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Abstract

Pedestrian movements in crowd motion can be perceived in terms of agents
who basically exhibit patient or impatient behavior. We model crowd motion
subject to exit congestion under uncertainty conditions in a continuous space
and compare the proposed model via simulations with the classical social force
model. During a typical emergency evacuation scenario, agents might not be
able to perceive with certainty the strategies of opponents (other agents) owing
to the dynamic changes entailed by the neighborhood of opponents. In such
uncertain scenarios, agents will try to update their strategy based on their own
rules or their intrinsic behavior. We study risk seeking, risk averse and risk
neutral behaviors of such agents via certain game theory notions. We found
that risk averse agents tend to achieve faster evacuation time whenever the
time delay in conflicts appears to be longer. The results of our simulations
also comply with previous work and conform to the fact that evacuation time
of agents becomes shorter once mutual cooperation among agents is achieved.
Although the impatient strategy appears to be the rational strategy that might
lead to faster evacuation times, our study scientifically shows that the more the
agents are impatient, the slower is the egress time.
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1. Introduction

Crowd dynamics have important applications in evacuation management
systems relevant to organizing safer large scale gatherings including pilgrim-
ages. No doubt, there are many positive effects of bringing people together.
However, there are also several negative outcomes when the density of people
grows too high, such as overcrowding and crowd stampedes which occur due to
the proximity of people and their frequent interactions.

Dedicated research is ongoing in several fields, including the area of crowd
dynamics, to propose various effective planning strategies to avoid crowding
disaster. Research on crowd dynamics from both theoretical [1, 2, 3, 4, 5] and
experimental perspectives [6, 7, 8, 9] involves multi-disciplinary combinations of
physics, computer vision, optimization, computational mathematics, psychol-
ogy, sociology, strategic management and so on. Physics has been inspiring
the development of pedestrian dynamic models. Pedestrian dynamic models
can be classified into different types depending upon how the scheme treats the
pedestrians and the level of detail of the models as follows:

(1) Microscopic models [2, 10, 11, 12, 13, 14], which consider individual pedes-
trian behavior separately as a particle. The pedestrian behavior in these
models is often described by their interactions with other pedestrians in
the system.

(2) Macroscopic models [15, 16, 17], which neither make distinctions between
individual pedestrians nor describe their individual behavior but consider
the pedestrian flow in terms of density, average velocity and flow patterns.

(3) Mesoscopic models [18, 19], which model a small group of people in the
same environment where every group has its own identical behavior. Meso-
scopic models also combine the properties of the macroscopic and micro-
scopic by considering a crowd as a whole and at the same time consider
individual internal forces as well.

Modeling and simulation of crowd evacuation, which has been an active
research topic amidst a diverse range of research communities, can be broadly
classified into three categories [20] as follows:

(1) Individual pedestrians: Each of the evacuees have a certain preference to
follow when they are subject to an evacuation scenario. As such, each
evacuee will try to maximize their own utility.

(2) Interaction among individuals: This could also contribute to the smooth-
ness of the evacuation process. During emergency evacuation, usually
some sort of interaction happens among evacuees. Some of the evacuees
would tend to follow the majority, while others would rush towards the
direction of exits which could slow down the evacuation time which in turn
may lead to a stampede.

(3) Group movements: The movement of several evacuees as a group could
also affect the evacuation process. For example, constraints in the envi-
ronment such as a narrow exit can restrict the movement of a group of
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evacuees. It could increase the tension perceived among group members
which in turn may lead to uncoordinated movement of evacuees.

Evacuation simulation of the movement and behavior of a crowd during
egress could reduce the possibility of crowd disaster [21, 22]. It is an undeniable
fact that behavior of a crowd is intrinsic and could be influenced by external
factors such as clogging, counter flow, narrow path and congestion. However,
systematic modeling and simulation of crowd behavior could lead to minimal
evacuation time and safer evacuation. Hence, it is essential to analyze the
behavior of the crowd through evacuation simulation in order to provide safe
and better evacuation flow during mass gatherings.

In this research contribution, crowd evacuation modeling will be focused
at the microscopic level comprised of individuals, and interaction among in-
dividual levels. This is due to the basic fact that collective behavior of each
pedestrian could affect the movement and behavior of the whole crowd. Game
theoretic evacuation models have also been proven to be an effective model to
study the crowd dynamics in terms of individual interactions that are entailed
in microscopic models [23]. Consequently, in recent years a number of game
theory oriented research contributions have been proposed to model crowd be-
havior during evacuation scenarios. Basically, game theory offers efficient com-
putational models to make meaningful and robust decisions among interacting
agents.

Game theory for evacuation modeling was initiated by Lo et al. [24] for the
problem of selection of exits during a typical evacuation scenario. Competitive
behavior among agents has been studied by assuming that the evacuees tend to
be selfish in a non-cooperative game. One of the drawbacks of the model lies in
the assumption that all evacuees need to be rational during the fire evacuation
scenario. However, in a real fire evacuation, most of the evacuees tend to panic.
Ehtamo et al. [25] have presented an exit selection model for evacuation based
on evacuees’ best response.

Another interesting work on studying crowd behavior during evacuation has
been proposed by Bouzat and Kuperman [26]. The authors have utilized game
theory coupled with lattice gas models in order to analyze characteristic features
of pedestrians, viz. cooperative and defective behaviors confined to an indoor
evacuation scenario. Their results indicated that under certain conditions, co-
operators could evacuate more rapidly due to mutual cooperation. Research
work proposed by Heliövaara et al. [27] and Schantz and Ehtamo [28] considers
a spatial evacuation game, where the evacuees interact with their nearest neigh-
bors by choosing either patient or impatient strategic options. Two games are
discussed viz.: Prisoners Dilemma and Hawk-Dove, which depend on how far
the evacuees are located from the exit. Further the evacuees choose their best
response strategies depending upon observing the previous strategies chosen by
their opponents. Other related work on evacuation modeling and simulation via
game theory can be found in [23, 29, 30, 31, 32].

In contrast to previous work, this paper aims to investigate the impatient
and patient agents in the process of exit congestion under uncertainty conditions
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via the classical social force model using simulations in continuous space. Dur-
ing emergency evacuation scenarios, strategies of evacuees will dynamically vary.
It is a well-known fact that during panic scenarios, the disturbed crowd could
evolve to new situations that could possibly lead to crowd disasters such as stam-
pedes. In addition, it is natural that under emergency conditions, agents will
not know for certain their opponents’ strategies. Also, uncertainty in making
decisions happen due to the dynamic changes of opponents located in neighbor-
hoods (set of neighboring opponents). In such scenarios of uncertainty, agents
will try to update their strategies based on their own common sense rules or
their intrinsic behaviors. We intend to systematically investigate risk seeking,
risk averse and risk neutral behaviors of agents. Research in the area of evac-
uation models under uncertainty is vital to provide insights in order to better
understand the crowd behavior during emergency scenarios.

2. Proposed evacuation model in a continuous space

In this work, we consider analyzing the egress flow in a rectangular room
of size L × W with a single door of length 1m located at the center of one
of the walls. Further we assume the moving space and moving time in this
predefined setup to be continuous and that the agents move to the desired
direction according to the principles governed by the well known social force
model [33]. Any location within the continuous space can be referred to by the
usual (x, y) coordinate where 0 ≤ x ≤ L and 0 ≤ y ≤ W . The sites with x = L,
y = 0 and y = W belong to the walls and cannot be occupied by agents except
at x = L and (W/2− 0.5) ≤ y ≤ (W/2+ 0.5) where the door is symmetrically
located. Initially, the n agents, indexed by i, iǫI = (1, . . . , n), are placed at
random positions 0 < x < L, 0 < y < W at time t = 0. Area density of an
agent is set as 350kg/m2. The mass of an agent which is basically the product
of area density and cross sectional area of an agent can be defined as:

mi = area density × πR2. (1)

The above formulation will enable us to model the fact that different agents
(pedestrians) will have different masses based on their cross section of human
body. Radii of the agents are randomly generated ranging from 20 to 29cm as
proposed by Korhonen and Hostikka [34]. The randomly generated mass of the
agents range between 44 and 92kg per agent.

Each agent i with mass mi would exert a surrounding force fi(t) at time t
and its position xi(t) has its own equation of motion:

mi

d2xi(t)

dt2
= fi(t). (2)

The force, fi exerted on an agent i is given by

fi = mi

v0
i (t)− vi(t)

τi
+

∑

j( 6=i)

fij +
∑

W

fiW . (3)
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In the above formulation (Eq. (3)), the first right hand side term models
an agent’s desire to reach a given preferred speed |v0i | and to move towards the
target in the direction of v0

i . The relaxation time parameter τi sets the strength
of the motive force, which makes an agent accelerate towards the preferred
walking speed and the change of position ri(t) is denoted as vi(t). The second
right hand side term of Eq. (3) is the sum of all interaction forces fij exerted
between agent-agent interactions. The third right hand side term of Eq. (3)
sums the interaction forces fiW exerted between agent-wall interactions. For a
more detailed description of the dynamics of the model, see ref. [33].

In this work, we set the time step for one complete iteration for all agents as
0.05s. Also, we assume that each agent has two possible actions: impatient and
patient. The agents playing the strategy impatient tend to push forward and
overtake others while those playing patient would tend to move with the crowd
by avoiding physical contacts. Scientifically this can be specified as follows:

(1) Patient agents tend to avoid contacts with other agents. This is imple-
mented by assigning a larger magnitude of repulsive forces and character-
istic length of repulsion for the patient agents.

(2) Patient agents accelerate slower than impatient agents to their preferred
speed. This is realized by increasing the individual relaxation time τi for
the patient agents.

Relevant to the agents’ behavior as described above, we set the relaxation
time parameter to 0.4 or 0.5s. Also, the repulsive force is set to 30 or 40N
and the characteristic length of repulsion is set to 0.4 or 0.5m depending on
the agents’s behavior. Also, the repulsive force and the characteristic length
of repulsion for agent-wall interaction is set to 500N and 0.1m respectively.
The utilized constant value for agent-agent interactions is set to 1200kg/s2,
whereas the constant value for agent-wall interactions is set to 2400kg/ms.
These constants denote the obstruction effects encountered during the physical
interactions. We set the preferred speed |v0i | to 1.2m/s. The values utilized
in this work intend to reduce the distance kept among agents since this work
emphasizes evacuation during emergency scenarios where it is often observed
that agents tend to walk closely and push each other (agents tend to overlap
over neighboring agents during a packed crowd motion).

3. Proposed spatial evacuation game

Each agent has its own estimated evacuation time, Ti as defined by

Ti =
di

‖v(r, t)‖
, (4)

which depends on the distance between an agent and the exit, di and local speed
of agent, ‖v(r, t)‖:

‖v(r, t)‖ =

∑

j vj

n
, (5)
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which is the mean speed of the agents around the central location r of agent i
at time t. Agents within a skin to skin distance of less than 80cm to agent i are
considered in Eq. (5), thus, vj refers to the speed of an agent at time t, while
n refers to total number of agents around the considered area at time t.

We perceive the crowd evacuation process as an evacuation game that is
played with the objective to reduce the evacuation time. At each time step,
the agent interact with its nearest neighbors. All the conflicting neighboring
agents are identified and solved according to certain rules which will be defined
shortly. Thus, the winners of the conflicts and the agents who are not involved
in conflicts with their neighboring agents move to their desired positions. The
simulation ends when all the agents have finally evacuated the room.

In order to solve the conflicting agents, at first we need to find the con-
flicting neighbors. The Moore neighborhood and Von Neumann neighborhood
are the widely utilized neighborhood systems. Moore neighborhood comprises
eight cells surrounding a central cell on a two-dimensional square lattice, while
the latter embraces the four cells orthogonally surrounding a central cell on a
two-dimensional square lattice. However, both are utilized in a discrete space.
Neighborhood representations and relationships in a continuous space have been
proposed by Heliövaara et al. [27] where the neighborhood of each agent is clas-
sified as an area around them which is a skin to skin distance of less than 40cm.
Keeping the fact that agents in a realistic environment will not usually compete
with agents behind them, the following neighborhood rules have been defined:

(1) The central distance between agents i and ic is less than 1.02×ri(ic), while
ri(ic) = ri + ric is the sum of the radii of the conflicting agents. Here an
assumption is made that at least there are two conflicting agents. We
represent ic as the agents other than i in the scenario (analogous to the
complement of i).

(2) The angle Θ between agents i and ic is less than or equal to 130° as shown
in Fig. 1. We assume for simplicity that agents tend to target towards
reaching the center of the exit. Based on this assumption the angle Θ
between agents has been determined. The angle Θ is calculated using:

Θ = cos−1

[

a2 + d2
i(ic)

− b2

2adi(ic)

]

. (6)

The agents ic are considered as agents behind if Θ is more than 130°. The
intuition is that an agent will not pose a conflict to agents who are behind
him/her. However, agents behind need to wait until they may end up with
conflicts with the agents in front of them.

Then, taking into account the interaction of neighboring agents between
i and ic, the mean estimated evacuation time of these neighboring agents is

defined as Ti(ic) =
Ti+

∑
ic

Tic

1+nic
, where nic refers to the number of neighboring

agents for i. In cases where the neighboring agents tend to interact with each
other, we need to solve the conflicts so that only one winner will be able to
move. The winner can overtake other agents and reach the desired position
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Figure 1: Angle between conflicting agents. (di(ic) = ‖ri − ric‖) is the center of mass
distance between agents i and ic)

and gain the utility by reducing his estimated evacuation time by ∆t, while the
loser(s) will remain in the current location and lose the utility where the loser’s
estimated evacuation time will increase by the same quantity ∆t. As a result,
the cost of each winner agent will get reduced to an utility that amounts to
∆u(Ti(ic)) and the cost of each looser agent(s) increases by the same amount.

For each step taken by an agent, the distance di between the agent and
the exit eventually gets reduced by ∆d. We define ∆d = ‖v(r, t)‖ ×∆t where
‖v(r, t)‖ is the local speed of an agent i as defined in Eq. (5). ∆t is set to be a
constant value of 0.8s which is the appropriate time for each step taken by an
agent. Then, we define the difference in estimated evacuation time of conflicting
agents for each step as ∆u(T i(ic)) =

∆d
|v0

i
|
where |v0i | refers to the preferred speed

of an agent. When there is an empty space available, the winner of the conflicts
will try his best to utilize his preferred speed in order to move to that empty
space. This justifies the fact that we have deployed the preferred speed instead
of the local speed of an agent in calculating the cost function ∆u(Ti(ic)).

In game theory terms we refer a patient agent as a cooperator (C ) and that
of an impatient agent as a defector (D). We have defined the rules that will
enable us to decide the winner of the conflicts as follows:

(1) For the case of a conflict with ndef defectors and ncoop cooperator(s) where
ndef > 1, ncoop ≥ 0, the defectors will try and push in order to move. As
a result of this conflict one of the defectors will be able to move while the
rest of the defector(s) and all the cooperators would remain at the same
location. Due to the equiprobable chance available in getting to the next
move by the defectors, the payoff for the defectors is to gain the utility

by reducing the cost of
∆u(Ti(ic))

ndef
. Besides that, the defectors will face a

conflict cost which could cause some energy loss or possibilities of getting
injuries or time delay in movements or loosing some favourable positions
in the pedestrian space. Here, conflict cost is denoted by the time delay
td where td > 0. When the defectors try and push with each other in
order to move, there will be a little delay in time. Thus, the payoff for

the defectors is to gain the utility by reducing the cost of
∆u(Ti(ic))

ndef
− td.
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Table 1: Payoff Table for a typical 2× 2 Evacuation Game (x: number of neighboring defec-
tor(s) to current agent i, y: number of neighboring cooperator(s) to current agent i, sm refers
to payoff in row m while on refers to payoff in column n)

o1 o2

xD, yC(x ≥ 1, y ≥ 0) 0D, yC(y ≥ 1)

s1 (D)
∆u(Ti(ic))

x+1 − td ∆u(Ti(ic))

s2 (C) −∆u(Ti(ic))
∆u(Ti(ic))

y+1

While the payoff for the cooperator(s) is to lose the utility by increasing
the cost of −∆u(Ti(ic)).

(2) For the case of a conflict with ncoop cooperators, ncoop ≥ 1 and one
defector, the defector will be able to move while all the cooperators will
remain at the same location. The payoff for the defector is to gain the
utility by reducing the cost of ∆u(Ti(ic)). Whereas, the payoff for the
cooperator(s) is to loose the utility by penalizing the cost to −∆u(Ti(ic)).

(3) For the case of a conflict with ncoop cooperators, ncoop > 1 and no
defector, no winner is selected. Even though there are no winner and
loser(s), the payoff is set equal to all cooperators as the conflicting agents
will move together with the crowd based on social force model. Therefore,
the payoff for the cooperators is set to gain the utility by reducing cost of
∆u(Ti(ic))

ncoop
.

Based on the aforementioned assertions, a 2 × 2 game matrix is built as
shown in Table 1. The payoff shown in Table 1 accounts only for the row
wise agents since all the other agents will get an identical payoff for similar
type of interactions. When a strategy is chosen by the agents in the row, the
payoff received for the concerned agent is given in the corresponding cell of the
matrix. Since we have utilized a small time step (0.05s) which is about more
than 10 times slower when compared to one complete movement of an agent
(the preferred speed of an agent in normal and emergency situations is in the
range 0.6 − 1.5m/s [33]), the winner of the conflicts will again win in the next
conflict provided the conflict is between identical neighbors as with previous
neighbors.

4. Decision strategies amidst uncertain scenarios

Each agent intends to play the aforementioned game with its nearest neigh-
bors except the agents who are behind. Previous studies [26, 27, 28] have as-
sumed that agents will update their strategy based on their opponents’ strate-
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gies. However, it is natural that under emergency conditions (where panic pre-
vails), agents will not know for certain the strategies of their opponents. Also,
uncertainty in making decisions arises due to the dynamic changes exhibited by
the neighboring opponents. In such scenarios of uncertainty, agents will try to
update their strategy based on their own rules or instinctive behaviors. Here, a
parallel update scheme [35] is utilized where strategies of all agents are updated
simultaneously at each time step. We have utilized the parallel update scheme
in order to describe the behavior of evacuees more realistically than a shuffle
or fixed update order scheme. In the shuffle or fixed update order scheme, for
an evacuation simulation with n agents, a simulation round will take a total of
n time steps. This means that it will take about n time steps in order for a
particular agent to update his strategy, which is not realistic.

We investigate three types of agent behaviors viz., risk seeking, risk averse
and risk neutral. Risk seeking or risk loving can be perceived as the particular
attitude of agents where they look for gaining maximum utility under uncertain
scenarios anticipating fast evacuation. Risk seeking agents who seek to achieve
the best results will attempt to utilize the maximax criterion in selecting the
strategy that maximizes the maximum available payoff. Maximax rule is defined
by

amax
i = argmaxrǫ{s1,s2}ur iff urǫargmax{us1 , us2}, (7)

where amax
i refers to the chosen strategy, us1 and us2 represents the expected

utility for the strategy indicated in subscript and ur refers to the maximum
expected utility of a row wise agent who opts for strategies C and D.

Risk averse denotes the behavior of the agents where they seek the best out
of the worst results. This type of behavior is applicable to agents who seek
for the alternative that maximizes the minimum achievable payoff. Risk averse
agents would look at the worst possible outcome of each strategy and then select
the strategy that gives the highest outcome. Thus, risk averse agents will utilize
the maximin rule which is defined by

amin
i = argmaxrǫ{s1,s2}ur iff urǫargmin{us1 , us2}. (8)

This rule will enable them in selecting the strategy that maximizes the minimum
available payoff. Here, ur refers to the minimum expected utility of a row wise
agent who opts for strategies C and D. In simple terms, risk averse agents prefer
to choose the outcome which is guaranteed to minimize their losses.

Risk neutral behavior refers to agents who prefers to take conservative de-
cisions during uncertain scenarios where only very little information is known
about the preferences of other opponents. The minimax regret rule is more
applicable to this type of agents. Such agents earns regret by failing to choose
the best decision. The following steps will be taken in order to find the optimal
result based on minimax regret criterion:

(1) Determine the best utility over all strategies (maximum utility in each
column strategies).

(2) Determine the loss for each strategy as the difference between its utility
value and the best utility value.
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Table 2: Opportunity Lost Payoff Table for a 2×2 Evacuation Game (x: number of neighboring
defector(s) to current agent i, y: number of neighboring cooperator(s) to current agent i,
smnew refers to payoff in row m and onnew refers to payoff in column n)

o1new
o2new

xD, yC(x ≥ 1, y ≥ 0) 0D, yC(y ≥ 1)

s1new
(D) max{u(sk, o1)} −

[

∆u(Ti(ic))

x+1 − td

]

max{u(sk, o2)} −
[

∆u(Ti(ic))
]

s2new
(C) max{u(sk, o1)} −

[

∆u(Ti(ic))
]

max{u(sk, o2)} −
[

∆u(Ti(ic))

y+1

]

(3) For each strategy, find the maximum loss over all strategies.

(4) Choose the strategy that has the minimum of maximum losses.

Steps 1 and 2 can be formalized as

s(sm, on) = max{u(sk, on)} − u(sm, on). (9)

The payoff table for minimax regret is based on “lost opportunity” as explained
in Table 2. Stages 3 and 4 which deploy the options defined in Table 2 can be
formalized using

amin
i = argminrǫ{s1new ,s2new}ur iff urǫargmax{us1new

, us2new
}, (10)

where s1new
and s2new

refers to the new payoff for strategies cooperate and
defect respectively based on Table 2.

5. Simulations

In this section, we present our computer simulations with respect to the
models proposed in the previous sections (Sections II to IV). For our simulations,
we consider a rectangular room of size 18m×17m which consists of a single door
of length 1m located at the center of one of the walls. The pedestrian room
space at the range of locations x = 18 and y = 0 to y = 17 belong to the walls
and cannot be occupied by agents except at x = 18 and y = 8 to y = 9 where
the door is symmetrically located. Initially, 200 agents are placed at random
positions in the range 0 < x < 17, 1 < y < 16 at time, t = 0. First we simulate
the population comprising of homogeneous agents where all of the agents are
either risk seeking or risk averse or risk neutral before we consider the simulation
of a heterogeneous population.
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5.1. Simulation results with a homogeneous population

Here, we perform simulations with a homogeneous population in order to
study the outcomes of each behavior of agents, viz. risk seeking, risk averse and
risk neutral in choosing either a defect or cooperate strategy when confronted
with emergency conditions especially when the preference of other neighboring
agents are unknown. In these experiments we assume that the behavior of the
agents is fixed. In other words, the agents’ behavior is unchanged throughout
the simulations. This aids us to better study on how these agents update their
strategies based on a particular mode of behavior and subsequently how this
affects the egress flow.

First, we consider a population in which all the agents possess risk seeking
behavior and adopt the maximax rule. This type of agents are considered quite
adventurous as they aim to achieve best results, anticipating fast evacuation.
Fig. 2 shows snapshots of the agents’ positions at different time steps t through-
out the evacuation process for a time delay (conflict cost) td of 1.2s with 25% of
the initial population opting to play for the defect strategy and that of the rest
75% opting to play for the cooperate strategy. We study the evolution of agents’
strategies for a time frame of 35s as a result of various time delays caused by
conflicts in an evacuation simulation. Typical results pertaining to evolution of
cooperate and defect strategies are portrayed in Fig. 3. Fig. 4 shows evolution
of defect strategy alone with various initial proportion of agents who chose a
defect strategy corresponding to various conflict time delays (td). From these
results, it can be observed that risk seeking agents prefer defect strategy irre-
spective of the amount of conflict time delays. Hence, maximax gain strategy
conforms to agents acting as defectors. Since other neighboring agents maximax
strategy also have been chosen to be defectors, mutual defection yields the max-
imax gain equilibrium for risk seeking agents. This seems to be an equilibrium
solution that maximizes each agent’s greatest hopes.

Next, we consider a population which comprises of only risk averse agents.
This type of agents can be considered as moderate since they seek the best of
the worse possible results, which is the maximin rule. Similar to experimental
conditions of risk seeking agents, we study the evolution of risk averse agents
strategies. Typical results for evolution of cooperate and defect strategies are
shown in Fig. 5. Fig. 6 shows evolution of the defect strategy alone with various
initial proportions of agents who chose defect strategy corresponding to various
time delays (td).

We observed that risk averse agents prefer defect strategy when the conflict
time delay is less than 0.5s. For td < 0.5s mutual defection attains the maximin
gain equilibrium since strategies of other neighboring agents maximin rule have
also been chosen to be of defectors. However, when td is increased from 0.5s,
we observe the emergence of cooperate strategy. Thus, for 0.5s ≤ td < 1.1s,
an equilibrium of mix strategies has been observed. Finally, when td is about
1.1s and above, all risk averse agents prefer to choose cooperate strategy which
further infers that maximin gain equilibrium has attained mutual cooperation.
It has also been observed that an equilibrium of risk averse agents gain strategy
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(a) t = 2.49s (b) t = 10.00s

(c) t = 25.90s (d) t = 66.24s

Figure 2: Evacuation simulation of typical risk seeking agents population for different time
steps where each axes of the subfigures indicate distance in meters. Parameter used: td = 1.2s
(Red: Defector, Green: Cooperator)

depends on the conflict time delay. Importantly, these equilibrium solutions
maximize each agents security level. Finally, we study a population of risk
neutral agents alone. This type of agents are basically conservative decision
makers and hence application of the minimax regret rule is more appropriate.
Similar to the experimental conditions of previous types of agents, we study the
evolution of risk neutral agents strategies for various time variations.

Typical results for evolution of cooperate and defect strategies are shown in
Fig. 7, while Fig. 8 shows evolution of defect strategy alone with various initial
proportions. We observe that preferences of risk neutral agents are similar to
that of risk averse agents. They prefer defect strategy when the conflict time
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Figure 3: Evolution of cooperate and defect frequency in an evacuation simulation with all
risk seeking agents
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(a) td = 0.3s
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Figure 4: Evolution of defect strategy frequency for risk seeking agents with various td. The
different colors show the evolution of the system for different initial proportions of the defector
strategy

delay is less than 0.5s. Emergence of the cooperate strategy for risk neutral
agents happens when td ≥ 0.5s, while equilibrium of mix strategy has been
observed when 0.5s ≤ td < 1.5s. When the conflict time delay (td) is about 1.5s
and above, all risk neutral agents prefer to opt for the cooperate strategy which
in turn infers that minimax regret gain equilibrium attains mutual cooperation.
Equilibrium of risk neutral agents gain strategy also depends on the conflict
time delay. In fact, these equilibrium solutions minimize each agent’s greatest
fears.

From the above simulation results, we found that cooperate strategy emerges
if and only if the population is risk averse and risk neutral. A conflict time delay
of 1.1s is required for mutual cooperation to occur among risk averse agents
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(a) td = 0.7s
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(b) td = 1.5s

Figure 5: Evolution of cooperate and defect frequency in an evacuation simulation with all
risk averse agents

while it takes 1.5s for that of risk neutral agents. Fig. 9 show examples of 20
evacuation simulation results pertaining to these experiments. Fig. 9 also shows
similar simulation results with less variations in terms of total escape time for
each run thereby indicating the robustness of the proposed evacuation model.

Then, we study the mean escape time for these types of agents with respect
various conflict time delays. Simulations have been repeated for 20 runs with
different initial random frequencies of cooperators and defectors placed in ran-
dom initial locations, by fixing the behavior of the agents. The final results for
these simulations is shown in Fig. 10. It can be seen that risk seeking agents who
anticipate to evacuate fast end up with slower escape times compared to other
types of agents. This is owing to the fact that risk seeking agents always choose
the defect strategy in all conflicts since defect strategy attains a maximum out
of maximum results. For risk averse agents, as discussed earlier, when td is less
than 0.5s, all risk averse agents act as defectors which cause more evacuation
time. Evacuation time is lesser when mix strategy of cooperators and defectors
exist, while fastest escape time for risk averse agents occur when all the agents
act as cooperators which is when td is about 1.1s and above. Results for risk
neutral agents are quite similar to risk averse agents except that fastest escape
time for risk neutral agents happen when mutual cooperation occur which is
when td is about 1.5s and above. In summary, based on our simulation re-
sults shown in Fig. 10, we can observe that risk averse agents achieve faster
evacuation time whenever the conflict time delay is more than 0.5s.

In terms of evacuation time for impatient and patient agents, our simulation
results are also in agreement with that of previous work [26, 27, 28]: the more
the number of impatient agents, the slower the egress time. This scenario is
referred as the faster-is-slower effect which happens due to the increased number
of conflicts when more impatient agents tend to move straight towards the exit.
This results in a clogging effect near the exit [1, 3, 36, 37, 38]. This clogging
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(b) td = 0.7s
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(c) td = 1s
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(d) td = 1.5s

Figure 6: Evolution of defect strategy frequency for risk averse agents with various td. The
different colors show the evolution of the system for different initial proportions of the defector
strategy

slows down the total escape time. In other words, it can be inferred that faster
evacuation time occurs once mutual cooperation among agents are achieved.

5.2. Simulation results with respect to a heterogeneous population

In this subsection, we perform simulations with respect to a heterogeneous
population in order to study the effect of the risk seeking, risk averse and risk
neutral behavior of agents towards egress. We study the mean escape time by
repeating the simulations with different random frequencies of cooperator and
defectors placed at random initial locations. For each of the simulations, the
number of one of the agents behavior has been fixed, while the number of other
two behaviors were randomly selected. The final result for these simulations is
shown in Fig. 11. From the simulation results in Fig. 11, for a conflict time
delay of 0.4s, the average escape time for all types of agents has been almost
similar thereby indicating the occurrences of mutual defection. For conflict time
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(a) td = 0.8s
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Figure 7: Evolution of cooperate and defect frequency in an evacuation simulation with all
risk neutral agents

delays of 0.8s and 1.3s, we observe that when the risk seeking agents population
is increased, the average escape time becomes slower. In contrast, the average
escape time tends to be faster when the risk averse agents population gets
increased. The average escape time is almost similar when the population of risk
neutral agents is increased with respect to td = 0.8s. For the case of td = 1.3s
similar results with risk averse agents’ have been observed. In essence, amidst
uncertainty conditions, based on our simulation results seen in Fig. 11, we can
observe that a faster evacuation time is achieved when there is an increase in
conflict time delays and in the population of risk averse agents.

6. Conclusions

We have systematically investigated the effect on egress under uncertainty
scenarios that could possibly arise during emergency evacuations. In particular,
we examine the risk seeking, risk averse and risk neutral behaviors of agents
(pedestrians) using the norms of a typical game theory approach. We have sim-
ulated evacuation scenarios in a continuous space using the classical social force
model, where the impatient and patient agents have been experimented with in
different individual parameter settings. In summary, the main contributions of
this research are as follows:

(1) Agents neighbourhood is treated in the continuous space which attempts
to intuitively emulate pedestrian interactions that occur during mass gath-
erings.

(2) A comparative study of characteristic features of risk seeking, risk averse
and risk neutral agents has been systematically analysed.

(3) Study of effect on escape time based on simulation of two types of evacuees
viz., impatient and patient agents under uncertainty has been reported.
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(a) td = 0.4s
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(b) td = 0.5s
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(c) td = 1.1s
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Figure 8: Evolution of defect strategy frequency for risk averse agents with various td. The
different colors show the evolution of the system for different initial proportions of the defector
strategy

We focused on the game-theoretic model of the interaction between the evac-
uees. We have set out a framework that can be used by designers of crowd
control and evacuation systems. They will have to re-run our model with their
specific values for parameters such as room size, repulsive force and its range,
angle under which agents are in conflict, etc. Our simulations show what kind
of behavior can be expected. For future avenues, we would consider to perform
a detailed investigation of evacuation scenarios in rooms of different sizes, under
different ranges of the force, and containing obstacles.
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