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The geometric process has been widely applied in reliability engineering and other areas since its intro-

duction. One of its assumptions is that the times between occurrences of events are independent. This

assumption is rather restrictive and can limit its application in the real world. This paper extends the geo-

metric process to a new process, which we call the semi-geometric process, by relaxing this assumption.

Some probabilistic properties of the process are derived and parameter estimation is described. A numer-

ical example, based on a real-world data set, is used to illustrate the model and validate the estimation

methodology.
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1. Introduction

The geometric process (GP) defines a stochastic process: a sequence of independent random variables

{Xk , k = 1, 2, . . . } is a GP if the cumulative distribution function (cdf) of Xk is given by F(ak−1x) for

k = 1, 2, . . . and a is a positive constant. The above definition is given by Lam (1988), though it is likely

that this definition was around earlier. For example, in Smith & Leadbetter (1963), it reads ‘we consider

the situation in which failing components are replaced by new ones with better statistical properties.

Specifically, it is assumed that the nth replacement has a lifetime distribution F(akx)’ and also gives the

GP-version renewal function. Nevertheless, most publications typically credit the geometric process to

Lam (1988).

The GP has attracted extensive research attention, which includes one monograph (Lam, 2007a) and

many research papers, e.g. its probabilistic and statistical properties (Aydoğdu & Altındağ, 2016), and

its application in reliability engineering (Jain & Gupta, 2013), warranty cost analysis (Chukova et al.,

2005). Meanwhile, some authors either proposed similar definitions to that of the GP (Finkelstein, 1993;

Wang & Pham, 1996) or made an attempt to extend the GP (Braun et al., 2005; Wu & Clements-Croome,

2006; Lam, 2007a; Wan & Chan, 2011; Bordes & Mercier, 2013; Wu, 2017).

While the GP is a model that has been widely used to solve problems in various research areas, its

scope is still limited and does not fit the purposes of various empirical studies since {Xk , k = 1, 2, . . . }
in the GP are assumed independent. For example, as mentioned above, the GP has been used to model

time-between-failures of multi-component systems, including multi-component systems as shown in
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Lam (2007a, Section 5.4). However, it may not be realistic to assume that the times-between-failures of

a system before repair is statistically independent of that after the repair. This paper aims to extend the

GP to a new process, in which times-between-failures are dependent, and then to study the probabilistic

and statistical properties of the process.

1.1. Comments on the geometric process and its extensions

Numerical examples show that the GP has its merit: in Lam’s monograph on the GP (Lam, 2007a), 14

real-world time-between-event data sets are used to validate model performance [in terms of the mean

squared error (MSE) or the maximum percentage error]. The results shows that the GP outperforms three

other models [i.e. homogeneous Poisson process, non-homogeneous Poisson process (NHPP), following

a power law and NHPP following an exponential law] on all data sets. However, the independence

assumption of the GP is too restrictive: the GP assumes that {Xk , k = 1, 2, ...} is a sequence of independent

random variables, but it is true that times between occurrences of events may be statistically dependent

in many scenarios in the real world.

To overcome the above limitation, one may relax the assumption that Xk−1 and Xk are independent.

This paper makes such an attempt.

1.2. Contribution and importance of this work

This paper proposes a new stochastic process, referred to as the semi-geometric process (SGP). One may

notice that, in recent years, many authors have devoted considerable effort on developing novel methods

to model repair processes, (see, e.g. Jain & Gupta, 2013; Liang & Parlikad, 2015; Sheu et al., 2015; Vu

et al., 2015; Wu & Scarf, 2015, 2017; Zhao et al., 2015; Wu, 2017). We consider the current paper and

the process we describe as a further important contribution to the literature on the modelling the failure

process of a repairable system.

The paper has important managerial implications, because it provides a more flexible model for wider

application than the GP. Although this paper uses a case in reliability engineering, the model can also be

applied to analyse other recurrent events. Such applications can be found in scientific studies, medical

research, marketing research, etc., just as the GP can be used to model recurrent events such as the

outbreaks of diseases (Chan et al., 2006) and the electricity price (Chan et al., 2014).

1.3. Overview

The rest of the paper is structured as follows. Section 2 introduces the SGP and discusses its probabilistic

properties. Section 3 proposes methods of parameter estimation. Section 4 compares the performance [in

terms of the Akaike information criterion (AIC)] of the SGP with that of other models based on a data

set collected from the real world, respectively. We finish with a conclusion and future work in Section 5.

2. The semi-geometric process and probabilistic properties

2.1. Definitions

This section introduces the GP and discusses its limitations in detail. We begin with an important definition

on stochastic order.
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Definition 2.1 Stochastic order (Ross, 1996, p. 404). Assume that X and Y are two random variables.

If for every real number t, the inequality

P(X ≥ t) ≥ P(Y ≥ t)

holds for all t, then X is stochastically greater than or equal to Y , or X ≥st Y . Equivalently, Y is

stochastically less than or equal to X , or Y ≤st X .

Lemma 2.1 (Ross, 1996, p. 405) Assume that X and Y are two random variables and their expectations

exist, then

X ≥st Y ⇐⇒ E[u(X)] ≥ E[u(Y)],

for all increasing functions u(.), where ⇐⇒ stands for ‘if only if’.

The definition of the GP process is introduced in Lam (1988), as shown below.

Definition 2.2 Lam (1988) Given a sequence of non-negative random variables {Xk , k = 1, 2, . . . }, if

they are independent and the cdf of Xk is given by F(ak−1x) for k = 1, 2, . . . , where a is a positive

constant, then {Xk , k = 1, 2, · · · } is called a GP.

We refer to the random variable Xk as the kth inter-arrival time in what follows.

Remark 2.1 From Lemma 2.1 and Definition 2.2, we have the following results.

• If a > 1, then {Xk , k = 1, 2, · · · } is stochastically decreasing.

• If a < 1, then {Xk , k = 1, 2, · · · } is stochastically increasing.

• If a = 1, then {Xk , k = 1, 2, · · · } is a renewal process (RP).

Xk and Xk−1 are assumed to be independent in Definition 2.2. A natural idea to relax the independence

assumption is to assume that P(Xk < x|Xk−1 = y) �= P(Xk < x). This inspires us to give the following

definition.

Definition 2.3 Given a sequence of non-negative random variables {Xk , k = 1, 2, . . . }, if P{Xk <

x|Xk−1 = xk−1, . . . , X1 = x1} = P{Xk < x|Xk−1 = xk−1} and the marginal distribution of Xk is given by

P{Xk < x} = Fk(x)(≡ F(ak−1x)), where a is a positive constant, then {Xk , k = 1, 2, . . . } is called an SGP.

In other words, the SGP is a Markovian process having margins distributed as the GP.

Definition 2.3 requires us to find the correlation between Xk−1 and Xk . An intuitive idea to model the

correlation is to use the concept of copulas. Copulas are a tool for constructing multivariate distributions

and formalizing the dependence structures between random variables. The notion of copula was first

introduced by Abe Sklar in 1959 (Sklar, 1959). It has attracted considerable attention in recent years
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in both theoretical and application aspects. Sklar’s theorem states that any cumulative distribution func-

tion of a random vector can be written in terms of marginal distribution functions and a copula that

describes the dependence structure between the variables (Sklar, 1959). That is, given a vector of random

variables (X1, ..., Xd), its cumulative distribution function H(x1, ..., xd)(= P(X1 ≤ x1, ..., Xd ≤ xd)) and

marginals Fk(xk)(= P(Xk ≤ xk), where k = 1, ...d), Sklar proved that H(x1, ..., xd) can be written as

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)) and named C(.) as a copula (Sklar, 1959). Copulas are useful in

statistical applications, because they allow one to easily model and estimate the distribution of a random

vector through estimating the marginals and the copula separately. Copulas have been found applications

in a variety of areas, e.g. in reliability engineering problems; Guo et al. (2013), Peng et al. (2016) and

Eryilmaz (2016) use copulas to solve reliability problems.

2.2. Probabilistic properties

This section investigates some properties such as the distribution of X1 + · · · + Xn, which are normally

discussed for similar stochastic processes such as the RP and the GP.

Denote the copula between Xk−1 and Xk as Ck−1,k(u, v; θ) and its corresponding density as

ck−1,k(u, v; θ), where θ is an estimable parameter vector.

Lemma 2.2 The probability P(Xk < x|Xk−1 = y) is given by

P(Xk < x|Xk−1 = y) = ∂Ck−1,k(u, v; θ)

∂u
|(u=Fk−1(y),v=Fk (x)),

and the hazard function is given by

λk|k−1(x|Xk−1 = y) = ck−1,k(Fk−1(y), Fk(x); θ)fk(x)

1 − ∂Ck−1,k (u,v;θ)

∂u
|(u=Fk−1(y)),v=Fk (x)

.

The proof of each lemma in this paper is given in the Appendix.

Different notions of positive bivariate dependence can be defined, which are invariant by increasing

transformations of Xk and Xk−1. Barlow & Proschan (1975) give the following Lemma.

Lemma 2.3 (Barlow & Proschan, 1975, p. 143) Xk is stochastically increasing (SI) in Xk−1 iff

S(x|y) ≡ P[Xk ≥ x|Xk−1 = y] (2.1)

is increasing in y, for any x ∈ ℜ+.

Denote fk−1(y) as the density function of Xk−1. Based on Lemma 2.3, one can derive the following

properties.

Lemma 2.4 If fk−1(y)
∂2Ck−1,k (u,v;θ)

∂u2 |(u=Fk−1(y),v=Fk (x)) < 0, Xk is stochastically increasing in Xk−1.

Obtaining the joint distribution of (X1, X2, ..., Xn) is important in some applications such as calculating

the cumulative failure function. In the two properties below, the bounds of the joint distribution are given.
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Lemma 2.5 The following bounds are given.

• if a < 1 then

max {1 − n + nFn(xn), 0} ≤ C1,2,...,n(F1(x1), F2(x2), . . . , Fn(xn)) ≤ Fn(xn). (2.2)

• if a > 1 then

max {1 − n + nF1(x1), 0} ≤ C1,2,...,n(F1(x1), F2(x2), . . . , Fn(xn)) ≤ F1(x1). (2.3)

Definition 2.4 (Joe, 1997, p. 20) Let Z = (Z1, Z2) be a bivariate random vector with cdf H2.

• H2 is positive quadrant dependent (PQD) if

P(Z1 < z1, Z2 < z2) ≥ P(Z1 < z1)P(Z2 < z2), (2.4)

for ∀z1, z2 ∈ ℜ.

• H2 is negative quadrant dependent (NQD) if

P(Z1 < z1, Z2 < z2) ≤ P(Z1 < z1)P(Z2 < z2), (2.5)

for ∀z1, z2 ∈ ℜ.

Lemma 2.6 With the definition of the quadrant dependence, one can obtain the following.

• If P{Xk < t, Xk−1 < s} is PQD, then

n
∏

k=1

P(Xk < xk) ≤ P(X1 < x1, ..., Xn < xn) ≤ P(X1 < x1). (2.6)

• If P{Xk < t, Xk−1 < s} is NQD, then

n
∏

k=1

P(Xk < xk) ≥ P(X1 < x1, ..., Xn < xn). (2.7)

An interesting question is the expected number of occurrences of the SGP within time interval [0, t].
To answer this question, one needs to obtain the probability distribution of the sum X1 + X2 + · · · + Xn.

Unfortunately, even for two dependent random variables X1 and X2, there is no closed form of the

probability distribution of the sum X1 + X2. It is clear that solving this problem is mainly a numerical

issue once the joint distribution of X = (X1, X2, . . . , Xn) is completely specified (Bernard & Vanduffel,

2015).

Below we give the bounds of the expected number of occurrences.
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Lemma 2.7 (Cherubini et al., 2011, p. 145) If one denotes with 1 the n-dimensional column vector whose

components are all equal to 1, and t the n-dimensional column vector, and defines as T(s) the set of vectors

such that the sum of their components is equal to 1:

T(s) =
{

t ∈ ℜn : t
T1 = s

}

, (2.8)

then the stochastic upper and lower bounds on FS(s) are FL(s) = sup
t∈T(s)

max

{

n
∑

k=1

Fk(tk) − n + 1, 0

}

,

FU(s) = inf
t∈T(s)

min

{

n
∑

k=1

Fk(tk), 1

}

, respectively.

Denote Hn(s) = P{X1 + X2 + · · · + Xn ≤ s}. Then, it is easy to derive the following lemma.

Lemma 2.8 The following two bullets hold.

• If a > 1, then

inf
t∈T(s)

min

{

n
∑

k=1

F1(tk) − n + 1, 0

}

≤ Hn(s) ≤ sup
t∈T(s)

max

{

n
∑

k=1

Fn(tk) − n + 1, 0

}

;

• If a < 1, then

inf
t∈T(s)

min

{

n
∑

k=1

Fn(tk) − n + 1, 0

}

≤ Hn(s) ≤ sup
t∈T(s)

max

{

n
∑

k=1

F1(tk) − n + 1, 0

}

.

3. Parameter estimation

This section discusses two approaches to estimate the parameters of the SGP: the least squares (LS) method

and the maximum likelihood (ML) method. In the LS method, no assumption of the joint distribution of

(Xk−1, Xk) is made. The ML method, however, requires a known joint distribution or copula of (Xk−1, Xk).

3.1. LS method

Lam (2007b) uses the following linear regression method to estimate the parameter of the GP.

For the GP {Xk , k = 1, 2, . . . } with parameter a, let

Yk = ak−1Xk . (3.1)

Then {Yk , k = 1, 2, . . . } is a sequence of i.i.d random variables, so is {ln(Yk), k = 1, 2, . . . }. Taking

logarithm on the both sides of equation (3.1) gives

ln Yk = (k − 1) ln a + ln Xk . (3.2)
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On the other hand, for a given n observations {xk , k = 1, 2, . . . n} of {Xk , k = 1, 2, . . . n}, let’s set

yk = ak−1xk . Then, one can rewrite

ln yk = µ + ek , (3.3)

where µ is the mean of ln yk , e’s are i.i.d. random variables with mean 0 and variance τ 2 (see Lam, 2007b,

p. 105). Denote zk ≡ ln(xk) and β ≡ ln(a). Then, equation (3.2) becomes

zk = µ + (1 − k)β + ek . (3.4)

Equation (3.4) is a linear regression equation, and its parameters a and µ can be easily estimated with

observations xk . For more details on the above derivation, the reader is referred to Lam (2007a).

The above linear regression method, however, may not work in our setting because Xk is assumed to

depend on Xk−1. If one uses equation (3.4), then the residual ek may be correlated with ek−1.

If ek is correlated with ek−1, one can assume ek = ρek−1 + ǫk . Then, ǫk is a white noise that follows a

normal distribution with mean 0. Substituting ek = zk − µ − (1 − k)β and ek−1 = zk−1 − µ − (2 − k)β

into ek = ρek−1 + ǫk , we obtain

zk − ρzk−1 = µ′ + β(1 − k − 2ρ + ρk) + ǫk , (3.5)

where µ′ = µ(1 − ρ).

Remark 3.1 Similar to Lemma 2.4 that associates Xk and Xk−1, equation (3.5) suggests that zk and zk−1

have a positive correlation if ρ > 0 and a negative correlation if ρ < 0. Equivalently, Xk and Xk−1 have a

positive correlation if ρ > 0, and a negative correlation if ρ < 0.

For the given observations xk of Xk (with k = 1, 2, ..., n), one can minimize the following sum of the

squares of the errors to estimate the parameters a, b and µ.

(µ̂′, ρ̂, β̂) = arg min
µ′ ,ρ,β

n
∑

k=2

(

zk − ρzk−1 − µ′ − β(1 − k − 2ρ + ρk)
)2

. (3.6)

Obviously, there is no general closed-form solution for ρ̂, µ̂′ and β̂, one therefore needs to pursue

non-linear programming methods to solve the problem. One may pursue a software package such as

Matlab� to estimate the parameters.

Alternatively, one may use the Cochrane–Orcutt method (Cochrane & Orcutt, 1949) to solve this

non-linear programming problem and estimate the parameters, as shown below.

(a) Obtain µ and β by solving the regression equation (3.4) with LS.

(b) Calculate ek = zk − µ − (1 − k)β and regress ek on ek−1 to obtain an estimate of ρ.

(c) Calculate zk − ρzk−1 and (1 − k − 2ρ + ρk) and solve equation (3.5) with LS to obtain revised

estimates µ and β. Return to (b) and continue until convergence.
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3.2. ML method

Suppose that the system has failed for n times at time points sk with k = 0, 1, . . . , n. Let s0 = 0. Then the

working times are s1 − s0, s2 − s1, . . . , sn − sn−1, respectively. Denote xk = sk − sk−1 for k = 1, 2, ..., n.

Since

f (x1, x2, ..., xn) = f1(x1)f2|1(x2|x1)...fn|n−1(xn|xn−1)

= c12(F1(x1), F2(x2))...cn−1,n(Fn−1(xn−1), Fn(xn); θ)

n
∏

k=1

fk(xk)

=
(

n
∏

k=2

ck−1,k(Fk−1(xk−1), Fk(xk); θ)

) (

n
∏

k=1

fk(xk)

)

, (3.7)

and the logarithm likelihood function is given by

ℓ(θ) =
n

∑

k=1

log(fk(xk)) +
n

∑

k=2

log(ck−1,k(Fk−1(xk−1), Fk(xk)); θ). (3.8)

Maximizing the above log-likelihood function by setting the partial derivation of ℓ(θ) with respect

to each element of θ to zero, we can obtain θ̂ , which are the estimates of the corresponding parameters,

respectively. That is

θ̂ = arg max
θ

ℓ(θ). (3.9)

3.3. Confidence intervals

In this section, estimating confidence intervals is discussed to account for the uncertainty in the estimators

of the LS method and the ML method.

3.3.1. Large sample case When a large sample of observations are available for estimating the param-

eters, the confidence intervals for both the LS method and the ML method can be easily obtained. Here,

by large, it may mean a sample size larger than 50 (e.g. McKnight et al., 2000).

In the case of the LS method, as discussed above, equation (3.6) may be treated as a non-linear

programming problem. The confidence intervals of the parameters can then be estimated (see Seber &

Wild, 2003, for details).

In the case of the ML method, one may use asymptotic normal approximation to the ML estimates

to construct confidence intervals. To use this method, one obtains the ML estimates of θ̂ from equation

(3.8). Then the ML estimator θ̂ has a distribution that can be approximated by a multivariate normal

distribution N(θ , I−1(θ)), where I−1(θ) is the Fisher information matrix that can be estimated based on

the observed information matrix: I(θ̂) = −E

(

∂2 log ℓ(θ)

∂φi∂φj

)

|
θ=θ̂

, which can be used to estimate the asymptotic

variance–covariance matrix of θ̂ .
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3.3.2. Bootstrap methods When the sample size is small, the statistical properties of the estimates

based on samples of large size may not hold. For example, the coverage probabilities of confidence

intervals produced by the normal approximation method may not be close to nominal values. In such

cases, variance estimation or confidence intervals may be conveniently approached with the bootstrap

(Cook & Lawless, 2007).

In the case of the LS method, to estimate the confidence intervals, one may use the method proposed

by McKnight et al. (2000), which introduces a double bootstrap method to overcome the limitation of

the small sample size (n < 50).

In the case of the ML method, one may use the method proposed by Newton & Raftery (1994),

which introduces a weighted likelihood bootstrap and use a random weight to the log-likelihood of each

observation.

3.4. Goodness-of-fit test and hypothesis test

3.4.1. Detection of the trend The SGP presents two properties that need testing for real-world data.

The two properties are (1) the dependence between Xk−1 and Xk and (2) the stochastic trend, i.e. either

increasing or decreasing, of Xk for k = 1, 2, .... The Ljung–Box test (Ljung & Box, 1978) can be carried out

to test the dependence between Xk−1 and Xk and the Mann–Kendall trend test (Mann, 1945; Kendall, 1975)

can be conducted to test whether there is a monotonic upwards or downwards trend in Xk , k = 1, 2, ...}.

3.4.2. Selection of the baseline lifetime distribution and the copula The AIC, which aims to find the

trade-off between the goodness of fit of a model and the complexity of the model, can be used for selection

of the baseline lifetime distribution F(x).

The use of the copula approach to depict the dependence between Xk−1 and Xk has two advantages: one

has the freedom to choose the marginal distribution (such as the fat-tailedness of the time series {Xk , k =
1, 2, ....}), and the copula function separately, and one can also characterize the temporal dependence

property such as non-linear, asymmetric dependence, of the time series.

It should be noted that the joint distribution between Xk−1 and Xk can then be modelled by any

Ck−1,k(u, v), which include parametric and non-parametric forms. One may use the AIC for selection of

the different forms of copulas.

3.5. Discussion

3.5.1. A further extension Wu (2017) proposes an extension of the GP, which assumes that the dis-

tribution of Xk is F(ak−1xh(k)) for k = 1, 2, . . . , where a is a positive constant, h(k) is a function of k

and the likelihood of the parameters in h(k) has a known closed form, and h(k) > 0 for k ∈ N, and

{Xk , k = 1, 2, · · · } is called a doubly geometric process (DGP). It can be seen that the GP is a special case

of the DGP.

The SGP merely links the relationship between Xk and its one-step backward counterpart Xk−1. A

natural extension is to allow Xk to associate with its p historical records Xk−p, Xk−p+1, . . . , Xk−1, which

may be applied to both the GP and the DGP. However, it should be noted that on such an extension, the

model (i.e. the SGP) becomes more complicated and may cause some problems in its applications, since

the sample of time-between-failures is normally not large.

3.5.2. Application Consider the following maintenance policy for a system: the system is replaced if

the probability of the event that both working times of the two consecutive periods are shorter than a value,
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γ , say, is larger than α. In this maintenance policy, the value α is the decision variable. That is, given

the cost of failure and cost of replacement, what is the optimal value of α? The real-world application of

such a maintenance policy can be found in statistical process control where action may be taken if the

working times of two consecutive periods are shorter than a control limit.

Since P(Xk−1 < γ , Xk < γ ) = Ck−1,k(Fk−1(γ ), Fk(γ )), one can easily obtain value k when the

condition Ck−1,k(Fk−1(γ ), Fk(γ )) > α is satisfied. Often the parameter a is assumed to be larger than 1,

as the working times are supposed to be stochastically decreasing. In such a case, for a given γ and large ks,

P(Xk−1 < γ , Xk < γ ) = 1. As such, one selects the minimal k that satisfies Ck−1,k(Fk−1(γ ), Fk(γ )) > α.

4. Numerical example

&&&In this section, we fit the SGP, and three other models, the GP, non-homogeneous Poisson process

with power law intensity function (NHPP-PL) and generalized renewal process (GRP), to a real-world

data set and compare their AIC values with those models on the data set. It is known that the NHPP-PL

is often used for minimal repair, and two models for imperfect repair are the GP and the GRP, with

Vk = Vk−1 + qXk being the virtual age after the kth failure (GRP) being used for imperfect repair.

We then calculate the AIC value from the ML estimation of the model: AIC = 2p − 2 ln(L), where L

is the maximized value of the likelihood of each model and p is the number of parameters in a model. In

the LS method, the AIC value is calculated with: AIC = 2p+n ln( SME

n
), where SME is the squared mean

error of the model. For comparison, we calculate SME=

n
∑

k=2

(

zk − ρzk−1 − µ′ −β(1 − k − 2ρ + ρk))
2

for the SGP and SME=
∑n

k=2(zk −µ− (1−k)β)2 (see equation (3.4)) for the GP. Note that in both SME’s

k starts from 2. The term 2p in the AIC penalizes a model with a large number of parameters. Also note

that the SGP with p ≥ 3 incurs the highest penalty on its AIC value.

In the GP and the GRP, it is assumed that time to first failure has a Weibull distribution 1 − e
−

(

t
β

)α

,

respectively. In the NHPP-PL model, let
1

β

(

t

β

)α−1

be the intensity function of the system. The copulas

Ck−1,k(u, v) is assumed to be the Clayton copula, i.e. Ck−1,k(u, v) = (u−φ + v−φ − 1)−1/φ .

A data set published in Musa et al. (1987) is used to compare the AIC values of the SGP and the GP.

The data set is the times between failures (in CPU seconds, measured in terms of execution time) of a

real-time command and control software system and has been often analysed in the reliability literature

(see, e.g. Peng et al., 2014). The sample size of the data set is 135, as shown in Fig. 1. There are three

observations that are zeroes, we replace them with 0.5. Lam (2007a) built an NHPP, a GP and an RP on

this data set and finds that the MSE (squared mean error) of the GP is the smallest.

The Ljung–Box test is carried on the data set and shows that there is strong evidence of non-zero

autocorrelations in the series {Xk , k = 1, 2, ...} at lag 1, and the Mann–Kendall trend test rejects the null

hypothesis that there is no monotonic trend in {Xk , k = 1, 2, ...}. This suggests that the SGP may be fitted

to the data set.

4.1. The LS method

One may search for the optimal values of the parameters in the optimization problem shown in equation

(3.6) and then find the AIC value on the data set. As can be seen from the results in Table 1, the AIC

value of the SGP outperform those of the GP on the data set, which suggests that the SGP fits better than
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Fig. 1. Time between failure data of a real-time command and control software system.

Table 1. Estimated parameters and AIC values (the LS estimation)

The GP The SGP

Parameters AICSGP Parameters AICGP

µ̂ = 3.857, â = 0.978 139.061 ρ̂ = 0.161, µ̂ = 3.856, â = 0.978 137.557

the GP on the data set. The standard errors of ρ̂, µ̂′(= (1 − ρ̂)µ) and β̂(= ln(a)) are 0.0851, 0.435 and

0.00433, respectively. Below interprets the parameters of the SGP.

(a) The parameter â = 0.978 is smaller than 1, which indicates that the times-between-failures are SI.

This agrees with the observations as shown in Fig. 1, which shows Xk is increasing with time t.

Note. Since â(= 0.978) is close to 1, one may be curious whether there is a statistically significant

difference between the modelling results with â = 0.978 and those with â = 1. It should be noted

that the cdf of Xk is F(ak−1x) and ak−1 is sensitive to its base a. For example, if a = 0.978, then

a100 = 0.1081149; if a = 0.979, then a100 = 0.1197483. That is, if a increases 0.001, the result of

a100 increases 0.01163337, which is approximately 11.6 times larger than 0.001.

(b) Since ρ̂ > 0, according to equation (3.5) and Remark 3.1, Xk has a positive correlation with Xk−1.

4.2. The ML method

With the ML method, we obtain the parameters of the models, as shown in Table 2.

From Table 2, the AIC value of the SGP is the smallest among the four models.

When the SGP is built on the data set, the estimated parameters are â = 0.978, φ̂ = 1.125, α̂ = 0.854

and β̂ = 96.044. The parameters of the SGP are interpreted below. The standard errors of â, φ̂, α̂ and β̂

are 0.00154, 0.0697, 0.0570 and 10.977, respectively.

(a) The parameter â = 0.978 is smaller than 1, which indicates that the times-between-failures are SI.

This agrees with the observations as shown in Fig. 1.
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Table 2. Estimated parameters and AIC values (the ML estimation)

GP NHPP GRP SGP

Parameters AICGP Parameters AICNHPP Parameters AICGRP Parameters AICSGP

â = 0.977, α̂ = 0.864 1925.023 α̂ = 0.495 1939.969 q̂ = 0.133, α̂ = 0.416 1938.861 â = 0.978, φ̂ = 1.125 1923.043

β̂ = 91.894 β̂ = 2.081 β̂ = 7.576 α̂ = 0.854, β̂ = 96.044

(b) Since Ck−1,k(u, v) = (u−φ + v−φ − 1)−1/φ , with Lemma 2.4,

∂S(x|y)
∂y

= fk−1(y)

[

∂2Ck−1,k(u, v; θ)

∂u2
|(u=Fk−1(y),v=Fk (x))

]

= fk−1(y)
[

u−φ−2(φ−1 − (φ + 1))(u−φ + v−φ − 1)−1/φ|(u=Fk−1(y),v=Fk (x))

]

.

If φ−1 − (φ + 1) > 0, i.e. φ >
√

5−1

2
, then

∂S(x|y)
∂y

> 0. That implies, S(x|y) is increasing in y. The

parameter φ̂ = 1.125 in the SGP is greater than
√

5−1

2
, which suggests that Xk is SI in Xk−1.

This finding agrees with the second finding (b) in the LS method in Section 4.1.

(c) The shape parameter α̂ = 0.854 in the SGP is less than 1, which suggests that the hazard function

Xk is decreasing with respect to time t.

5. Conclusion

The GP is an extension of the RP in a sense that it assumes that the distributions of the times between

occurrences of events (gap times) are non-stationary while retaining the assumption that the gap times

are statistically independent. This process has been applied in different areas and has attracted extensive

attention in maintenance policy optimization.

This paper extends the GP to a process in which times between occurrences of events are dependent.

We obtain some probabilistic and statistical properties of the new process and derive two parameter

estimation methods (ML estimation and LS estimation). A real-world data set is used to compare the

performance (in terms of the AIC value) of the new process with three well-known stochastic processes,

the RP, the GP, and the GRP. Our results show that the proposed model outperforms these three models.
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Appendix

Proof of Lemma 2.2. According to Cherubini et al. (2011, p. 40),

Fk|k−1(x|y) = P(Xk < x|Xk−1 = y)

= lim
h→0

P(Xk < x|y ≤ Xk−1 ≤ y + h)

= lim
h→0

P(Xk < x, y ≤ Xk−1 ≤ y + h)

P(y ≤ Xk−1 ≤ y + h)

= lim
h→0

P(Xk < x, Xk−1 ≤ y + h) − P(Xk < x, Xk−1 ≤ y)

P(Xk−1 ≤ y + h) − P(Xk−1 ≤ y)

= lim
h→0

C(Fk−1(y + h), Fk(x); θ) − C(Fk−1(y), Fk(x); θ)

Fk−1(y + h) − Fk−1(y)
.

(A.1)

When h → 0, we may approximate Fk−1(y + h) with Fk−1(y) + �h. Hence, we have

Fk|k−1(x|y) = lim
�h→0

C(Fk−1(y) + �h, Fk(x); θ) − C(Fk−1(y), Fk(x); θ)

�h

= ∂Ck−1,k(u, v; θ)

∂u
|(u=Fk−1(y),v=Fk (x)). (A.2)
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Denote the density function of Fk|k−1(x|y; θ) as fk|k−1(x|y; θ) for each θ and for k = 1, 2.... Then

fk|k−1(x|y) = ck−1,k(Fk−1(y), Fk(x); θ)fk(x), (A.3)

where ck−1,k(u, v; θ) = ∂2Ck−1,k (u,v;θ)

∂u∂v
.

Hence, the hazard function of the item in the kth cycle is given by

λk|k−1(x|y) = fk|k−1(x|y; θ)

1 − Fk|k−1(x|y; θ)
(A.4)

= ck−1,k(Fk−1(y), Fk(x); θ)fk(x)

1 − ∂Ck−1,k (u,v;θ)

∂u
|(u=Fk−1(y),v=Fk (x))

. (A.5)

This establishes the lemma. �

Proof of Lemma 2.4. Recall Lemma 2.2, P(Xk < x|Xk−1 = y) = ∂Ck−1,k (u,v;θ)

∂u
|(u=Fk−1(y),v=Fk (x)). Hence

∂S(x|y)
∂y

= fk−1(y)

[

∂2Ck−1,k(u, v; θ)

∂u2
|(u=Fk−1(y),v=Fk (x))

]

.

Considering Lemma 2.3, one establishes Lemma 2.4. �

Proof of Lemma 2.5. The Fréchet–Hoeffding theorem states that for any Copula C : [0, 1]d → [0, 1] and

any (u1, . . . , un) ∈ [0, 1]n, the following bounds hold:

W(u1, . . . , un) ≤ C(u1, . . . , un) ≤ M(u1, . . . , un). (A.6)

The functions W and M are called the lower and upper Fréchet–Hoeffding bounds, respectively. They

are defined as W(u1, . . . , un) = max

{

1 − n +
n

∑

k=1

uk , 0

}

and M(u1, . . . , un) = min{u1, . . . , un}.

• If a < 1, then ak−1 ≥ ak and F(ak−1x) ≥ F(akx). Hence, we have

W(u1, . . . , un)

= max

{

1 − n +
n

∑

k=1

uk , 0

}

= max

{

1 − n +
n

∑

k=1

Fk(xk), 0

}

≥ max {1 − n + nFn(xn), 0}

and

M(u1, . . . , un) = min{F1(x1), F2(x2), . . . , Fn(xn)} = Fn(xn).

That is,

max {1 − n + nFn(xn), 0} ≤ C(F1(x1), F2(x2), . . . , Fn(xn)) ≤ Fn(xn). (A.7)
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• Similarly, for a > 1, we have

max {1 − n + nF1(x1), 0} ≤ C(F1(x1), F2(x2), . . . , Fn(xn)) ≤ F1(x1). (A.8)

This proves the lemma. �

Proof of Lemma 2.6. According to the Chapman–Kolmogorov equation,

P(X1 < x1, ..., Xn < xn) = P(X1 < x1)

n
∏

k=2

P(Xk < xk|Xk−1 < xk−1) ≤ P(X1 < x1). (A.9)

Since P(Xk < x|Xk−1 < y) = P(Xk−1<y,Xk<x)

Fk−1(y)
, if P{Xk < t, Xk−1 < s} is PQD, then P(Xk < xk , Xk−1 <

xk−1) ≥ P(Xk < xk)P(Xk−1 < xk−1). Hence, we can obtain

P(X1 < x1, ..., Xn < xn) = P(X1 < x1)

n
∏

k=2

P(Xk < xk , Xk−1 < xk−1)

P(Xk−1 < xk−1)

≥ P(X1 < x1)

n
∏

k=2

P(Xk < xk)P(Xk−1 < xk−1)

P(Xk−1 < xk−1)

=
n

∏

k=1

P(Xk < xk). (A.10)

This establishes the first part of the lemma.

Similarly, the second part can be established. �

Proof of Lemma 2.8. • If a > 1, then F1(t1) ≤ Fk(tk) ≤ Fn(tn) for n > k. Then, we have

inf
t∈T(s)

min

{

n
∑

k=1

F1(tk) − n + 1, 0

}

≤ inf
t∈T(s)

min

{

n
∑

k=1

Fk(tk) − n + 1, 0

}

and

sup
t∈T(s)

max

{

n
∑

k=1

Fn(tk) − n + 1, 0

}

≥ sup
t∈T(s)

max

{

n
∑

k=1

Fk(tk) − n + 1, 0

}

.

• If a < 1, then Fn(tn) ≤ Fk(tk) ≤ F1(t1) for n > k. Then, we have

inf
t∈T(s)

min

{

n
∑

k=1

Fn(tk) − n + 1, 0

}

≤ inf
t∈T(s)

min

{

n
∑

k=1

Fk(tk) − n + 1, 0

}
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and

sup
t∈T(s)

max

{

n
∑

k=1

F1(tk) − n + 1, 0

}

≥ sup
t∈T(s)

max

{

n
∑

k=1

Fk(tk) − n + 1, 0

}

.

From the above inequalities, it is easy to establish the lemma. �


