms and methods studied in this research are applied per sub-signal in the 

more general case and per channeled spectrum in the case of OCT. 

 In the course of this research, a number of OCT frames with different sizes are 

collected during cross-sectional and en-face imaging. These frames are processed and 

visualized as cross-sectional and en-face images, as presented in Chapter 5. The sizes of these 

images and the number of points in these frames depend on the characteristics and the 

capabilities of the particular OCT system. The digital signals employed in this chapter reflect 

these sizes and include a wider range, as presented in Table 4.1. 
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Table 4.1: Sizes of digital signals and OCT frames 

Size of digital signal (OCT Frame) in data points Number of sub-signals (channeled spectra) 

1024 1 

24×1024 16 

26×1024 64 

100×1024A 100 

200×1024A 200 

28×1024 256 

500×1024A 500 

210×1024 1024 

212×1024 4096 

214×1024 16384 

200×192×1024B 38400 

(216-1)×1024C 65535 
 

A Size of OCT frame collected during cross-sectional imaging, as presented in Chapter 5 
B Size of OCT frame collected during en-face imaging, as presented in Chapter 5 
C The largest digital signal employed in this chapter. In this case, the number of sub-signals 

(channeled spectra) is equal to the maximum number of blocks in the GPU grid of the 

NVIDIA Fermi architecture 

 

 The algorithms in this chapter are tested with two different signals, illustrated by 

Figure 4.1. The first one is a sinusoid generated by the proposed parallel implementations 

during initialization. The second one is the digital signal generated by the OCT system. In 

both cases, the performances of the parallel implementations yield equivalent results. 

A       B 

 

 

 

 

 

 

 

Figure 4.1: Synthetically generated sinusoidal signal (A) and signal, or channeled spectrum, 

generated by the OCT system (B) 
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4.4 CPU-Based and GPU-Based Multithreading 

 

CPU-based multithreading is implemented by launching multiple parallel threads within a 

single process. This is achieved by the API functions CreateThread and 

WaitForMultipleObjects in Microsoft Windows. The corresponding POSIX (Portable 

Operating System Interface) functions are pthread_create and pthread_join, Figure 4.2. The 

combined utilizations of these functions can implement the fork-join parallel model, 

discussed in [26] and [49]. This model is followed by OpenMP. 

 Theoretically, the maximum number of parallel threads launched by a single process 

is defined by the size of the address space dedicated to the process and by the address spaces 

dedicated to each thread. These values vary in different operating systems [78]. 

 A series of tests are made to evaluate the overhead latency introduced by launching 

multiple parallel threads on the CPU and on the GPU, using Microsoft Visual C++ and 

NVIDIA CUDA C respectively. Two groups of parallel threads are used to measure these 

overheads: empty threads and threads querying their identifier. The results are presented in 

Table 4.2 and Figure 4.3. 

 Parallel threads processing data generated by a single source need to partition the 

input data. This division of the input data is based on the identifiers of the parallel threads. 

These identifiers index both the parallel threads and the partitions of data. Therefore, Table 

4.2 includes the latencies of threads obtaining their identifiers. 

 The CPU and the GPU threads obtain their identifiers differently. In the CPU case, an 

identifier is obtained by calling the Windows API function GetCurrentThreadId. In the GPU 

case, this is done by querying built-in variables. This difference further contributes to the 

differences in the latencies of the threads. 

 

 

 

 

 

 

 

Figure 4.2: CPU-based multithreading 
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Table 4.2: Overheads in CPU and GPU multithreading in milliseconds 

Number of 

parallel threads 

Launch ID 

CPU GPU CPU1 GPU2 

2 0.8 0.04 1.2 0.05 

4 2.1 0.04 2.3 0.05 

6 3.3 0.04 3.5 0.05 

8 3.7 0.04 4.6 0.05 

12 6.8 0.04 7.4 0.05 

16 8.9 0.04 12.5 0.05 

32 17.4 0.04 25.4 0.05 

64 41.2 0.04 53.2 0.05 

128 92.4 0.05 132.6 0.05 
 

1 Each CPU-based parallel thread obtains its own identifier using the Windows API function 

GetCurrentThreadId 
2 Each GPU-based parallel thread retrieves its own identifier using the expression: 

 int ThreadID = ( blockDim.x ) × ( blockIdx.x ) + ( threadIdx.x ) 

 

 In the GPU-based approach, the overheads caused by launching parallel threads are 

virtually the same for the listed number of threads. As seen from Table 4.2, the GPU-based 

multithreading has superior performance. It has the potential to deliver real-time performance 

in more cases. 

 In the CPU-based approach, the overheads from thread management are significant. 

Launching more than 16 parallel threads exceeds the real-time requirement in cross-sectional 

OCT imaging. These limitations reflect the optimal number of parallel threads in the different 

CPU-based approaches, presented in this chapter and in the next Chapter 5. 

 

 In the CPU-based approaches, instead of using the GetCurrentThreadId, the indexing 

of the data partitions is implemented by variables, passed as parameters to the functions 

launching the parallel threads. This is done for two reasons: 

 1. As shown in Table 4.2, the call to the GetCurrentThreadId has a significant 

latency, which will affect a possible real-time performance. 

 2. Calls to GetCurrentThreadId return system-wide identifiers. Normally, they do not 

start from 0 and there is no guarantee they will use successive numbers. Therefore, they are 

not suitable for indexing data partitions. 
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 As seen in Table 4.1, the overheads introduced by the GPU-based approach are much 

smaller, compared to the CPU-based approach. On the other hand, GPU applications can only 

operate with data already in the GPU memory. This brings different types of overheads: the 

time to copy the data from the CPU memory to the GPU memory and back. These latencies 

affect the real-time performance of the GPU-based processing, which is discussed in Chapter 

5. 

 This chapter reports the latencies of the computations on the CPU and on the GPU. It 

does not include the latencies of the data transfers over the PCI bus. These latencies are 

reported separately in Table 5.3 and 5.4. 

 

 

4.4.1 Mapping the Digital Signal on the GPU Grid 

 

As discussed in Chapter 2, the GPU organizes the parallel threads into thread blocks which 

form the GPU grid. A maximum parallelism and utilization of the GPU grid would be 

achieved if each data point is processed by one parallel thread. Also, some algorithms, such 

as the parallel reduction, require cooperation between the parallel threads processing one sub-

signal or one channeled spectrum, which can be done by parallel threads within the same 

block. This cooperation is in the form of utilizing a shared per-block memory and the need 

for synchronization. This is done by processing each sub-signal by one thread block. Figure 

4.3 illustrates the one-to-one mapping of the sub-signals onto the thread blocks and one-to-

one mapping of the data points onto the parallel threads. 

 In the NVIDIA Fermi architecture, the largest number of threads per block is 1024 

and the largest number of blocks per dimension is 216-1. The NVIDIA Kepler architecture has 

the same number of threads per thread block, but the number of blocks per dimension is 

increased to 232-1 [46]. As a result, the maximum amount of parallel threads in one-

dimensional GPU grid is (216-1)×1024 in Fermi architecture and (232-1)×1024 in Kepler 

architecture. 

 A digital signal consisting of maximum 216-1 sub-signals with maximum 1024 data 

points within each sub-signal allows a one-to-one mapping onto the GPU grid in both 

architectures, as shown in Figure 4.3. In most cases, the OCT frames have significantly 

smaller number of sub-signals. However, a one-to-one mapping of larger digital signals is 

still possible, but it will require two or three dimensional GPU grid. 
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Figure 4.3: Mapping the data points and sub-signals on the GPU grid 

 

4.4.1.1 Hamming Window Example 

 

The following example of Hamming Window [63] , discussed in Chapter 3, applied on a 

digital signal f demonstrates the implementation of the kernel and the mapping of the digital 

signal onto the GPU grid. The CUDA C code in Listing 4.1 presents the parallel GPU-based 

implementation, based on Equation 4.1 and the sequential Algorithm 4.4. In this example, f 

can represent both digital signal consisting of N sub-signals where each sub-signal has M data 

points, or OCT frame consisting of N channeled spectra where each channeled spectrum has 

M data points. 

 

Algorithm 4.4:  Sequential approach to Hamming window 

for j = 0 to N-1 do 

 for i = 0 to M-1 do 

  Angle = ( 2×ʌ×i ) / M 

  fi,j = 0.5×fi,j×( 1 - Cos ( Angle ) ) 

 end for 

end for 
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௜݂ǡ௝ ൌ ͳʹ ௜݂ǡ௝ ቆͳ െ ݏ݋ܿ ൬ʹܯ݅ߨ ൰ቇ Ǣ ݅ ൌ Ͳǡڮ ǡܯ െ ͳǢ ݆ ൌ Ͳǡڮ ǡܰ െ ͳ (4.1) 

 

Listing 4.1: NVIDIA CUDA C implementation of Hamming window 

1: __global__ void HammingWindowKernel(float *f) 

2: { 

3:  int i,Index; float Angle; 

4: i=threadIdx.x; 

5: Index= (blockDim.x)*(blockIdx.x)+threadIdx.x; // Map the index of digital signal on the grid 

6: Angle=(float)((2.0*3.14159*i)/(blockDim.x)); // Calculate the angle for the cosine function 

7: f[Index]=(float)(0.5*f[Index]*(1.0-cos(Angle))); // Actual Hamming window 

8: } 

... 

9: int M=1024; // Number of threads per block or size of sub-signal 

10: int N=65535; // Number of blocks per 1D grid or number of sub-signals 

11: cudaMalloc(&f,M*N*sizeof(float)); // Allocate GPU memory for signal f 

12: HammingWindowKernel<<<N,M>>>(f); // kernel launching M*N parallel threads 

 

 In the GPU kernel performing the Hamming window, as shown in Listing 4.1, the 

number of threads per block is equal to the number of data points in the sub-signal and the 

number of blocks per GPU grid is equal to the number of sub-signals in the digital signal. All 

kernels presented in this thesis follow the same mapping of the data onto the GPU grid. 

 

 

4.5 Fourier Transforms 

 

Large part of the signal processing studied in this research involves transition between time 

domain and Fourier domain. This is accomplished by applying one-dimensional discrete 

Fourier transform on each sub-signal or channeled spectrum. In this research, this transform 

is considered an atomic operation. Therefore, in the CPU-based parallel approaches the 

number of possible parallel threads must divide the digital signal into integer number of sub-

signals. In the GPU-based approaches, multiple FFT calls can be organized into a batch and 

performed by one CUDA FFT call, which automatically utilizes the parallel resources of the 

GPU, as discussed in Chapter 2. 

 Two libraries implementing fast Fourier transform (FFT) are used in this chapter, 

namely the Fast Fourier Transform in the West (FFTW) for the CPU-based approach and 

NVIDIA CUFFT for the GPU-based approach. 
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 Both FFT libraries support the following types of FFT: 1D, 2D, 3D, forward real-to-

complex and complex-to-complex, and inverse complex-to-complex and complex-to-real 

transforms. 

 

 

4.5.1 CPU-Based Approach 

 

 

In the CPU-based multithreading approach, each parallel thread needs to extract one or more 

sub-signals from the digital signal, perform FFT and copy back the result, as illustrated in 

Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: CPU-based parallel threads performing forward and inverse Fourier transforms 

 

 The FFTW library requires the following steps in order to complete forward and 

inverse FFT: 

 1. Create an FFT plan using the function fftw_plan_dft_r2c_1d() 

 2. Perform the forward or inverse FFT on the digital signal (data) by using 

fftw_execute_dft_r2c() or fftw_execute_dft_c2r() functions 

 3. Free the memory used by the FFT plan using fftw_destroy_plan() function 

 Algorithms 4.5 and 4.6 present the CPU-based approach. 
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Algorithm 4.5:  CPU-based multithreading of FFT 

1: Create FFT_Plan /fftw_plan_dft_r2c_1d/ 

2: Record Start Time 

3: for  t = 0 to NumberOfThreads-1 do 

4: Launch Parallel Threadt /CreateThread/ 

5: end for 

7: Wait For Threadt /WaitForMultipleObjects/ 

9: Record End Time 

10: Destroy FFT_Plan /fftw_destroy_plan/ 

 

 In Algorithm 4.6, four signals are used: SignalTD, SignalFD, SubSignalTD and 

SubSignalFD. The SignalTD and SignalFD are declared in the global scope and all parallel 

threads can access them. SubSignalTD and SubSignalFD are declared locally in every thread. 

In the case of OCT data, SignalTD and SignalFD correspond to the OCT frame before and 

after discrete Fourier transform. In the same way, SubSignalTD and SubSignalFD correspond 

to the channeled spectra before and after the Fourier transform. Each parallel thread processes 

an equal number of sub-signals. All indices in Algorithm 4.5 start from 0. 

 

Algorithm 4.6:  Thread performing FFT on local sub-signal 

1: Start Parallel Threadt ( ThreadID1 ) 

2: Start = ThreadID×NumberOfSubSignalsPerThread 

3: End = ( ThreadID + 1)×NumberOfSubSignalsPerThread 

4: for  j = Start to End-1 do 

6:  SubSignalTDi
2 = SignalTD3

i,j /memcpy/ 

7:  SubSignalFDi
4  = FFT ( SubSignalTDi ) /fftw_execute/ 

8:  SignalFDi,j
5 = SubSignalFDi /memcpy/ 

9: end for 

10: End Parallel Threadt 
 

1 ThreadID is passed to the parallel thread from the calling (main) thread 
2 Local per-thread 1D array holding the sub-signal before DFT 
3 Global 2D array consisting of multiple sub-signals before DFT 
4 Local per-thread 1D array holding the sub-signal after DFT 
5 Global 2D array consisting of multiple sub-signals after DFT 

 

 Alternatively, the multithreaded FFT can operate directly with the global signals, as 
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shown in Algorithm 4.7. 

 

Algorithm 4.7:  Thread performing FFT on global signal 

1: Start Parallel Threadt ( ThreadID1 ) 

2: Start2 = ThreadID×NumberOfSubSignals 

3: End2 = ( ThreadID + 1 )×NumberOfSubSignals 

4: for  j = Start to End-1 do 

7:  SignalFDi,j
3 = FFT ( SignalTDi,j

3 ) /fftw_execute/ 

9: end for 

10: End Parallel Threadt 
 

1 ThreadID is passed to the thread as a parameter 
2 Start and End are local per-thread variables. They define to range of sub-signals processed 

by each parallel thread 
3 SignalTD and SignalFD are global variables. All parallel threads have access to them 

 

 Some cases some implementations of the FFT, such as the FFTW, in some cases the 

input data is destroyed after the transform completes [79]. A solution in this case is 

performing forward and inverse FFT on a local copy of the sub-signal, as shown in Algorithm 

4.6. 

 

 

4.5.2 GPU-Based Approach 

 

 

In the GPU approach, the FFT has the ability to perform a batch of multiple transforms over a 

digital signal consisting of multiple sub-signals. In this case, the digital signal is presented as 

two-dimensional array. 

 In the case of FFT employed in OCT methods, one-dimensional forward real-to-

complex and one-dimensional inverse complex-to-real transforms are necessary. These 

transforms are applied on every channeled spectrum from the OCT frame. 

 The CUFFT library provided by NVIDIA takes advantage of the many-core 

architecture of the GPU [28]. This approach, similar to the coarse-grained implementation, 

uses the following functions: 
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 1. cufftPlan1d - creates environment for the transforms, defines the type of transform 

 2. cufftPlanMany creates environment for multiple (batch) transforms 

 3. cufftExecR2C - performs the forward real to complex FFT 

 4. cufftExecC2R - performs the inverse complex to real FFT 

 5. cufftDestroy - frees the memory allocated by the FFT plan 

 

 

 The cufftPlanMany function can be used when multiple FFT are needed. In this case, 

the sub-signals do not need to be extracted from the time domain signal and processed 

separately. Listing 4.2 presents a CUDA C code applying forward FFT on a signal with the 

same size and format presented in Listing 4.1. 

 

 

 

Listing 4.2: Batch execution of multiple 1D forward FFT on the GPU 

1: int M=1024; // Size of sub-signal 

2: int M_prime=M/2+1; // Size of sub-signal in Fourier domain 

3: int N=65535; // Number of sub-signals and number of transforms 

4: int DimSize[1]; // Size of sub-signal per dimension 

5: DimSize[0]=M; // 1D FFT is employed 

6: cudaMalloc(&SignalTDGPU,M*N*sizeof(cufftReal)); // Signal in time domain 

7: cudaMalloc(&SignalFDGPU,M_prime*N*sizeof(cufftComplex)); // Signal in Fourier domain 

8: cufftHandle ForwardPlan; 

9: cufftPlanMany(&ForwardPlan,1,DimSize,NULL,1,0,NULL,1,0,CUFFT_R2C,N); // Initializing the plan 

10: cufftExecR2C(ForwardPlan,SignalTDGPU,SignalFDGPU); // The actual transform 

11: cufftDestroy(ForwardPlan); // Deletes the FFT plan 

 

 

4.5.3 Performance of Forward and Inverse FFT 

 

 

Forward and inverse FFT is applied on digital signal consisting of multiple sub-signals of 

1024 data points each. One-dimensional forward and inverse FFT are applied per sub-signal. 

Tables 4.3 and 4.4 present the performance of CPU-based and GPU-based implementations 

of both Fourier transforms. The CPU-based implementation uses the FFTW and the GPU-

based implementation employs NVIDIA CUFFT. 
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Table 4.3: Performance of CPU-based and GPU-based multithreading of forward FFT in milliseconds 

Size of 

digital signal 

Number 

of FFT 

CPU-based 

single thread 

Number of CPU-based parallel threads GPU-based 

multithreading 2 4 8 16 32 

1024 1 0.01 - - - - - 0.06 

24×1024 16 0.06 1.4 2.6 5.2 10.1 - 0.06 

26×1024 64 0.63 2.2 3.0 5.3 10.4 19.1 0.08 

28×1024 256 0.9 2.7 3.5 5.5 10.9 21.2 0.11 

210×1024 1024 3.1 6.7 4.7 6.2 11.8 27.1 0.14 

212×1024 212 17.6 18.3 6.4A 7.5 12.4 29.9 0.45 

214×1024 214 63.3 54.8 24.8 18.1 17.8A 32.5 1.52 

(216-1)×1024 216 212.2 144.3 76.8 47.1 46.4A 48.6 5.98 
 

A Optimal performance of CPU based multithreading used to evaluate the speed-up 

 

 

Table 4.4: Performance of CPU-based and GPU-based multithreading of inverse FFT in milliseconds 

Size of 

digital signal 

Number 

of IFFT 

CPU-based 

single thread 

Number of CPU-based parallel threads GPU-based 

multithreading 2 4 8 16 32 

1024 1 0.01 - - - - - 0.06 

24×1024 16 0.07 1.5 2.6 4.6 10.5 - 0.08 

26×1024 64 0.28 2.3 3.1 5.0 11.2 18.8 0.09 

28×1024 256 0.9 2.8 3.4 5.1 11.6 19.8 0.13 

210×1024 1024 3.4 7.3 5.2 6.6 12.7 22.9 0.15 

212×1024 212 14.4 20.1 7.8A 8.9 14.8 23.3 0.49 

214×1024 214 60.1 55.9 26.4 18.8 18.6A 28.7 1.53 

(216-1)×1024 216 197.8 148.8 95.8 55.8 50.3A 52.1 6.06 
 

A Optimal performance of CPU-based multithreading used to evaluate the speed-up 

 

 The evaluation of the performance of a variable number of threads processing variable 

sizes of digital signals requires an agreement between the number of parallel threads and the 

size of the signal, as each parallel thread processes equal amount of data, Equation 4.2. As 

seen from Table 4.3 and 4.4, the optimal number of parallel threads in the CPU-based 

approach depends, apart from the multi-core architecture of the CPU, also on the size of the 

processed digital signal. It varies between 2 and 16. Improved performance in both FFT and 

IFFT of the CPU-based parallel approach is observed for digital signals with sizes starting 

from 212×1024. Table 4.5 presents the speed-up of the forward and inverse FFT. 
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TotalSizeOfSignal =  NumberOfThreads × SizeOfSignalPerThread  (4.2) 

 

Table 4.5: Speed-up of the CPU-based and GPU-based forward and inverse FFT 

Number of 

FFT/IFFT 

Forward FFT Inverse FFT 

Speed-up 

(CPU-based) 

Speed-up 

(GPU-based) 

Speed-up 

(CPU-based) 

Speed-up 

(GPU-based) 

64 - 7.88 - 3.11 

256 - 8.18 - 6.92 

1024 - 22.14 - 22.67 

212 2.35 39.11 1.85 29.39 

214 3.56 41.64 3.23 39.28 

216 4.57 35.48 3.93 32.64 

 

 As seen from Table 4.5, the CPU-based optimization improves the performance for 

larger number of transforms. The overheads of the CPU-based thread management, presented 

in Table 4.2, prevent this approach to speed-up the processing of a smaller number of Fourier 

transforms. The GPU-based optimization, on the other hand, improves the performance when 

the number of FFT reaches 64. However, the GPU processing requires the data to be copied 

to the GPU global memory, which brings another kind of overheads. 

 

 

4.6. Cross-Correlation 

 

 

The cross-correlation is a key signal processing algorithm with applications in many areas, as 

discussed in Chapter 3. It measures the similarity between two signals, or functions. Equation 

4.3 presents the cross-correlation theorem, as discussed in [55 p. 359]. This equation is the 

starting point for all cross-correlation approaches presented in this chapter. It is based on 

forward and inverse Fourier transforms. The cross-correlation, denoted with "·", can be 

applied on analog or digital signals and functions, denoted with f and g. 

 

݂ ή ݃ ൌ න ݂ҧሺݐሻ݃ሺݐ ൅ ஶݐሻ݀ܮ
ିஶ ൌ ܶܨܫ ቀܶܨሺ݂ሻതതതതതതതതܶܨሺ݃ሻቁ (4.3) 
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 The cross-correlation theorem allows a Fourier-domain computation of this signal 

processing algorithm. This allows FFT libraries, optimized for parallel execution such as the 

NVIDIA CUFFT, to contribute to the performance of parallel optimizations of the cross-

correlation. 

 The cross-correlation presented in this chapter is implemented between a smaller in 

size digital signal f, acting as a template, and a larger digital signal g, as presented in Figure 

4.5. In the MSI method, f corresponds to the mask signal and g to the OCT frame. The larger 

signal g is split into a number of sub-signals. Each sub-signal has the same size, or the same 

number of data points, as the template signal f. The cross-correlation evaluates the similarity 

between each sub-signal and the template signal. The number of performed cross-correlations 

is equal to the number of sub-signals in signal g, denoted with N. The size of the template 

signal and each sub-signal is equal to M. The overall size of signal g is M×N. In the 

subsequent approaches, signal f is considered as a one-dimensional array SignalFi and signal 

g is considered as two-dimensional array SignalGi,j, where i=0,..,M-1 and j=0,..,N-1. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Cross-correlation between signal f and signal g 

 

 

 Figure 4.6 presents the cross-correlation between two sinusoid signals f and g with the 

same frequency and zero padding added to both of them, where: 

  fn=sin(32×(2ʌn/N)) for n=0 to N/2-1; fn=0 for n=N/2 to N-1 

  gn=0 for n=0 to N/2-1; gn=10×sin(32×(2ʌn)/N) for n=N/2 to N-1 

  N=1024 
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Figure 4.6: Cross-correlation between two signals (functions) f and g. A and B show signals f 

and g with zero padding applied on the opposite sides. C shows the cross-correlation of f and 

g obtained by using the cross-correlation theorem. The result is equivalent to sliding signal g 

shown in B from right to left and calculating the dot product with signal f shown in A at 

every point 

 

 Based on its definition, the cross-correlation applies the same set of computations 

over the data points of the digital signals. Therefore, its performance is expected to benefit 

significantly from parallel optimization implemented by dividing the computations among 

multiple parallel threads. 

 The implemented single-threaded, CPU-based multithreaded and GPU-based 

multithreaded approaches to cross-correlation are illustrated in Figure 4.7. The performance 

delivered by the sequential approach is considered as a baseline performance, which is 

compared against the subsequent parallel optimizations. 
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Figure 4.7: Sequential and parallel approaches to cross-correlation 

 

 

4.6.1 Sequential Approach to Cross-Correlation 

 

 

Algorithm 4.8 follows the steps of the cross-correlation theorem, as presented in [55] and in 

Equation 4.3. It processes one data point at a time. The signals SignalF', SignalG' and 

consequently CrossCorrelation' are in the Fourier domain. Therefore, the multiplication 

follows the rules of the complex multiplication. The sequential processing is organized into 

'for' loops. The subsequent CPU-based parallel optimization aims at reducing the number of 

iterations in these loops. The GPU-based parallel approach completely eliminates the 

iterations from the implementation. However, due to the large number of parallel threads a 

partially sequential execution may be introduced by the scheduling policy of the GPU. 

 Signal g can be presented as one-dimensional array of sub-signals, or as a two-

dimensional array of data points. In the second case, which is used in Algorithms 4.8, 4.9 and 

4.10, i denotes the index of the data point within the sub-signal and j denotes the index of the 

sub-signal itself. The same applies for the resulting signal, the cross-correlation of f and g. 
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Algorithm 4.8:  Sequential approach to cross-correlation 

1: M' = M/2 + 1 

2: SignalF'i = FFT ( SignalFi ) 

3: for  i = 0 to M'-1 do 

4: SignalF'i = CC ( SignalF'i ) 

5: end for 

6: for  j = 0 to N-1 do 

7: SignalG'i,j = FFT ( SignalGi,j ) 

8: for  i = 0 to M'-1 do 

9:  CrossCorrelation'i,j = SignalF'i × SignalG'i,j 

10: end for 

11: CrossCorrelationi,j = IFFT ( CrossCorrelation'i,j ) 

12: end for 

 

 

4.6.2 CPU-Based Parallel Approach 

 

 

The CPU-based parallel approach is based on the sequential algorithm presented in 

Algorithm 4.8. It launches multiple CPU-based parallel threads and thus reduces the number 

of iterations in the second, more computationally heavy, 'for' loop. The much smaller amount 

of computations in the first 'for' loop, consisting only of complex conjugate, would not 

benefit from parallel optimization. 

 The proposed CPU-based parallel optimization launches one parallel thread per 

number of cross-correlations. Controlling the number of the parallel threads allows a direct 

control over the size of the processing signal. 

 In Algorithm 4.9, the number of performed cross-correlations is equal to the 

difference End-Start, which is equal to the ratio N/NumberOfThreads. Designed in this way, 

the algorithm allows the higher number of parallel threads to reduce the number of cross-

correlations per single thread. 
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Algorithm 4.9:  Parallel CPU-based approach to cross-correlation 

1: M' = M/2 + 1 

2: SignalF'i = FFT ( SignalFi ) /fftw_execute_dft_r2c/ 

3: for  i = 0 to M'-1 do 

4: SignalF'i = CC ( SignalF'i ) 

5: end for 

6: Start Parallel Threadt (ThreadID1) 

7: Start = ( N/NumberOfThreads )×ThreadID 

8: End = ( N/NumberOfThreads )×( ThreadID+1 ) 

9: for  j = Start to End-1 do 

10:  SignalG'i,j = FFTj ( SignalGi,j ) /fftw_execute_dft_r2c/ 

11:  for  i = 0 to M'-1 do 

12:   CrossCorrelation'i,j = SignalF'i × SignalG'i,j 

13:  end for 

14:  CrossCorrelationi,j = IFFTj (CrossCorrelation'i,j ) 

15: end for 

16: End Parallel Threadt 
 

1 ThreadID is passed to the thread as a parameter 

 

 If the number of parallel threads is equal to the number of cross-correlation, the 

proposed Algorithm 4.9 performs one cross-correlation per parallel thread. 

 The size of the signal g in this approach is the same as the size of the signal employed 

in Algorithm 4.8. 

 

 

4.6.3 GPU-Based Parallel Approach 

 

Algorithm 4.9 presents the GPU-based approach to the cross-correlation. This 

implementation employs the NVIDIA CUFFT forward and inverse FFT transforms, which 

take advantage of the many-core architecture of the GPU. 
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Algorithm 4.10: Parallel GPU-based approach to cross-correlation 

1: M' = M/2 + 1 

2: SignalF'i = FFT ( SignalFi ) /cufftExecR2C, 1D transform/ 

3: SignalF'i = CC ( SignalF'i ) /kernel, M' GPU threads/ 

4: SignalG'i,,j = FFT ( SignalGi,,j ) /cufftExecR2C, batch of N 1D transforms/ 

5: CrossCorrelation'i,,j = SignalF'i × SignalG'i,j / Multiplication kernel with M'×N threads/ 

6: CrossCorrelationi,,j = IFFT ( CrossCorrelation'i,,j ) /cufftExecC2R, batch of N 1D transforms/ 

 

 The multiplication kernel at line 5 in Algorithm 4.10 is presented in Listing 4.3. It 

follows the organization of the aforementioned implementation of the Hamming window and 

launches one parallel thread per each data point from signal g. 

 

Listing 4.3: Multiplication Kernel 

__global__ void MultiplicationKernel(cufftComplex *f,cufftComplex *g,cufftComplex *CrossCorrelation) 

{ 

 int IndexF,IndexG; 

 cufftReal fRe,fIm,gRe,gIm; 

 IndexF=threadIdx.x; // Index of signal f 

 IndexG=(blockDim.x)*(blockIdx.x)+threadIdx.x; // Index of signal g and cross-correlation 

 fRe=f[IndexF].x; 

 fIm=f[IndexF].y; 

 gRe=g[IndexG].x; 

 gIm=g[IndexG].y; 

 CrossCorrelation[IndexG].x=fRe*gRe-fIm*gIm; // Complex multiplication, real part 

 CrossCorrelation[IndexG].y=fRe*gIm+fIm*gRe; // Complex multiplication, imaginary part 

} 

 

 

4.6.4 Performance of the Cross-Correlation 

 

 

The performances of the parallel approaches to the cross-correlation, along with the 

sequential one, are presented in Table 4.6. The size of signal f is 1024 data points in time 

domain and 513 data points in Fourier domain. The size of signal g varies. It is equal to the 

size of signal f multiplied by the number of cross-correlations. Multiple CPU-based parallel 

approaches are assessed, with the aim to identify the optimal number of CPU-based threads 

processing particular number of cross-correlations. 
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 The MSI OCT method, discussed in Chapter 3 and implemented in Chapter 5, uses 

cross-correlation to generate the OCT imagery. Every point from a cross-sectional or en-face 

image is a result from a cross-correlation, e.g. a cross-sectional image of 500×512 points 

(pixels) is generated by 500×512=256000 cross-correlations. In this case, the cross-

correlation is performed between two signals: OCT frame and Mask signal. The Mask signal 

in the MSI OCT method corresponds to the template signal in this implementation of the 

cross-correlation algorithm. 

 As a result, the performance of the cross-correlation, presented in Table 4.6, is crucial 

for the performance of this OCT method and its ability to operate in real-time. 

 

 

Table 4.6: Performance of the cross-correlation in milliseconds 

Size of 

digital 

signal g 

Number of 

cross-

correlations 

CPU-based 

single thread 

Number of CPU-based parallel threads 
GPU-based 

multithreading 2 4 8 16 32 

1024 1 0.04 - - - - - 0.2 

24×1024 16 0.16 1.6 3.2 4.8 9.5 - 0.2 

26×1024 64 0.9 2.6 3.8 5.6 10.1 19.1 0.3 

28×1024 256 2.4 4.5 4.3 5.8 10.9 20.3 0.3 

2101024 1024 8.8 13.7 6.2A 6.7 11.6 22.1 0.7 

212×1024 212 34.4 32.7 12.9 11.5A 22.3 31.4 2.5 

214×1024 214 130.6 99.1 63.4 29.3A 31.4 43.5 3.8 

216×1024 216 523.5 325.9 172.2 114.3 101.2A 107.3 26.7 
 

A Optimal parallel performance used to measure the speed-up 

 

 As seen in Table 4.6, the CPU-based multithreading improves the performance when 

the size of the signal reaches 210×1024 data points. 

 The GPU-based approach, on the other hand, improves the performance when the 

number of cross-correlations is 64 and larger. In this case, as seen in Table 4.6, the GPU-

based cross-correlation outperforms the CPU-based one. 

 Table 4.7 illustrates the speed-up introduced by the parallelization of the cross-

correlation algorithm. 
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Table 4.7: Speed-up of the CPU-based and the GPU-based cross-correlation 

Number of 

cross-correlations 

Speed-up 

(CPU-based) 

Speed-up 

(GPU-based) 

64 - 3 

256 - 8 

1024 1.42 12.57 

212 2.99 13.76 

214 4.46 34.37 

216 5.17 19.61 

 

 

4.7 Convolution 

 

The convolution, as discussed in Chapter 3, can be calculated by using the convolution 

theorem discussed in [61] and illustrated by Equation 4.4. 

ݕ  ൌ ݂ כ ݃ ൌ  ሺ݃ሻ൯ (4.4)ܶܨܨሺ݂ሻܶܨܨ൫ܶܨܨܫ

 

 Expressed in this way, the only difference between convolution and cross-correlation 

is the lack of complex conjugate in the convolution case, as seen in Equations 4.3 and 4.4. 

This similarity is reflected in the implementations of both algorithms as sequential and 

parallel computer programs. Due to the low latency of the complex conjugate, which only 

operation is changing the sign of the imaginary part of the complex number, the 

performances of the cross-correlation and the convolution are virtually indistinguishable. 

 

 

4.8 Integration 

 

In this thesis, integration denotes the repeated summation of terms. This operation is used in 

numerous cases in different areas. For example, if these terms are data points from a digital 

signal, the integration is applied to calculate the energy of the signal. Equations 4.5 and 4.6 

illustrate the calculation of the energy of an analog and discrete (digital) signal, [55], [58]. If 

the terms are rectangular areas approximating area defined by a curve, the integration 
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f(x i) 

ǻx 

xi İ [a..b] x 

y 

y=f(x) 

a b 

approximates this area. This case is used to calculate definite integral, illustrated in Figure 4.8 

and Equations 4.7 and 4.8. This process is denoted as numerical integration. 

 

 

௙ݕ݃ݎ݁݊ܧ ൌ නȁ݂ሺݐሻȁଶ݀ݐஶ
ିஶ  (4.5) 

௜ܨ   ൌ ȁ ௜݂ȁଶǢ ௙ݕ݃ݎ݁݊ܧ ൌ ෍ ௜ஶܨ
௜ୀିஶ  (4.6) 

 

ܫ ൌ න݂ሺݔሻ݀ݔ௕
௔  (4.7) 

  

̱ܫ ෍ ݂ሺݔ௜ሻοݔெିଵ
௜ୀ଴  (4.8) 

 

 

 

 

 

 

 

 

Figure 4.8: Approximating definite integral. Geometrically, the definite integral of a function 

of a single variable is equal to the area between the function and the horizontal axis along the 

segment [a..b]. A smaller ǻx results into a larger number of summations and better 

approximation. Alternatively, larger ǻx leads to smaller number of summations and less 

accurate approximation. This allows a trade-off between accuracy and performance 

 

 In most cases in signal processing, the integration is performed repeatedly within sub-

signals, which are part of a larger signal A, as presented in Equation 4.9. The result of the 

overall process is a sequence of values Intj representing the integration of each sub-signal. In 
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Equation 4.9 i is the index of a data point within a sub-signal and j is the index of the sub-

signal. The total number of data points is equal to M×N, where M is the number of data 

points per sub-signal and N is the total number of sub-signals. 

 

௝ݐ݊ܫ ൌ ଴ǡ௝ܣ ൅ ଵǡ௝ܣ ൅ڮ൅ ெିଵǡ௝ܣ ൌ ෍ ௜ǡ௝ெିଵܣ
௜ୀ଴ Ǣ ݆ ൌ Ͳǡڮ ǡܰ െ ͳ (4.9) 

 

 The integration can include all data points from a sub-signal, as in Equation 4.5, or it 

can be performed according to a window. Equations 4.6 and 4.7 demonstrate these two cases, 

where W1 and W2 define the borders of the window, where 0 ≤ W1 < W2 ≤ (M-1). Figure 4.9 

illustrates the two ways to position the window. The need for a window and consequently the 

values of W1 and W2 depend on the particular case. If integration takes part in the image 

generation, as it is in MSI method implemented in Chapter 5, the need for a window and the 

values of the window borders can be determined by observing the images, generated from the 

signal and looking for lowest level of noise, for example in the form of speckles in the 

images. 

 

௝ݐ݊ܫ ෍ ௜ǡ௝ௐమܣ
௜ୀௐభ  (4.10) 

  

௝ݐ݊ܫ ൌ ෍ܣ௜ǡ௝ௐభ
௜ୀ଴ ൅ ෍ ௜ǡ௝ெିଵܣ

௜ୀௐమ  (4.11) 

 

 In this thesis two cases require integration. The first one is the MSI OCT method after 

the cross-correlation, as discussed in Chapter 3 and implemented in Chapter 5. The second 

one is the integration stage during confocal imaging implemented in Chapter 5. In both cases 

the integration is within a window defined by the values W1 and W2. An integrated solution, 

presented in Chapter 6, allows the selection of W1 and W2 through the user interface of the 

OCT system in real-time. 

 Four approaches to integration are implemented and compared, namely Sequential 

Iterative, Partially Parallel Iterative, Parallel Reduction, and Zero-Frequency Component 

(ZFC). 
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Figure 4.9: Two approaches to define an integration window 

 

 

4.8.1 Sequential Iterative 

 

This single-threaded approach, presented in Algorithm 4.11, can be implemented both on the 

CPU and the GPU. Its performance is used as a base-line performance in the comparisons 

with the rest of the approaches. 

 

Algorithm 4.11: Sequential iterative integration (CPU and GPU) 

1: for  j = 0 to N-1 do 

2: Summation = 0 

3: for  i = W1 to W2 do 

4:  Summation = Summation + Ai,j 

5: end for 

6: Intj = Summation 

7: end for 
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4.8.2 Partially Parallel Iterative 

 

This approach, shown in Algorithm 4.12, partially parallelizes the aforementioned sequential 

approach. The approach launches one parallel thread per sub-signal. The maximum number 

of parallel threads within one block is 1024, a number much smaller than the number of sub-

signals, N. Therefore, each parallel thread is launched from a different block. Each parallel 

thread calculates the corresponding integration value. The high number of sub-signals, up to 

N=216-1, makes this approach suitable for the GPU-based multithreading. 

 The following kernel call launches N blocks with 1 thread per block or N×1 parallel 

threads: 

 

   IntegrationKernel <<< N , 1 >>> ( A , Int ) ; 

 

Algorithm 4.12: Partially parallel iterative integration (GPU) 

1: Kernel PartiallyParallelIterative 

2: BI1 = blockIdx.x 

3: Offset2 = M3 × BI 

4: Summation = 0 

5: for  i4 = W1 to W2 do 

6:  Index = Offset + i 

7:  Summation = Summation + AIndex 

8: end for 

9: IntBI = Summation 

10: End Kernel 
 

1 Index of the current block 
2 The index of the first data point of each sub-signal 
3 Size of the sub-signal 
4 Index of a data point within a sub-signal 

 

4.8.3 Parallel Reduction 

 

This approach is based on the reduction algorithm, which GPU-based implementation is 

illustrated in [80]. Its suitability for GPU and FPGA is further discussed in [81]. It expects the 

size of the data to be a power of two. If this is not the case, the digital signal can be zero-
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padded to the next power of two. Figure 4.10 illustrates this approach with a digital signal 

with 8 data points. 

 In the Parallel Reduction algorithm, each summation is performed by a single parallel 

thread, T1 to T4 in Figure 4.10. This would require the number of parallel threads to be equal 

to half the size of the digital signal. This amounts to a significant number of parallel threads, 

making this approach suitable only for a GPU implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Parallel reduction 

 

 

 Algorithm 4.13 implements a GPU-based approach to the parallel reduction as 

illustrated in Figure 4.10. This algorithm maps each sub-signal to a thread block. 
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Algorithm 4.13: Integration by Parallel Reduction (GPU) 

1: ParallelReduction Kernel 

2: TI = threadIdx.x 

3:  BI = blockIdx.x 

4: Offset1 = M × BI 

5: SharedSum2 TI = AOffset +TI + AOffset+TI+M/2 

6: Barrier 3 

7: if  (TI<2 ) then 

8:  LocalSum4 = SharedSumTI + SharedSumTI+2 

9:  SharedSumTI = LocalSum 

10: end if 

11: Barrier  

12: if  ( TI = 0 ) then 

13:  LocalSum = SharedSum0 + SharedSum1 

14:  IntBI = LocalSum 

15: end if 

16: End Kernel 
 

1 Offset is the index of the first data point of each sub-signal 
2 SharedSum is an array in the shared per-block memory 
3 Barrier implemented using __synchthreads ( ) 
4 LocalSum is local per-thread variable used to store temporary the summation at each step 

 

 The barriers assure the completion of all previous summations before commencing 

the next ones. In NVIDIA CUDA C a block-wide barrier, e.g. involving all threads within a 

single block, is done by the function __syncthreads( ). 

 The proposed algorithm maps the digital signal consisting of sub-signals on the GPU 

grid in the following way: 

 1. Each sub-signal is processed by one thread block 

 2. Each data point within the sub-signal is processed by one GPU thread 

The following kernel call illustrates the mapping: 

 ParallelReductionKernel 

    <<< NumberOfSubSignals, SubSignalHalfSize, SharedMemory >>> 

      ( A, Int ) 

 A signal with larger number of data points would change the algorithm by adding 'if' 

statements and adjusting the indices accordingly. 
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4.8.4 Zero-Frequency Component 

 

 

The Zero-Frequency Component approach is based on the properties of the discrete Fourier 

transform, presented by Equation 4.12, where k is the frequency component. 

 

 

௞ܨ ൌ ሺܶܨܦ ௡݂ሻ ൌ ෍ ௡݂݁ିଶ௜గ௞௡Ȁேேିଵ
௡ୀ଴  (4.12) 

 

 

 Equation 4.13 shows the result after substituting k with 0. It represents the zero-

frequency component of the digital signal in the Fourier domain. 

 

଴ܨ ൌ ሺܶܨܦ ௡݂ሻ ൌ ෍ ௡݂ேିଵ
௡ୀ଴  (4.13) 

 

 As presented in Equation 4.13, the zero component of a Fourier transform of a digital 

signal is the summation of all data points from that signal. Therefore, integration per sub-

signal can be achieved by applying forward discrete Fourier transform on each sub-signal. In 

this case, the performance of the zero-frequency component is identical with the performance 

of the forward FFT presented in Table 4.3. 

 

 

4.8.5 Performances of the Integration Approaches 

 

 

Table 4.8 presents the performance of six approaches to integration. The integration is 

applied on a digital signal with the same format and size as used in the previous algorithms. 

 In general, the GPU based approaches offer better performance, compared to the 

CPU-based ones. The sequential approach is the only exception. In this case, both the CPU-

based and the GPU-based computations are carried out by a single thread of execution. 
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Table 4.8: Performance of the integration approaches in milliseconds 

Size of digital 

signalA (N×M) 

Sequential Iterative Sequential Partially 

Parallel (GPU) 

Parallel Reduction 

(GPU) 

ZFCB 

CPU GPU CPU GPU 

1024 0.01 0.13 0.34 0.024 0.01 0.06 

24×1024 0.02 5.56 0.64 0.026 0.06 0.06 

26×1024 0.06 22.06 0.95 0.027 0.63 0.08 

28×1024 0.21 87.94 1.03 0.029 0.91 0.11 

210×1024 0.89 357.31 2.02 0.032 3.13 0.14 

212×1024 3.41 1427.76 2.96 0.038 6.47 0.45 

214×1024 14.55 5723.94 5.93 0.041 17.81 1.52 

216×1024 55.06 22581.41 17.35 0.044 46.43 5.98 
 

A In this table all data points from the digital signal are included in the integration, or W1=0, 

W2=M-1 
B CPU-based and GPU-based ZFC performances derive from the corresponding optimal 

performances of the forward FFT taken from Table 4.3 

 

 Table 4.9 presents the speed-up of the aforementioned parallel approaches to 

integration. 

 

Table 4.9: Speed-up of the parallel approaches to integration 

Number of 

integrations 

Sequential 

Iterative(GPU) 

Partially 

Parallel 

Iterative(GPU) 

Parallel 

Reduction 

(GPU) 

ZFC (CPU) ZFC (GPU) 

1 0.077 0.029 0.417 1.000 0.167 

16 0.004 0.031 0.769 0.333 0.333 

64 0.003 0.063 2.222 0.095 0.750 

256 0.002 0.204 7.241 0.231 1.909 

1024 0.002 0.441 27.813 0.284 6.357 

212 0.002 1.152 89.737 0.527 7.578 

214 0.003 2.454 354.878 0.817 9.572 

216 0.002 3.173 1251.364 1.186 9.207 

 

 The next chapter employs the integration on two occasions: 

 - Integration stage of the MSI OCT method. The CPU-based implementation of this 

method uses the Sequential Iterative approach, which offers the best CPU-based 
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performance. Accordingly, the GPU-based implementation of the MSI OCT method uses the 

Parallel Reduction approach, which delivers the best GPU-based performance. 

 - Confocal OCT imaging. This type of OCT imaging is based on multiple en-face 

images. As seen in Chapter 5, en-face images generated on the GPU significantly outperform 

those generated on the CPU. Therefore, the proposed confocal imaging is based on the GPU. 

All three GPU-based approaches to integration are employed in the GPU-based 

implementation of the confocal OCT imaging. 

 

4.9 Summary 

 

This chapter presented DPS algorithms widely used in many areas including real-time 

systems, as discussed in Chapter 3. 

 A number of sequential approaches are presented, based on FFT library functions and 

signal processing theorems. Based on these sequential approaches, CPU-based and GPU-

based parallel optimizations are developed and presented. Their aim is to deliver optimal 

performance of the employed DSP algorithms. 

 A comparison between the multi-core CPU-based and the many-core GPU-based 

parallel optimizations in terms of level of parallelization and performance are drawn. 

 In the GPU-base approaches, a one-to-one mapping of the data point onto the parallel 

threads allows each thread of execution to process one data point. This high level of 

parallelism yields better results when processing larger signals. 

 The CPU-based approach on the other hand, operates with smaller number of parallel 

threads. In this case, a decision must be made how many parallel threads to employ. The 

proposed CPU-based approaches identify the number of parallel threads necessary for 

optimal performance. 
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Chapter 5 
 

Parallel Optimization in Optical Coherence 

Tomography Systems 
 

 

5.1 Introduction 

 

This chapter presents a number of sequential implementations and their corresponding 

parallel optimizations of two OCT methods, the CFD and the MSI. Both methods are capable 

of producing cross-sectional and en-face images. In addition, confocal images based on 

multiple en-face images are presented. 

 A series of single-threaded and multi-threaded algorithms are designed, implemented 

and studied. Both coarse-grained and fine-grained approaches to these methods are proposed. 

 In this chapter, a number of strategies aiming at improving the performance, such as 

dividing the OCT methods into stages and phases, are applied. The approaches, which 

provide optimal performance of the signal processing, are identified. 

 In the field of OCT, there are constant demands for improvements in two general 

directions: performance and imagery. Although different in their nature, these two directions 

can be both addressed by parallel optimizations. 

 In OCT, the most computationally intensive part is the DSP. In real-time operation, an 

OCT system generates certain amount of digital signals at a rate defined by its sweeping 

capabilities. The overall performance of the OCT system depends on the performance of the 

signal processing. A sequential implementation of the DSP is limited. This is especially the 

case with the more complex OCT methods, such as the MSI, a dual interferometry method 
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which employs two digital signals denoted in this thesis as OCT frame and Mask signal. The 

parallel optimizations, presented in this chapter, are shown in Table 5.1. 

 

Table 5.1: Sequential and parallel implementations 

 
Cross-Sectional En-Face Confocal 

CFD MSI CFD MSI CFD MSI 

CPU-Based Single Thread R1 N2 R R/N4 -5 - 

CPU- Based Multithreading R N R R/N4 - - 

GPU-Based Multithreading R R/N3 R R R R/N4 
 

1 Real-time 
2 Not real-time 
3 Real-time operation depends on the size of the cross-sectional image 
4 Real-time operation depends on the number of en-face images 
5 Not implemented 

 

 In real-time operation, the OCT system is expected to process the digital signals and 

visualize the OCT images while imaging the object. Figure 6.6 illustrates the real-time 

criterion. It is defined by the speed of acquisition of one OCT frame. This speed depends on 

the sweeping capabilities of the OCT system. 

 

 

5.2 Coarse-Grained and Fine-Grained Parallel Approaches 

 

This chapter introduces the well-known coarse-grained and fine-grained parallelism, as 

discussed in [16], to the digital signal processing in the OCT systems. An approach utilizing a 

smaller number of parallel threads, each one processing larger amount of data, is considered a 

coarse-grained. The coarse-grained approaches allow varying amount of threads with the aim 

to identify the optimal number of employed parallel threads. On the other hand, an approach 

using a larger number of parallel threads each one processing smaller amount of data, e.g. one 

data point, is considered fine-grained. 

 The time needed to launch parallel threads on the CPU and on the GPU and the high 

number of parallel threads within a GPU grid determine the CPU as the architecture of choice 

for the coarse-grained approach and the GPU for the fine-grained approach. 

 The coarse-grained and fine-grained approaches are based on the way OCT systems 
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group the digital signals into sub-signals. Those systems generate digital signals organized 

into OCT frames (OCTF). Each OCTF consists of multiple channeled spectra (CS) and each 

channeled spectrum consists of multiple data points (DP). The CPU-based coarse-grained 

approaches process one or more CS per single parallel thread. On the other hand, the GPU-

based fine-grained approaches process one DP per thread, as shown in Table 5.2. An 

exception is the integration step of the processing, employed in the MSI OCT method and in 

the confocal imaging, where one parallel thread processes more than one data point. 

 

 

Table 5.2: Digital signal processed by one parallel thread 

Approach Data Point 
One Channeled 

Spectrum 

Multiple Channeled 

Spectra 
One OCT Frame 

Single Thread (CPU) × × × √ 

Coarse-Grained (CPU) × √ √ × 

Fine-Grained (GPU) √ √ × × 

 

 

 The GPU-based fine-grained approaches introduce another type of overheads 

(latency), which is the time to copy the data to and from the global GPU memory. This 

latency affects the requirements for the GPU-based performances. These requirements are 

dictated by the real-time criterion of the OCT system. The data transfer between the CPU and 

the GPU memory is done by the following calls to the cudaMemcpy function: 

 cudaMemcpy (GPU_Var,CPU_Var,SizeOfVar*sizeof(DataType),cudaMemcpyHostToDevice) 

 cudaMemcpy (CPU_Var,GPU_Var,SizeOfVar*sizeof(DataType),cudaMemcpyDeviceToHost) 

The last parameter of the function indicates the direction of the copy, from the CPU (host) to 

the GPU (device) and vice-versa. 

 Table 5.3 presents the time necessary to transfer the data corresponding to the cross-

sectional and en-face OCT frames employed in this chapter. The performance of the transfer 

depends mainly on the access speed of the main memory, the transfer rate of the PCI Express 

bus, and the access speed of the global GPU memory. A linear relation can be observed 

between the time to transfer the data and the size of the data. This is the main and most 

significant overhead introduced by the parallel optimization on the GPU. A GPU application 

can access two types of CPU-based memory: standard and pinned. Pinned memory is defined 

as not pageable and therefore has faster access. 



87 

 

 

Table 5.3: CPU (host) to GPU (device) data transfer time in milliseconds (cudaMemcpy) 

OCT frames 

(data points) 
Size of OCT frame 

CPU-GPU transfer time in milliseconds 

Standard Pinned (CUDA) 

100×1024 400 KB 0.29 0.22 

200×1024 800 KB 0.52 0.36 

300×1024 1200 KB 0.75 0.51 

400×1024 1600 KB 1.01 0.66 

500×1024 ~2 MB 1.33 0.82 

200×192×1024 150 MB 101.52 58.31 

 

 The processing of these OCT frames results in cross-sectional and en-face images. 

These images are presented as one-byte gray scale values presenting intensities to be 

displayed by OpenGL or saved as image files. Therefore, the latencies of the GPU to CPU 

copy, presented in Table 5.4, are much smaller than the corresponding CPU to GPU ones. 

The processing of one en-face OCT frame can result in multiple en-face images, which is 

reflected in Tables 5.4. 

 

 

Table 5.4: GPU (device) to CPU (host) data transfer time in milliseconds (cudaMemcpy) 

Type of OCT images 
Size 

(data points/bytes) 
Standard Pinned 

Cross-Sectional 

100×512 0.11 0.08 

200×512 0.15 0.11 

300×512 0.21 0.14 

400×512 0.27 0.16 

500×512 0.29 0.19 

En-face 

1×SA 0.09 0.07 

8×S 0.41 0.25 

16×S 0.75 0.47 

20×S 0.91 0.51 

32×S 1.27 0.86 

40×S 1.41 0.92 
 

A S denotes the size of one en-face image, which is 200×192 gray scale values or 38400 bytes 

 

 The much smaller latency of the GPU to CPU transfer in en-face imaging, compared 

to the CPU to GPU one, is due to the much smaller size of the resulting signal and the smaller 
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size of the data type, 8-bit gray scale, compared to the 32-bit float. 

 The reduction of the size of the resulting signal in en-face imaging is due to the 

selection of a limited number of en-face images in the CFD method, up to 40 from 513 

possible. In the MSI method, this reduction is due to the integration step. 

 

 

 

5.3 Cross-Sectional Imaging in OCT 

 

5.3.1 Structure of the OCT Signal in Cross-Sectional Imaging 

 

In cross-sectional imaging, the OCT systems generate data points grouped into channeled 

spectra, which are further grouped into cross-sectional OCT frames. Each channeled 

spectrum (CS) can be presented as a one-dimensional array of data points (CS_DPi) and each 

cross-sectional OCT frame can be presented as a one-dimensional array of channeled spectra 

(OCTF_CSj) or two-dimensional array of data points (OCTF_DPi,j). 

 For practical reasons, the digital signal processed in this chapter is converted by the 

data acquisition software into 8-byte double or 4-byte cufftReal types. These data types are 

used by the two FFT libraries employed in this chapter, namely FFTW and NVIDIA CUFFT 

respectively. Thus, no further data conversion is necessary. 

 During real-time operation, the OCT system studied in this research at its current 

settings generates one OCT frame of up to 500 channeled spectra with 1024 data points in 

each channeled spectrum every 10 milliseconds [11]. These values are determined by the 

sweeping capabilities of the OCT system. They define the real-time criterion of the system. 

 Two OCT methods are developed and presented in this chapter, namely CFD and 

MSI. Both methods utilize discrete Fourier transforms. These transforms are performed by 

applying multiple one-dimensional non-redundant FFT on each channeled spectrum. 

 Equation 5.1 defines single channeled spectrum before FFT with M data points, as 

generated by the OCT system. Equation 5.2 describes a single FFT applied to the CS. 

Equation 5.3 defines a single channeled spectrum after FFT (CS') consisting of M' data points 

(CS_DP'). Equation 5.4 shown the relation between the size of the channeled spectrum, or the 

number of data points in each channeled spectrum, before FFT (M) and after FFT (M'). This 

equation considers non-redundant Fast Fourier Transform. Equation 5.5 defines an OCT 
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frame before applying FFT (OCTF) with N channeled spectra (OCTF_CS). Equation 5.6 

defines the same OCT frame consisting or M×N data points (OCTF_DP). Equation 5.7 shows 

the OCT frame after N FFT are applied on N channeled spectra, or M×N data points. 

Equation 5.8 presents the digital signal before FFT, consisting of one OCT frame (OCTF'), or 

N channeled spectra (OCTF_CS'), or M'×N data points (OCTF_DP'). The algorithms 

presented in this chapter follow these notations. 

 

ܵܥ  ൌ ܦ̴ܵܥ ௜ܲǢ ܦ̴ܵܥ ௜ܲ߳ࡾǢ ݅ ൌ Ͳǡڮ ǡܯ െ ͳ (5.1) 

ᇱܵܥ   ൌ  ሻ (5.2)ܵܥሺܶܨܨ

ᇱܵܥ   ൌ ܦ̴ܵܥ ௜ܲᇱǢ ܦ̴ܵܥ ௜ܲᇱ߳࡯Ǣ ݅ ൌ Ͳǡڮ ǡܯᇱ െ ͳ (5.3) 

ᇱܯ   ൌ ܯ ʹΤ ൅ ͳ (5.4) 

ܨܶܥܱ   ൌ ௝ܵܥ̴ܨܶܥܱ ൌ ሺܱܵܥ̴ܨܶܥ଴ǡ ڮ ǡ  ேିଵሻ (5.5)ܵܥ̴ܨܶܥܱ

  

ܨܶܥܱ ൌ ܦ̴ܨܶܥܱ ௜ܲǡ௝ ൌ ቌ ܦ̴ܨܶܥܱ ଴ܲǡ଴ ڮ ܦ̴ܨܶܥܱ ଴ܲǡேିଵڭ ڰ ܦ̴ܨܶܥܱڭ ெܲିଵǡ଴ ڮ ܦ̴ܨܶܥܱ ெܲିଵǡேିଵቍ (5.6) 

ᇱܨܶܥܱ   ൌ ܨܨ ௝ܶ൫ܱܵܥ̴ܨܶܥ௝൯ ൌ ܨܨ ௝ܶ൫ܱܦ̴ܨܶܥ ௜ܲǡ௝൯Ǣ ݅ ൌ Ͳǡڮ ǡܯ െ ͳǢ ݆ ൌ Ͳǡܰڮ െ ͳ (5.7) 

  

ᇱܨܶܥܱ ൌ Ԣ௝ܵܥ̴ܨܶܥܱ ൌ ܦ̴ܨܶܥܱ ௜ܲǡ௝ᇱ ൌ ቌ ܦ̴ܨܶܥܱ ଴ܲǡ଴ᇱ ڮ ܦ̴ܨܶܥܱ ଴ܲǡேିଵᇱڭ ڰ ܦ̴ܨܶܥܱڭ ெܲᇲିଵǡ଴ᇱ ڮ ܦ̴ܨܶܥܱ ெܲᇲିଵǡேିଵᇱ ቍ (5.8) 

 

 

 Figure 5.1 illustrates a single channeled spectrum generated by the OCT system 

before and after Fast Fourier transform, with 1024 data points and 513 data points 

respectively. 
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5.3.2 Resolving the Depth in Cross-Sectional OCT Imaging 

 

The CFD and MSI methods resolve the depth in the cross-sectional OCT images differently: 

 1. In the CFD OCT method, the intensity of a point from a particular depth is resolved 

by calculating the corresponding absolute value from the channeled spectrum after 

performing DFT. The number of different depths depends on the size of the channeled 

spectrum. A channeled spectrum with M data points allows the OCT system to resolve M' = 

M/2+1 different depths. With M equal to 1024, the OCT system is able to resolve reflectivity 

from M'=513 depths. Figure 5.1 illustrates a single channeled spectrum obtained during 

imaging a mirror. In this case, the peak of the intensity corresponds with the position of the 

surface of the mirror in relation with the objective lens of the OCT system, as shown in 

Figure 5.1.B. 

 

 

A 

 

 

 

 

 

 

B 

 

 

 

 

 

 

Figure 5.1: Channeled spectrum before discrete Fourier transform (A) and after discrete 

Fourier transform (B). Single peak in (B) indicates opaque object. Its position indicates the 

position of the surface of the object according to the objective lens. A semitransparent object 

has reflectivity from multiple depths, as seen in Figure 3.10 

 



91 

 

 

 2. In the MSI OCT method, the intensity of each depth is obtained by cross-

correlation between two digital signals, namely the channeled spectra from the OCT frame 

and a mask signal. The research presented in this thesis has access to a set of R=512 mask 

signals, acquired experimentally. Each mask signal corresponds to a particular depth. The 

channeled spectra and the mask signals need to be of equal size. This research operates with 

channeled spectra and masks with M=1024 data points. 

 The mask signals employed in the MSI OCT method do not change during the 

operation of the OCT system. Therefore, processing of the mask signals during initialization, 

before the OCT system is in online mode, improves the overall performance. In the coarse-

grained approaches the masks are processed sequentially, since parallel optimization would 

not affect the performance. This processing consists of applying Hamming window (HW), 

FFT, and complex conjugate (CC) on the mask signal (MS_DP), as presented in Algorithm 

5.1. This approach is employed in both CPU-based implementations of the MSI OCT 

method, the sequential and the coarse-grained. 

 

 

Algorithm 5.1:  Processing mask signals in sequential and coarse-grained MSI approaches 

1: for  r = 0 to R-1 do 

2: for  i=0 to M-1 do 

3:  MS_DPi,r = HW ( MS_DPi,r ) 

4: end for 

5: MS_DP'i,r = FFTr ( MS_DPi,r ) 

6: for  i=0 to M'-1 do 

7:  MS_DP'i,r = CC ( MS_DP'i,r ) 

8: end for 

9: end for 

 

 The corresponding fine-gained approaches employ GPU-implemented FFT. 

Therefore, the mask signals, along with the OCT frames generated by the OCT system during 

online mode, are processed on the GPU. Each GPU-based parallel thread processes one data 

point from the mask signals. Each thread block from the GPU grid processes one mask from 

the set of mask signals, as illustrated in Algorithm 5.2. 
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Algorithm 5.2:  Processing mask signals in fine-grained MSI approaches 

1: Copy MS_DPi,r from CPU memory to GPU memory /cudaMemcpy/ 

2: MS_DPi,r = HW ( MS_DPi,r ) /kernel with M×R threads/ 

3: MS_DP'i,r = FFTr ( MS_DPi,r ) /cufftExecR2C, batch of R 1D transforms/ 

4: MS_DP'i,r = CC ( MS_DP'i,r ) /kernel with M'×R threads/ 

 

 All implementations of the MSI OCT method presented in this chapter require the 

completion of the processing of the mask signals. The two-dimensional array MS_DP'i,r holds 

the processed mask signals in the CPU memory for the sequential and coarse-grained 

approaches and in the GPU memory for the fine-grained approaches. 

 

 

5.3.3 CFD OCT Method in Cross-Sectional Imaging 

 

 

In the CFD OCT method, cross-sectional images are obtained by the following steps: 

1. Apply Hamming window on the data points from the OCT frame (OCTF_DP) 

2. Apply one-dimensional discrete Fourier transform on all channeled spectra from the OCT 

frame 

3. Calculate the absolute values of the data points 

4. Scale to the gray scale interval [0..255] by multiplying with a gray scale coefficient (GSC) 

 

 

 Equation 5.9 follows these steps, where i is the index of the data point within the 

channeled spectrum and j is the index of each channeled spectrum within the cross-sectional 

OCT frame. CrossSectionali,j represents the gray scale values of the points from the cross-

sectional image, where i is the vertical coordinate and j is the horizontal coordinate in the 

cross-sectional OCT image. The vertical coordinate of the point corresponds to the depth of 

the cross-sectional OCT image. Algorithm 5.3 implements the steps from Equation 5.9. 

 

௜ǡ௝݈ܽ݊݋݅ݐܿ݁ܵݏݏ݋ݎܥ  ൌ ܥܵܩ ൈ ቚܨܦ ௝ܶ ቀܹܪ൫ܱܦ̴ܨܶܥ ௜ܲǡ௝൯ቁቚ (5.9) 
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 In all approaches, the result of the calculations is a two-dimensional array 

CrossSectionali,j. This array contains the gray scale values of the resulting cross-sectional 

image. 

 In all cross-sectional algorithms M is the size of the channeled spectra before discrete 

Fourier transform, M' is the size of the channeled spectrum after Fourier transform, and N is 

the number of channeled spectra in the OCT frame. 

 Algorithm 5.3 follows a sequential approach to CFD OCT method in cross-sectional 

imaging. It employs three ‘for’ loops. The two inner 'for' loops process one data point per 

iteration. The corresponding coarse-grained approach aims at distributing these iterations 

among multiple parallel threads. 

 

Algorithm 5.3: Sequential approach to the CFD OCT method in cross-sectional imaging 

1: for  j=0 to N-1 do 

2: for  i=0 to M-1 do 

3:  OCTF_DPi,,j = HW ( OCTF_DPi,,j ) 

4: end for 

5: OCTF_DP'i,,j = FFT ( OCTF_DPi,,j ) 

6: for  i=Freq1 to M' -1 do 

7:  Intensityi,,j = AV ( OCTF_DP'i,,j ) 

8:  CrossSectionali,,j = GSC × Intensityi,,j 

9: end for 

10: end for 
 

1 The multiplication skips the first Freq data points (0, 1,..., Freq-1), in order to avoid low-

frequency noise introduced into the digital signal by the OCT system. By observing the cross-

sectional images in Figures 5.4, 5.5 and 5.6, a value of Freq=8 yields an optimal signal-to-

noise ratio 

 

 

5.3.3.1 Coarse-Grained Approach 

 

In this approach, presented in Algorithm 5.4, one parallel thread processes a section from the 

cross-sectional image. The size of the section, processed by a single thread, varies from one 

vertical line, which corresponds to one channeled spectrum, to half the cross-sectional image. 
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 This approach reduces the number of iterations of the outer ‘for’ loop. In the case of 

the highest level of parallelism, the number of parallel threads is equal to the number of 

processes channeled spectra. In this case, the outer loop has a single iteration and each 

parallel thread processes only one channeled spectrum and generates only one vertical line 

from the cross-sectional image. 

 

Algorithm 5.4:  Coarse-grained approach to the CFD OCT method in cross-sectional imaging 

1: Start Parallel Threadt ( ThreadID1 ) 

2: Start=(NumberOfChanneledSpectra/NumberOfThreads)×ThreadID 

3: End=(NumberOfChanneledSpectra/NumberOfThreads)×(ThreadID+1) 

4: for  j=Start to End-1 do 

5:  for  i=0 to M-1 do 

6:   OCTF_DPi,j = HW ( OCTF_DPi,j ) 

7:  end for 

8:  OCTF_DP'i,j = FFTj ( OCTF_DPi,j ) 

9:  for  i=Freq to M'-1 do 

10:   Intensityi,j = AV ( OCTF_DP'i,j ) 

11:   CrossSectionali,j = GSC×Intensityi,j 

12:  end for 

13: end for 

14: End Parallel Threadt 
 

1 The value of ThreadID is passed to the thread as a parameter 

 

5.3.3.2 Fine-Grained Approach 

 

The fine-grained approach aims at parallelizing Algorithm 5.3 using the GPU. The number of 

possible parallel threads launched on the GPU exceeds the number of data points in the OCT 

frame. This allows the processing of each data point by a single GPU thread. This eliminates 

the need for any loops and achieves maximum level of parallelism. Algorithm 5.5 presents 

this approach. The performance of this approach is presented in Table 5.3. 

 

 This approach uses the following functions, part of the NVIDIA CUDA library: 

 cudaMemcpy: copies data from CPU memory (heap or stack) to the global GPU 

memory. The syntax of this function is analogues with the Standard C function memcpy. 
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 cufftExecR2C: performs one or multiple (batch) Forward FFT 

 

Algorithm 5.5:  Fine-grained approach to the CFD OCT method in cross-sectional imaging 

1: Copy OCTF_DPi,j from CPU memory to GPU memory /cudaMemcpy/ 

2: OCTF_DPi,j = HW (OCTF_DPi,j) /kernel with M×N threads/ 

3: OCTF_DP'i,j = FFTj (OCTF_DPi,j) /cufftExecR2C, batch of N 1D transforms/ 

4: Intensityi,j = AV (OCTF_DP'i,j) /kernel calling fabsf() with M'×N threads/ 

5: CrossSeciotnali,j = GSC×Intensityi,j /kernel with M'×N threads/ 

6: Copy CrossSectionali,j from GPU memory to CPU memory /cudaMemcpy/ 

 

 

5.3.4 MSI OCT Method in Cross-Sectional Imaging 

 

The MSI OCT method, discussed in Chapter 3, uses a prerecorded set of mask signals to 

resolve the depth in the cross-sectional images. Each mask signal corresponds to a particular 

depth and must have the same number of data points M, as each channeled spectrum. 

 The intensity of a point (pixel) with horizontal position j and depth r is obtained by 

the following steps: 

 1. Hamming Window applied on data points from the OCT frame (OCTF_DP) and 

the mask signals (MS_DP) 

 2. Cross-correlation between OCTF_DP and MS_DP, Equation 5.10. The MS_DP is 

conjugated, which is indicated with ‘*’. 

 3. Integration of the resulting Product, Equation 5.11 

 4. Scale to the gray scale interval [0..255] using gray scale coefficient (GSC), 

Equations 5.12 

 

௜ǡ௝ǡ௥ݐܿݑ݀݋ݎܲ  ൌ ܶܨܦܫ ቀܶܨܦ ቀܹܪ൫ܱܦ̴ܨܶܥ ௜ܲǡ௝൯ቁ ൈ ܶܨܦ ቀܹܪ൫ܦ̴ܵܯ ௜ܲǡ௥൯ቁכቁ (5.10) 

  

௝ǡ௥ݕݐ݅ݏ݊݁ݐ݊ܫ ൌ ෍ หܲݐܿݑ݀݋ݎ௜ǡ௝ǡ௥หௐమ
௜ୀௐభ  (5.11) 
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ܽ݊݋݅ݐܿ݁ܵݏݏ݋ݎܥ ௝݈ǡ௥ ൌ ܥܵܩ ൈ  ௝ǡ௥ (5.12)ݕݐ݅ݏ݊݁ݐ݊ܫ

Where: 

 i is the index of the data point within each channeled spectrum and within each mask 

signal, used both before and after discrete Fourier transform 

  i = 0, ..., M-1 before discrete Fourier transform 

  i = 0, ..., M'-1 after discrete Fourier transform 

 j is the index of channeled spectrum from the OCT frame, j also indexes the 

horizontal coordinate of the point from the cross-sectional image 

  j = 0, ..., N-1 

 r is the index of mask signal from the set of mask signals, r also indexes the vertical 

coordinate of the point from the cross-sectional image 

  r = 0, ..., R-1 

 Algorithm 5.6 presents a sequential implementation of the MSI OCT method by 

following Equations 5.10, 5.11 and 5.12. This algorithm assumes that the necessary mask 

signals are already processed and copied to the two-dimensional array MS_DP'i,r, as shown in 

Algorithm 5.2. 

 

Algorithm 5.6:  Sequential approach to the MSI OCT method in cross-sectional imaging 

1: for  j = 0 to N-1 do 

2: for  i = 0 to M-1 do 

3:  OCTF_DPi,j = HW ( OCTF_DPi,j ) 

4: end for 

5: OCTF_DP'i,j = FFT ( OCTF_DPi,j ) 

6: for  r = 0 to R-1 do 

7:  for  i = Freq to M'-1 do 

8:   Product'i,j,r = OCTF_DP'i,j×MS_DP'i,r 

9:  end for 

10:  Producti,j,r = IFFT ( Product'i,j,r ) 

11:  Intensityj,r = 0 

12:  for  i = W1 to W2 do 

13:   Intensityj,r += AV ( Producti,j,r ) 

14:  end for 

15:  CrossSectionalj,r = GSC×Intensityj,r 

16: end for 

17: end for 
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 The core of the algorithm is the multiplication of the data points from the OCT frame 

and the set of mask signals, line 8 in Algorithm 5.6. Three nested ‘for’ loops carry this 

multiplication. The total number of these iterations is equal to the product of the number of 

channeled spectra, number of mask signals, and the number of data points per channeled 

spectrum. The following coarse-grained and fine grained approaches aim at reducing the 

number of these iterations and thus improving the performance. 

 

 

5.3.4.1 Coarse-Grained Approach 

 

 

A coarse-grained parallel approach of the MSI OCT method is proposed in this research. In 

this approach, a number of CPU-based parallel threads perform the processing. Their purpose 

is to reduce the iterations of the loops in Algorithm 5.6. 

 In this implementation, all parallel threads receive a unique identifier (ThreadID), 

which is passed as a parameter, apart from the ones associated automatically by the operating 

system. These identifiers start from 0 and are incremented with 1. Each process preforms 

End-Start iterations of the outer for loop. A larger number of parallel threads results in a 

smaller number of iterations and vice versa. The same algorithm applies for a single thread 

implementation by setting ThreadID=0 and NumberOfThread=1. In this case, Start and End 

will obtain the following values: 

 Start = ( NumberOfChanneledSpectra/1 )×0 = 0 

 End = ( NumberOfChanneledSpectra/1 )×( 0+1 ) = NumberOfChanneledSpectra 
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Algorithm 5.7:  Coarse-grained approach to the MSI OCT method in cross-sectional imaging 

1: Start Parallel Threadt ( ThreadID1 ) 

2: Start=( NumberOfChanneledSpectra/NumberOfThreads )×ThreadID 

3: End=( NumberOfChanneledSpectra/NumberOfThreads )×( ThreadID+1 ) 

4: for  j = Start to End-1 do 

5:  for  i = 0 to M-1 do 

6:   OCTF_DPi,j = HW ( OCTF_DPi,j ) 

7:  end for 

8:  OCTF_DP'i,j = FFTj ( OCTF_DPi,j ) 

9:  for  r = 0 to R-1 do 

10:   for  i = Freq to M'-1 do 

11:    Product'i,j,r = OCTF_DP'i,j×MS_DP'i,r 

12:   end for 

13:   Producti,j,r = IFFTj,r ( Product'i,j,r ) 

14:   Intensityj,r = 0 

15:   for  i = W_Start to W_End do 

16:    Intensityj,r += abs ( Producti,j,r ) 

17:   end for 

18:   CrossSectionalj,r = GSC×Intensityj,r 

19:  end for 

20: end for 

21: End Parallel Threadt 
 

1 The value of ThreadID is passed to the thread as a parameter 

 

 

5.3.4.2 Fine-Grained Approach 

 

The fine-grained approach is carried out by parallel GPU threads launched by the kernels 

presented in Algorithm 5.8. Like the previous approaches to the MSI OCT method, this 

algorithm assumes that the mask signals are already processed, as presented in Algorithm 5.2. 

 In this approach, the result of the multiplication (Producti,j,r ), line 4 in Algorithm 5.8, 

is a three-dimensional array, where i is the index of the data point within the channeled 
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spectra, j is the index of the channeled spectra which corresponds to the horizontal index, and 

r is the index of the mask signal used to resolve the depth of the image, which is the vertical 

index. This array is mapped on a two-dimensional GPU grid as follows: 

 index i - threadIx.x ( the index of the thread with the blocks ) 

 index j - blockIdx.x ( the X index of the two-dimensional block) 

 index r - blockIdx.y ( the Y index of the two-dimensional block ) 

This mapping allows the elimination of all 'for' loops from the previous approaches. 

 

Algorithm 5.8:  Fine-grained approach to the MSI OCT method in cross-sectional imaging 

1: Copy OCTF_DPi,j from CPU memory to GPU memory /cudaMemcpy/ 

2: OCTF_DPi,j = HW ( OCTF_DPi,j ) /kernel with M×N/ 

3: OCTF_DP'i,j = FFTj ( OCTF_DPi,j ) /cufftExecR2C, batch of N 1D transforms/ 

4: Producti,j,r = OCTF_DP'i,j×MS_DP'i,r /kernel with M'×N×R threads/ 

5: Producti,j,r = IFFTj×r ( Product'i,j,r ) /cufftExecC2R, batch of N×R 1D transforms/ 

6: Intensityj,r = Integrate ( abs ( Producti,j,r /) ) /kernel with N×R threads/ 

7: CrossSectionalj,r=GSC×Intensityj,r /kernel with N×R threads/ 

8: Copy CrossSectionalj,r from GPU memory to CPU memory /cudaMemcpy/ 

 

5.3.5 Performance and Results of Cross-Sectional Imaging in OCT 

 

The OCT system studied in this research scans up to 500 points during cross-sectional 

imaging. The parallel optimizations are tested with three digital signals (OCT Frames): 

 OCT Frame A: Human eye, 100×1024 data points resulting in an image of 100×513 

points (pixels) in CFD OCT method and 100×512 points (pixels) in MSI OCT method 

 OCT Frame B: Human eye, 200×1024 data points resulting in an image of 200 ×513 

points (pixels) in CFD OCT method and 200×512 points (pixels) in MSI OCT method 

 OCT Frame C: Laminated paper, 500×1024 data points resulting in an image of 

500×513 points (pixels) in CFD OCT method and 500×512 points (pixels) in MSI OCT 

method 

 Tables 5.5 and 5.6 present the performances of the CFD and MSI methods measured 

in term of latency. The reported elapsed time does not include the time to copy the data to 

and from the global GPU memory. These latencies are presented separately in Tables 5.3 and 

5.4. 
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Table 5.5: Performance of the CFD OCT method in milliseconds 

Approach 
Width of Cross-Sectional CFD OCT Image (number of channeled spectra) 

1001 2001 3002 4002 5001 

Single Thread (CPU) 3.0 4.6 6.4 6.6 7.2 

Coarse-

Grained 

2 Threads 4.2 4.2 4.8 6.4 7.0 

4 Threads 4.0 4.03 4.23 4.63 4.83 

5 Threads 4.4 4.6 5.0 5.2 7.4 

10 Threads 7.8 8.2 8.6 7.6 10.4 

20 Threads 13.6 14.8 17.6 19.8 22.8 

25 Threads 19.8 21.6 24.2 26.8 34.8 

50 Threads 47.8 59.4 72.2 85.0 91.4 

100 Threads 177.8 182.4 204.2 210.2 216.2 

Fine-Grained 0.096 0.098 0.12 0.16 0.198 
 

1 OCT Frames collected from OCT system. The corresponding images are displayed in 

Figures 5.4, 5.5 and 5.6 
2 OCT Frames obtained by reading the first 300 and 400 respectively channeled spectra from 

the OCT Frame with total amount of channeled spectra of 500 
3 Optimal coarse-grained performance used to evaluate the speed-up 

 

 

Table 5.6: Performance of the MSI OCT method in milliseconds 

Approach 
Width of Cross-Sectional MSI OCT Image (number of channeled spectra) 

100 200 300 400 500 

Single Thread (CPU) 477.4 898.2 1362.4 1823.4 2372.0 

Coarse-

Grained 

2 Threads 262.4 514.4 748.6 989.0 1228.2 

4 Threads 162.6 288.2 414.4 538.2 657.8 

5 Threads 123.2 235.8 335.4 439.8 552.2 

10 Threads 86.8 173.4 234.2 313.8 402.4 

20 Threads 76.21 140.81 218.2 294.8 368.21 

25 Threads 83.2 155.4 211.81 292.81 380.8 

50 Threads 119.2 176.2 225.8 334.6 402.8 

100 Threads 195.8 227.2 276.0 366.8 418.4 

Fine-Grained 6.4 13.8 21.2 28.4 35.6 
 

1 Optimal performance of the coarse-grained approach used to evaluate the speed-up 
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 Figures 5.2 and 5.3 present the performance in terms of latency of the coarse-grained 

approaches to CFD and MSI methods. The MSI method, unlike the CFD one, benefits 

significantly from this parallel approach. It demonstrates the scalability discussed in Chapter 

2 and presented in Figure 2.1.A. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Performance in terms of latency of coarse-grained approach of the CFD OCT 

method 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Performance in terms of latency of the coarse-grained approach of the MSI OCT 

method 

 

 

 The following conclusions can be made, based on Tables 5.5 and 5.6 and Figures 5.2 

and 5.3: 
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 - In all cases, the fine-grained parallel optimization outperforms the coarse-grained 

one. 

 - Unlike the coarse-grained, the fine-grained approach in all cases launches one 

parallel thread per data point in both the CFD and MSI OCT methods. 

 - The CFD OCT method does not significantly benefit from the coarse-grained 

parallel optimization. This is due to the smaller number of computations, compared with the 

MSI OCT method, and the time needed to launch the CPU-based parallel threads presented in 

Chapter 4. 

 - The MSI OCT method benefits significantly from the coarse-grained approach, as 

seen in Figure 5.3 and reach optimal performance with 20-25 parallel threads. This 

performance depends on the multi-core architecture and the thread management provided by 

the operating system. 

 - The number of threads which delivers optimal performance in the coarse-grained 

approach depends on the OCT method and the size of the processed signal: 

 - The CFD OCT method reaches optimal performance with 2-4 parallel threads. 

 - The MSI OCT method reaches optimal performance with 20-25 parallel threads. 

 

 Table 5.7 illustrates the improvements in the performances, presented as speed-up, 

achieved by coarse-grained and fine-grained parallelization. 

 

Table 5.7: Speed-up of the coarse-grained and fine-grained cross-sectional imaging 

Width of cross-

sectional image 

CFD OCT method MSI OCT method 

Coarse-grained 

speed-up 

Fine-grained 

speed-up 

Coarse-grained 

speed-up 

Fine-grained 

speed-up 

100 - 31.25 6.27 74.59 

200 1.15 46.94 6.38 65.09 

300 1.52 53.33 6.43 64.26 

400 1.43 41.25 6.23 64.20 

500 1.67 36.36 6.44 66.63 

 

 As seen in Table 5.7, the GPU-based fine-grained approaches deliver significant 

improvement of the performance. Two factors contribute to this improvement. The first one 

is the higher level of parallelism of the fine-grained approach, where each data point is 

processed by one parallel thread. The second one is the utilization of the NVIDIA CUFFT 

library, which is optimized for NVIDIA GPU. 
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Figure 5.4: Cross-sectional OCT 

images of the human eye. A: CFD 

OCT method 100×513, B: MSI 

OCT method 100×512 

 Figure 5.5: Cross-sectional images of the 

human eye: A: CFD OCT method 

200×513, B: MSI OCT method 200×512 
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Figure 5.6: Cross-sectional OCT images of laminate paper. A: CFD OCT method with 

500×513 pixels, B: MSI OCT method with 500×512 pixels 
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5.4 En-face Imaging in OCT 

 

In en-face imaging, the OCT system generates multiple en-face images from different layers 

below the surface of semitransparent objects. Both CFD and MSI methods are capable of 

producing en-face images. Sequential implementations of these methods limit the number of 

en-face images generated in real-time. This is especially the case in the MSI OCT method. 

The coarse-grained and fine-grained parallel approaches aim at increasing the number of 

simultaneously generated images within the real-time criterion of the OCT system. 

 

5.4.1 Structure of the OCT Signal in En-Face Imaging 

 

In en-face imaging, an OCT system during a single scan of the beam of light over the object 

acquires one OCT frame of M×N×L data points, where M is the size of the channeled 

spectrum, N is the number of points per line, and L is the number of lines. The OCT system 

studied in this research acquires one OCT frame of 1024x200x192 data points in 0.8 seconds 

[12]. As in the cross-sectional imaging, these values are determined by the sweeping 

capabilities of the OCT system and define its real-time criterion. 

 The OCT frame, as generated by the OCT system, can be presented as two-

dimensional array of N×L channeled spectra, or three-dimensional array of M×N×L data 

points. The corresponding OCT frame after discrete Fourier transform has M'×N×L data 

points, where M'=M/2+1. 

஽்ܨܶܥܱ  ൌ ܥ ௝ܵǡ௞்஽ ൌ ܦ ௜ܲǡ௝ǡ௞்஽ Ǣ Ǣࡾ߳ܲܦ ݅ ൌ Ͳǡڮ ǡܯ െ ͳǡ ݆ ൌ Ͳǡڮ ǡܰ െ ͳǢ ݇ ൌ Ͳǡڮ ǡ ܮ െ ͳ (5.13) 

ி஽ܨܶܥܱ   ൌ ܥ ௝ܵǡ௞ி஽ ൌ ܦ ௜ܲǡ௝ǡ௞ி஽ Ǣ Ǣ࡯߳ܲܦ ݅ ൌ Ͳǡڮ ǡܯᇱ െ ͳǢ ݆ ൌ Ͳǡڮ ǡܰ െ ͳǢ ݇ ൌ Ͳǡڮ ǡ ܮ െ ͳ (5.14) 

 

 The main differences between the generation of cross-sectional and en-face images 

are the size of the OCT frame, the three-dimensional volumetric character in en-face imaging, 

and the ability to produce multiple en-face images based on a single OCT frame. 

 A screen with a standard resolution of 1920×1080 pixels is suitable for displaying 

simultaneously in one window up to 40 (8×5) en-face images of 200×192 pixels, which 

amounts to (8×200)×(5×192) pixels, or 1600×960 pixels. The subsequent parallel 

optimizations aim at reaching this number of en-face images in real-time. 
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5.4.2 Stages in En-Face Imaging 

 

In en-face OCT imaging, a single en-face OCT frame can generate multiple en-face images, 

unlike the cross-sectional OCT imaging, where only one image can be generated by one 

cross-sectional OCT frame. 

 Figure 5.7 presents the processing steps of the two OCT methods studied in this 

thesis, namely the CFD and the MSI. The first two steps, namely HW and FFT, are the same 

for both methods. These two steps do not depend on the number of processed and generated 

en-face images. The amount of calculations remains the same, whether a single image or 

multiple images are generated. In the CFD OCT method, the number of en-face images 

depends on the number of data points selected at the AV steps. In the MSI OCT method, the 

number of images is determined by the number of complex multiplications, performed 

between the OCT frame after Hamming window and FFT and the selected mask signal. Each 

multiplication expects a different mask signal. Based on this, the en-face imaging can be 

divided into two stages: first one consisting of HW and FFT with fixed number of 

computations, and a second one with computations that depend on the number of en-face 

images, illustrated in Table 5.8. 

 

 

Table 5.8: Stages in the CFD and the MSI methods 

Stage 
Steps 

CFD OCT method MSI OCT method 

1 
Hamming window Hamming window 

FFT FFT 

2 

Absolute value 
Complex multiplication 

IFFT 

Scale 
Integration 

Scale 

 

 

 The fine-grained approach launches one kernel (or FFT/IFFT call) per each step and 

applies the same parallelization strategy. This strategy aims at processing each data point by 

one parallel thread from the GPU grid. The only exception is the integration step, as 

discussed in Chapter 4. 
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Figure 5.7: Stages in CFD and MSI methods. X is the index of the en-face images. In the 

CFD method, X is chosen from the i coordinates from the OCT frame after HW and FFT. In 

the MSI method, X corresponds to the index of the selected mask from the set of mask 

signals. In the MSI method, HW, FFT and CC are already applied on the mask signal during 

Offline mode 

 

 

 In the coarse-grained approach, on the other hand, optimal parallel performance can 

be achieved by much smaller number of parallel threads. Each of these parallel threads 

performs all steps of the methods, processing fraction of the digital signal. As a result, stages 

1 and 2 are expected to achieve optimal parallel performances with a different number of 

CPU-based parallel threads. Therefore, an optimal performance of the overall en-face 

imaging can be achieved by parallelizing the two stages separately. 
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Algorithm 5.9:  Coarse-grained approach to Stage 1 (Hamming window and FFT) 

1: Start Parallel Threadt ( ThreadID1 ) 

2: Start=( NumberOfChanneledSpectra/NumberOfThreads )×ThreadID 

3: End=( NumberOfChanneledSpectra/NumberOfThreads )×( ThreadID+1 ) 

4: for  j = Start to End-1 do 

5:  for  i = 0 to M-1 do 

6:   OCTF_DPi,j = HW ( OCTF_DPi,j ) 

7:  end for 

8:  OCTF_DP'i,j = FFTj ( OCTF_DPi,j ) 

9: end for 

10: End Parallel Threadt 
 

1 The value of ThreadID is passed to the thread as a parameter 

 

 This algorithm divides the total number of channeled spectra equally among the 

parallel threads. The OCT system studied in this research generates OCT frames with N=200 

lines and L=192 columns and has a total number of 38400 channeled spectra. As seen from 

Table 5.9, the optimal number of parallel threads to process a single OCT frame is 8. Each 

parallel thread applies HW on 1024×4800 data points and performs 4800 FFT. 

 

Table 5.9: Performance of coarse-grained parallel optimization of HW and FFT in milliseconds 

Number of 

parallel 

threads 

1 2 4 6 8 12 16 32 64 

Number of 

Channeled 

Spectra/FFT 

Per Thread 

38400 19200 9600 6400 4800 3200 2400 1200 600 

Time [m] 248.8 220.8 218.8 218.2 216.4 228.4 301.8 325.2 376.2 

 

 During Stage 2, the amount of computations depends on the number of processed en-

face images. The CFD method performs absolute value (AV) and scale (S). The MSI method 

performs complex multiplication (CM), inverse FFT (IFFT), integration (I) and scale (S). In 

this stage in the coarse-grained approaches both methods launch one parallel thread per en-

face image. Two factors determined this decision: 
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 1. The structure of the algorithm is more consistent, if each en-face image is 

processed by one thread. 

 2. The number of processed en-face images can be controlled directly by selecting the 

number of parallel threads processing Stage 2. Smaller number of images provides better 

performance but less information and vice versa. This allows a trade-off between speed and 

amount of information. 

 

5.4.3 CFD OCT Method in En-Face Imaging 

 

The CFD OCT method employed in en-face imaging, presented in Equation 4.15, is based on 

the same principle as in the cross-sectional imaging. The maximum number of possible en-

face images, generated by the CFD OCT method, is equal to the number of data points in the 

channeled spectrum after discrete Fourier transform (M'), as seen in Equation 5.4 and Figure 

5.1. In this implementation M' is equal to 513. 

 

Algorithm 5.10: Sequential approach to the CFD OCT method in en-face imaging (Stages 1 and 2) 

1: for  k=0 to L-1 do 

2: for  j=0 to N-1 do 

3:  for  i=0 to M-1 do 

4:   OCTF_DPi,j,k = HW ( OCTF_DPi,j,k ) 

5:  end for 

6:  OCTF_DP'i,j,k = FTj,k ( OCTF_DPi,j,k ) 

7: end for 

8: end for 

9: for  k=0 to L-1 do 

10: for  j=0 to N-1 do 

11:  for  i=0 to NumberOfEnFaceImages do 

12:   ImageIDA = Start + Step×i 

13:   IntensityImageID,j,k = AV ( OCTF_DP'ImageID,j,k ) 

14:   EnFaceImageID,j,k = GSC × IntensityImageID,j,k 

15:  end for 

16: end for 

17:end for 
 

A The first Freq data points correspond to the low frequency components of the signal. The selection 

of Start larger than the value of Freq in the previous methods implements a high-pass filter 
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 Algorithm 5.10 presents the sequential approach to the CFD method. In this 

algorithm, the data is processed by a single thread of execution. Therefore, the distinction 

between the stages does not apply in this case. 

௜൫݁݃ܽ݉ܫ  ௝ܲ௞൯ ൌ ܥܵܩ ൈ ቚܨ ௝ܶ௞ ቀܹܪ൫ܦ ௜ܲ௝௞்஽൯ቁቚ Ǣ ݅ ൌ Ͳǡڮ ǡܯᇱ െ ͳ (5.15) 

 

5.4.3.1 Coarse-Grained Approach 

 

The coarse-grained approach divides the processing into the aforementioned two stages. 

During the second stage, illustrated by Algorithm 5.11, two global variables are employed to 

define the selected en-face images: Start and Step. The first one defines the index of the first 

image, the second one the step between successive images, Figure 5.8 An ID of the image is 

calculated as described in Equation 5.16 and passed to each parallel thread as a parameter. 

௜ܦܫ݁݃ܽ݉ܫ  ൌ ܴܶܣܶܵ ൅ ܲܧܶܵ ൈ ݅Ǣ ݅ ൌ Ͳǡڮ ǡ͵ͻǡ ௜ܦܫ݁݃ܽ݉ܫ ൏ ͷͳ͵ (5.16) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: CFD OCT method generating multiple en-face images. The cube represents the 

data points from an OCT frame after Hamming window, FFT, absolute value and scale 

(multiplication with GSC). The dimension of the images is N×L, the number of possible en-

face images is M' 
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Algorithm 5.11: Coarse-grained approach to the CFD OCT method in en-face imaging (Stage 2) 

1: Start Parallel Threadt ( ThreadID1 ) 

2: for  k=0 to L-1 do 

3:  for  j=0 to N-1 do 

4:   ImageIDA = StartB + StepB × ThreadID 

5:   IntensityImageID,j,k = AV ( OCTF_DP'ImageID,j,k ) 

6:   EnFaceImageID,j,k = GSC × IntensityImageID,j,k 

7:  end for 

8: end for 

9: End Parallel Threadt 
 

A ThreadID is passed to the thread as a parameter. It is used to calculate the ImageID 
B Start and Step are global variables 

 

 In an integrated solution, these global variables are part of a shared memory. In that 

case, their values are set in real-time by the user interface, which is a LabVIEW Virtual 

Instrument. In the same case, the value of GSC is also part of the shared memory, allowing 

the user to control the contrast of the images. The integrated implementation is discussed in 

Chapter 6. 

 

 

5.4.3.2 Fine-Grained Approach 

 

The fine-grained approach, presented in Algorithm 5.12, is implemented by multiple parallel 

threads on the GPU, launched by a number of kernels. The processing is organized in a 'for' 

loop. Each iteration of this loop processes one en-face image. The kernels called from the 

body of the loop launch one GPU-based parallel thread per each data point. 

 The number of processed en-face images is controlled by the number of iterations of 

that loop. 

 The three-dimensional array EnFacei,j,k holds the result of the processing. Its first 

dimension is the image ID, the second dimension is the X-coordinate, and the third dimension 

is the Y-coordinate of the en-face image. 
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Algorithm 5.12: Fine-grained approach to the CFD OCT method in en-face imaging (Stages 1 and 2) 

1: Copy OCTF_DPi,j,k from CPU memory to GPU memory /cudaMemcpy/ 

2: OCTF_DPi,j,k = HW ( OCTF_DPi,j,k ) /kernel with M×N×L/ 

3: OCTF_DP'i,j,k = FFTj×k ( OCTF_DPi,j,k ) /cufftExecR2C, batch of N×L 1D transforms/ 

4: for  i=0 to NumberOfEnFaceImages-1 do 

5: ImageID = Start + Step×i 

6: Intensityj,k = AV ( OCTF_DP'ImageID,j,k ) /kernel with N×L threads/ 

7: EnFacei,j,k = GSC×Intensityj,k /kernel with N×L threads/ 

8: end for 

9: Copy EnFacei,j,k from GPU memory to CPU memory /cudaMemcpy/ 

 

 

 In the last two kernels, which calculate the absolute values and the gray scale values, 

the input signal and the resulting signal have the same number of data points. They can be 

implemented both as one or two kernels. Both cases generate equivalent results in 

performance. 

 

 

5.4.4 MSI OCT Method in En-Face Imaging 

 

 

The implementation of the MSI OCT method, presented in Algorithm 5.13, follows 

Equations 5.10, 5.11 and 5.12. The maximum number images is equal to the number of 

prerecorded mask signals MS_DPi,r, where i is the index of the data point within each mask 

signal and r is the index of the mask itself. The size of each mask signal must be equal to the 

size of the channeled spectrum (M) from the OCT frame.  

 

 

 

 

 

 

 



112 

 

Algorithm 5.13: Sequential approach to the MSI OCT method in en-face imaging (Stages 1 and 2) 

1: for  k = 0 to L-1 do 

2: for  j = 0 to N-1 do 

3:  for  i = 0 to M-1 do 

4:   OCTF_DPi,j,k = HW ( OCTF_DPi,j,k ) 

5:  end for 

6:  OCTF_DP'i,j,k = FFTj,k ( OCTF_DPi,j,k ) 

7: end for 

8: end for 

9: for  r = 0 to Q-1 do 

10: MaskID = Start + Step×r 

11: for  i = 0 to M'-1 do 

12:  Single_MS_DP'i = MS_DP'i,MaskID 

13: end for 

14: for  k = 0 to L-1 do 

15:  for  j = 0 to N-1 do 

16:   for  i = Freq to M'-1 do 

17:    Product'i,j,k = OCTF_DP'i,j,k × Single_MS_DP'i 

18:   end for 

19:  Producti,j,k = IFFTj,k ( Product'i,j,k ) 

20:  IntensityMaskIDr,j,k = 0 

21:  for  i = W_Start to W_End do 

22:   IntensityMaskIDr,j,k += Producti,j,k 

23:  end for 

24:  EnFaceMaskIDr,j,k = GSC×IntensityMaskIDr,j,k 

25: end for 

26: end for 

 

 This research uses a set of R=512 mask signals, each mask signal has the size of 

M=1024, which amounts to M×R=524288 data points. A smaller number of mask signals 

(Q<R) are selected from this set and take part in the real-time processing. These masks are 

selected in real-time during the operation of the OCT system, as shown in Equation 5.17. 

They are selected in a similar way as the ImageID is selected in the CFD-based en-face 

imaging. Selecting a mask signal is equivalent to selecting an image from a particular depth. 
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௥ܦܫ݇ݏܽܯ  ൌ ܴܶܣܶܵ ൅ ܲܧܶܵ ൈ Ǣݎ ݎ ൌ Ͳǡڮ ǡ ܳ െ ͳǢܦܫ݇ݏܽܯ௥ ൑ ܴ െ ͳǢܳ ൏ ܴ (5.17) 

 

5.4.4.1 Coarse-Grained Approach 

 

The coarse-grained approach of the MSI method is presented in Algorithm 5.14. Like the 

CFD, the MSI method is also divided into two stages: 

 1. The first stage applies Hamming window and FFT on the OCT frame. These two 

steps do not depend on the selected number of processed and visualized en-face images. As a 

result, the MSI method uses the same parallel realization of HM and FFT as in CFD. 

 2. The second stage applies complex multiplication between the OCT frame and the 

mask signal, inverse FFT, integration, and scale. The parallel optimization of the second 

stage launches one parallel thread per en-face image. 

 

Algorithm 5.14: Coarse-grained approach to the MSI OCT method in en-face imaging (Stage 2) 

1: Start Parallel Threadt ( ThreadIDA ) 

2: MaskID = Start + Step×ThreadID 

3: for  i = 0 to M'-1 do 

4:  Single_MS_DP'i = MS_DP'i,MaskID 

5: end for 

6: for  k = 0 to L-1 do 

7:  for  j = 0 to N-1 do 

8:   for  i = Freq to M'-1 do 

9:    Product'i,j,k = OCTF_DP'i,j,k×Single_MS_DP'i 

10:   end for 

11:   Producti,j,k = IFFTj,k ( Product'i,j,k ) 

12:   Intensityj,k,MaskID = 0 

13:   for  i = W1 to W2 do 

14:    Intensityj,k,MaskID += Producti,j,k 

15:   end for 

16:   EnFace,j,k,MaskID = GSC×Intensityj,,k,MaskID 

17:  end for 

18: end for 

19: End Parallel Threadt 
 

A ThreadID is passed as a parameter to the parallel threads 
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 The proposed coarse-grained approach launches one parallel thread for each en-face 

image. Each parallel thread extracts one mask from the set of mask signals. This mask 

determines the processed depth visualized by the corresponding en-face image. The coarse-

grained approach replaces the outer loop from Algorithm 5.13. The OCT frame and the set of 

mask signals are stored in the global memory, accessible by all parallel threads. Each thread 

receives a parameter, MaskID, which is used to locate the corresponding mask from the set of 

mask signals, and thus processes the respective en-face image. 

 

 

 

 

5.4.4.2 Fine-Grained Approach 

 

 

Algorithm 5.15 presents the fine-grained approach to the MSI method in en-face OCT 

imaging. The kernels used in this approach launch one GPU-based parallel thread for each 

data point. The only exception is the Integration, where one parallel thread is launched for 

every channeled spectrum, integrating all values within the channeled spectrum itself. 

 

Algorithm 5.15: Fine-grained approach to the MSI OCT method in en-face imaging (Stage 1 and 2) 

1: Copy OCTF_DPi,j,k from CPU memory to GPU memory /cudaMemcpy/ 

2: OCTF_DPi,j,k = HammingWindow ( OCTF_DPi,j,k ) /kernel with M×N×L threads/ 

3: OCTF_DP'i,j,k = FFTj×k ( OCTF_DPi,j,k ) /cufftExecR2C, batch of N×L 1D transforms/ 

4: for  r = 0 to Q-1 do 

5: MaskID = Start + Step×r 

6: Single_MS_DP'i = MS_DP'i,MaskID 

7: Product'i,j,k = OCTF_DP'i,j,k×Single_MS_DP'i /kernel/ 

8: Producti,j,k = IFFTj×k ( Product'i,j,k ) /cufftExecC2R, batch of N×L 1D transforms/ 

9: Intensityj,k = Integrate ( Producti,j,k ) /kernel/ 

10: EnFacej,k,r = GSC×Intensityj,k /kernel with N×L threads/ 

11: end for 

12: Copy EnFacej,k,r from GPU memory to CPU memory /cudaMemcpy/ 
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 The fine-grained processing is organized in a 'for' loop, processing one en-face image 

per iteration. Although it is possible to process more than one image per iteration, this 

approach is chosen for two reasons: 

 1. This requires allocation for variables for only one en-face image. The only 

exception being the EnFace variable, which accumulates the gray scale values for all images. 

As seen in Table 5.10, the GPU memory needed for larger number of en-face images is 

significant. 

 2. It gives direct control in real-time over the number of processed and displayed 

images. 

 

 

Table 5.10: Size of GPU memory needed in en-face OCT imaging using the MSI method 

 

Size of signals for 

1 en-face image 

(data points) 

Size of signals for 

40 en-face images 

(data points) 

Data type and size 

Input signal in TD 
1024×200×192 

=39,321,600 

1024×200×192 

=39,321,600 

Single 

4 bytes 

Input signal in FD 
513×200×192 

=19,699,200 

513×200×192 

=19,699,200 

Complex 

8 bytes 

Product in FD 
513×200×192 

=19,699,200 

40×513×200×192 

=787,968,000 

Complex 

8 bytes 

Product in TD 
1024×200×192 

=39,321,600 

40×1024×200×192 

=1,572,864,000 

Single 

4 bytes 

Integrated product 

in TD 

200×192 

=38,400 

40×200×192 

=1,536,000 

Single 

4 bytes 

Scaled product 

in TD 

200×192 

=38,400 

40×200×192 

=1,536,000 

Integer 

4 bytes 

Total memory 

(megabytes) 
~600 ~12,232 - 
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5.4.5 Performance and Results of En-Face Imaging in OCT 

 

The OCT system during en-face imaging generates OCT frames at the rate of 800 

milliseconds, which is the real-time requirement of the system. All approaches allow direct 

control over the number of en-face images, and thus allowing the operator of the system to 

choose optimal usage. 

 

 Tables 5.11 and 5.12 and Figures 5.9 and 5.10 present the performances of the 

sequential, coarse-grained, and fine grained approaches of the CFD and MSI methods. The 

maximum number of generated en-face images is 40, as presented in Figures 5.11 and 5.12. 

 

 

Table 5.11: Performance of the CFD OCT method in en-face imaging, in milliseconds 

Approach 
Number of en-face images 

1 2 4 8 12 16 24 32 40 

Sequential 

approach 
218.2 222.0 224.6 228.4 230.2 231.8 233.0 237.8 252.4 

Coarse-

grained 
- 215.6 218.4 232.2 235.8 240.8 261.4 296.2 307.8 

Fine-

grained 
9.0 10.2 15.2 21.8 32.2 36.4 56.4 74.8 85.0 

 

 

Table 5.12: Performance of the MSI OCT method in en-face imaging, in milliseconds 

Approach 
Number of en-face images 

1 2 4 8 12 16 24 32 40 

Sequential 

approach 
478.2 746.4 1303.8 2290.2 3368.2 4392.4 6687.0 8887.2 10955.8 

Coarse-

grained 
- 553.4 559.6 655.2 731.2 741.6 1156.2 1441.8 1747.8 

Fine-

grained 
11.6 17.2 29.0 52.2 75.0 98.4 144.0 190.2 236.2 
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Figure 5.9: Performance of the CFD OCT method generating 1 to 40 en-face images. Coarse-

grained approach launches one thread per image in Stage 2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Performance of the MSI OCT method generating from 1 to 40 en-face images. 

Coarse-grained approach launches one thread per image in Stage 2 

 

 Unlike in the cross-sectional imaging where different coarse-grained approaches were 

proposed, in the en-face imaging the size of the data, which is the number of processed en-

face images, determines the number of the parallel threads. Therefore, Figures 5.9 and 5.10, 

besides the performance in terms of latency, also illustrate the scalability of the parallel 

approaches as defined in Figure 2.1.B. 
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Figure 5.11: 40 en-face OCT images of the human eye 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: 40 en-face OCT images of laminated paper 

 

 Based on these results, the following conclusions can be made: 

 1. The CFD OCT method reaches real-time operation in all approaches. The actual 
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computations in the CFD method take less time than the CPU-GPU copy. For a small number 

of en-face images, up to four, the coarse-grained approach outperforms the sequential. For the 

remaining cases, the overheads from the multithreading prevents the coarse-grained approach 

to outperform the sequential. 

 2. In the MSI OCT, the fine-grained optimization delivers real-time performance for 

all sizes of processed signals. The corresponding coarse-grained optimization reaches real-

time operation with up to 16 en-face images. 

 3. As seen from the speed-up presented in Table 5.13, the less computationally 

intensive CFD method does not benefit from the parallel optimization. The MSI method on 

the other hand improves its performance significantly. 

 

Table 5.13: Speed-up of the coarse-grained and fine-grained en-face imaging 

Number of en-face 

images 

CFD OCT method MSI OCT method 

Coarse-grained Fine-grained Coarse-grained Fine-grained 

2 1.03 21.76 1.35 43.40 

4 1.03 14.78 2.33 44.96 

8 0.98 10.48 3.50 43.87 

12 0.98 7.15 4.61 44.91 

16 0.96 6.37 5.92 44.64 

24 0.89 4.13 5.78 46.44 

32 0.80 3.18 6.16 46.73 

40 0.82 2.97 6.27 46.38 

 

5.5 Confocal Imaging in OCT 

 

Scanning laser ophthalmoscopy (SLO), along with the OCT imaging, is widely used in 

ophthalmology. It has a typical axial resolution, along the orthogonal axis, of approximately 

200 µm and is typically used to locate layers and tissues [82]. In some cases, it is generated 

along with en-face OCT images, as presented in [83] and [84]. 

 This research presents a parallel approach to the construction of images corresponding 

to confocal SLO images. They are generated during en-face OCT imaging by averaging 

(integrating) multiple successive en-face images. In this thesis, these images are denoted as 

confocal. 

 The OCT frames used in this research cover a depth of 2.7 mm (2700 µm). Similar 

OCT frame is presented in [12]. Displaying this depth with 513 lines in the CFD method and 



120 

 

OCTF 

OCTF 
HW, FFT, AV 

En-
face1 

Con-
focal 

En-
faceN 

Phase 1: En-face generation (CFD) 

...
 

...
 

Phase 1: 
Selection of 
mask signals 

Phase 2: Generation of en-face 
images and en-face stack 

Phase 3: Integration 

Phase 3: Integration Phase 2: Selection of 
en-face images and 

generation of en-face 
stack 

Set of 
mask 

signals 

En-
face

1
 

En-
face

2
 

En-
face

N
 

Con-
focal 

En-
face

2
 

Cross-
correlation 

with 512 lines in the MSI method, results in an axial resolution of approximately 5.3 µm. 

Therefore, a confocal image with approximate resolution of 200 µm would need the 

integration of approximately 38 en-face images. 

 Both the CFD and MSI OCT methods can produce confocal images based on multiple 

en-face images. The two methods follow different routes in the en-face imaging, and 

consequently, different routes to confocal imaging, as illustrated in Figure 5.13. 

 The generation of confocal images can be divided into three phases, as seen in Figure 

5.13. The order of these phases depends on the OCT method. In the CFD OCT method, the 

phases are: en-face generation, selection of en-face images, and integration. In the MSI OCT 

method, the phases are selection of mask signals, en-face generation, and integration. 

 

A. CFD 

 

 

 

 

 

 

 

B. MSI 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Phases in confocal imaging based on the CFD (A) and MSI (B) methods 
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 The confocal images are built on consecutive en-face images. In the CFD OCT 

method, these en-face images are selected directly during Phase 2. In the MSI OCT method, 

the en-face images are selected indirectly by selecting corresponding masks from the set of 

mask signals during Phase 1. In both OCT methods, the selection of the en-face images is 

controlled by two variables: Start and Range. The first variable determines the first en-face 

image. The second one determines how many en-face images will take part in the processing. 

 

 

5.5.1 Approaches to Integration 

 

In both methods, the completion of the first two stages results in a set of en-face images, 

denoted as the en-face stack. The en-face stack can be considered as a three-dimensional 

array EnFaceStacki,j,k, where: 

 - i is the index of the en-face image 

 - j is the X coordinate in the en-face image in the OCT frame, j = 0, ... , XSize-1 

 - k is the Y coordinate in the en-face image, k = 0, ... , YSize-1 

 In this case, the integration needs to be according the i index. The result will be a 

single confocal image with XSize×YSize points. 

 This organization of the en-face stack is followed by both OCT methods. As a result, 

the employed parallel approach does not depend on the OCT method. Figure 5.14 illustrates 

the en-face stack containing the selected en-face images. All approaches to the integration 

require the completion of the calculation of the en-face stack with the three-dimensional array 

EnFaceStacki,j,k holding the intensities of the selected en-face images. 

 

 

 

 

 

 

 

 

 

Figure 5.14: En-face stack 
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 The confocal imaging is based on the en-face imaging discussed in the previous 

section of this chapter. The overall performance of the confocal imaging depends heavily on 

the performance of the en-face imaging. Considering the need to copy the OCT frame to the 

global GPU memory only once for both the en-face and the confocal imaging, and the 

superior performance of the fine-grained approach, the confocal imaging presented and 

studied here is built on the GPU-based fine-grained approach. Four GPU-based approaches 

are proposed, namely, a Sequential Iterative, Partially Parallel Iterative, Parallel Reduction, 

and Zero-Frequency Component (ZFC) The Sequential Iterative approach illustrates 

computations performed by a single thread. In order to avoid a possible loss of precision, the 

multiplication with the gray scale coefficient (GSC) is performed at the end of Phase 3 after 

the integration of all intensities of the selected en-face images. 

 

5.5.1.1 Sequential Iterative 

 

This approach is implemented with sequential iterations, as demonstrated in Algorithm 5.16. 

It is used as a baseline for the comparison with the other parallel approaches. The algorithm 

is carried by a single thread of execution on the GPU. Table 5.11 presents the performance of 

this approach with different number of en-face images. 

 

Algorithm 5.16: Sequential Iterative approach to integration in confocal imaging 

1: Kernel SequentialIterative 

2: Input : EnFaceStack 

3: Output  Confocal 

4: for  k = 0 to YSize-1 do 

5:  for  j = 0 to XSize-1 do 

6:   Sum = 0 

7:   for  i = 0 to NumberOfEnFace-1 do 

8:    Sum = Sum + EnFaceStacki,j,k 

9:   end for 

10:   Confocalj,k = Sum×GSC 

11:  end for 

12: end for 

13: End Kernel 
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5.5.1.2 Partially Parallel Iterative 

 

The sequential iterative approach can be partially parallelized on the GPU. The stack of 

selected en-face images has dimension of XSize×YSize×NumberOfEnFace. In this approach 

XSize×YSzie parallel threads are launched. Each parallel thread integrates sequentially the 

values from all images with the same en-face coordinates. Each thread accumulates the 

integrated value of the intensity of the corresponding points from the confocal image. There 

are three possible cases in this implementation: 

 1. The integration kernel launches XSize parallel threads grouped into YSize blocks: 

 IntegrationKernel<<< YSize,XSize>>> (EnFaceStack, Confocal) 

This approach is demonstrated in Algorithm 5.17. Each point from the confocal image 

obtains its intensity sequentially, line 6 in Algorithm 5.17. 

 2. The integration kernel launches XSize×YSize thread blocks. Each thread block 

launches one thread: 

 IntegrationKernel <<<(Xsize×YSize), 1>>> (EnFaceStack, Confocal) 

 3. The integration kernel launches a two-dimensional grid IntegrationGrid of XSize 

by YSize thread blocks. Each block launches a single thread: 

 dim3 IntegrationGrid(XSize,YSzie) 

 Integration Kernel <<<IntegrationGrid, 1>>> (EnFaceStack, Confocal) 

 All three approaches yield virtually identical performances. 

 

Algorithm 5.17: Partially Parallel Iterative approach to integration in confocal imaging 

1: Kernel PartiallyParallelIterative 

2: Input  EnFaceStack 

3: Output  Confocal 

4: j = threadIdx.x // parallel threads map the X coordiante 

5: k = blockIdx.x // thread blocks map the Y coordinate 

6: Sum = 0 

7: for  i = 0 to NumberOfEnFace-1 do 

8:  Sum = Sum + EnFaceStacki,j,k 

9: end for 

10: Confocalj,k = Sum×GSC 

11: End Kernel 
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5.5.1.3 Parallel Reduction 

 

This approach is based on the parallel reduction algorithm presented in Chapter 4, in [80] and 

[81] . The algorithm in Chapter 4 integrates digital signal with 8 data point. To integrate a 

higher number of data points would require the addition of if-then operators in the kernel 

involving the additional values. The rest of the algorithm remains unchanged. Its improved 

performance is noted in Table 5.14. 

 

5.5.1.4 Zero-Frequency Component 

 

This approach is based on the property of the discrete Fourier transform, discussed in 

Chapters 3 and 4. The summation of all data points from a digital signal in time domain is 

hold in the zero-frequency component of the same signal in Fourier domain. 

 

 

Algorithm 5.18: ZFC approach to integration in confocal imaging 

1: EnFaceStack'i,j,k = FFTj×k ( EnFaceStacki,j,k ) /cufftExecR2C, batch of XSize×YSize 1D transforms/ 

2: Confocalj,k = ( AV ( EnFaceStack'0,j,k ) )×GSC /kernel with XSize×YSize threads/ 

 

 The performance of this approach depends on the performance of the employed FFT 

on a signal with the size of XSize×YSize×NumberOfEnFace. The number of transforms is 

equal to XSize×YSize. A confocal image based on 64 to 512 en-face images requires 

processing of a digital signal with the size of 2457600 (200×192×64) to 19660800 

(200×192×512) data points. The size of the signal and the performance of the FFT presented 

in Table 4.2 in Chapter 4 make the GPU implementation the approach of choice for this case. 

This performance is reported in Table 5.14. 

 

5.5.2 Performance and Results of Confocal Imaging in OCT 

 

The performance of the confocal imaging is divided into two components: 

 1. The performance of the generation of the selected en-face images. This 

performance depends on the selected OCT method. In the MSI method, this performance 
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depends on the number of selected en-face images 

 2. The performance of the integration stage 

 

 Table 5.14 present the performance of confocal imaging based on different numbers 

of en-face images. 

 

Table 5.14: Performance of GPU-based fine-grained confocal OCT imaging, in milliseconds 

Number 

of en-face 

images 

En-face 

generation 

(CFD) 

En-face 

generation 

(MSI) 

Sequential 

Iterative 

Partially 

Parallel 

Parallel 

Reduction 
ZFC 

64A 7.6 350 754.3 1.4 1.2 0.26 

128 7.6 694 1476.1 2.6 1.2 0.48 

256 7.6 1380 3012.8 5.2 6.6 0.92 

512B 7.6 2765 6082.5 8.3 6.8 1.74 
 

A Figures 5.15 and 5.17 present the confocal images generated by averaging 64 en-face 

images 
B Figures 5.16 and 5.18 present the confocal images generated by integrating 512 en-face 

images. The level of the noise in the first en-face images, or the first lines in the 

corresponding cross-sectional image, is high. Therefore, the intensities from these images are 

set to zero 

 

 As expected, a confocal image generated by a single GPU thread is outperformed 

considerably by all other approaches, Table 5.14. This highlights the affinity of the GPU 

towards parallel computations. 

 The overall performance of the confocal imaging is equal to the summation of the en-

face generation, the integration, and the time to copy the data to and from the GPU memory. 

All combinations between the two OCT methods and the four approaches to integrations are 

possible. Table 5.15 illustrates two cases of confocal imaging. The first case is based on 512 

en-face images generated using the CFD method and integrated by the ZFC approach. The 

second case is based on 64 en-face images generated using the MSI method and integrated by 

employing the parallel reduction. The real-time criterion for confocal imaging is the same as 

for en-face imaging, which is 800 milliseconds. Both examples in Table 5.15 meet the real-

time criterion. 
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Table 5.15: Performance of two approaches to OCT confocal imaging, in milliseconds 

Number of 

en-face 

images 

OCT 

method 

Approach to 

integration 

Performance in milliseconds 

CPU-GPU 

copy 

En-face 

generation 
Integration 

GPU-CPU 

copy 
Overall 

64A MSI 
Parallel 

Reduction 
101.52C 350 1.2 0.09D 452.81 

512B CFD ZFC 101.52C 7.6 1.74 0.09D 111.95 
 

A Confocal image generated by integrating 64 en-face images are presented in Figures 5.15 

and 5.17 
B Confocal images generated by integrating 512 en-face images are presented in Figures 5.16 

and 5.18 
C Time to copy one OCT frame of 200×192×1024 data points, as presented in Table 5.3 
D Time to copy one en-face (confocal) image as presented in Table 5.4 

 

 Along with the confocal image, a cross-sectional image generated from the same 

digital signal is visualized, as seen in Figures 5.15, 5.16, 5.17 and 5.18. The cross-sectional 

image provides guiding information about the axial position of the selected en-face images. 

The OCT frame acquired during en-face imaging basically consists of multiple horizontal 

cross-sectional OCT frames, in this case 192 cross-sectional OCT frames of 200×1024 data 

points each. Providing the index of the horizontal cross-sectional image allows the 

calculation of the start index of the horizontal cross-sectional OCT frame and its extraction 

from the en-face OCT frame. Also, the en-face and the cross-sectional images share the same 

Hamming window and FFT applied on the en-face OCT frame. Therefore, the extraction of 

the cross-sectional image is done after these steps on an OCT frame in Fourier domain in the 

global GPU memory. The following call to cudaMemcpy extracts the cross-sectional OCT 

frame from the en-face one: 

cudaMemcpy(CSOCTF,&(EFOCTF[Mp*N*Index] ),Mp*N*sizeof(cufftComplex),cudaMemcpyDeviceToDevice) 

Where: 

 Mp (M') is the size of the channeled spectrum in Fourier domain ( Mp = 513 ) 

 N is the number of channeled spectra per line ( N = 200 ) 

 Index is index of the selected cross-sectional image ( Index = [0..191] ) 

 EFOCTF is the en-face OCT frame in the GPU memory 

 CSOCTF is the cross-sectional OCT frame in the GPU memory 
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Figure 5.15: Confocal image of human eye 

generated by averaging 64 en-face images 

Figure 5.16: Confocal image of human eye 

generated by averaging 512 en-face images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Confocal image of laminated 

paper generated by averaging 64 en-face 

images 

Figure 5.18: Confocal image of laminated 

paper generated by averaging 512 en-face 

images 
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 Digital signals from two OCT frames are used. Figures 5.15 and 5.16 visualize the 

back of a human eye. Figures 5.17 and 5.18 present a laminated paper. A horizontal line 

across the confocal image denotes the position of the cross-sectional image. A vertical bar on 

the right denotes the region from which the en-face images are used in the confocal. 

Approaches to the GPU-based parallel optimizations of generating confocal images are 

reported in [85]. 

 The performances presented in Tables 5.14 and 5.15 include only the time to generate 

the confocal image. The latency of the cross-sectional image is not included. Chapter 6 

presents an integrated solution where the performances of all images, en-face, confocal and 

cross-sectional, are included. 

 

 

5.6 Summary 

 

 

This chapter presented coarse-grained and fine-grained parallel optimizations of the three 

principle OCT imaging, namely cross-sectional, en-face and confocal. Two OCT methods are 

employed, the CFD and the MSI. The MSI method, being computationally more intensive 

than the CFD, requires more processing time, which is especially visible in the sequential and 

coarse-grained implementations. The fine-grained implementations manage to absorb the 

increased computations and to deliver improved performance in all cases presented in this 

chapter. The fine-grained approach has the ability to deliver real-time operation where the 

coarse-grained one cannot meet this criterion. 

 A simultaneous processing and generation of cross-sectional images generated by the 

two OCT methods allows further studies on the differences and similarities between these 

two methods, in terms of image quality, signal-to-noise ratio and other properties. 

 The sequential implementation of the cross-sectional CFD OCT method has a latency 

of 7.2 milliseconds for image with width of 500 points. The corresponding sequential 

implementation of the MSI OCT method has a latency of 2372 milliseconds. It takes more 

than 2 seconds longer to generate MSI cross-sectional image, Table 5.6. Considering the data 

rate of the OCT system, which is a new OCT frame every 10 milliseconds, this difference in 

the latency would render this comparison ineffective. 
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 In the GPU-based case, the latency of the CFD OCT method generating the same 

cross-sectional image is 0.198 milliseconds and in the MSI OCT method is 35.6 milliseconds. 

This amounts to a much smaller difference of approximately 35 milliseconds. This approach 

allows the two OCT methods to have comparable latencies and as a result to be generated 

from input signals generated with much smaller time difference. 
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Chapter 6 
 

System Integration of Parallel Solutions 
 

 

6.1 Introduction 

 

In most cases in practice, DSP algorithms in general and OCT methods in particular are not 

developed for independent utilization, to be used on their own. Usually, they are part of a 

real-time system. This chapter presents the integration of a comprehensive GPU-based 

implementation of the MSI OCT method into an OCT system performing en-face imaging. 

This implementation provides simultaneous en-face, cross-sectional and confocal imaging. 

This inclusion of different types of images provides comprehensive information about the 

imaged objects and better understanding of the position and the shape of the features within 

these objects. 

 The fine-grained approach is selected for this implementation, based on the 

performance of the GPU based signal processing, as presented in Chapters 4 and 5. 

 The choice of OCT method employed in this implementation is based on novelty and 

complexity. Therefore, the newer and more complex MSI OCT method, introduced in 2013 

in [4] is preferred over the CFD OCT method. Its improvements in OCT are presented in [72] 

and [73]. Based on cross-correlation, this method significantly increases the amount of 

computations necessary to generate en-face, cross-sectional and confocal OCT images. 

 The requirements facing the integration of a GPU-based implementation does not 

differ from those in the case of a CPU-based implementation. The two principle requirements 

for integrating external solutions are: 

 1. Ability to exchange data with the rest of the system. In this case the data is in the 
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form of a digital signal generated by the OCT system at a certain rate. Besides the digital 

signal, the external solution needs to read a set of control values which acts as parameters in 

the signal processing, such as cut-off frequency, window boundaries and others. 

 2. Ability to operate in a speed comparable with the speed of the system. In this 

particular case, this requirement is more strict. It requires an improved performance, which is 

the main motivation for the inclusion of external GPU-based solution into an OCT system. In 

other words, the speed of the GPU-based processing needs to be higher than the speed of 

otherwise implemented processing, for example as part of the data acquisition software, 

which in this case is a LabVIEW project. 

 

 

6.2 Data Acquisition in OCT Systems 

 

 

Data acquisition in the OCT, as in other real-time systems, involves hardware and software 

solutions. The purpose of these solutions is to generate numerical (digital) equivalent to 

specific physical properties measured over a period of time. This numerical equivalent, in the 

form of a digital signal, needs to be made available for further processing and visualizing. 

 Key components of the data acquisition process in the OCT system studied in this 

research are a digitizer board (AlazarTech expansion board), and a LabVIEW VI project, 

acting as a data acquisition software. The digitizer provides an extensive and well published 

software support for LabVIEW implementations [86]. In this case, the data acquisition 

software has three principle tasks: 

 - To control the various component of the OCT system, such as the optical source, the 

scanning mirrors and the photo detector 

 - To capture the digital signal generated by the digitizer board and to make it available 

for further processing, analysis and visualization, either within the LabVIEW project, or by 

external software, such as a dynamic link library or an application. 

 - To provide a user interface allowing the operator of the OCT system to control the 

processing 
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6.3 Integrating GPU Solution in OCT Systems 

 

 An external CUDA C or C++ code can access the digital signal generated by the 

LabVIEW VI via a Dynamic Link Library (DLL), which can be loaded by the LabVIEW VI 

in the form of Call Library Function block. Based on this, two approaches are possible: 

 - The CUDA C code is encapsulated within the DLL called by the VI 

 - The CUDA C code is implemented as a stand-alone application. This approach still 

needs a C++ function compiled in a DLL in order to exchange the digital signal with the 

LabVIEW VI. 

 

 

6.3.1 DLL Approach 

 

In this approach, the CUDA C kernels are compiled to a dynamic link library [87]. This 

approach is used in [76], where real-time resampling is implemented on the GPU, 

encapsulated as a DLL library and integrated into a LabVIEW Virtual Instrument. This 

approach has a significant drawback in the performance. Every time a new OCT frame is 

generated, the LabVIEW VI calls the kernels from the DLL. Every time a kernel is called, all 

initializing steps must be performed. These include: 

 - Allocating memory for the variables, in the CUDA C case, memory is allocated both 

on the CPU and the GPU 

 - Creating FFT and IFFT plans 

 - Creating GPU context 

 - Processing the mask signals employed in the MSI OCT method 

 At completion, the DLL function needs to free the allocated resources. Figure 6.1 

illustrates this case. 

 

 As seen in Figure 6.1, every call of the CUDA C kernel, involve the aforementioned 

initializing procedures. These procedures bring additional overheads to the overall latency of 

the processing, as discussed in [88]. A stand-alone application, presented in the next section, 

provides a solution to this problem. 
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LabVIEW VI 

DLL 
DLL_Function ( Output , Input , ControlValues) { 
Initialize ( Resources ) 
DSP_Kernel ( Input , Output , ControlValues ) 
Free ( Resources ) 
Return 
} 

Capture 

Display 
Photo 

detector 

Digitizer 

User Input 

LabVIEW VI 
Capture 

DLL 

DLL_Function ( Input , ControlValues ) { 

Shared: S_Input , S_ControlValues 

Copy ( S_Input , Input , SizeOf ( Input ) ) 

Copy ( S_ControlValues , ControlValues , 

 SizeOf ( ControlValues ) ) 

Return 

} 

Stand-Alone Application 

Main ( ) { 

Initialize ( Resources ) 

Shared: S_Input , S_ControlValues 

Local: Output 

while ( OCTOnline ) { 

Output = DSP ( S_Input , S_ControlValues) 

OpenGL ( Output ) 

} 

Free ( Resources ) 

Return 

} 

User 
Input 

Shared 
Memory 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: DLL approach to GPU OCT integration 

 

6.3.2 Stand-Alone Application Approach 

 

In this approach, the CUDA C code is compiled as a stand-alone application. Presently, 

LabVIEW does not have the functionality to access a shared memory managed by Microsoft 

Windows. Therefore, this approach still needs a C++ function compiled as a DLL, which 

allows the VabVIEW VI to access the shared memory. Figure 6.2 illustrates this approach. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Stand-alone approach to GPU OCT integration 
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 This approach eliminates the need to repeatedly initialize and free the necessary 

resources, and hence improves the overall performance. Its implementation and integration 

into OCT system is reported in [88]. 

 

6.3.3 Shared Memory 

 

The stand-alone application approach requires a shared memory, used by the DLL and the 

stand-alone application. Microsoft Windows OS provides a mechanism implementing a 

shared memory. This is done by the API CreateFileMapping OpenFileMapping and 

MapViewOfFile. 

 The shared memory is created by calling CreateFileMapping. This can be done by 

either the stand alone application, or by the DLL. The difference is that the code in the DLL 

will be called with the same frequency as the rate of the OCT frames. This leads to creating 

the shared memory multiple times. The stand-alone application, on the other hand, will create 

the shared memory once at the beginning, along the other initializing procedures. This 

approach is chosen for the implementation described in this chapter. 

 After the creation of the shared memory, the DLL function can access it by calling 

OpenFileMapping. This call must be supplied with the same name of the shared memory 

used when it was created. 

 Once the shared memory is accessible from both the application and the DLL, both 

parties can associate the shared memory with a local variable, by calling the MapViewOfFile 

API. 

 The shared memory is used for two entities: the digital signal generated by the OCT 

system and a set of control values selected by the user of the system and entered via the user 

interface in real-time. 

 

6.3.3.1 Digital Signal 

 

The proposed comprehensive GPU-based solution is designed for en-face imaging of the 

OCT system. In this case, the OCT system generates en-face OCT frames at the rate of 1.25 

Hz, i.e. new OCT frame is generated every 800 milliseconds. The en-face OCT frame 

(EFOCTFi,j,k) consists of 1024×200×192 data points generating by scanning an area of 

200×192 points. 
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6.3.3.2 Control Values 

 

A number of signal processing steps require some input from the operator of the system. The 

integrated solution presented in this chapter employs the following control values: 

 Signal Processing: 

  1. Cut-off frequency 

  2. Window type 

  3. Window boundaries (W1 and W2 used by the integration) 

 Display: 

  Index of the horizontal cross-sectional image 

  Index of the vertical cross-sectional image 

  Index of the first en-face image (Start) 

  Step between successive en-face images (Step) 

  Gray scale coefficient (GSC) for the en-face and cross-sectional images 

  Contrast of the cross-sectional, en-face and confocal images 

  Brightness of the cross-sectional, en-face and confocal images 

 Mode: 

  Online, Save to memory, Post Processing, Save to File 

 

 These control values are organized as an array. The values of this array are set by the 

numerical controls used in the LabVIEW VI. 

 

6.4 Comprehensive Imaging in OCT 

 

As reported in [72], a sequential LabVIEW-based implementation of the MSI OCT method 

generates four en-face images in real-time. In some area in practice, for example 

ophthalmology, a larger number of en-face images, combined with confocal and cross-

sectional images, increases the chance of a biological feature to be detected and observed, 

and therefore improves the process of diagnosis. In comparison, the proposed comprehensive 

GPU-based implementation of the MSI method generates 40 en-face, 1 confocal, and 2 cross-

sectional images, horizontal and vertical, in real-time. The proposed solution is successfully 

integrated into an OCT system. It demonstrates the capabilities of the GPU processing to 

absorb increased amount of computations within the real-time criterion. 
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cudaMemcpy ( ) 
Index_h 

k = 0, ... , L-1 

j = 0, ..., N-1 

En-face OCT frame 
(after HW and FFT) 

Horizontal cross-sectional 
OCT frame 

i = 0, ... , M'-1 

 

6.4.1 Horizontal Cross-Sectional Image 

 

The horizontal cross-sectional OCT frame (HCSOSTFi,j) is extracted from the en-face OCT 

frame (EFOCTFi,j,k) in the same way as presented in Chapter 5 and as seen in Figure 6.3. The 

following call to cudaMemcpy extracts the horizontal cross-sectional OCT frame from the en-

face OCT frame: 

cudaMemcpy(HCSOCTF,&(EFOCTF[Mp*N*Index_h] ),Mp*N*sizeof(cufftComplex),cudaMemcpyDeviceToDevice) 

 

Where: Mp (M') is the size of the channeled spectrum in Fourier domain; N is the number of 

channeled spectra per line; Index_h is index of the horizontal cross-sectional image; EFOCTF 

is the en-face OCT frame; HCSOCTF is the horizontal cross-sectional OCT frame 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Extracting a selected horizontal cross-sectional OCT frame from the en-face OCT 

frame. The horizontal cross-sectional OCT image is determined by the value of Index_h 

 

 

6.4.2 Vertical Cross-Sectional Image 

 

The vertical cross-sectional OCT frame, (VCSOCTFi,k) is chosen independently from the 

horizontal one by selecting the value of Index_v. It is extracted after transposing the en-face 

OCT frame, as seen in Figure 6.4. 

 Both en-face OCT frames are in the global GPU memory, which allows the transpose 

to be implemented as a kernel. After transposing the en-face OCT frame, the following 
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cudaMemcpy ( ) 

Index_v 

i = 0, ... , M'-1 

Transposed en-face OCT frame En-face OCT frame 
(after HW and FFT) 

Vertical cross-sectional OCT 
frame 

Transpose 

j = 0, ... , N-1 

k = 0, ... , L-1 

cudaMemcpy extracts the selected vertical cross-sectional OCT frame: 

cudaMemcpy(VCSOCTF,&(EFOCTF[Mp*L*Index_v]),Mp*L*sizeof(cufftComplex),cudaMemcpyDeviceToDevice) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Extracting vertical cross-sectional OCT frame from the transposed en-face OCT 

frame 

 

6.4.3 Confocal Image 

 

The confocal image included in the proposed comprehensive imaging, top right in Figures 6.7 

and 6.8, is based on the already calculated intensities of the selected en-face images. Thus, 

the confocal image presented in this solution depends on the selection of the index of the first 

en-face image (Start) and the step between successive images (Step). An independent 

confocal image, generated on an independently selected set of en-face images as presented in 

Chapter 5, would consume significant time, as seen in Table 5.15, and would prevent the 

real-time operation. The confocal image presented in this solution would meet the resolution 

requirements as discussed in Chapter 5, if the step between successive en-face images is 1. 

Otherwise, it would provide indicative information of the sample volume between the first 

and last en-face images. 

 The confocal image is generated by using the parallel reduction algorithm, discussed 

in Chapter 5. The number of images in this algorithm is expected to be a power of two. The 

proposed imaging generated 40 images. In this case, the 40-image en-face stack is 

complemented to 64 by zero padding, as illustrated in Figure 6.5. 
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En-face stack Zero padding 

 

  EF EF EF EF EF EF 0 0 0 0 

 

 

Figure 6.5: Zero padding in confocal imaging 

 

 

6.4.4 Overall Performance of the GPU-Enabled OCT System 

 

To generate images, the proposed GPU-enabled OCT system performs the following steps, as 

shown in Figure 6.6: 

 1. Acquisition of the OCT frame, which is 800 milliseconds. This latency is defined 

by the sweeping capabilities of the OCT system [12]. 

 2. The DLL call by the LabVIEW VI using the Call Library Function module. The 

DLL copies the OCT frame from the LabVIEW VI's local memory to the shared memory in 

approximately 400 milliseconds [12]. 

 3. The copy of the OCT frame from the shared memory (CPU) to the global GPU 

memory. This time is averaged to 101.52 milliseconds, as presented in Chapter 4, Table 4.3. 

 4. The DSP of the OCT frame generating 40 en-face, 1 confocal, and 2 cross-sectional 

images. This time is approximately 241 milliseconds. As reported in Chapter 5, 40 MSI OCT 

en-face images are processed in 236.2 milliseconds, one cross-sectional image is processed in 

13.8 milliseconds and the confocal image is processed in 1.2 milliseconds, which amounts to 

256 (236.2+2×13.8+1.2) milliseconds. Two factors contribute in this case. Firstly, the en-face 

and the cross-sectional images share the same Hamming window and FFT. Secondly, the 

overall measurement of the elapsed time of a number of kernels is smaller than the 

summation of the individual elapsed times of each kernel, as seen in Equation 2.1. This is due 

to the asynchronous launch of the CUDA kernels. 

 5. The transfer of the resulting signal consisting of gray scale values, from the global 

GPU memory to the CPU memory, which is approximately 2 milliseconds. This is done by 

using the cudaMemcpy function. The function is called four times for the four arrays holding 

the 40 en-face images, the horizontal cross-sectional image, the vertical cross-sectional 

image, and the confocal image. This function, unlike the aforementioned kernels, operates 

asynchronously [28]. 
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1 

6 

5 5 

4 4 

6 

1: Data acquisition (real-time criterion) 800 [ms] 
2: Copy to shared memory via a DLL 400 [ms] 
3: Copy shared (CPU) to GPU memory 101 [ms] 
4: DSP on the GPU   241 [ms] 
5: Copy resulting signal from GPU to CPU     2 [ms] 
6: Render using OpenGL    13 [ms] 
Total elapsed time of steps 2 to 6  757 [ms] 

 6. The display the images using OpenGL [89]. This is complete in approximately 13 

milliseconds. 

 

 The total time from the signal formation to the image generation is 757 milliseconds, 

which is within the real-time criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Real-time criterion and performance of the GPU-enabled OCT system 

 

 

6.4.5 OpenGL Display 

 

Figures 6.7 and 6.8 present the images generated by the OpenGL, consisting of 40 en-face, 1 

confocal, and two cross-sectional images. The employed OpenGL is part of the Microsoft 

Visual Studio API. 

 

 To improve the layout of the screen, the OpenGL API functions display the cross-

sectional images with height equal to twice the height of the en-face images, which is 384, 

instead of the 512 as demonstrated in Chapter 5. This change does not affect the performance. 
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 Figure 6.7 presents the back of the human eye of a volunteer. Figure 6.8 presents a 

laminated paper. Both images are acquired at the Applied Optics Group at the School of 

Physical Sciences at the University of Kent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: OpenGL window of the comprehensive OCT imagery generated by signal 

processing on the GPU displaying 40 en-face, 1 confocal and 2 cross-sectional images of a 

human eye 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: OpenGL window of the comprehensive OCT imagery displaying 40 en-face, 1 

confocal and 2 cross-sectional images of laminated paper 
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6.4.6 Additional Guiding Information  

 

The integrated GPU solution provides additional information about the displayed cross-

sectional and en-face images. This additional information, demonstrated in Figure 6.9, allows 

a better understanding of the positions of the visualized images within the en-face OCT 

frame. 

 

1. Horizontal red line representing the index of the 

horizontal cross sectional image 

2. Vertical green line corresponding to the index of the 

vertical cross-sectional image 

3. Multiple lines on the right side of the cross-sectional 

image, corresponding to the position of the selected en-face 

images as seen in Figures 6.7 and 6.8. The distance between 

the top of the cross-sectional image and the first line is 

controlled by the Start value. The distance between 

successive lines is controlled by the Step value. Both Start 

and Step values are used in en-face imaging as described in 

Chapter 5. 

 

 

 

 

 

Figure 6.9: Additional Guiding Information 

 

 

6.4.7 Modes of Operation 

 

The presented solution operates in the following four modes: Online, Save to Memory, Post 

Processing and Save to File, illustrated by Figure 6.10. These modes allow saving and 

visualizing OCT frames for further examination and analysis [12]. 
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Integrated GPU Solution (CUDA C) 

Data Acquisition 
(LabVIEW VI) 

Shared memory 
(Windows API) 

Online OCT Frame 

Post Processing OCT 
frame 

Sequential file 

Kernels 

Modes: 
 

Online 
 

Save to Memory 
 

Post Processing 
 

Save to File 

Visualize 
(OpenGL) 

 1. Online. In this mode the GPU solution processes OCT frames as they are generated 

by the OCT system. This is the initial and default mode of operation. 

 2. Save to Memory. The GPU solution can switch to this mode only from Online 

Mode. In this mode, the current OCT frame is save to a separate variable in the global GPU 

memory. This variable is used only in post processing and Save to File mode. The save is 

done by calling the cudaMemcpy function. The call is done only once. After the copy is 

complete, the integrated GPU solution continues in Online mode. 

 3. Post Processing. The GPU solution can switch to this mode only from the Online 

mode, but will stay in this mode until the operator of the system select either Online mode or 

Save to File. In this mode, the Integrated GPU solution reads the Post Processing OCT frame. 

This OCT frame does not change, unless the solution is set to Online mode and then to Save 

to Memory mode. 

 4. Save to File. This mode can be selected only if the system is in Post Processing 

mode. There are two possibilities: to save the OCT frame as it is generated by the OCT 

system, or the save the gray scale values of the cross-sectional and en-face images, generate 

as a result of the GPU-based signal processing. At completion, this mode switches back to 

Post Processing mode. In both cases, the format of the file is tab-delimited. There are a 

number of solutions, which are capable of visualizing images from files containing gray scale 

values, including OpenGL implementations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Modes of operation of the GPU-enabled OCT system 
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 The Save to Memory mode combined with Post Processing allows capturing an OCT 

frame at any time and immediately studying and analyzing the cross-sectional and en-face 

images. The Save to File mode allows permanent storage of the OCT frame or the images, 

allowing the creation of a data base. A possible utilization of this feature is in the area of 

ophthalmology. A number of ophthalmic OCT images of a patient's eye can be saved over a 

period of time and used to monitor a treatment. 

 

 

6.5 Summary 

 

The proposed integrated GPU solution provides comprehensive information about the 

volumetric data collected by an OCT system. The high number of en-face images is currently 

limited by the real-time criterion of the system and the resolution of most standard monitors. 

 The proposed integrated parallel solution allows a change in the real-time criterion. 

This may occur, if the speed of the data acquisition changes, as newer devices tend to provide 

higher speed. A solution to this problem is the reduction of the number of en-face images, 

which is currently 40. On the other hand, due to the scalability of the proposed CUDA C 

solution, its performance is expected to improve on next generation GPU architecture, such 

as the recently introduced NVIDIA Pascal GPU. 
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Chapter 7 
 

Conclusions and Future Work 
 

 

The research presented in this thesis is focused on parallel optimization of DSP algorithms 

and OCT methods. The parallelization is based on coarse-grained and fine-grained 

multithreaded application, designed for multi-core and many-core architectures. The 

parallelized computations involve signal processing algorithms applied on synthetically 

generated or experimentally acquired digital signals. 

 Chapter 4 proposed a number of parallel optimizations, based on well-known 

algorithms, such as cross-correlation and convolution. These optimizations were not 

implemented as closed solutions, but with the intention to be expanded towards the 

development of OCT methods. Chapter 5 presented the parallel optimization of these 

methods. The overall aim was to improve the output imagery of the OCT system and to meet 

the real-time criterion in the system when used in ophthalmology. This research resulted in 

the collaborative publication [90]. 

 The performance of the proposed parallel solutions has been presented in terms of 

latency and speed-up and the optimal approaches have been identified. As a result of the 

proposed parallel optimizations, a comprehensive OCT imagery has been successfully 

developed and integrated into working OCT system, as presented in Chapter 6. As reported in 

[72], the corresponding sequential implementation provided more limited information in real-

time. 

 The proposed parallel solutions process a number of experimentally acquired OCT 

frames, collected while imaging a laminated paper and a human eye of a volunteer. The 

resulting images were presented in Chapters 5 and 6. As reported in [12], [13], and [52], these 

images were result of increased computations, due to the size of the processed signals and the 
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utilization of a more complex OCT method. Nevertheless, the parallel approaches were able 

to absorb the increased computations and perform the processing within the real-time 

criterion of the OCT system. 

 A number of reports on performance, in terms of latency and speed-up, provide 

information for a balanced choice between performance and OCT method and between 

performance and size of digital signal, which in many cases is linked to image quality. 

 The proposed parallel approaches, along with providing solutions to a range of signal 

processing problems, illustrate the computational characteristics, both sequential and parallel, 

of the utilized architectures, language specifications, and libraries. To reach an improved 

performance, computer programs need to reflect these characteristics. 

 

 

7.1 Future Work 

 

 

7.1.1 Parallel Architectures 

 

 

This research involved the multi-core and many-core architectures of the CPU and the GPU. 

The performance of the many-core GPU architecture was reported on NVIDIA Tesla GPU. A 

direct competitor of the NVIDIA Tesla GPU is the Intel Xeon Phi, a parallel co-processor 

based on the Intel's Many Integrated Cores (MIC) architecture. Like the Tesla GPU, this co-

processor extended the parallel capabilities to the CPU. 

 The introduction of the Intel Xeon Phi indicates the persistence of the parallel 

programming model. It also indicates a trend, which may lead to a possible merge of the 

multi-core and many-core parallel technologies. This is highlighted by the introduction of its 

"bootable host" version, designed to reduce the bottleneck of data transfer [91]. A viable 

future work is the optimization of the proposed FFT-based DSP algorithms and OCT 

methods for the Intel Xeon Phi and their comparison in terms of performance with the 

already developed coarse-grained and fine-grained approaches. Table 7.1 illustrates the 

similarities and differences between these two co-processors. 
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Table 7.1: NVIDIA-Intel parallel co-processor comparison 

Vendor NVIDIA Intel 

Product name NVIDIA Tesla Xeon PhiA 

Interface PCI Express PCI Express 

Number of cores 2880 (Tesla K40) 61B 

Compiler/Native language NVCC/CUDA C Intel C++ Compiler/C++ 

Cross platform Yes Yes 

Programming support CUDA Intel Parallel StudioC 

FFT Library cuFFT Included in Intel MKL 
 

A Implemented both as co-processor and bootable host processor 
B Intel Xeon Phi 7110P [92] 
C Includes support for OpenMP 

 

 

 A computational feature presented in the GPU, streams, was not utilized in the 

proposed fine-grained approaches. The implementation of multiple streams introduces 

additional level of parallelism, which is between kernels belonging to different streams. It 

does not have an equivalent in the API-based multithreading, which targets the multi-core 

CPU. Besides the asynchronous, and possibly simultaneous, execution of data transfer and 

GPU computations, the introduction of multiple streams is expected to be beneficial when 

two OCT methods are implemented to perform simultaneously. This could find application in 

the comparison in real-time between new OCT methods and already established ones. 

 

 

7.1.2 Complex-Valued Signal Processing in OCT 

 

An extension to the MSI OCT method, denoted as Complex Master-Slave Interferometry 

(CMSI) is introduced in [93]. This method processes complex-valued signals. This type of 

processing is already applied in other areas, such as wireless communications [94]. This 

enables the utilization of the phase in the acquired signal, which allows the reduction of the 

random component of the phase. Due to the complexity of the MSI method, the sequential 

implementation introduces a significant latency, which affects the performance of real-time 

OCT imaging. This is further highlighted by the processing of the phase in the CMSI method. 

The proposed coarse-grained and fine-grained approaches to the MSI method in Chapter 5 
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are expected to generate similar latency and speed-up in the CMSI. This would allow real-

time utilization of the CMSI in OCT imaging. 

 

 

7.1.3 Real-Time 3D Rendering in OCT 

 

Chapter 5 proposed parallel implementations of synthetically generated confocal images. 

Each confocal image is based on multiple en-face images. The proposed parallel approaches 

have the ability to generate in real-time all possible en-face images, organized into en-face 

stacks. Alternatively, the same en-face stack can be visualized as a 3D volume. This would 

not require any further processing, because the en-face stack consists of the intensities of the 

en-face images. It would require the utilization of the 3D primitives from the used graphics 

library, such as the OpenGL. The generation of three-dimensional images, based on CFD-like 

method, is reported in [95]. A corresponding 3D imagery, based on the more computationally 

intensive MSI method, would require more resources, in terms of parallel threads and 

memory utilization. A further improvement would be the rendering of the volumetric OCT 

data from an arbitrary angle, selected in real-time. 

 

7.1.4 Image Segmentation in OCT 

 

Each en-face OCT image, presented in Chapter 5 and 6, is generated by selecting a single 

depth. This depth follows a plane, which is orthogonal to the point of view. When used in 

ophthalmology, this orthogonal plane crosses through different tissues. A generation of en-

face image, which does not cross through different tissues but rather follow their curves and 

spans a number of depths, would vastly improve the application of the OCT system. Without 

crossing through tissues, a single en-face image would be able to visualize in a more 

complete manner features such as blood vessels and optic nerves. 

 This approach to visualization requires image segmentation. The segmentation needs 

to locate areas (segments) in the cross-sectional images acquired from the same OCT frame, 

calculate a curve, or set of depths, and use them in the en-face image. Manually corrected and 

user-guided segmentation in cross-sectional OCT images are reported, including [96] and 

[97]. 
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Figure 7.1: Current en-face image generated from a single depth. Image segmentation applied 

on the cross-sectional image would result in an en-face image generated by following a curve 

which approximates the geometry of the tissue 

 

 

 Ideally, the image segmentation would operate in real-time and be fully automated. 

Although, there could be some need for corrections done by the operator of the OCT system 

due to possible difficulties to detect edges in the image. The inclusion of image segmentation 

would bring additional computations. A parallel optimization is expected to absorb these 

additional computations without increasing the latency of the OCT imaging. 
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