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A Secure Optimum Distributed Detection Scheme

in Under-Attack Wireless Sensor Networks
Edmond Nurellari, Des McLernon, Member, IEEE, and Mounir Ghogho, Senior Member, IEEE

Abstract—We address the problem of centralized detection of
a binary event in the presence of β fraction falsifiable sensor
nodes (SNs) (i.e., controlled by an attacker) for a bandwidth-
constrained under− attack spatially uncorrelated distributed
wireless sensor network (WSN). The SNs send their one-bit test
statistics over orthogonal channels to the fusion center (FC),
which linearly combines them to reach to a final decision.
Adopting the modified deflection coefficient as an alternative
function to be optimized, we first derive in a closed-form the FC
optimal weights combining. But as these optimal weights require
a− priori knowledge that cannot be attained in practice, this
optimal weighted linear FC rule is not implementable. We also
derive in a closed-form the expressions for the attacker “flipping
probability” (defined in paper) and the minimum fraction of
compromised SNs that makes the FC incapable of detecting.
Next, based on the insights gained from these expressions,
we propose a novel and non-complex reliability-based strategy
to identify the compromised SNs and then adapt the weights
combining proportional to their assigned reliability metric. In
this way, the FC identifies the compromised SNs and decreases
their weights in order to reduce their contributions towards
its final decision. Finally, simulation results illustrate that the
proposed strategy significantly outperforms (in terms of FC’s
detection capability) the existing compromised SNs identification
and mitigation schemes.

Index Terms—Distributed detection, optimum fusion rule, fal-
sified sensor nodes (SNs) observations, wireless sensor networks
(WSNs).

I. INTRODUCTION

C
ENTRALIZED detection of a binary event is one of the

most important applications of wireless sensor networks

(WSNs) [1], [2]. Deployed over a field, multiple coordinated

SNs report their processed observations to a fusion center

(FC). Then, upon receiving all the contributions from each

SN, the FC optimally combines them to declare a global deci-

sion. Unfortunately, these tiny devices suffer from constrained

bandwidth and limited available on-board power. Furthermore,

the geographically distributed nature of such a system makes

them quite vulnerable to a different type of attack. Hence,

incorporating security into WSNs has been a challenging task.
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Like all other networks [3], WSNs are also vulnerable to

various security issues. Furthermore, the local SNs decision

process (i.e., local detection performance) itself is subject to

various security threats. The detection performance strongly

depends on the reliability of these SNs in the network. While

fusing the data received by the spatially deployed SNs allows

making a reliable FC decision with respect to the status of the

phenomena, it is possible that one or more SNs (compromised

by an attacker) deliberately falsify their local observations to

degrade the FC detection performance. However, there are

a number of different strategies as to how the test statistics

received from each SN will be efficiently used in order to

arrive at a reliable FC final decision. We will first give a brief

review on the related work before introducing our proposed

approach.

The framework of distributed detection under attack−free
WSNs has been extensively studied in [4]-[14], to name but

just a few. While references [4]-[8] consider distributed de-

tection by assuming unlimited bandwidth/resources in WSNs,

the authors of [9]-[14] relax this assumption by consider-

ing distributed detection over bandwidth-constrained/energy-

constrained WSNs. But these approaches are vulnerable to

security attacks as some of the SNs reporting to the FC may

be compromised. As a result, the FC is not robust against such

attacks and its detection performance will be degraded.

Now, security vulnerabilities can be exploited by different

types of attacks that can be launched in a WSN, for example,

jamming, spoofing, wiretap disruption attacks, etc [15]. Apart

from these well-known traditional security threats, several re-

cent studies consider the sensor node data falsification (SNDF)

attack (known as a Byzantine attack, eg., [16], [17]). The

Byzantine attack was first proposed by [18] and later widely

used in the context of distributed detection ( [16], [19], [20]

and see references therein). In this work, we also consider the

SNDF attack in which the compromised SNs send wrong local

decision reports to the FC either to degrade the FC detection

performance or to achieve their selfish greedy objectives.

The reported work on distributed detection over attack−
free WSNs is relatively high but there is limited consideration

for under−attack WSNs, see for example, [16]-[21] and

references therein. In [21], a probabilistic test statistic falsifi-

cation (TSF) attack is proposed and theoretical performance

evaluation (in terms of destructiveness and stealthiness) is

obtained. The authors of [22], in the context of smart grids,

propose heuristic centralized algorithms to derive various

strategies (attacker versus defender dynamics). Then, a dis-

tributed algorithm is proposed that guarantees convergence to

the centralized solution taken at the FC. Reference [23], in the
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context of cognitive radio (CR), proposed a prefiltering scheme

of sensing data and a trust factor is assigned to each user

to detect the malicious CR ones. The authors of [24], in the

context of target localization, also consider binary Byzantine

attacks where the SNs transmit to the FC their binary decisions

and they propose two techniques to mitigate the compromised

SNs negative impact on the FC decision. To mitigate the

Byzantine effect on the data fusion problem in cooperative

spectrum sensing, a weighted sequential probability ratio

test was proposed in [25]. However, these schemes require

a− priori information and/or due to the high computational

complexity are not always feasible in the context of WSNs.

In [26], a reputation-based scheme is proposed for identifying

the compromised SNs by accumulating the deviations between

each SN’s decision and the FC’s decision over a time window

duration. Then, the identified compromised SNs are totally

excluded from the data fusion process. Different from [26], the

authors in [27] use the FC’s decision as an evaluation basis to

assign to each SN a reputation measure, classifying each SN as

either reliable, partially reliable or malicious. In this way, the

SNs classified as malicious will be excluded from the fusion

process (i.e., assigned zero weight), and the one decided on

as reliable will be assigned a unity weight and the partially

reliable ones are assigned a 0.5 weight. However, identifying

and then totally excluding the compromised SNs contributions

from the FC decision process may not be the best strategy. For

instance, we might end up excluding SNs contributing towards

the FC global decision that might have high local signal-to-

noise-ratios (SNRs). Recently, the authors in [19], [28] both

consider a decentralized network in the presence of com-

promised SNs while in this paper we consider a centralized

scheme. The authors in [19] propose a synchronous distributed

weighted average consensus algorithm that is claimed to be

robust to Byzantine attacks while reference [28] considers

the detection and mitigation of data injection attacks in a

randomized average consensus.

So, this work investigates the detection performance of

an under−attack WSN. To reduce the transmission and

processing burden of the SNs, each SN generates the 1-bit

local test statistic by performing energy detection [29] and

reports this test statistic to the FC. As in [26], we relax the

assumption of perfect knowledge of the true hypothesis [16]

and we assume that the compromised SNs (controlled by the

attacker) do not know the true state of the target. For the

FC, we assume that it is not compromised and receives the

test statistic from both types of SNs (i.e., compromised and

honest). The transmission (SNs to FC) links are assumed error

free (see eg., [16], [26]).

A. Contributions & Oragnization

Our main contributions are as follows:

(i) First, we develop an efficient FC linear weight combing

framework for an under−attack WSN. To further reduce the

optimization complexity and to get an insight into the problem,

we adopt the modified deflection coefficient (MDC) [7] as

an alternative function to be optimized. Based on this (i.e.,

the MDC), we provide an optimization problem to be solved

from both the FC’s and the attacker’s perspective. From the

FC’s perspective, we derive analytically (in a closed form) the

optimal weight combiner for each SN. We show that these

weights are a function of the local SNs probability of false

alarm and probability of detection metrics as well as the SNs

local test statistics “flipping probability” (to be defined later).

Unfortunately, for the compromised SNs this a priori knowl-

edge cannot be obtained in practice (we propose a solution to

this (see later (ii))). Then (from the attacker’s perspective), we

derive analytically (for a fixed number of compromised SNs)

the optimum attacker local test statistics flipping probability

and the minimum fraction of the compromised SNs that makes

the FC incapable of detecting.

(ii) Next, based on this framework (i.e., FC linear weight

combing strategy), we also propose a new non-complex and

efficient (based on a reliability metric) FC detection scheme

to identify the compromised SNs. Our approach is different

from the existing approaches [16], [26], [27] in two important

aspects: 1) We introduce a new reliability metric at the

FC to identify the compromised SNs. First, we count the

inconsistency between the FC’s decision (where all the SNs

contributions are considered) and the ith local SN’s decision

over a time window. Similarly, we then count the inconsistency

between the FC’s decision (where the ith SN contribution is

not considered) and the ith local SN’s decision. Finally, the

proposed reputation metric is evaluated as the difference be-

tween these two parameters; 2) Then, based on this reputation

metric, we propose a novel FC weight computation strategy

that ensures the following: a) for the identified compromised

SNs, their weights are likely to be decreased proportionally to

this metric (where the existing schemes assign a zero weight).

b) In this way (based on this new reputation metric), the

FC decides how much a SN should contribute to its final

decision. We will show that this strategy outperforms the

existing schemes where the identified compromised SNs are

totally excluded from the FC final decision contribution (i.e.,

a zero weight is assigned).

Now, the summary of the paper is as follows. In Section II

we describe the system model (SN sensing and local decision)

and describe the compromised SNs attack model. Section

III introduces the simplified linear weighted fusion rule and

analyzes the optimization problem from both the FC’s and the

attacker’s perspective. In Section IV we present our proposed

compromised SNs identification metric and weight combining

computation strategy. Finally, section V presents simulation

results and in Section VI we give our conclusions.

II. PROBLEM FORMULATION

Consider the problem of detecting the presence of an

unknown but deterministic signal s(n) by an under− attack
WSN consisting of M geographically distributed SNs and

a FC (see Fig. 1). The honest SNs are represented with a

black color and the compromised SNs (i.e., the ones controlled

by the attacker) with a red color. The attacker’s aim is

to successfully manipulate the FC global decision making

process while the FC would like to detect reliably (i.e., with

very high probability). Next, we explain in more detail the
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sensing, the local decision and the compromised SNs attack

model.

SN3

SN2
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SN1
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Ĩ5

Ĩ4
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Fig. 1. Under attack schematic communication architecture between periph-
eral SNs and the fusion center (FC). Each of the ith honest/compromised
SNs represented with a black/red color generates a local (binary) indicator
variable (Ii/I

C
i ) by observing the target and performing the test in (5) with

local detection threshold Λ/ΛC . While the ith (i = {1, 2, 4, 6}) honest

SN indicator (test statistic) remains unchanged (i.e., Ĩi = Ii), the jth

(j = {3, 5}) compromised SN falsifies its indicator (test statistic) as in (8)
before transmitting to the FC. Here i/j are the honest/compromised SN index.

A. Sensing

The measured signal at SN i is either:

H0 : yi (n) = wi (n) (1)

H1 : yi (n) = si (n) + wi (n) (2)

and energy estimation is performed at the ith SN to give

Ti =

N∑

n=1

(yi(n))
2
, i = 1, 2, . . . ,M (3)

which for large N has an approximately Gaussian distribution

[29]. Furthermore, the noise samples are assumed to be

identically and independently distributed (i.i.d.) across time

and space. It is not difficult to show that

E {Ti|H0} = Nσ2

i , Var {Ti|H0} = 2Nσ4

i

E {Ti|H1}=Nσ2

i (1 + ξi) ,Var {Ti|H1}=2Nσ4

i (1+2ξi) (4)

where ξi =
N∑

n=1

s2i (n) /Nσ2

i .

B. Local Decision

Based on its local energy estimation (3), the ith SN gener-

ates a binary indicator random variable Ii as follows:

if Ti < Λ, Ii = 0 =⇒ decide H0

if Ti ≥ Λ, Ii = 1 =⇒ decide H1

}

(5)

where Λ is a local detection threshold that is the same for all

the M SNs. The ith SN local probability of false alarm (pifa)

and the local probability of detection (pid) can be expressed

as:

pifa = Pr (Ti ≥ Λ|H0)=Q

(

Λ− E {Ti|H0}
√

Var {Ti|H0}

)

pid = Pr (Ti ≥ Λ|H1) = Q

(

Λ− E {Ti|H1}
√

Var {Ti|H1}

)

(6)

where Q(.) is the Q-function. While the ith honest SN

transmits its actual one-bit test statistic (i.e., Ii in (5)) to the

FC, the compromised SNs falsify them before transmitting to

the FC. Next we introduce the attacker model.

C. Compromised SNs Attack

Different attack strategies could be adopted by the compro-

mised SNs. In this work, the data falsification attack model

widely used in [16], [20], [26] is considered. There are β
fraction of SNs controlled and compromised by the attacker

(the attacker controls the local detection threshold, the flipping

probability, and the fraction β, all to be defined later). As

before, (i.e., in the case of attack − free) each of the ith

compromised SNs perform the local test in (5) but now with a

local detection threshold (ΛC) controlled by the attacker and

assumed to be the same for all the β fraction compromised

SNs. That is:

if Ti < ΛC , I
C
i = 0 =⇒ decide H0

if Ti ≥ ΛC , I
C
i = 1 =⇒ decide H1.

}

(7)

Now, the probability of false alarm1 (pi,Cfa ) and the probability

of detection (pi,Cd ) at the ith compromised SN are respectively

given as in (6) with Λ = ΛC , while for the honest SNs

it remains as in (6). After performing the test in (7), the

compromised SNs further manipulate their binary indicator

variables prior to FC transmission so as to yield the maximum

possible FC degradation. Let P flip
C be the probability that each

compromised SN intentionally reports the opposite informa-

tion to its actual local decision (i.e., flips the indicator random

variable in (7) prior to FC transmission with probability

P flip
C ). It is assumed that all the compromised SNs have the

same probability of attack in a particular sensing period (see

section IV for details). The remaining (1-β fraction) SNs are

“honest” and report to the FC accordingly. Now, the ith local

binary indicator test statistic for the compromised SNs can be

expressed as:

Ĩi =

{

1− ICi , with probability P flip
C

ICi , with probability (1− P flip
C )

(8)

while for the honest SNs this relation is simply Ĩi = Ii.
Similarly, the ith compromised SN local probability of false

alarm and the probability of detection can be shown to be

1Here the superscripts “i, C” refer to the ith compromised SN.
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R =
(
1− β

)
diag











p1d
(
1− p1d

)
+ β

1−β

(

P flip
C + p1,Cd

(
1− 2P flip

C

))(

1− P flip
C + p1,Cd

(
2P flip

C − 1
))

p2d
(
1− p2d

)
+ β

1−β

(

P flip
C + p2,Cd

(
1− 2P flip

C

))(

1− P flip
C + p2,Cd

(
2P flip

C − 1
))

...

pMd
(
1− pMd

)
+ β

1−β

(

P flip
C + pM,C

d

(
1− 2P flip

C

))(

1− P flip
C + pM,C

d

(
2P flip

C − 1
))











, α =








α1

α2

...

αM








(18)

respectively:

p̃ifa = P flip
C

(

1− pi,Cfa

)

+
(

1− P flip
C

)

pi,Cfa

p̃id = P flip
C

(

1− pi,Cd

)

+
(

1− P flip
C

)

pi,Cd (9)

while for the honest SNs clearly p̃ifa = pifa and p̃id = pid.

Next, we introduce a simplified (optimum) linear fusion rule

at the FC.

III. SIMPLIFIED FUSION RULE-THE LINEAR APPROACH

Now, the ith SN transmits to the FC the one-bit local test

statistic (Ĩi). The communication channels between SNs and

the FC are assumed to be error-free in this paper. Upon receiv-

ing all the contributions from all the SNs (i.e., compromised

and honest), the FC linearly combines them:

Tf =

M∑

i=1

αiĨi (10)

where {αi}
M
i=1

are the optimum weights that we will derive

later in section III-A. The FC then makes the final decision:

if Tf < Λf , decide H0

if Tf ≥ Λf , decide H1

}

(11)

where Λf is the FC detection threshold. Let

Pd = Pr
(
Tf ≥ Λf |H1

)

Pfa = Pr
(
Tf ≥ Λf |H0

)
(14)

where Pd and Pfa are the system probability of detection and

probability of false alarm respectively. For large M , Tf can

be approximated by a Gaussian distribution and the Pd for a

fixed Pfa is given as [30]:

Pd=Q

(

Q−1 (Pfa)
√

Var {Tf |H0}− E {Tf |H1}+E {Tf |H0}
√

Var {Tf |H1}

)

(15)

with appropriate quantities given in (12)-(13).

A. Weight Combining Optimisation

In this section, we would like to find the optimum weighting

vector (αopt) that maximizes (15). However, maximizing (15)

w.r.t. α is difficult and no closed form solution can be found.

So we will approximate the optimal solution by adopting the

modified deflection coefficient2 (MDC) [7] as an alternative

function to be maximized. This is given as:

d̃2 (α) =

(

E {Tf |H1} − E {Tf |H0}
√

Var {Tf |H1}

)2

=

(

bTα
)2

αTRα
(16)

where

b=









(
1− β

)(
p1d − p1fa

)
− β

(
p1,Cd − p1,Cfa

)(
2P flip

C − 1
)

(
1− β

)(
p2d − p2fa

)
− β

(
p2,Cd − p2,Cfa

)(
2P flip

C − 1
)

...
(
1− β

)(
pMd −pMfa

)
−β
(
pM,C
d − pM,C

fa

)(
2P flip

C − 1
)









(17)

and R and α are given in (18). Now, our optimization problem

is:

αopt = arg max
α

(

d̃2 (α)
)

. (19)

Further, via the transformation ψ = R
1/2α, the deflection

coefficient (16) becomes:

d̃2 (ψ) =
ψT

Dψ

||ψ||2
, D = R

−T/2bbTR−1/2. (20)

So αopt = R
−1/2ψopt = kR−1b, where ψopt = kR−1/2b is

the eigenvector corresponding to the maximum eigenvalue of

D. Now, the optimum weight combining in (10) can be easily

shown to be (21). Clearly, the optimum weights depend

on the local probability of false alarm and the probability of

detection metrics as well as on the β (fraction of compromised

SNs) and the probability of flipping the local decisions by the

attacker. For the SNs that are honest (i.e., controlled by the FC)

these local probabilities are known (since the FC can set the

local detection threshold itself). However, for the compromised

SNs these local probabilities are not available at the FC (since

the attacker takes control of the local detection threshold).

To make the matters worse, the FC knows just the fraction

of compromised SNs (i.e., β) but it cannot identify who they

are. As a result, the FC cannot implement the optimum weight

combining fusion rule (10).

Later, in section IV, we propose a simple but yet effective

approach to possibly identify these compromised SNs and

compute the optimum weights at the FC, based on their

assigned reliability. Next, we derive the optimum attacker

flipping probability (P flip
C ) which makes the FC incapable of

detecting.

2In order to get insight into the system design parameters of the detection
scheme, in this paper we adopt the MDC. This is due to its simplicity and
close relationship with the detection performance. In general, Pd is a mono-
tonically increasing function of the MDC and yields a good approximation in
characterizing the detection performance.
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E {Tf |H1} = (1− β)

M∑

i=1

αip
i
d + β

[

P flip
C

( M∑

i=1

αi

(
1− pi,Cd

))

+
(
1− P flip

C

)(
M∑

i=1

αip
i,C
d

)
]

E {Tf |H0} = (1− β)

M∑

i=1

αip
i
fa + β

[

P flip
C

( M∑

i=1

αi

(
1− pi,Cfa

))

+
(
1− P flip

C

)(
M∑

i=1

αip
i,C
fa

)
]

. (12)

Var {Tf |H1} = (1− β)

M∑

i=1

α2

i p
i
d

(

1− pid

)

+ β

[(

P flip
C

( M∑

i=1

α2

i

(
1− pi,Cd

))

+
(
1− P flip

C

)(
M∑

i=1

α2

i p
i,C
d

)
)

(

1− P flip
C

( M∑

i=1

α2

i

(
1− pi,Cd

))

−
(
1− P flip

C

)(
M∑

i=1

α2

i p
i,C
d

)
)]

Var {Tf |H0} = (1− β)

M∑

i=1

α2

i p
i
fa

(

1− pifa

)

+ β

[(

P flip
C

( M∑

i=1

α2

i

(
1− pi,Cfa

))

+
(
1− P flip

C

)(
M∑

i=1

α2

i p
i,C
fa

)
)

(

1− P flip
C

( M∑

i=1

α2

i

(
1− pi,Cfa

))

−
(
1− P flip

C

)(
M∑

i=1

α2

i p
i,C
fa

)
)]

. (13)

αi
opt =

(
1− β

)(
pid − pifa

)
+ β

(
pi,Cfa − pi,Cd

)(
2P flip

C − 1
)

(
1− β

)(
pid
(
1− pid

))
+ β

(

P flip
C + pi,Cd

(
1− 2P flip

C

))(

1− P flip
C + pi,Cd

(
2P flip

C − 1
)) . (21)

B. Attacker Flipping Probability Optimisation

So what is the optimum P flip
C that the attacker needs to

adopt for the compromised SNs in order to cause the maximum

possible degradation to the FC (i.e., to possibly make the FC

incapable of detecting)? Again, we use the modified deflection

coefficient as an alternative function to be optimized and

assume that the FC does not act strategically against the

attacker strategy.

Lemma 1: The optimum flipping probability
(
P flip
C,opt

)
which

minimizes the modified deflection coefficient is:

P flip
C,opt =

β − 1

2β

(
M∑

i=1

αi

(
pid − pifa

)

M∑

i=1

αi

(
pi,Cfa − pi,Cd

)

)

+
1

2
. (22)

Proof. Since the modified deflection coefficient is always non-

negative, then its minimum is always greater than or equal to

zero. So, the condition to make the minimum of the modified

deflection coefficient zero is:

bTα =
(
1−β

)
M∑

i=1

αi

(
pid−pifa

)
+βP flip

C

M∑

i=1

αi

(
pi,Cfa −pi,Cd

)

+ β
(
1− P flip

C

)
M∑

i=1

αi

(
pi,Cd − pi,Cfa

)
= 0. (23)

Further simplification of the above and re-arrangement of the

terms yields:

β
( M∑

i=1

αi

(
pi,Cfa −pi,Cd

))(

2P flip
C −1

)

=
(
β−1

)
M∑

i=1

αi

(
pid−pifa

)

=⇒ P flip
C,opt =

β − 1

2β

(
M∑

i=1

αi

(
pid − pifa

)

M∑

i=1

αi

(
pi,Cfa − pi,Cd

)

)

+
1

2
. (24)

This concludes the proof. �

In the special case when the attacker does not change

the local detection threshold in (7) (i.e., pid = pi,Cd and

pifa = pi,Cfa ), then the optimum probability of flipping the

local decisions can be shown to be:

P flip
C,opt =







1

2
−

β − 1

2β
=

1

2β
, for 0.5 ≤ β ≤ 1

not applicable, for β = 0

not defined, otherwise.
(25)

Interestingly, in this case the optimum probability of flipping

the local SNs decision is inversely proportional to the fraction

of the compromised SNs (β). As expected, when β increases,

the optimum probability of flipping the local decision in order

to make the MDC zero decreases and vice-versa. Furthermore,

when the half of the network is compromised (i.e., β = 0.5),

the attacker can make the modified deflection coefficient zero

with P flip
C,opt = 1 (i.e., the local SNs should always flip their

local decisions).
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C. Minimum Fraction of Compromised SNs

Now, we are interesting in the minimum fraction of the

compromised SNs that is needed to cause the maximum

possible degradation to the FC. We state the result in the next

Lemma.

Lemma 2: The minimum fraction of the compromised SNs

needed to make the FC incapable of detecting or to make the

modified deflection coefficient zero is βmin ≥ 1

2
.

Proof. As we previously stated, the modified deflection co-

efficient is always non-negative and the minimum occurs at

zero. From (23), the condition to make the modified deflection

coefficient zero is:

bTα =
(
1−β

)
M∑

i=1

αi

(
pid−pifa

)
+βP flip

C

M∑

i=1

αi

(
pi,Cfa −pi,Cd

)

+ β
(
1− P flip

C

)
M∑

i=1

αi

(
pi,Cd − pi,Cfa

)
= 0. (26)

After simplifying the above equation, the condition on β
needed to make the FC incapable of detecting becomes:

β =













1−

(

(
M∑

i=1

αi

(
pi,Cd − pi,Cfa

)
)(

1− 2P flip
C

)

M∑

i=1

αi

(
pid − pifa

)

︸ ︷︷ ︸

(A)

)













−1

.

(27)

Now, the minimum of β (βmin) can be achieved when term

(A) of (27) is minimum. We also know that for any real scalar

a and b the following holds:

min
(a

b

)
≥

min
(
a
)

max
(
b
) . (28)

Using (27) and (28), we now derive a lower bound on the

minimum β. Clearly, we require that both the numerator

and the denominator of term (A) take the minimum and

the maximum values respectively. Now, the minimum of the

numerator (i.e., min

(
( M∑

i=1

αi

(
pi,Cd − pi,Cfa

))(
1 − 2P flip

C

)
)

)

can be achieved if both pi,Cd = P flip
C = 0 and pi,Cfa = 1

or alternatively when both pi,Cd = P flip
C = 1 and pi,Cfa = 0.

Similarly, the maximum of the denominator of term (A) (i.e.,

max

(
M∑

i=1

αi

(
pid− pifa

)
)

) can be achieved when both pid = 1

and pifa = 0. Finally, using the above analysis we can easily

show that:

βmin ≥
1

2
. (29)

This concludes the proof. �

In the special case when the attacker does not change the

local detection threshold in (7) (i.e., pid = pi,Cd and pifa =

pi,Cfa ), the minimum fraction of compromised SNs required to

make the modified deflection coefficient zero (i.e., make the

FC incapable of detecting) can be shown to be: βmin = 1

2
and

this can be achieved with P flip
C = 1 (see (25)).

IV. COMPROMISED SNS IDENTIFICATION AND WEIGHT

COMBINING COMPUTATION

In this section, we propose a scheme to identify the compro-

mised SNs and compute the weight combining in (10) based

on each SN assigned reliability. As in [26] and [27], we divide

the local sensing process into time windows consisting of K
sensing periods3.

A. Compromised SNs Identification

At the fusion center, the received observations corre-

sponding to the ith SNs can be expressed as Ĩi =
[Ĩi(1), Ĩi(2), · · · , Ĩi(K)], ∀i = 1, 2, · · · ,M . At the lth sensing

period, upon receiving the contributions from all the SNs (i.e.,

compromised and honest) the FC linearly combines them to

yield:

Tf (l) =

M∑

j=1

αAF
j Ĩj(l), l = 1, 2, · · · ,K

T i
f (l) =

M∑

j=1,i 6=j

αAF
j Ĩj(l), l = 1, 2, · · · ,K, i = 1, 2, · · · ,M

(30)

where T i
f (l) is the final test statistic at the lth sensing period

without the contribution of the ith SN; and {αAF
j }Mj=1

are

the optimum weights under an attack-free scenario and can be

easily derived from (21) by substituting (β = 0, P flip
C = 0,

pi,Cfa = pifa and pi,Cd = pid, ∀i). These can be shown to be:

αAF
j =

pjd − pjfa

pjd
(
1− pjd

) . (31)

Based on the test statistics (30), the FC then generates at the

lth sensing period two different indicator random variables as

follows:

If (l) =

{

0 if Tf (l) < Λf

1 if Tf (l) ≥ Λf

Iif (l) =

{

0 if T i
f (l) < Λf

1 if T i
f (l) ≥ Λf .

(32)

Now that the FC has evaluated these two indicator random

variables (i.e., If (l) and Iif (l)), it then compares them to the

ith SN local indicator variable Ĩi(l) to yield:

di(l) =

{

1 if If (l) 6= Ĩi(l)

0 otherwise
d̂i(l) =

{

1 if Iif (l) 6= Ĩi(l)

0 otherwise
(33)

where di(l) represents the inconsistency between the FC’s

decision (all the SNs contributions are counted) and the ith

SN local decision. Similarly, d̂i(l) represents the same but

now the ith SN is not considered at the FC decision. Note

that all of the above steps are performed during the same time

3Each SN samples N times (see (3)) in each sensing interval and then
performs the energy detection as in (5).
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window K. After observing the reports for up to K sensing

periods, the FC evaluates a reliability metric for the ith SN:

ri =
1

K

∣
∣
∣
∣
∣

K∑

l=1

(
di(l)− d̂i(l)

)

∣
∣
∣
∣
∣
, i = 1, 2, · · · ,M. (34)

It is worth mentioning that the ri’s for the compromised SNs

are expected to be larger than those for the honest ones (see

simulations results section later). Finally, the FC performs the

reliability test:

if ri < δ, decide reliable

if ri ≥ δ, decide not reliable

}

(35)

where δ is the reliability detection threshold. Now, the prob-

ability that a compromised SN has been truly detected and

the probability that an honest SN has been falsely detected

at the ith SN are respectively:

P i,true
d = Pr

(
ri ≥ δ|Compromised

)

P i,false
d = Pr

(
ri ≥ δ|Honest

)
(36)

where the superscript “i, true” and “i, false” represents the

true and false detection at the ith SN respectively. Obviously,

the compromised SNs detection performance depends on the

choice of the reliability detection threshold (δ). If we choose

a large δ, P i,false
d is expected to be low. However, this also

will result in a low P i,true
d . On the other hand, choosing a

lower δ it will increase the P i,true
d value but also an increase

in P i,false
d will be noticed. Clearly, the reliability detection

threshold imposes a trade-off between these two metrics. Note

that in practice we wish to keep P i,false
d close to zero and

P i,true
d close to one. Based on this reliability test (i.e., the

test in (35)), next we will evaluate the weight combining in

(10) such that the probability of detection in (15) is further

improved.

B. Proposed Weight Combining Computation

In this section, we propose a weight combining computa-

tion based on the reliability test (35). Existing schemes use

reliability-based metrics to possibly identify the compromised

SNs and then totally exclude them from contributing to the FC

process and decision. However, identifying and then excluding

them from the detection process is not the optimum solution.

For instance, we might end up removing (from contributing

towards the global decision) compromised SNs that hold useful

information in general (for example those SNs with high

local SNRs). Different from the existing approaches, here we

propose to update the weight combining (i.e., (31)) of each

SN based on the correctness of information reported to the

FC. That is:

αAF
i =

{

αAF
i if ri < δ

αAF
i − µri if ri ≥ δ

(37)

where µ ∈ [0,∞] is the weight penalty that is the same for

all the M SNs. For those SNs that are identified as being

compromised by the attacker, the FC is likely to decrease

their weights. For example, those SNs that are identified as

influential and unreliable (i.e., ri turn out to be relatively

large) the FC decreases the current weights the most. However,

for those SNs that are identified as compromised but not so

influential to the FC decision process (i.e., ri is relatively

small) the FC decreases the weights proportional to ri. With

regard to SNs identified as honest, the FC keeps their weights

unchanged. In this way, the FC decides through the weight

combiner how much a local report should contribute to the

FC final decision. This is a reasonable approach since if the

report from a SN tends to be incorrect, it should be counted

less in the final decision.

Next, in the simulation results, we will show that the

reliability detection threshold (δ) and the weight penalty (µ)

are crucial for the system detection performance. We will also

show via simulations that there is an optimum δ and µ such

that the system detection performance is maximized.

V. SIMULATIONS RESULTS

Here we will evaluate numerically the performance of our

proposed strategy and compare it to the attack−free scheme

[12] and the strategy in [26]. A WSN with a total of M = 40
SNs is considered (where a β fraction of these SNs are

compromised by the attacker). For β = 0.5, β = 0.25,

and β = 0.1, (SN21-SN40), (SN31-SN40), and (SN37-SN40)

are respectively compromised. We let all the σ2

i = 0.1,

such that ξa = 10 log
10

(

1

M

M∑

i=1

ξi

)

= -10.5 dB with an

arbitrarily chosen s(n) = [s1(n), s2(n), · · · , sM (n)] =[0.1,

0.175, 0.065, 0.027, 0.024, 0.026, 0.06, 0.09, 0.153, 0.11,

0.22, 0.12, 0.1, 0.024, 0.019, 0.05, 0.12, 0.1, 0.023, 0.021,

0.1, 0.175, 0.18, 0.027, 0.024, 0.026, 0.06, 0.09, 0.1, 0.065,

0.1, 0.175, 0.027, 0.024, 0.18, 0.026, 0.2, 0.09, 0.1, 0.18]T ,

and where ξi=
N∑

n=1

s2i (n)/Nσ2

i . We will also refer to “equal

weight” combining in (10) ( i.e., αi = 1, ∀i) and use this as

a benchmark. Finally, we use 105 Monte-Carlo simulations

and choose a fixed (equal) local SNs threshold (Λ) in (5)

and local SNs threshold (ΛC) in (7) (i.e., more specifically,

Λ = ΛC = 2.6) such that P̄ false
d ≤ 0.6 (see Fig. 5-Fig. 7).

A. Impact of the time window length (K) on the malicious SN

detection accuracy and on the system detection performance

In this section, we investigate the impact that the time

window length (K) has on the compromised SNs identification

accuracy of the proposed scheme. More precisely, we are

interested in examining the two metrics, P i,true
d and P i,false

d

(see (36)). Next, we examine the impact that this time window

length (K) has on the system detection performance. More

precisely, we will examine the two metrics Pd and Pfa (see

(14)). Note that K affects these two metrics through the

reliability metric ri (see Fig. 2) in (34) which consequently

affects the FC weight combining (37) that finally decides on

the FC final test statistic (Tf ) (see (10)).

In Fig. 2 we plot the reliability metric (ri) against the FC

detection threshold (Λf ) for the compromised and the honest

SNs. As expected, for the compromised but influential SNs

(i.e., SNs with the high local SNRs), the corresponding relia-

bility metrics will be higher. In contrast, for the compromised
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Fig. 2. The reliability metric (ri) versus the FC detection threshold (Λf )

parametrized on the SNs with M = 40, N = 20, β = 0.5, P flip
C

= 1 and
K = 150.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FC detection threshold, Λf

P
ro
b
.
o
f
d
et
.
th
e
co
m
p
ro
m
is
ed

S
N

3
7
,
P

3
7
,t
r
u
e

d

 

 

K=5
K=10
K=15
K=20
K=30
K=100
K=200

Fig. 3. Probability that the (compromised) SN 37 has been truly detected

(P 37,true
d

) versus the FC detection threshold (Λf ), parametrized on K, with

M = 40, N = 20, β = 0.5, P flip
C

= 1 and δ = 0.009.

or honest SNs but less influential (i.e., SNs with low SNRs),

the corresponding reliability metrics with be lower.

In Fig. 3 we plot the probability of compromised SN’s

detection4 (i.e., truly detecting probability) (P i,true
d ) versus

Λf , parametrized for different time window lengths (K).

Clearly, as K increases, the detection accuracy (of the (com-

promised) SN 37) P 37,true
d improves. In Fig. 4, we now plot

the probability of honest SN’s mis−detection4 (i.e., falsely
detecting probability) (P i,false

d ) (see (36)) versus (like before)

Λf for different time window lengths (K). Similarly (as in

Fig. 3), we observe that the mis − detection performance

(of the (honest) SN 11) P 11,false
d increases with K. Now,

from Fig. 3 and Fig. 4 we conclude that increasing the time

window length K not only improves the detection accuracy

of the compromised SNs but at the same time increases (the

undesired) mis−detection probability of the honest SNs. This

4SN 37 (Fig. 3) and SN 11 (Fig. 4) were chosen for comparison purposes
as they possess the best and the worst performances among F and (M −F )
SNs for each case respectively. Here F and (M − F ) represents the number
of compromised and honest SNs’ respectively.
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Fig. 4. Probability that the (honest) SN 11 has been falsely detected

(P 11,false
d

) versus the FC detection threshold (Λf ), parametrized on K,

with M = 40, N = 20, β = 0.5, P flip
C

= 1 and δ = 0.009.
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Fig. 5. Average probabilities: (left) of compromised SNs detection; (right)
of honest SNs mis-detection versus the FC detection threshold (Λf ),

parametrized on K, with M = 40, N = 20, β = 0.5, P flip
C

= 1 and
δ = 0.009.

leads to a trade-off (while selecting the K parameter) between

the compromised SNs detection accuracy and the honest SNs

mis− detection performance. Note that in practice we wish

to keep P i,true
d high and P i,false

d low.

To give more generality to the results, in Fig. 5 we plot

the average5 performances (where the average is taken over

the number of compromised/honest SNs). (left) We observe

that while increasing K (more specifically from K = 40 to

K = 150) we see an improvement in the average detection

accuracy of compromised SNs. For larger K (e.g., K = 300)

this improvement is negligible; (right) The same trend is

observed for the average mis− detection performance of the

honest SNs.

In Fig. 6 we plot P̄ i,true
d and P̄ false

d versus the time window

length (K) for a different FC detection thresholds (Λf ). We

can observe that the average compromised SNs detection

5The average performances are defined respectively as: P̄ true
d

=
1

F

∑

i∈J

P i,true
d

and P̄ false
d

= 1

M−F

∑

i∈Ĵ

P i,false
d

, where J (Ĵ) represents

the compromised (honest) SNs set with cardinality F ([M−F ]) respectively.
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= 1 and δ = 0.009.
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Fig. 7. Average compromised SNs detection probability and honest SNs mis-
detection probability versus the time window length (K), parametrized on β
with M = 40, N = 20, P flip

C
= 1 and δ = 0.009.

performance (P̄ i,true
d ) improves with the time window length

(K) for both schemes (i.e., the proposed one in this paper

and the scheme proposed in [26]). Similar behavior can be

observed for the (undesired) honest SNs mis − detection
probability. We also can observe that our proposed detection

scheme outperforms the scheme proposed in [26] (or at

least for the simulation setup considered in this paper), ∀K
in terms of P̄ i,true

d − P̄ false
d quantity (e.g., for Λf = 7,

P̄ i,true
d − P̄ false

d ≤ 0, ∀K for the scheme proposed in [26]).

We note that in practice we would like to have P̄ i,true
d close

to 1 and P̄ false
d close to 0 (i.e., P̄ i,true

d − P̄ false
d close to 1).

In Fig. 7 we plot the same (i.e., P̄ i,true
d and P̄ false

d perfor-

mances) but now parametrized on the fraction of compromised

SNs (β). Clearly, the quantity P̄ i,true
d −P̄ false

d improves when

the fraction of compromised SNs (β) decreases. This behavior

(as expected) results in a robust compromised SNs detection

scheme.

Now, to give more validity to the results, in Fig. 8 we show
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Fig. 8. The Pd−Pfa metric versus the time window length (K), parametrized
on the FC detection threshold (Λf ), with M = 40, N = 20, β = 0.25,

P flip
C

= 1, δ = 0.95 and µ = 0.5.
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Fig. 9. Probability of detection (false alarm) Pd (Pfa) versus the time window
length (K), parametrized on the FC detection threshold (Λf ), with M = 40,

N = 20, β = 0.25, P flip
C

= 1, δ = 0.95 and µ = 0.5.

the difference between the system detection and the system

false alarm probability (Pd − Pfa) versus the time window

length (K) parametrized on the FC detection threshold (Λf ).

Clearly, as K increases, the performance of the Pd − Pfa

metric improves for all the presented cases. Also, we can ob-

serve that our proposed scheme outperforms the one proposed

in [26]. For example, targeting a rate of 0.16, the proposed

scheme requires roughly a time window of length 5 while

the scheme in [26] requires a time window of length 11.

Then, to better understand how these two important metrics

(i.e., Pd and Pfa) evolve with K, in Fig. 9 we show both

the system detection probability (Pd) and the system false

alarm probability (Pfa) versus the time window length (K)

parametrized on the FC detection threshold (Λf ). As expected,

the larger is the time window length K, the better the detection

performance. However, increasing K, results in an increase in

the Pfa metric. Hence, while selecting K, one has to consider

the allowable system false alarm probability.
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Fig. 10. The Pd − Pfa metric versus the time window length (K),
parametrized on the FC detection threshold (Λf ), with M = 40, N = 20,

β = 0.25, P flip
C

= 0.2, δ = 0.95 and µ = 10.
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Fig. 11. Probability of detection (false alarm) Pd (Pfa) versus the time
window length (K), parametrized on the FC detection threshold (Λf ), with

M = 40, N = 20, β = 0.25, P flip
C

= 0.2, and δ = 0.95.

In Fig. 10 and in Fig. 11, we show the same (as in

Fig. 8 and in Fig. 9 respectively) but now for (the attacker

flipping probability) P flip
C = 0.2 (see (8)). As expected, the

Pd − Pfa metric improves up to K = 4 whereas after that

(i.e., for K ≥ 4) a performance saturation gain is observed.

We also note that the time window length (K∗) where this

performance saturation gain is observed increases with the

attacker flipping probability (P flip
C ) (see Fig. 8-Fig. 11). This

is as expected, because increasing the (attacking) flipping

probability one would require a larger time window length (K)

for the FC in order to reduce as much as possible the attacker

influence. However, increasing the value of K may introduce

a delay to the FC detection algorithm. As a result, a careful

choice for K should be selected in practice. Nevertheless, our

proposed algorithm clearly requires a short time window span

to converge.

B. Impact of reliability detection threshold and weight penalty

parameter on the system detection performance

As previously mentioned, the reliability detection threshold

and the weight penalty (i.e., δ and µ) (see (37)) are the two

important parameters that will significantly affect the system

detection performance at the FC.
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Fig. 12. Probability of detection (Pd) versus probability of false alarm (Pfa),
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= 1 and K = 5.
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Fig. 13. Probability of detection (Pd) versus probability of false alarm (Pfa),
parametrized on µ, with M = 40, N = 20, β = 0.5 (unless otherwise

stated), P flip
C

= 1, K = 5, and δ = 0.009.

So, in Fig. 12 we plot the ROC performance for different

choices of the reliability detection threshold (δ) and for a

fixed µ in (37). Obviously, there is an optimum value of

δ such that Pd is maximized (for all the Pfa values). The

detection performance using the weights derived under the

attack − free scenario (i.e., αi = αAF
i , see (31)) in (10)

is also plotted. This corresponds to the case when no SNs
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identification scheme is used (i.e., µi = 0 in (37)). Clearly,

by appropriately choosing the reliability detection threshold

(δ), the proposed identification scheme performance gain is

significant compared to that when no identification scheme is

used. Now, in Fig. 13 we show the same (but now for a fixed

reliability detection threshold (δ)) and by varying the weight

penalty parameter (µ). Clearly, there does exist an optimum

value of µ that maximizes the ROC performance. Furthermore,

the performance improvement parametrized on µ is shown to

be significant for Pfa ≥ 0.1.

C. Detection Performance Comparison

We now compare the system detection performance of the

proposed strategy with the existing schemes.
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Fig. 14. Probability of detection (Pd) versus probability of false alarm (Pfa),
parametrized on K, δ and µ, with M = 40, N = 20, β = 0.25 (unless
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= 1.

In Fig. 14, selecting some optimum value for δ and µ (more

precisely, δ = 0.009 and varying µ), we now compare our

proposed strategy with the existing ones such as an equal

combining scheme, the proposed scheme in [26] and the

proposed scheme in [12] (i.e., with αi = αAF
i in (10)) derived

under the attack − free scenario. We can observe that the

performance of the proposed approach improves up to µ = 10
whereas after that a performance degradation is noticed. Also,

we can observe that by further increasing the time window

length K, it is possible to further improve the detection

performance. However, a careful selection of K should be

made in practice as increasing the value of K introduces a

delay to the FC decision making process. Clearly, the proposed

scheme has a significant detection performance improvement

compared to the case where no identification scheme is applied

and also outperforms the existing strategy [12] and [26].

In Fig. 15, we report the ROC for the two different schemes

(i.e., the one derived under an attack − free scenario and

the proposed one in this paper) parametrized on the fraction

of compromised SNs (β) and flipping probability (P flip
C )

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob. of false alarm, Pfa

P
ro
b
.
o
f
d
et
ec
ti
o
n
,
P
d

 

 

Opt. weights in (21), perf. SNs iden.

Proposed, β = 0.25, P f lip
C

= 0.2, µ = 2

αi = αAF
i in (10), β = 0.25, P f lip

C
= 0.2

Opt. weights in (21), perf. SNs iden.

Proposed, β = 0.5, µ = 6, P f lip
C

= 0.8

Proposed, β = 0.25, µ = 6, P f lip
C

= 0.8

αi = αAF
i in (10), β = 0.5, P f lip

C
= 0.3

αi = αAF
i in (10), β = 0.5, P f lip

C
= 0.5

αi = αAF
i in (10), β = 0.5, P f lip

C
= 1

β=0.5, P
C
flip=0.8

β=0.25, P
C
flip=0.2

No iden. scheme

Fig. 15. Probability of detection (Pd) versus probability of false alarm (Pfa),

parametrized on β, µ, and P flip
C

, with M = 40, N = 20, K = 5, and
δ = 0.009.

parameters. As expected (refer to (25)), the worst detection

performance is observed for the case when β = 0.5 and

P flip
C = 1 as this is the case where the attacker causes the

maximum possible FC degradation. Clearly, for a fixed β (i.e.,

β = 0.5), the detection performance improves as the flipping

probability decreases. A significant improvement is observed

in particular for high probability of false alarm (Pfa) values.

Now, for low probability of false alarm (Pfa) (e.g., choosing

β = 0.25 and P flip
C = 0.2), the proposed scheme significantly

outperforms the case when no identification scheme is applied

(i.e., αi = αAF
i in (10)) while for high Pfa its performance

approaches the effective upper bound (i.e., when optimum

weights in (21) are used and perfect SNs identification is

assumed). Similarly, for e.g., β = 0.25 and β = 0.5 (for (fixed)

P flip
C = 0.8), the proposed approach possesses a remarkable

detection performance gain compared to that of where no

identification scheme is applied.

VI. CONCLUSION

In this paper, we have considered some of the key issues

related to under−attack WSNs. We have extended the results

presented in our previous work [33] by considering a more re-

alistic scenario where perfect knowledge of the true hypothesis

is not required by the attacker. Optimal strategies from the

FC’s and the attacker’s perspective have been characterized

and some bounds have been derived.

We also proposed a new reliability metric and based on

this, a reliability-based scheme was presented to identify the

compromised SNs in the network and to control their contri-

butions towards the FC’s final decision. This new approach

decreases the weights of the compromised SNs proportional

to the reputation metric whereas the existing schemes totally

exclude the compromised SNs (i.e., a zero weight is assigned)

from the fusion process. Simulation results have shown that
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the proposed approach significantly outperforms, in terms of

detection performance improvement, the existing FC rules and

the compromised SNs identification schemes.

While this work and the other related publications assume

that during the SNs identification stage, the attackers’ param-

eters (i.e., β and P flip
C ) are fixed (i.e., not dynamic), there

are interesting questions as to how the dynamic attackers’

parameters will affect the network and how well the existing

schemes can isolate the compromised SNs in the network. In

this case, the dynamic optimum FC rules and the dynamic

attacker strategies will be of particular interest and will be

considered and investigated in future work in order to cope

with such dynamic scenarios.
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