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Abstract. It has been shown that humans are heavily influenced by peers when it

comes to choice of behavior, norms or opinions. In order to better understand and

help to predict society’s behavior, it is therefore desirable to design social simu-

lations that incorporate representations of those network aspects. We address this

topic, by investigating the performance of a coordination game mechanism in rep-

resenting the diffusion of behavior for distinct data sets and diverse behaviors in

children and adolescent social networks. We introduce a set of quality measure-

ments in order to assess the adequacy of our simulations and find evidence that a

coordination game environment could underlie some of the diffusion processes,

while other processes may not be modeled coherently as a coordination game.

1 Introduction

Christakis and Fowler [1] suggest that our social contacts heavily influence our deci-

sions, opinions and and behavior. By proposing new approaches to tackle existing prob-

lems in crowd behavior, these findings may be helpful for people that aim to understand,

guide or control the behavior of societies. For example, the knowledge that the political

opinions of spouses strongly affect each other seems to be of high value to politicians

during election periods. Physicians and other health care professionals could use the

findings that adolescents affect each other’s smoking, drinking and sexual-interaction

behavior. Thus, the existing research on contagion of behavior and spread of informa-

tion within social networks can give good hints for campaigns and political action in

order to achieve a desirable behavior. Current research proves that such influence exist

and is also able to point out situations where the effects are stronger or weaker. However,

to adequately model the effects of contagion and information spreading for simulation

and prediction models, a coherent representation is required. This is the motivation of

the work presented below. Our research implements the contagion of behavior within

friendship networks as a coordination game [2] [3] where single individuals within the

observed systems coordinate their actions with their neighbors. We assume that indi-

viduals benefit from compliant behavior.We adapt the coordination game mechanism
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to two different data sets, each containing information about friendship ties, as well as

time-dependent information about specific behaviors or behavioral outcomes. To eval-

uate the performance of the implementation of the coordination game, we simulate the

coordination dynamics on the given friendship network starting with the real initial sit-

uation and subsequently compare the state of the system after the simulation with the

state observable in reality after one or more time-steps.

Synopsis. We review the state of relevant research regarding diffusion of behavior and

information in Social Networks and present the data sets used within this work in

Sect. 2. Sect. 3 presents the implementation of the coordination game and its adap-

tion to the different data sets while Sect. 4 contains experimental setup and results. We

discuss the experimental results in Sect. 5 and conclude with Sect. 6.

2 Background

2.1 Diffusion processes in Social Networks

Existing research indicates that human decisions, opinions, norms and behavior are in-

fluenced by the social environment [4]. Social influence and contagion as well as spread

of behavior and information through social networks has been documented in a wide

range of cases [1]. For instance diffusion of voting behavior [1] and obesity [5] has been

proven statistically. Moreover, cooperative behavior has been shown to be contagious,

though depending on tie structure and dynamics [6] and recent studies revealed con-

tagiousness of emotions [7]. Other behaviors do not spread like sexual orientation [8].

This indicates the existence of those effects on other individual behaviors of children

and adolescents such as “commitment to school education”, substance use or sport.

Marques [9] reveals the huge differences between social networks of the poor and those

of more wealthy people. Considering the above, this further encourages the modeling

and simulation of social network effects in order to understand social phenomena and

to guide political decision making. Related research has also been conducted in chil-

dren and adolescent networks. For instance roles of nodes within a network of school

children have already been identified [10] and diffusion of social norms and harass-

ment behavior in adolescents school networks have been empirically studied and evi-

denced [11]. It then has been reasonably shown that behavior, norms information and

opinions flow within social networks of adults and children. Approaches to model this

diffusion come for example from the field of Social Psychology, like the concept of So-

cial Influence Network Theory [12] from Friedkin. Another approach is the modeling

as a coordination game [2] [3]. Those models may be considered as advanced threshold

models [13] [14] [15] that incorporate social network structure instead of simple crowd

behavior. The coordination game as implemented in [3] is characterized by the assump-

tion that individuals benefit when their behavior matches the behavior of their neighbors

in the network. Hereby a node within a network can adopt one of two behaviors A or

B. The node receives pay-off a when equaling its behavior with a neighbor that adopts

behaviorA. b respectively denotes the pay-off a node receives when both, her and her

neighbor adopt behaviorB. When choosing different behaviors, nodes receive a pay-

off of 0 (other implementations may introduce negative pay-offs for non compliance).
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The total pay-off for each node can accordingly be calculated as presented in 1 and 2.

Here P a
i denotes the total pay-off for node i from choosing behavior A (respectively

Behavior B for P b
i ), di denotes the degree of node i and na

i (same for nb
i ) denotes the

number of neighbors of node i adopting behavior A (respectively Behavior B).

P a
i = ana

i (1)

P b
i = b(di − nb

i ) (2)

This determines that the best strategy for node i is to choose behavior A if na
i ≥ bdi

and behavior B otherwise. Rearranging the inequality in 3 , we get:

r ≥ T with T =
b

a+ b
and r =

na
i

di
(3)

In the absence of knowledge of the individual pay-offs a and b, a global threshold T

may be found experimentally, as shown in the remainder of this paper.

2.2 Data

We perform our experiments on two different data sets, both contain information about

adolescent friendship ties, as well as about different types of behavior.

(i) The first data set stems from the study ’Determinantes do desempenho escolar na

rede de ensino fundamental do Recife’ [16]. The survey was conducted by Fundação

Joaquim Nabuco (FUNDAJ) in 2013, gathering data from more than 4000 pupils in

public schools in the North-Eastern Brazilian city Recife. Those data contain among

others the social network of the pupils and their performance in the subject maths at

the beginning and at the end of the year. Children were asked to nominate their 5 best

friends. In this way, a network containing 4191 students was generated. However, 573

students that did not nominate any friend within their class were removed from the data

set, leading to a total number of 3618 vertices.

(ii) The second data set is a selection of 50 girls from the social network data collected

in the Teenage Friends and Lifestyle Study[17]. Here the friendship network, as well

as behavior in sports and substance use of students from a school in Scotland were

surveyed. The survey started in 1995 and continued for three years until 1997. Students

were 13 years old when the study started. The study counted 160 participants of whom

129 participated during the whole study. The friendship networks were surveyed asking

the pupils to name up to twelve friends. Pupils were also asked to report their behavior

related to, sports, smoking as well as alcohol and cannabis consumption.

3 Diffusion of behavior modeled as a Coordination Game

We model the imitation of behavior of neighbors within the friendship network accord-

ing to the coordination game as presented in Sect. 2. As indicated in Sect 2, we posses

no information about possible pay-offs a and b or eventual costs of transition and hence

hence aim to find the threshold GT experimentally. This means that a vertex within the
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network changes its state over time depending on the state of its neighbors. For sim-

plicity, the vertices may adopt one of two different states according to the investigated

behavior. Hereby one state indicates that the vertex adapted behavior A, the other pos-

sible state indicates the adaption of behavior B. For each iteration, the current ratio ri is

being calculated. Here ai denotes the number of neighbors of node i that adapt behavior

A and ni denotes the total number of neighbors of node i.

ri =
ai

ni

(4)

If the perceived ratio ri is higher than the global threshold GT and the state of node i

is B , the node changes its behavior towards Behavior A. Conversely, if ri is below GT

and Node i′s behavior is A, it changes its behavior towards B. Due to differences in

data representation, the coordination game had to be implemented slightly differently

for the two settings, as follows.

3.1 FUNDAJ

The only information available for more than one moment in time of the FUNDAJ sur-

vey is the mark of the pupils in the subject maths for the beginning and the end of the

year. Although marks are not a behavior in themselves, they stem among others from

individual behavior such as doing homework, paying attention, studying frequently etc.

Marks are therefore considered a good indicator for the behavior engagement at school.

They are represented as numeric values between 0 and 100. In order to differentiate be-

tween two behaviors, students are classified as good students or bad students according

to their mark. Students whose mark lies below the threshold tm are thereby classified

as bad students and vice-versa. The setting of tm defines hereby the number of good

students (positives) and bad students(negatives) and hence affects heavily if nodes are

predominantly connected to positives or negatives. High values for tm generate large

numbers of bad students and smaller numbers of good students and vice versa. The

ratio ri from Equation 4 is being calculated for each student at each iteration of the

simulation. If required, the mark for the next time step mi+1 is being multiplied by the

factor 1 + f in order to alternate the state of the node:

mi+1 = mi ∗ (1 + f) (5)

Parameter GT sets the affinity of the nodes to change behavior. Thus, depending on

the proportions of positives and negatives, it either yields a volatile or a stable sys-

tem. Adaption parameter f also influences the stability of the system, where volatility

increases with increasing values of f .

3.2 Scottish Dataset

The Scottish data set contains information about four different behaviors, which are

practicing sports, drug (cannabis) use, alcohol use and smoking behavior. Characteristic

values differ slightly for the distinct behaviors, as there are for example two increments

representing the intensity of sports but four increments for drug use intensity. Thus, we
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classified the characteristic values in order to obtain a simplified two status situation.

Tab. 1 presents the characteristic values and their classification as Behavior A, all other

values are accordingly classified as Behavior B. In contrast to the FUNDAJ data, the

Table 1: Classification of characteristic values for behavior

Behavior Characteristic values Class. as Behavior A if:

Sports 1 (non regular); 2 (regular) ≥ 2

Drugs 1 (non), 2 (tried once), 3 (occasional) and 4 (regular) ≥ 2

Alcohol 1 (non), 2 (once or twice a year), 3 (once a month), 4

(once a week) and 5 (more than once a week)

≥ 2

Smoke 1 (non), 2 (occasional) and 3 (more than once a week) ≥ 2

representation of behavior by discrete values required a slightly different imitation pro-

cess. Hence, for the Scottish data set, if a vertex changes its state, it respectively raises

the behavior value by 1 if it aims to adopt behavior A or, decreases the behavior value

by 1 if it aims to adopt behavior B. Information is available for three consecutive years.

Hence the starting value for each vertex in the coordination game is its behavior in year

one. The quality of the simulation is measured comparing the state of the simulation

after a certain number of iterations with the state of the real system after two years,

here referred to as benchmark t+1 or after three years, denominated as benchmark t+2.

Moreover, the friendship network of the girls in the study has been surveyed for each

of the three years, the study lasted. This yields the three slightly different networks g1
at the first survey,g2 after one year and g3 after two years.This implicated for the simu-

lation that the neighbors that a vertex considers for the calculation of its state vary for

each year t according to the network gt In order to incorporate those network dynamics

into the simulation, we changed the network used to define the adjacent vertices of a

node after completing 50% of iterations. experiments indicated that network combina-

tion of g1 as representation for the friendship network in period between year 1 and

year 2, and g2 representing the friendship network in the period from year 2 to year 3,

outperformed the results for network combination (g2, g3). Hence, we assume that the

more appropriate network combination is the former. Therefore experiments and results

presented in the remainder of this paper refer to network combination (g1, g2).

4 Experiments

4.1 Experimental Setup

Experiments were run for the two coordination game settings with varying parameters

in order to find a parameter setting that leads to plausible results. As for the simulation

with FUNDAJ data, the simulation was conducted with all combinations of the parame-

ters GT (global threshold) and f (adaption parameter) for GT, f ∈ [0, 0.2, 0.4, 0.6, 0.8, 1]
and tm (classification of marks) with tm ∈[20,40,60,80]. For simulations with the Scot-

tish data set the parameter GT was set to values GT ∈ [0.0, 0.05, 0.1, · · · , 1.0].
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4.2 Quality measurement

In order to assess the quality of the respective simulation, four distinct quality measures

were applied: (i) match quality, (ii) ROC-curves (iii) graph-based quality measures and

(iv) average estimation error.

(i) The most intuitive measure for the simulation quality is to compare the state of each

vertex vs after a certain number of simulation iterations with its state in reality vr in

benchmark t+1 or benchmark t+2. Hereby, we denote the case when vs = vr as match

and accordingly the case vs 6=vr as miss − match. This quality measure is named

match− quality and denoted as q for the rest of this work. The match quality q of the

simulation can then be assessed as in 10, where n denotes the total number of vertices:

q =

∑n

i=1
matchi

n
(6)

However, for skewed attribute distributions, this measure favors estimates with high

numbers of positive or respectively negative estimates and hence fails to mirror the

quality of the simulation when the distribution of attributes is skewed.

(ii) The ROC-metric [18] sets the number of true positives (Recall) in relation to the

number of false positives (Fallout). Recall is the ratio of correctly estimated positives

values, the true−positives and the total number of positive values np. Fallout denotes

the ratio between wrongly estimated positive values false − positives and the total

number of negative values nn.

Recall =
true− positives

np

(7)

Fallout =
false− positives

nn

(8)

The ROC-curve displays respectively Recall values for each simulation on the ordinate

and Fallout values on the abscissa. Values above the diagonal of the graph indicate the

existence of a signal and values below the diagonal may be interpreted as noise. Thus,

this metric provides a clearer picture of simulation quality. Best estimates can be found

mathematically maximizing the Y ouden− Index [19] y as presented in 9.

y = Recall − Fallout (9)

(iii) For global analysis it might not be necessary to simulate the state of each vertex

correctly, as long as the system state can be predicted adequately. Thus, as third qual-

ity measure, behavior distribution in friendship-patterns was implemented. Hereby we

define friendship patterns in the network using a modified version of NEGOPY [20].

According to NEGOPY, we define vertex types as isolate, dyad, liaison, and group

member. As we deal with undirected networks, we do not classify tree-nodes. Accord-

ing to Richards, an isolate is an individual with at maximum one friend. Two persons

connected only to each other are denoted as dyad. Liaisons are individuals with more

than 50% connections to members of different groups. Liaisons can also be nodes that

are mostly connected to other liaisons and with less than 50% links to group members.
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A composition of minimum three individuals is referred to as group, if the individuals

share more than 50% of their linkage, build a connected component and stay connected

if up to 10% of the group members are removed. For measuring the quality, the number

of positive vertices n
p
k in each friendship-pattern class k is calculated after each iter-

ation of the simulation. Subsequently, the error ek is calculated as difference between

n
p
k of simulated and real values. The average− error e denotes the weighted average

error of the simulation and nk the number of vertices in friendship-pattern k :

e =

n∑

k=1

ek ∗ nk

n∑

k=1

nk

(10)

(iv) The average estimation error ǫ assesses the average difference between simulated

values for behavior and real behavioral outcomes. Here n denotes the total number of

nodes in the simulation, while the difference between simulation and reality for node i

is represented by ǫi.

ǫ =

n∑

i=1

ǫi

n
(11)

4.3 Results

This subsection presents the results from the experiments presented earlier. We first

present results for the experiments with FUNDAJ data and subsequently report results

for experiments with the Scottish data set.

Results - FUNDAJ Figure 1 presents the results for simulations with FUNDAJ data for

15 iterations. Figure 1(a) contains ROC-curves for the experimental results with varying

settings of tm, GT , and f . For each investigated value of mark threshold tm, the Fig-

ure illustrates an individual ROC-curve. The dashed lines indicate the ROC-level of the

respective setting for tm before starting the simulation. Thus only parameter settings

leading to ROC-values situated above the respective dashed line can be considered as

settings that improve the quality of the simulation. The colored lines in Fig. 1(b) rep-

resent the development of quality indicators q and e for distinct parameter settings and

also indicate the average estimation error ǫ during the run-time of the simulation.

The results with the highest Y ouden−Index in simulations with FUNDAJ data set are

indicated by arrows pointing from the respective parameter settings for mark-threshold

tm, global threshold GT and adaption parameter f in parentheses as (tm,GT ,f ) in

Fig. 1(a). The results for q, e and ǫ of those most promising parameter settings are

presented in Fig 1(b) and 1(c). The more detailed analysis of the five parameter settings

that were performing best in ROC-curve analysis in Fig. 1(b) yields increasing e and

increasing estimation error ǫ while q continuously decreases. However, as presented

in Fig. 1(c) the second best performing parameter settings from ROC-curve analysis

lead in general to a decay of e and significant growth of q whereas at least one setting

(80,0.2,0.4) also decreases estimation error ǫ slightly.
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(a) ROC-Curve FUNDAJ

(b) Analysis FUNDAJ-f = 0.2 (c) Analysis FUNDAJf = 0.4

Fig. 1: ROC-Curve and Analysis for Coordination Game simulations with FUNDAJ

data - 15 iterations; For varying threshold marks tm, classifying the pupils as good

students, if their mark is greater then tm or bad students if their performance is below

tm and for varying settings of GT and f , as pointed out in parentheses (tm,GT ,f ).

Recall = true−positives
np ; Fallout = false−positives

nn .

Results - Scottish data Figure 2 illustrates the results for experiments with the Scottish

data set for 50 iterations for each of the investigated behaviors. The solid lines in Fig.

2(a) illustrate the Recall-Fallout relation for varying parameter settings and for differ-

ent behaviors. The black diagonal line in this graph indicates Recall-Fallout ratios that

represent random processes, while the dashed lines indicate the ROC-level of the start

situation. Since experiments with Scottish data were run with two different networks

as explained in Sect. 3, analysis of q, e and ǫ in Fig. 2(b), 2(c), 2(d) and 2(e) contain

blue lines, indicating the values calculated in relation to t+1 and red lines, representing

the results calculated in relation to benchmark t+2. ROC-curve for the simulation of
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diffusion of behavior sport in Fig. 2(a) is very close to the diagonal of the graph, indi-

cating that the simulation is rather a random process. Furthermore ROC-values cannot

reach the ROC-level before starting the simulation indicated by the dashed line. How-

ever, there are two values for t that yield ROC-values above the diagonal of which t =

0.55 generates the most promising results. Hence, q, e and ǫ development are analyzed

over the whole run time in Fig. 2(b). It is observable, that e in t + 1 indicated by the

blue line decreases significantly until the 25th iteration, which is when the network gt
is replaced by network gt+1. After the 25th iteration, e in t + 2 decreases heavily. ǫ

decreases slightly for benchmark t + 2 but increases if compared to benchmark t + 1.

Although decreasing for the first five iterations, q remains stable during the following

20 iterations and slightly improves after 25 iterations.

ROC-curve for smoking behavior in Fig. 2(a) yields positive results for t 0.35, 0.4

and 0.45, significantly outperforming the initial ROC-value indicated by the dashed

line. A deeper examination of q,e and ǫ development during run time in Fig. 2(c) shows

that as compared with benchmark t+1 neither q, nor e or ǫ develop positively. Though,

compared with benchmark t + 2 a strong improvement of q, as well as a significant

decrease of e and a slight decrease of ǫ is observable.

The t values indicated by the ROC-curve for Alcohol-use in Fig. 2(a) do not reach

initial ROC-level and yield decreasing q and increasing e until the underlying network

is changed after 25 iterations, initiating a slight improvement of those values for both

benchmark values as presented in Fig. 2(d). Nevertheless, q never reaches a value higher

than the start value, also e does not drop under its start value and ǫ remains on an equal

level. ROC-curve for Drug-use in Fig. 2(a) yields positive results for t 0.35, 0.4 and

0.45, slightly exceeding the initial ROC-value. Figure 2(e) presents decreasing e and ǫ,

as well as increasing q over the run time for benchmark value t + 2, while all quality

measures develop negatively for benchmark t+ 1.

5 Discussion

5.1 FUNDAJ data set

As pointed out in Sect. 4, the parameter setting (80,0.2,0.4) performs best as under this

setting average-error e is being more than halved (approximately 75%). For this setting

also match quality q increases slightly, ǫ shows a small decay, and Y ouden − Index

improves. This indicates that the setting reasonably approximates the real system state.

However, simulation is not very adequate in estimating the individual behavior. Thus

we argue that diffusion of marks can be reasonably modeled as a coordination game

if the researcher is willing to disregard individual states and is interested in the global

state of the network instead. Results further indicate that 15 iterations under the given

parameter setting are good for approximating one school year.

5.2 Scottish data set

Simulating the coordination-game spread for behavior sport with GT = 0.55 yields a

relatively small Y ouden− Index and cannot improve the ROC-level of the initial situ-

ation. However, the development of average− error for benchmark t+1 and t+2 yield
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(a) ROC-Curves Scottish Data

(b) Analysis Sport - GT = 0.55 (c) Analysis Smoking - GT = 0.45

(d) Analysis Alcohol - GT = 0.65 (e) Analysis Drugs - GT = 0.35

Fig. 2: ROC-curves and Analysis for Coordination Game simulations with Scottish data

set - 50 iterations. For varying behaviors and for varying settings of GT . Recall =
true−positives

np ; Fallout = false−positives
nn .

improvement of the overall state of the network, while decreasing match − quality q

and increasing ǫ for both benchmarks. Although improving the estimation of the gen-

eral network state, setting GT = 0.55 cannot improve the estimation quality and can

therefore not be considered a good setting for GT .

As for simulating the spread of behavior smoke throughout the given network, we

found strong evidence for the suitability of parameter GT = 0.35, 0.4 and 0.45 in the

ROC-curve. Run time analysis of e, ǫ and q indicate that the parameter setting when

run on network g1 cannot reproduce the spreading during the first year, since the for-
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mer grows while the latter declines for the first 25 iterations. However considering

benchmarks t+2 and network g2, all three quality indicators support the hypothesis that

spreading occurs as a coordination game with t = 0.35, 0.4 or 0.45. Recall, that chil-

dren were around age 13 when the study started, this discrepancy may be explained by

the nature of the behavior smoking, which probably has a higher attraction to children

aged 14 to 15 than to children aged 12 to 13. Similar but not as striking evidence can

be found when examining behavior drug − use. As drug − use has been explicitly

surveyed as the use of cannabis, this seems coherent, since tobacco use does commonly

precede cannabis use. Conversely, for the behavior alcohol− use, results are not clear.

ROC-curves indicate that parameter settings yielding reasonable estimates of the real

situation exist. Yet, run time analysis of those cases show that those promising param-

eter settings do not lead to an improvement of the estimation. Hence, we argue that for

alcohol-use we cannot find evidence that spreading of behavior can be modeled as a

coordination game within the given data set. This might also be related to the age of

the students, since parents influence might be stronger during this period. Additionally

due to the restriction of available data to female students the lack of spreading could be

gender related.

6 Conclusion

In this paper we adopted the coordination-game mechanism for simulating the spread-

ing process of behavior throughout social networks. We ran the simulation on two dif-

ferent data sets, the FUNDAJ study with school children from metropolitan area of

Recife and the study from Scottish female pupils. We investigated the spread of behav-

ior “commitment to school education” represented by the marks of the pupils in the

FUNDAJ study, as well as the behaviors “Substance use” for tobacco, drugs and alco-

hol and the behavior “practicing sports” as surveyed in the Scottish data set. We found

good indications that a coordination-game mechanism underlies the spread of behavior

“commitment to school education” as well as “smoking” and “drug-use” but could not

find comparable evidence for behavior “Alcohol-use”. Results for behavior “practicing

sports” were not clear. We argue that the missing evidence for behavior “Alcohol-use”

may stem from the nature of the data set, since surveyed individuals were below 16

years of age until the end of the survey. Moreover only female pupils participated. Since

male adolescents are more susceptible to early alcohol-use, this could be an explanation

for the lack of evidence, for that particular aspect.

This work serves as a first step in simulating the spread of behavior throughout so-

cial networks, since it provides evidence that (1) there is an underlying game-environment

for the agents within the social system (2) that it can be modeled as a coordination game.

However, the players of this game, the bounded rational agents [21] might be equipped

with decision finding mechanisms that better approximate human decision making.

Though driving the social systems from a real start situation towards the state in re-

ality after one or respectively two years, the investigated deterministic mechanism still

lead to a considerable difference between the real and the simulated system. Hence, we

argue that the deterministic mechanism is not fully capable to simulate human bounded

rationality and the lack of information humans face within their decision process. Be-



XII

sides this, eventual noise within the data and external influences may not be represented

by a deterministic mechanism. Future work should therefore deal with the creation of

a heuristic decision mechanism for the individual agents, that better represents human

decision making within a coordination-game setting. In addition, a binary behavioral

variable is an extreme simplification for the on continuous scales measured nuances

of human behavior such as sports activities, drug- and alcohol consumption or school

performance. It is therefore desirable to investigate how more complex scaling systems

influence the outcomes of this research. Furthermore, inter-temporal components shall

be introduced, representing an “aging” of relations and behaviors, modifying the in-

fluence of neighbors according to the “age” of the friendship, as well as according to

the past behavior of the neighbor. In the same sense, friendship weights may be mod-

ified according to the position of friends within the individual networks since people

may tend to follow “role models”. Finally, the presented mechanism must be applied to

different data sets in order to empirically verify the results.
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