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Defend the Practicality of Single-Integrator Models in Multi-Robot

Coordination Control

Shiyu Zhao and Zhiyong Sun

Abstract— Single-integrator models have been widely used
to model robot kinematics in multi-robot coordination control
problems. However, it is also widely believed that this model
is too simple to lead to practically useful control laws. In
this paper, we prove that if a gradient-descent distributed
control law designed for single integrators has been proved
to be convergent for a given coordination task, then the control
law can be readily modified to adapt for various motion
constraints including velocity saturation, obstacle avoidance,
and nonholonomic models. This result is valid for a wide range
of coordination tasks. It defends the practical usefulness of
many existing coordination control laws designed based on
single-integrator models and suggests a new methodology to
design coordination control laws subject motion constraints.

I. INTRODUCTION

The single-integrator model is the simplest model to

characterize the motion of a mobile robot. This model

has been widely used in multi-robot coordination control

problems such as consensus and formation control. However,

it is also believed that this model is too simple to give

practically useful coordination control laws. That is because

the velocity of a single-integrator robot can be arbitrarily

assigned whereas both the direction and magnitude of the

velocity of a real robot are constrained. As a result, even

if a control law designed for single integrators has been

proved to be convergent, the constraints may undermine the

convergence of the control law when applied in practice and

consequently cause potential safety risks. Motivated by this,

many researchers have studied multi-robot coordination con-

trol with motion constraints such as nonholonomic dynamics

[1], [2], velocity saturation [3], [4], and obstacle avoidance

[5]–[7]. However, when motion constraints are considered,

the coordination control systems are usually highly nonlinear

and very challenging to analyze. The existing results are

mainly restricted to specific types of coordination tasks or

motion constraints. General approaches that can simultane-

ously guarantee system convergence and handle multiple

motion constraints for a wide range of coordination tasks

are highly desirable.

In this paper, we suppose a gradient distributed coor-

dination control law has been obtained and proved to be

convergent for a given coordination task. Our objective is to

generalize the gradient control law so that the convergence

is preserved and in the meantime various motion constraints

can be fulfilled. The basic idea of our approach is to
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introduce an orthogonal projection matrix into the gradient

control law. With a carefully designed projection matrix,

the magnitude and direction of the velocity of each robot

can be adjusted as required in a distributed manner to

handle velocity saturation, obstacle avoidance, and unicycle

constraints. This idea is motivated by the recent work in [8],

where the authors use a time-varying rotation matrix to adjust

the velocity of each robot to realize obstacle and collision

avoidance. Compared to [8], our approach is more flexible

since it is able to adjust both of the velocity direction and

magnitude and is applicable to a wide range of coordination

control problems and motion constraints.

II. PROBLEM SETUP

Consider n robots in R
d (n ≥ 1, d = 2, 3). Let pi ∈ R

d

be the position of robot i and p = [pT1 , . . . , p
T
n ]

T ∈ R
dn. The

interaction among the robots is described by a graph G =
(E ,V), which consists of a vertex set V = {1, . . . , n} and an

edge set E ⊂ V × V . If (i, j) ∈ E , robot j is an neighbor of

robot i and robot i receives the information of robot j. The

set of neighbors for robot i is Ni = {j ∈ V : (i, j) ∈ E}.

Given a coordination task, let the vector e(p) of appropri-

ate dimension be the error state so that e(p) = 0 if and only

if the coordination task is achieved. Let V (e) be a positive

definite Lyapunov function. The gradient control law

ṗi = −
∂V (e)

∂pi
:= fi(e, p), i ∈ V, (1)

is usually a good candidate to solve the given coordina-

tion task because V̇ (e) =
∑

i∈V −fT
i fi ≤ 0. If fi(e, p)

merely depends on the states of robot i and its neighbors,

then the gradient control is distributed. By denoting f =
[fT

1 , . . . , fT
n ]T ∈ R

dn, we have the error dynamics under the

gradient control as ė = (∂e/∂p)f(e, p).

Instead of considering any specific coordination task, we

consider general tasks that satisfy the following conditions.

Let ‖ · ‖ be the Euclidian norm of a vector.

Assumption 1. For the given coordination control task, V (e)
and e(p) satisfy

(a) V (e) is positive definite and continuously differentiable;

(b) The level set Ω(r) = {e : V (e) ≤ r} with any r ≥ 0 is

compact;

(c) There exists r0 > 0 so that f = 0 ⇔ e = 0 on Ω(r0);

(d) ‖∂e(p)/∂p‖ and ‖f(e, p)‖ are bounded when ‖e‖ is

bounded;



(e) f(e, p) is continuous in e and uniformly continuous1 in

p.

Remarks on Assumption 1 are given below. (i) Assump-

tion 1 is mild since it is satisfied by a wide range of coordina-

tion tasks including, but not limited to, consensus, relative-

position-based formation control, distance-based formation

control, and bearing-based formation control (examples will

be given later). (ii) Under Assumption 1, it follows from

the invariance principle [9, Theorem 4.4] that e = 0 is

asymptotically stable and the set Ω(r0) is the attraction

region, which means any trajectory of the error dynamics

starting from Ω(r0) converges to e = 0. For many linear

coordination control problems, the attraction region is the

entire space Rdim(e). For nonlinear coordination tasks such as

distance-based formation control, the attraction region may

be a sufficiently small neighborhood of the origin e = 0.

(iii) Condition (c) indicates that e = 0 if and only if f = 0.

In other words, e = 0 is the unique critical point where

the gradient flow vanishes in Ω(r0). This condition usually

requires some graphical conditions. For example, for the

consensus problem as shown in Example 1, this condition

holds if and only if the undirected graph is connected.

(iv) For many linear coordination control problems, the func-

tion f merely depends on e; for some nonlinear coordination

control problems such as distance-based formation control,

f depends both on e and p.

To illustrate, we show some examples of coordination

control problems that satisfy Assumption 1. The results

presented in the following sections will be applicable to these

examples. For the sake of simplicity, the underlying graphs

are assumed to be undirected and connected in the following

examples. Let m = |E|/2 be the number of undirected edges.

Let Id be the d× d identity matrix and ⊗ be the Kronecker

product.

Example 1 (Consensus). The objective of consensus is to

steer the robots from some initial positions to a common

position. The Lyapunov function is

V =
1

4

∑

(i,j)∈E

‖pi − pj‖
2.

Then V = 0 if and only if consensus is achieved. The

corresponding gradient control law

ṗi = fi =
∑

j∈Ni

(pj − pi)

is the consensus protocol proposed in [10], [11]. Here the

weight for each edge is set to be one. The error state

can be defined as ek = pi − pj for (i, j) ∈ E and e =
[eT1 , . . . , e

T
m]T ∈ R

m×n. Then we have e = (H⊗Id)p where

H ∈ R
m×n is the incidence matrix [12]. Consequently,

1A function f(x) is uniformly continuous in x if for any ǫ > 0 there
exists δ > 0 such that ‖f(x1)− f(x2)‖ < ǫ for every pair of x1 and x2

satisfying ‖x1 − x2‖ < δ. For a differentiable function, if its derivative is
bounded then the function is uniformly continuous. Note that this condition
is sufficient but not necessary because a uniformly continuous function may
not be differentiable.

V (e) = 1/2
∑m

k=1 ‖ek‖
2, ∂e/∂p = H ⊗ Id is constant, f is

continuous in e, and ‖f‖ is bounded when ‖e‖ is bounded.

Condition (c) in Assumption 1 is satisfied since the graph is

connected and then the attraction region Ω(r0) is the entire

space R
dm.

Example 2 (Relative-Position-Based Formation control).

The objective of relative-position-based formation control is

to steer the robots from some initial positions to converge

to a desired geometric pattern defined by relative positions

{p∗i − p∗j}(i,j)∈E . The Lyapunov function is

V =
1

4

∑

(i,j)∈E

∥

∥(pi − pj)− (p∗i − p∗j )
∥

∥

2
.

Then V = 0 if and only if the target formation is achieved.

The gradient control law

ṗi = fi =
∑

j∈Ni

[

(pj − pi)− (p∗j − p∗i )
]

is the relative-position-based formation control law [13],

[14]. The error state is defined as ek = pi − pj − (p∗i −
p∗j ) for (i, j) ∈ E and e = (H ⊗ Id)(p − p∗). Then,

V (e) = 1/2
∑m

k=1 ‖ek‖
2, ∂e/∂p = H ⊗ Id is constant, f is

continuous in e, and ‖f‖ is bounded when ‖e‖ is bounded.

Condition (c) is satisfied when the graph is connected and

then Ω(r0) is the entire space R
dm.

Example 3 (Distance-Based Formation Control). The

objective of distance-based formation control is to steer

the robots from some initial positions to converge to a

desired geometric pattern defined by inter-neighbor distances

{ℓij}(i,j)∈E . Consider

V =
1

8

∑

(i,j)∈E

(

‖pi − pj‖
2 − ℓ2ij

)2

.

Then V = 0 if and only if the inter-neighbor distances satisfy

the constraints. The gradient control law

ṗi = fi =
∑

j∈Ni

(

‖pi − pj‖
2 − ℓ2ij

)

(pj − pi)

is the distance-based formation control law [12], [14], [15].

The error state is defined as ek = ‖pi − pj‖
2 − ℓ2ij :=

‖δk‖
2 − ℓ2k for (i, j) ∈ E . Then,V (e) = 1/4

∑m

k=1 e
2
k,

∂e/∂p = 2diag(δT1 , . . . , δ
T
m)(H ⊗ Id) is bounded when e

is bounded, f is uniformly continuous in both e and p,

and ‖fi‖ is bounded when ‖e‖ is bounded. Condition (c)

is satisfied when the distance constraints correspond to an

infinitesimally distance rigid formation and the attraction

region Ω(r0) is a sufficiently small neighborhood of e =
0. Note that distance rigidity is merely sufficient but not

necessary to have condition (c).

Example 4 (Bearing-Based Formation Control). The ob-

jective of bearing-based formation control is to steer the

robots from some initial positions to converge to a desired



fi

hi

hih
T
i fi

robot i

φiφm
ax

Fig. 1: An illustration of control law (2) and Theorem 1. The direction of
hi must be inside the cone.

geometric pattern defined by constant inter-neighbor bear-

ings {g∗ij}(i,j)∈E . Consider

V =
1

4

∑

(i,j)∈E

‖Pg∗

ij
(pi − pj)‖

2,

where Pg∗

ij
= Id − g∗ij(g

∗
ij)

T . The gradient control law

ṗi = fi =
∑

j∈Ni

Pg∗

ij
(pj − pi)

is the bearing-based formation control law [16], [17]. The

error state can be defined as ek = Pg∗

ij
(pi − pj) for

(i, j) ∈ E . Then, V (e) = 1/2
∑m

k=1 ‖ek‖
2, ∂e/∂p =

diag(Pg∗

1
, . . . , Pg∗

m
)(H ⊗ Id) is constant, f is uniformly

continuous in e, and ‖fi‖ is bounded when ‖e‖ is bounded.

Condition (c) is satisfied if the bearing constraints cor-

respond to an infinitesimally bearing rigid formation and

Ω(r0) is the entire space R
dm.

III. A MODIFIED GRADIENT CONTROL LAW

In this section, we propose a flexible modified gradient

control law,

ṗi = κi(t)hi(t)h
T
i (t)fi(e, p), i ∈ V, (2)

where κi(t) > 0 is a time-varying scalar and hi(t) ∈ R
d

is a unit vector whose direction may be time-varying. Since

hih
T
i is an orthogonal projection matrix, the direction of

the velocity ṗi is parallel to hi and the magnitude of the

velocity is κi|h
T
i fi|. We may design appropriate κi(t) and

hi(t) to adjust the velocity of each robot so as to fulfil

motion constraints. The design will be given in the following

sections. Since robot i may choose κi(t) and hi(t) based on

its local information, control law (2) remains distributed if

the original gradient control is distributed.

We now give the first result in this paper which shows that

the proposed control law (2) preserves system convergence

under some mild conditions.

Theorem 1 (Flexible Control of Single Integrators). Given

a coordination control problem, if the gradient control (1)

solves the coordination problem as stated in Assumption 1,

then the modified gradient control law (2) also solves the

coordination task with the same attraction region guaranteed

if the following conditions are satisfied:

(a) κi(t) is bounded as 0 < κmin ≤ κi(t) ≤ κmax for all i
and all t;

(b) φi(t) is bounded as 0 ≤ φi(t) ≤ φmax < π/2 for all i
and all t where φi(t) is the angle between hi and fi;

(c) both κi(t) and hi(t) are uniformly continuous in t for

all i.

Proof. Since (2) is a nonautonomous system, the invariance

principle for autonomous systems is inapplicable. We use the

Barbalat’s Lemma to prove the convergence [9, Lemma 8.2].

Consider the same Lyapunov function V (e) as used for

the autonomous system (1). The derivative of V (e) along

system (2) is

V̇ = −
∑

i∈V

fT
i ṗi

= −
∑

i∈V

κif
T
i hih

T
i fi

= −
∑

i∈V

κi‖fi‖
2 cos2 φi

≤ −κmin cos
2 φmax

∑

i∈V

‖fi‖
2 ≤ 0. (3)

Since V (t) is nonincreasing and bounded from below, it

converges as t → ∞. We next show V̇ (t) is uniformly

continuous. First of all, since V̇ ≤ 0, the set Ω(V (e0)) ⊆
Ω(r0) is compact and invariant with respect to the error

dynamics. On one hand, since f(e, p) is continuous in

e, it is uniformly continuous in e over the compact set

Ω(V (e0)). Since it is also uniformly continuous in p, f(e, p)
is uniformly continuous in both e and p. On the other

hand, by letting H = blkdiag(κ1h1h
T
1 , . . . , κnhnh

T
n ), we

have ṗ = H(t)f(e, p) and hence ė = (∂e/∂p)H(t)f(e, p).
According to condition (d) in Assumption 1 and the fact

that κi ≤ κmax, both ė and ṗ are bounded and consequently

e(t) and p(t) are uniformly continuous in t (a differentiable

function is uniformly continuous if its derivative is bounded).

Now we conclude f(e(t), p(t)) is uniformly continuous in t.
Therefore, we know V̇ is uniformly continuous in t because

κi(t) and hi(t) are also uniformly continuous. It then follows

from Barbalat’s Lemma [9, Lemma 8.2] that V̇ converges to

zero as t → ∞. By (3), we have ‖fi‖ converges to zero for

all i. It then follows from condition (c) in Assumption 1 that

the error e converges to zero.

Although κi(t) and hi(t) must be bounded, they may vary

within sufficiently large intervals. For instance, κmin can be

chosen to be sufficiently small, κmax sufficiently large, and

φmax sufficiently close to π/2. In addition, although κi(t)
and hi(t) must be uniformly continuous, the varying rate

may be sufficiently large as long as it is finite. Therefore,

κi(t) and hi(t) can be designed flexibly.

Theorem 1 indicates that the attraction region of e = 0
does not shrink under the modified gradient control. More

specifically, if Ω(r0) is the attraction region for the gradient

system (1), then it is still an attraction region for the modified

gradient system (2). As a result, if the gradient control is

globally (respectively, locally) stable, then the modified one

is also globally (respectively, locally) stable.



The following result shows if the original gradient control

system is exponentially stable, then the system under the

action of (2) is also exponentially stable.

Corollary 1 (Exponential Stability). Under Assumption 1,

if the gradient control system (1) further satisfies the follow-

ing two conditions:

(a) there exists c > 0 such that
∑

i∈V ‖fi‖
2 ≥ cV for all

e ∈ Ω(r0);
(b) V is a quadratic function of e;

then e = 0 is exponentially stable under the modified

gradient control law in (2).

Proof. Under the modified gradient control law

in (2), we have (3) and consequently V̇ ≤
−κmin cos

2 φmax

∑

i∈V ‖fi‖
2 ≤ −cκmin cos

2 φmaxV .

As a result, V converges to zero exponentially fast. Since

V is a quadratic function of e, the error e also converges to

zero exponentially fast.

Corollary 1 is applicable to all the four examples in

Section II.

IV. HOW TO HANDLE VELOCITY SATURATION AND

OBSTACLE AVOIDANCE

In this section, we show how to design κi(t) and hi(t) to

preserve the system convergence and in the meantime fulfill

the motion constraints on velocity saturation and obstacle

avoidance.

A. Velocity Saturation

Under control law (2), we have the velocity magnitude as

vi = κih
T
i fi > 0. The reason why vi > 0 for all t is the

angle between hi and fi is always less than π/2. Suppose

the velocity is constrained by vi ≤ νmax where νmax is the

maximum speed. In order to handle this saturation constraint,

we design

κi(t) =

{

1, hT
i fi ≤ νmax,

νmax

hT
i (t)fi(t)

, hT
i fi > νmax.

(4)

It follows from (4) that κih
T
i fi = sat(hT

i fi) where sat(·) is

the saturation function,

sat(x) =

{

νmax, x > νmax,
x, 0 ≤ x ≤ νmax.

As a result, control law (2) becomes

ṗi = hisat(h
T
i fi). (5)

We next prove that the saturation constraint does not jeop-

ardize the system convergence.

Theorem 2 (Linear Velocity Saturation). Under Assump-

tion 1, control law (5) solves the given coordination task

with the same attraction region guaranteed if hi satisfies the

conditions in Theorem 1.

Proof. Since ṗi = hisat(h
T
i fi) can be rewritten as ṗi =

κihih
T
i fi with κi given in (4), we only need to show that

κi is uniformly continuous and bounded from both below

fi

hd

i

o
b

staclerobot i

(a) The proposed
approach

fifrepel

o
b

staclerobot i

(b) Artificial potential ap-
proach

Fig. 2: An illustration of the proposed approach to obstacle avoidance and
an comparison with the approach based on artificial potential.

and above. Then the convergence follows directly from

Theorem 1.

First, it is easy to verify that κi ≤ 1 = κmax and κi in

(4) is uniformly continuous in hT
i fi (here hT

i fi is viewed

as a single variable). Similar to the proof of Theorem 1, we

know fi and hi are both uniformly continuous in t. Thus,

κi is uniformly continuous in t. Second, since hT
i fi ≤ ‖fi‖

and fi is bounded over the compact set Ω(V (e0)), we know

for arbitrary initial condition there exists a constant γ such

that ‖fi‖ ≤ γ and hence hT
i fi ≤ γ for all t. As a result,

κi ≥ νmax/γ = κmin. Therefore, κi is bounded from both

below and above and uniformly continuous.

B. Obstacle Avoidance

In order to achieve obstacle avoidance, we propose the

following strategy to design hi(t). When there are no ob-

stacles, let hi = fi/‖fi‖ so that the ṗi = hisat(h
T
i fi) =

fi/‖fi‖sat(‖fi‖). In order to eliminate the singularity of

‖fi‖ = 0, we consider two cases. In the case of 0 ≤ ‖fi‖ ≤
νmax, we have ṗi = fi; in the case of ‖fi‖ > νmax, we have

ṗi = fi/‖fi‖νmax.

When there is an obstacle, let hi change continuously from

fi/‖fi‖ to hd
i , where hd

i may be any unit vector that does not

point to the obstacle. Here we design hd
i as the unit vector

pointing from the robot to an edge point on the obstacle

(see Figure 2(a)). Under some mild assumptions such as the

obstacle is a sphere, hd
i would vary uniformly continuously.

In practice, the vector hd
i may be easily measured by onboard

sensors such as cameras or laser scanners. In order to have

a continuous switch from fi/‖fi‖ to hd
i , we design

hi(t) =
ci(t)fi/‖fi‖+ [1− ci(t)]h

d
i (t)

‖ci(t)fi/‖fi‖+ [1− ci(t)]hd
i (t)‖

, (6)

where ci(t) can be any uniformly continuous function vary-

ing from 1 to 0 within finite or infinite time. One simple

choice is ci(t) = eki(t−to) where ki is positive constant

and to is the time instance when the obstacle avoidance

mechanism is triggered. With hi(t) in (6), the angle between

hi and fi is less than φmax as long as the angle between hd
i

and fi is less than φmax.

One interesting feature of the obstacle avoidance approach

proposed above is that it merely relies on the bearing infor-

mation hd
i (t) of the obstacle. Although distance information

is also required to trigger the obstacle avoidance mechanism,

it is not required to be accurate because it is not used in
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Fig. 3: Relative-position-based formation control with velocity saturation
and obstacle avoidance.

the obstacle avoidance algorithm. Finally, it must be noted

that the proposed obstacle avoidance strategy may only be

applicable to simple cases where there are not too many

obstacles; otherwise, the strategy may fail to work.

C. Simulation

To demonstrate, we apply the proposed control law

to relative-position-based formation control. The formation

control law and Lyapunov function are given in Example 2.

In the simulation example, there are three robots and the

underlying graph is complete. In the target formation, the

three robots should be distributed evenly on a line segment.

The control law is ṗi = hisat(h
T
i fi) where fi is the relative-

position-based formation control law given in Example 2.

Here hi is designed in the previous subsection for obstacle

avoidance and the velocity saturation is νmax = 1. As

shown in Figure 3, the convergence is achieved because the

Lyapunov function converges to zero. In the meantime, the

velocity saturation and obstacle avoidance are both realized.

V. HOW TO HANDLE UNICYCLE CONSTRAINTS

In this section we apply the modified gradient control in

(2) to handle unicycle models while preserving the system

convergence.

fi

hih
T

i
fi = ṗi

ḣi = h⊥

i
(h⊥

i
)T fi

hi

h⊥

i

wi

Fig. 4: The geometric meaning of the unicycle control laws in (9) and (10).

Consider a group of unicycle robots in R
2. Let pi =

[xi, yi]
T ∈ R

2 and θi ∈ R denote the position coordinate

and heading angle of robot i, respectively. The motion of

robot i is governed by

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = wi, (7)

where vi ∈ R and wi ∈ R are the linear and angular

velocities to be designed.

Consider the modified gradient control law ṗi = hih
T
i fi

where we set κi = 1. The heading vector of a unicycle robot

is physically constrained as

hi =

[

cos θi
sin θi

]

. (8)

Then, the modified control law becomes

ṗi = hih
T
i fi = (hT

i fi)

[

cos θi
sin θi

]

.

By comparing it with the unicycle model (7), we design the

linear velocity as

vi = hT
i fi. (9)

The design of the angular velocity wi can be very flexible.

We give the following specific control law:

wi = (h⊥
i )

T fi (10)

where

h⊥
i =

[

− sin θi
cos θi

]

. (11)

Note h⊥
i is orthogonal to hi. The angular velocity has a

clear geometric interpretation. That is wi aims at rotating the

heading vector hi of the robot to align with the gradient flow

fi (see Figure 4). The convergence of the proposed unicycle

control law is proved below.

Theorem 3 (Control of Unicycle Robots). Given a coor-

dination control problem, if the gradient control (1) solves

the coordination problem as stated in Assumption 1, then the

unicycle control law in (9)-(10) also solves the coordination

problem with the same attraction region guaranteed.

Proof. With hi given in (8), we have

ḣi =

[

− sin θi
cos θi

]

θ̇i = h⊥
i wi.



Substituting (10) into ḣi gives the closed-loop system as

ṗi = hih
T
i fi,

ḣi = h⊥
i (h

⊥
i )

T fi. (12)

It is notable that the convergence of the closed-loop system

(12) does not simply follow from Theorem 1 because hi

in (12) may be orthogonal to fi, which is not allowed in

Theorem 1. Since the closed-loop system is an autonomous

system, we can use the invariance principle [9, Theorem 4.4]

to prove its stability.

We first examine the equilibrium of the closed-loop sys-

tem. By letting ṗi = 0 and ḣi = 0, we have hih
T
i fi = 0

and h⊥
i (h

⊥
i )

T fi = 0, which imply fi = 0. Therefore, the

system has a unique equilibrium at fi = 0 for all i. This

equilibrium is the origin e = 0 according to condition (c) in

Assumption 1. The time derivative of V along the trajectory

of (12) is

V̇ = −
∑

i∈V

fT
i hih

T
i fi ≤ 0.

Thus, the set Ω(r0) as defined in Assumption 1 is a positive

invariant set. Let E = {e : V̇ (e) = 0}. Then, the system

trajectory starting from any point in Ω(r0) converges to the

largest invariant set in E according to the invariance principle

[9, Theorem 4.4]. For any point in E, we have hT
i fi = 0

which means either hi ⊥ fi or fi = 0. Assume hi ⊥ fi = 0
but fi 6= 0, then we have ḣi = h⊥

i (h
⊥
i )

T fi = fi 6= 0 and

consequently the system trajectory will escape from the point

and hence E. As a result, if a point is in the invariant set in

E, it must satisfy fi = 0 for all i, which means e = 0.

Theorem 3 indicates that the original gradient control law

(1) can be immediately generalized to the unicycle control

law in (9)-(10) while the convergence is preserved. If the

gradient control is globally (respectively, locally) stable,

then the unicycle control law is also globally (respectively,

locally) stable.

To demonstrate, we apply the proposed control law in (9)-

(10) to distance-based formation control of unicycle robots.

The gradient control law and Lyapunov function are given

in Example 3. Figure 5 shows the simulation results. In this

simulation example, there are three robots and the underlying

graph is complete. The target formation is an equilateral

triangle with each side length as five meters. As can be

seen, under the proposed control law, the formation control

target is achieved because the Lyapunov function converges

to zero. Since the initial error is large, ‖fi‖ and vi may

reach 104, which is unrealistic in practice. Motivated by this,

we naively introduce a small control gain as 0.0001 into vi
and wi to achieve smaller linear and angular velocities. A

systematic way to simultaneously handle velocity saturation

and unicycle models will be studied in the future.

VI. CONCLUSION

This paper proposed a new modified gradient control ap-

proach to multi-robot coordination control. It was shown that

the adjustment of the velocity of each robot may preserve the
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Fig. 5: Distance-based formation control of unicycle robots.

system stability under mild conditions and, in the meantime,

fulfill various motion constraints such as velocity saturation,

obstacle avoidance, and unicycle models. In the future, how

to simultaneously handle unicycle models and linear and

angular velocity saturation is an important research topic.
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