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C0-SEMIGROUPS OF 2-ISOMETRIES AND DIRICHLET SPACES

EVA A. GALLARDO-GUTIÉRREZ AND JONATHAN R. PARTINGTON

Abstract. In the context of a theorem of Richter, we establish a similarity between

C0-semigroups of analytic 2-isometries {T (t)}t≥0 acting on a Hilbert space H and

the multiplication operator semigroup {Mφt
}t≥0 induced by φt(s) = exp(−st) for s

in the right-half plane C+ acting boundedly on weighted Dirichlet spaces on C+. As

a consequence, we derive a connection with the right shift semigroup {St}t≥0

Stf(x) =

{

0 if 0 ≤ t ≤ x,

f(x− t) if x > t,

acting on a weighted Lebesgue space on the half line R+ and address some appli-

cations regarding the study of the invariant subspaces of C0-semigroups of analytic

2-isometries.

1. Introduction

The concept of a 2-isometry was introduced by Agler in the early eighties (cf. [1]);

this is related to notions due to J. W. Helton (see [8] and [9]) and characterized in

terms of their extension properties (see [2]). Recall that a bounded linear operator T

on a separable, infinite dimensional complex Hilbert space H is called a 2-isometry if it

satisfies

T ∗2T 2 − 2T ∗T + I = 0,

where I denotes the identity operator. In addition, such operators are called analytic if

no nonzero vector is in the range of every power of T . It turns out that Mz, i.e. the

multiplication operator by z, acting on the classical Dirichlet space, is a cyclic analytic

2-isometry. But, moreover, in [15] (see also [14]) Richter proved that any cyclic analytic

2-isometry is unitarily equivalent to Mz acting on a generalized Dirichlet space D(µ).

More precisely, let µ be a finite non-negative Borel measure on the unit circle T and

D(µ) the generalized Dirichlet space associated to µ, that is, the Hilbert space consisting

of analytic functions on the unit disc D such that the integral
∫

D

|f ′(z)|2

(∫

|ξ|=1

1− |z|2

|ξ − z|2
dµ(ξ)

)
dm(z)

π
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is finite (here dm(z) denotes the Lebesgue area measure in D). Note that if µ = 0, the

space D(µ) is defined to be the classical Hardy space H2 and for non-zero, finite, non-

negative Borel measures µ on T, the space D(µ) is contained in the Hardy space (see [7,

Chapter 7]). Then Richter’s Theorem reads as follows:

Theorem (Richter). Let T be a bounded linear operator on an infinite dimensional

complex Hilbert space H. Then the following condition are equivalent:

(i) T is an analytic 2-isometry with dimKerT ∗ = 1,

(ii) T is unitarily equivalent to (Mz, D(µ)) for some finite non-negative Borel mea-

sure on T, where

‖f‖2D(µ) = ‖f‖2H2 +

∫

D

|f ′(z)|2

(∫

|ξ|=1

1− |z|2

|ξ − z|2
dµ(ξ)

)
dm(z)

π
.

One of the main applications of Richter’s Theorem concerns the study of the invariant

subspaces for the multiplication operator Mz in the spaces D(µ) and its relationship

with the classical Beurling Theorem for the Hardy space H2 (see [3]). For instance,

regarding the Dirichlet space D = D
(

|dξ|
2π

)
, Richter and Sundberg [16] proved that any

closed, invariant subspace M under Mz satisfies that dimM ⊖ zM = 1. Moreover, if

ϕ ∈ M ⊖ zM with ‖ϕ‖D = 1, then |ϕ(z)| ≤ 1 for |z| ≤ 1 and M = ϕD(mϕ), where

dmϕ is the measure on T given by dmϕ(ξ) = |ϕ(ξ)|2 |dξ|
2π . For general D(µ) spaces, an

analogous result holds. We refer the reader to Chapters 7 and 8 in the recent monograph

“A primer on the Dirichlet space” [7] for more on the subject.

Motivated by the Beurling-Lax Theorem and the work carried out by Richter, the

aim of this work is taking further the study of the 2-isometries and considering C0-

semigroups of 2-isometric operators. In particular, we will establish a similarity between

C0-semigroups of analytic 2-isometries {T (t)}t≥0 acting on a Hilbert space H and the

multiplication operator semigroup {Mφt
}t≥0 induced by φt(s) = exp(−st) for s in the

right-half plane C+ acting boundedly on weighted Dirichlet spaces D̃C+
(ν) on C+ (see

Definition 2.3). As a consequence, by means of the Laplace transform, we derive a

connection with the right shift semigroup {St}t≥0

Stf(x) =

{
0 if 0 ≤ t ≤ x,

f(x− t) if x > t,

acting on a weighted Lebesgue space on the half line R+. Finally, some applications

regarding the study of the invariant subspaces of C0-semigroups of analytic 2-isometries

are also discussed in Section 3.

2. C0-semigroups of analytic 2-isometries

First, we introduce some basic concepts and terminology regarding C0-semigroups of

bounded linear operators. For more on this topic, we refer the reader to the Engel–Nagel

monograph [6].
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A C0-semigroup {T (t)}t≥0 of operators on a Hilbert space H is a family of bounded

linear operators on H satisfying the functional equation




T (t+ s) = T (t)T (s) for all t, s ≥ 0,

T (0) = I,

and such that T (t) → I in the strong operator topology as t→ 0+. Given a C0-semigroup

{T (t)}t≥0, there exists a closed and densely defined linear operator A that determines

the semigroup uniquely, called the generator of {T (t)}t≥0, defined by means of

Ax := lim
t→0+

T (t)x− x

t
,

where the domain D(A) of A consists of all x ∈ H for which this limit exists (see [6,

Chapter II], for instance). Although the generator is, in general, an unbounded operator,

it plays an important role in the study of a C0-semigroup, reflecting many of its properties.

However, if 1 is in the resolvent of A, that is, in the set

ρ(A) = {λ ∈ C : (A− λI) : D(A) ⊂ H → H is bijective},

then (A − I)−1 is a bounded operator on H by the Closed Graph Theorem, and the

Cayley transform of A defined by

V := (A+ I)(A− I)−1

is a bounded operator on H, since V − I = 2(A − I)−1. Therefore V determines the

semigroup uniquely, since A does. This operator is called the cogenerator of the C0-

semigroup {T (t)}t≥0. Observe that 1 is not an eigenvalue of V .

Recall that if A is a closed operator, then the spectral bound s(A) of A is defined by

s(A) := sup{Reλ : λ ∈ σ(A)},

where σ(A) = C \ ρ(A) is the spectrum of A, and in case that A is the generator of a

C0-semigroup, then s(A) is always dominated by the growth bound of the semigroup, that

is,

−∞ ≤ s(A) ≤ w0 = inf

{
w ∈ R :

there exists Mw ≥ 1 such that

‖T (t)‖ ≤Mw e
wt for all t ≥ 0

}
.

Indeed, if r(T (t)) denotes the spectral radius of T (t), it follows that w0 = 1
t log r(T (t))

for each t > 0 (see [6, Section 2, Chapter IV], for instance). The following lemma will be

useful in the context of our main result later.

Lemma 2.1. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimensional com-

plex Hilbert space H consisting of 2-isometries and A its generator. Then 1 ∈ ρ(A) and

therefore, the cogenerator V of {T (t)}t≥0 is well-defined.
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Proof. By induction it follows that, for any n ≥ 1 and t ≥ 0, T (t) satisfies

T (t)∗nT (t)n − nT (t)∗T (t) + (n− 1)I = 0,

and so

‖T (t)nx‖2 = n‖T (t)x‖2 − (n− 1)‖x‖2

for x ∈ H. From here, it follows that ‖T (t)n‖ ≤ C n, where C is a constant independent

of n, and therefore the spectral radius r(T (t)) ≤ 1 for any t. Therefore, s(A) ≤ 0; and

therefore 1 ∈ ρ(A). �

The next result consists of a particular instance of [11, Theorem 1], where C0-semigroups

of hypercontractions are considered. We state it for C0-semigroups of 2-isometries and

include its proof for the sake of completeness.

Proposition 2.2. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimensional

complex Hilbert space H. Then the following conditions are equivalent:

(i) T (t) is a 2-isometry for every t ≥ 0.

(ii) The mapping t ∈ R+ 7→ ‖T (t)x‖2 is affine for each x ∈ H.

(iii) Re〈A2y, y〉+ ‖Ay‖2 = 0 (y ∈ D(A2)).

(iv) The cogenerator V of {T (t)}t≥0 exists and is a 2-isometry.

Proof. (i) ⇐⇒ (ii): If each T (t) is a 2-isometry, then for t ≥ 0 and τ > 0 we have

〈T (t+ 2τ)x, T (t+ 2τ)x〉 − 2〈T (t+ τ)x, T (t+ τ)x〉+ 〈T (t)x, T (t)x〉 = 0,

so that

(1) ‖T (t+ τ)x‖2 =
1

2
(‖T (t)x‖2 + ‖T (t+ 2τ)x‖2).

Since t ∈ R+ → ‖T (t)x‖2 is continuous, the mapping is affine.

Conversely, taking t = 0 we see that (1) implies that T (τ) is a 2-isometry.

(ii) ⇐⇒ (iii): For t > 0 we calculate the second derivative of the function g : t 7→

‖T (t)y‖2 for y ∈ D(A2). We have

g′′(t) =
d2

dt2
〈T (t)y, T (t)y〉

= 〈A2T (t)y, T (t)y〉+ 2〈AT (t)y,AT (t)y〉+ 〈T (t)y,A2T (t)y〉.

For g affine, g′′ is zero, and Condition (iii) follows on letting t → 0. Conversely, Condi-

tion (iii) implies Condition (ii) for y ∈ D(A2), and hence for all y by density.

(iii) ⇐⇒ (iv): We calculate

〈(I − 2V ∗V + V ∗2V 2)x, x〉
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for x = (A − I)2y (note that (A − I)−2 : H → H is defined everywhere and has dense

range). We obtain

〈(A− I)2y, (A− I)2y〉 − 2〈(A2 − I)y, (A2 − I)y〉+ 〈(A+ I)2y, (A+ I)2y〉

= 4〈A2y, y〉+ 8〈Ay,Ay〉+ 4〈y,A2y〉.

Thus V is a 2-isometry if and only if Condition (iii) holds. �

Before stating the main result of the section, let us introduce the following definition.

Definition 2.3. Let ν be a finite positive Borel measure supported on the imaginary

axis. The Dirichlet space D̃C+
(ν) is defined as the space of analytic functions F on right

half-plane C+ such that

‖F‖2 = |F (1)|2 +
1

π

∫

C+

|F ′(s)|2
(
x+

1

π

∫ ∞

−∞

x

x2 + (y − τ)2
dν(τ)

)
dx dy <∞

where s = x+ iy.

The spaces D̃C+
(ν) arise, in a natural way, when we analyze C0-semigroups of analytic

2-isometries in Hilbert spaces, as it is stated in our main result:

Theorem 2.4. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimensional

complex Hilbert space H consisting of analytic 2-isometries for every t > 0 such that

(2) dim
⋂

t>0

ker
(
T ∗(t)− e−t I

)
= 1.

Then there exists a finite positive Borel measure ν supported on the imaginary axis such

that {T (t)}t≥0 is similar to the semigroup of multiplication operators induced by exp(−ts)

acting on the space D̃C+
(ν). Moreover, if the multiplication operators induced by exp(−ts)

act continuously for every t > 0 on a Dirichlet space D̃C+
(ν̃) where ν̃ is a finite positive

Borel measure supported on the imaginary axis, then the corresponding semigroup consists

of analytic 2-isometries and satisfies (2).

Before proceeding further, let us remark that our main result yields similarity for the

semigroup {T (t)}t≥0 because of the definition of the norm in D̃C+
(ν). In addition, as

we shall see later, condition (2) is a way of expressing the property that dimkerV ∗ = 1,

where V is the cogenerator of the semigroup {T (t)}t≥0.

In order to prove Theorem 2.4, we need the following auxiliary results.

Proposition 2.5. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimensional

complex Hilbert space H consisting of analytic 2-isometries. Then the cogenerator V is

an analytic 2-isometry.

Proof. First, we observe that V is well-defined by Lemma 2.1 and, it is a 2-isometry by

Proposition 2.2. So, we are required to show that V is analytic.
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The Wold Decomposition Theorem for 2-isometries (see [12], for instance), yields that

V can be decomposed as V = S⊕U with respect to H = H1⊕H2, where U is the unitary

part on H2 =
⋂
n V

nH and S is an analytic 2-isometry. We will show that U = 0.

Let us assume, on the contrary, that U 6= 0.

First, we observe that since 1 is not an eigenvalue of V , the generator A of the

semigroup {T (t)}t≥0 may be expressed as the (possibly) unbounded operator

(V + I)(V − I)−1.

Moreover, since T (t) commutes with (A − I)−1 and hence with V , it holds that H2 is

invariant under T (t) for every t ≥ 0. In addition, the generator B of the restricted

semigroup {T (t)|H2
}t≥0 is the restriction of A to the D(A) ∩ H2 (see [6, Ch. 2, Sec. 2],

for instance); and the cogenerator is U .

Now, taking into account the fact that U is unitary, one deduces that B is skew-adjoint

(i. e., B⋆ = −B). Then the restriction of T (t) to H2 is unitary for every t ≥ 0 and,

therefore, every vector in H2 is in the range of (powers of) T (t). Since T (t) is analytic,

it follows that H2 = {0}. Hence, U = 0 and the proof is completed. �

Lemma 2.6. Let {T (t)}t≥0 be a C0-semigroup on a separable, infinite dimensional com-

plex Hilbert space H and A its generator. The following conditions are equivalent:

(1) Ax0 = −x0 for some x0 ∈ D(A).

(2) T (t)x0 = e−tx0 for all t ≥ 0 and x0 ∈ D(A).

In addition, if 1 ∈ ρ(A) and V is the cogenerator, any of the previous conditions is

equivalent to

(3) V x0 = 0 for some x0 ∈ D(A).

Note that the equivalence between (1) and (2) in Lemma 2.6 just follows from the

relationship between the eigenspaces of A and the semigroup {T (t)}t≥0, that is,

Ker(µI −A) =
⋂

t≥0

Ker(eµt − T (t)),

with µ ∈ C (see [6, Corollary 3.8, Section IV], for instance). The last statement follows

from the definition of V .

We are now in position to prove Theorem 2.4.

Proof of Theorem 2.4 Assume that {T (t)}t>0 consists of analytic 2-isometries. Let V

denote its cogenerator; this is well-defined by Lemma 2.1, and it is an analytic 2-isometry

by Proposition 2.5.

In addition, the hypotheses dim
⋂
t>0 ker (T

∗(t)− e−t I) = 1 along with Lemma 2.6

applied to the adjoint semigroup {T ∗(t)}t≥0, yields that dimKerV ∗ = 1.

By means of Richter’s Theorem, it follows that V is similar to Mz acting on the space

D(µ) for some finite non-negative Borel measure µ on T considered with the equivalent
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norm

‖f‖2D(µ) ≈ |f(0)|2 +

∫

D

|f ′(z)|2

(∫

|ξ|=1

1− |z|2

|ξ − z|2
dµ(ξ)

)
dm(z)

π

= |f(0)|2 +

∫

D

|f ′(z)|2Pµ(z)
dm(z)

π
.(3)

Observe that the similarity is the price paid when we consider the equivalent norm.

Hence, for any t ≥ 0, it follows that T (t) is unitarily equivalent to the multiplication

operator induced by exp(−t(1 + z)/(1 − z)) on D(µ). Now, we migrate to the right

half-plane C+ = {Re s > 0} applying the change of variables s = (1 + z)/(1 − z), or

z = (s− 1)/(s+ 1).

First, we observe that

Pµ

(
s− 1

s+ 1

)
=

∫

|ξ|=1

1− | s−1
s+1 |

2

|ξ − s−1
s+1 |

2
dµ(ξ) (s ∈ C+)

is a positive harmonic function in C+; so there exists a non-negative constant ρ and a

finite positive Borel measure ν supported on the imaginary axis such that

(4) Pµ

(
s− 1

s+ 1

)
= ρ x+

1

π

∫ ∞

−∞

x

x2 + (y − τ)2
dν(τ), (s = x+ iy)

(see [10, Exercise 6, p. 134], for instance).

We can express ν in terms of µ, since with ξ = (u − 1)/(u + 1) for u = iτ ∈ iR, we

have

Pµ

(
s− 1

s+ 1

)
= µ(1)

|s+ 1|2 − |s− 1|2

|(s+ 1)− (s− 1)|2
+

∫

ξ∈T\{1}

(|s+ 1|2 − |s− 1|2)|u+ 1|2

|(u− 1)(s+ 1)− (u+ 1)(s− 1)|2
dµ(ξ)

= µ(1)x+

∫

ξ∈T\{1}

x|u+ 1|2

|u− s|2
dµ(ξ),

= µ(1)x+

∫

ξ∈T\{1}

x(1 + τ2)

x2 + (y − τ)2
dµ(ξ),

where s = x+ iy ∈ C+. So in (4) we have

(5) ρ = µ(1) and
dν(τ)

π(1 + τ2)
= dµ(ξ).

Then, upon applying the change of variables s = (1+z)/(1−z) in (3), we deduce that

T (t) is similar to the multiplication operator induced by exp(−ts) acting on the space

D̃C+
(ν) consisting of analytic functions F on C+ such that

(6)
1

π

∫

C+

|F ′(s)|2
(
x+

1

π

∫ ∞

−∞

x

x2 + (y − τ)2
dν(τ)

)
dx dy <∞,

where s = x+ iy and F (s) = f(z). This proves the first half of Theorem 2.4.

In order to conclude the proof, let us assume that the multiplication operators induced

by exp(−ts) act continuously for every t > 0 on a Dirichlet space D̃C+
(ν̃) where ν̃ is a

finite positive Borel measure supported on the imaginary axis. Reversing the steps above
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and taking into account the fact that (5) defines a measure µ̃ on T, where µ̃(1) = ν̃(0) = ρ,

we deduce that the given semigroup is similar to to the semigroup of multiplication

operators induced by φt(z) = exp(−t(1 + z)/(1 − z)) on D(µ̃). Since the cogenerator

of such a semigroup is Mz, which is a 2-isometry, it follows by Proposition 2.2 that

{Mφt
}t≥0 consists of 2-isometries.

It remains to show that Mφt
is analytic for every t > 0. If not, then there are a t0 > 0

and a F ∈ D̃C+
(ν̃) such that the function s 7→ ent0sF (s) lies in D̃C+

(ν̃) for n = 1, 2, 3, . . ..

In particular, ∫

C+

|(F (s)ent0s)′|2x dx dy <∞.

Transferring to the disc by letting s = (1 + z)/(1− z) and F (s) = f(z), we have

∫

D

|[f(z) exp(nt0(1 + z)/(1− z))]′|
2 1− |z|2

|1− z|2
dA(z) <∞,

so that the function z 7→ f(z) exp(nt0(1+ z)/(1− z)) lies in the weighted Dirichlet space

D(δ1) corresponding to a Dirac measure at 1, and hence in H2(D), by [7, Thm. 7.1.2].

We conclude that f is identically zero, since no nontrivial H2 function can be divisible

by an arbitrarily large power of a nonconstant inner function. Hence the analyticity is

also established.

A connection with the right-shift semigroup in weighted L2(R+). Now, by means

of the Laplace transform, we will establish a connection of C0-semigroups of analytic

2-isometries {T (t)}t≥0 acting on a Hilbert space H and the the right shift semigroup

{St}t≥0

Stf(x) =

{
0 if 0 ≤ t ≤ x,

f(x− t) if x > t,

acting on a weighted Lebesgue space on the half line R+.

First, let us begin by recalling a result asserting that for each α > −1, a function

G analytic in C+ belongs to the weighted Bergman space A2
α(C+), that is, the space

consisting of analytic functions on C+ for which

‖G‖2A2
α(Π+) =

∫

C+

|G(x+ iy)|2 xα dx dy <∞ ,

if and only if it has the form

G(s) := Lg(s) =

∫ ∞

0

e−st g(t) dt , s ∈ C+ ,

where g is a measurable function on R
+ with

∫ ∞

0

|g(t)|2 t−1−α dt <∞ .
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Moreover,

‖G‖2A2
α(C+) =

π Γ(1 + α)

2α

∫ ∞

0

|g(t)|2 t−1−α dt ,

(see [4] or [5, Theorem 1], for instance). In other words, the Laplace transform is an

isometric isomorphism between A2
α(C+) and L

2(R+,
(
π Γ(1+α)

2α

)1/2
t−1−α dt). Hence, by

means of a density argument, and taking α = 1, it follows that for any F ∈ D̃C+
(ν),

there exists f ∈ L2(R+) (unique in the usual sense of equivalence classes), such that

(i) L(tf(t)) = F ′(s),

(ii)

1

π

∫

C+

|F ′(s)|2 x dx dy =
1

2

∫ ∞

0

|f(t)|2dt, (s = x+ iy),

which corresponds to the first sum in (6); and

(iii)

1

π2

∫

C+

|F ′(s)|2
x

x2 + (y − τ)2
dx dy =

1

2π

∫ ∞

0

∣∣∣∣
∫ t

0

u f(u)e−iτu du

∣∣∣∣
2
dt

t2
, (s = x+ iy).

These three items along with the fact that for any t ≥ 0, T (t) is similar to the multipli-

cation operator induced by exp(−ts) acting on the space D̃C+
(ν) yields, by means of the

Laplace transform, that {T (t)}t≥0 is transformed to the right-shift semigroup {St}t≥0

acting on the Hilbert space H which consists of functions f defined on R+ such that

∫ ∞

0

|f(t)|2 dt+

∫ ∞

0

∫ ∞

−∞

∣∣∣∣
∫ t

0

f(u)e−iτuu du

∣∣∣∣
2

dν(τ)
dt

t2
<∞.

3. A final remark on invariant subspaces of C0-semigroups of analytic

2-isometries

As an application of our main result, we deal with the study of the lattice of the closed

invariant subspaces of a C0-semigroup {T (t)}t≥0 of analytic 2-isometries.

Here we shall use the following result from [15, Thm. 7.1] and [16, Thm. 3.2].

Theorem 3.1. Let M be a non-zero invariant subspace of (Mz, D(µ)). Then M = φDµφ

where φ ∈ M⊖ zM is a multiplier of D(µ) and dµφ = |φ|2dµ.

In the continuous case we have the following result:

Theorem 3.2. Let {T (t)}t≥0 denotes the semigroup of multiplication operators induced

by exp(−ts) on the space D̃C+
(ν), as in Theorem 2.4, and let M be a non-zero closed

subspace invariant under all the operators T (t). Then there is a function ψ ∈ M such

that M = ψD̃C+
(νψ).
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Proof. If M is invariant under the semigroup, then it is also invariant under the cogener-

ator V , and after transforming to the disc as in the proof of Theorem 2.4, we may apply

Theorem 3.1.

Note that under the equivalence between D(µ) and D̃C+
(ν), as detailed in (4) and

(5), the subspace φDµφ
maps to a space ψD̃C+

(νψ), where ψ(s) = φ((s− 1)/(s+1)) and

dνψ = |ψ|2dν. �
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