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Flexible Bearing-Only Rendezvous Control of Mobile Robots

Shiyu Zhao and Ronghao Zheng

Abstract— In this paper we study rendezvous control of
multiple mobile robots. We propose a control law that merely
requires each robot to measure the relative bearings of their
neighbors in their local coordinate frames. Distance measure-
ment or relative position estimation is not required. In theory,
the proposed control law verifies that distance information is
redundant in rendezvous control tasks though the objective of
rendezvous is to decrease the inter-robot distances. In practice,
the control law provides a simple solution to vision-based
rendezvous tasks where bearings can be measured by visual
sensing. Moreover, we generalize the proposed control law by
introducing an additional heading vector into the control law.
This heading vector may preserve the system convergence and,
in the meantime, provides great flexibility to adapt the control
law for nonholonomic robot models or obstacle avoidance.

I. INTRODUCTION

Multi-robot rendezvous is one of the basic tasks for multi-

robot coordination. Its objective is to steer each robot so

that all the robots converge to the same location. The ren-

dezvous problem would become the same as the well-known

consensus problem [1] when the kinematics of each robot

can be modeled as a single integrator and each robot can

measure the relative positions of their neighbors. However,

the practical kinematic model of a ground or aerial robot

is usually more complicated than a single integrator. This

motivates many researchers to study multi-robot rendezvous

with nonholonomic models [2], [3].

Sensing capability is an important practical problem that

should be considered in multi-robot rendezvous. Most of

existing rendezvous control laws assumed that each robot is

able to measure the relative positions of their neighbors. This

assumption can be realized by two methods in practice. The

first is based on external navigation systems such as GPS. In

particular, each robot must localize themselves with GPS and

then share their locations with their neighbors via wireless

communication. This method is, however, not applicable in

GPS-denied or communication-denied environments such as

indoor or hostile environments. The second method is based

on onboard sensors carried by each robot. Visual sensing is

one of the most promising and popular sensing approaches.

It can be realized easily with low-cost cameras and, more

importantly, it is a passive sensing approach that does not

require wireless communication.
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Though powerful, visual sensing may not be able to give

reliable relative position measurements. For example, once a

target has been recognized in an image, its bearing can be

immediately calculated based on the pixel coordinate of the

target and intrinsic parameters of the camera. It would be,

however, much more complicated to obtain the distance of

the target since additional geometric information of the target

is required to estimate the distance. Distance information can

be alternatively estimated by stereo vision systems where

the target position is triangulated by using the bearings

captured by multiple cameras. However, due to the small

baseline of a stereo vision system, the accuracy of distance

estimation drops fast when the target is far from the camera.

In summary, a fundamental feature of visual sensing is that

it is easy to get bearing but difficult to get distance. This

feature motivates us to study multi-robot rendezvous with

bearing-only measurements.

Despite the practical importance of bearing-only ren-

dezvous, this topic has merely received limited research

attention up to now. The study in [4] proposed a quantized

control scheme to achieve multi-robot rendezvous based on

quantized bearing angle measurements. The proposed control

scheme is merely applicable to the case where each robot has

one single neighbor. The work in [5] proposed continuous

control laws for unicycle robots which are applicable to more

general sensing topologies. The works in [6], [7] also studied

rendezvous with bearing measurements, but the bearing mea-

surements are used to estimate position information. In our

work, bearing measurements are directly applied to control

and no estimation is required.

The main contributions of this paper are summarized

below. We first propose and analyze a nonlinear rendezvous

control law for single-integrator kinematic models. The con-

trol law merely relies on bearing measurements expressed

in each robot’s local coordinate frame. The control law is

proven to be globally stable. We then generalize this control

law by introducing a flexible heading vector for each robot.

The heading vector may preserve the convergence of the

entire system and, in the meantime, provides great flexibility

for each robot to adjust their velocity heading. By selecting

proper heading vectors, the rendezvous control law proposed

for the single-integrator model can be adapted for nonholo-

nomic models in two- and three-dimensional spaces. By

choosing appropriate heading vectors, we may also achieve

obstacle avoidance. This obstacle avoidance approach mainly

relies on the bearing information of obstacles and is different

from the potential-based approaches that generate repulsive

forces to push a robot away from obstacles and require the

robot-obstacle distance information [8].



II. BEARING-ONLY RENDEZVOUS CONTROL LAW

In this section we propose and analyze a distributed control

law to solve the multi-robot rendezvous problem with local

bearing measurements.

Consider n robots in R
d (d = 2, 3). Let V := {1, . . . , n}.

The location of robot i ∈ V is denoted as pi ∈ R
d. The

sensing topology of the robots is described by a fixed graph

G = (V, E) where E ⊂ V × V . If (i, j) ∈ E , robot i can

measure the relative bearing of robot j or, in other words,

robot i can “see” robot j. If (i, j) ∈ E , we say robot j is

adjacent to robot i or a neighbor of robot i. Let Ni denote

the set of robot i’s neighbors.

The proposed bearing-only rendezvous control law is

ṗi(t) =
∑

j∈Ni

aijgij(t), (1)

where aij is positive constant and

gij(t) =
pj(t)− pi(t)

‖pj(t)− pi(t)‖
.

The unit vector gij represents the relative bearing of pj with

respect to pi. Control law (1) is nonlinear. Its interpretation

is that each robot should move towards its neighbor robots.

The quantities in control law (1) are all expressed in a

global coordinate frame. This control law, however, can be

implemented with locally measured bearings. To see that,

let vi be the velocity of robot i in the global coordinate

frame. Let the superscript (i) indicate a quantity expressed

in the local coordinate frame of robot i and Ri ∈ R
d×d

the rotational transformation from the local frame to the

global frame. Then, we have vi = Riv
(i)
i and gij = Rig

(i)
ij .

Substituting into control law (1) gives

v
(i)
i (t) =

∑

j∈Ni

aijg
(i)
ij (t),

which indicates that the control law can be implemented with

locally measured bearings.

We next analyze the convergence of the proposed control

law. In order to do that, we need some assumptions.

Assumption 1 (Undirected Graph). The sensing graph is

undirected which means (i, j) ∈ E ⇔ (j, i) ∈ E and aij =
aji.

The assumption on undirected graphs enable us to analyze

the nonlinear system via a Lyapunov approach. The directed

case will be studied in the future.

Assumption 2 (Robot Merge). For any (i, j) ∈ E , if robots

i and j are sufficiently close so that ‖pi − pj‖ < r where r
is a positive threshold, the two robots will merge into a new

robot i′. The new robot i′ is adjacent with robot k ∈ V if

either i or j is adjacent with k.

The assumption on robot merge guarantees that the bearing

between any pair of neighbors is well defined. This assump-

tion has also been adopted in previous works on bearing-only

rendezvous [4], [5]. The threshold r could be thought of as

a measure of the physical size of each robot.

Under Assumption 2, rendezvous is achieved when all the

robots merge into one single robot. The convergence result

for control law (1) is given below.

Theorem 1. Given a fixed undirected graph G, the bearing-

only control law (1) solves the rendezvous problem if and

only if the graph is connected.

Proof. The necessity is obvious. That is if the graph is not

connected rendezvous cannot be achieved. We next prove the

sufficiency. If the graph is connected, consider the Lyapunov

function

V =
∑

i∈V

∑

j∈Ni

aij‖pi − pj‖.

It is clear that V = 0 if and only all the agents merge into

one single robot whose Ni is empty. The time derivative of

V is

V̇ =
∑

i∈V

∑

j∈Ni

aij
(pi − pj)

T

‖pi − pj‖
(ṗi − ṗj)

= 2
∑

i∈V

∑

j∈Ni

aij
(pi − pj)

T

‖pi − pj‖
ṗi

= −2
∑

i∈V

∑

j∈Ni

aijg
T
ij ṗi.

Substituting control law (1) into the above equation gives

V̇ = −2
∑

i∈V

(
∑

j∈Ni

aijgij

)T(
∑

j∈Ni

aijgij

)

≤ 0.

According to the invariance principle [9], the trajectory of

the system converges to the invariance set where V̇ = 0. We

next show that V̇ = 0 if and only if all robots merge to one

single robot. First, it is clear that

V̇ = 0 ⇐⇒
∑

j∈Ni

aijgij = 0, ∀i ∈ V. (2)

Equation (2) indicates that each robot is located inside the

convex hull spanned by its neighbors. To see that, rewrite

(2) as

∑

j∈Ni

aij
pj − pi

‖pj − pi‖
=
∑

j∈Ni

āij(pj − pi) = 0,

⇐⇒




∑

j∈Ni

āij



 pi =
∑

j∈Ni

āijpj ,

⇐⇒pi =
∑

j∈Ni

ãijpj , ∀i ∈ V, (3)

where āij = aij/‖pj − pi‖ > 0 and ãij = āij/
∑

j∈Ni
āij .

Equation (3) clearly indicates that pi is in the convex hull

spanned by {pj}j∈Ni
since ãij > 0 and

∑

j∈Ni
ãij = 1. If

there are more than one robot, it is impossible for all the

robots to satisfy (3). For example, if we consider the convex

hull spanned by all the robots, then at least one vertex of

the convex hull is not in the convex hull spanned by its

neighbors. As a result, V̇ = 0 if and only if there is merely



one single robot; in other words, V would keep decreasing

if there are more than one robots.

In the above derivation, robot merge is not considered.

When multiple robots merge into one single robot, the value

of V would have a discontinuous decrease. Since there are

merely a finite number of discontinuous decreases, the time

horizon [0,∞) may be divided into a finite number of time

intervals and the above argument can be applied to each of

them.

III. A FLEXIBLE BEARING-ONLY RENDEZVOUS

CONTROL LAW

In this section we generalize control law (1) and propose

a more flexible control law by introducing a heading vector.

In particular, the flexible control law is

ṗi(t) = hi(t)h
T
i (t)

∑

j∈Ni

aijgij(t), (4)

where hi(t) ∈ R
d is a nonzero heading vector which may

be time-varying. The purpose of hi(t) is to deflect the

velocity direction of robot i. Since hi(t)h
T
i (t) is a projection

matrix (it becomes an orthogonal projection when hi(t)
is a unit vector), the velocity of robot i is the projection

of
∑

j∈Ni
aijgij onto hi. Specifically, the velocity direc-

tion is parallel to hi/‖hi‖ and the velocity magnitude is

‖hi‖(h
T
i

∑

j∈Ni
aijgij).

The heading vector hi(t) introduces great flexibility into

the control law. By selecting appropriate hi(t), we may

obtain control laws for unicycle robots. We will show in

the next section how to choose appropriate hi(t) according

to different tasks. In practice, hi(t) can be chosen by robot

i based on its local information and hence control law

(4) remains distributed. We next show that hi(t) preserves

rendezvous convergence under a mild condition.

Theorem 2. Given a fixed, undirected, and connected graph

G, control law (4) solves the rendezvous problem if the

nonzero heading vector hi(t) is uniformly continuous and

not orthogonal to
∑

j∈Ni
aijgij(t) for all t ≥ 0 and i ∈ V .

Proof. Note that system (4) is nonautonomous and we derive

the stability by using Barbalat’s Lemma [9, Lemma 8.2].

Consider the Lyapunov function V =
∑

i∈V

∑

j∈Ni
aij‖pi−

pj‖, which is the same as the one in Theorem 1. Then, we

have

V̇ = −2
∑

i∈V

(
∑

j∈Ni

aijgij

)T

ṗi

= −2
∑

i∈V

(
∑

j∈Ni

aijgij

)T

︸ ︷︷ ︸

fT
i

hih
T
i

(
∑

j∈Ni

aijgij

)

︸ ︷︷ ︸

fi

≤ 0.

Since V is nonincreasing and bounded from below, V
converges as t → ∞. It can be proved that fi is uniformly

continuous in t and consequently V̇ is uniformly continuous

in t. It then follows from Barbalat’s Lemma that V̇ converges

to zero as t → 0. It is clear that V̇ = 0 ⇔ hT
i fi = 0 for

all i. Since hi is not orthogonal to fi for all t as assumed,

then hT
i fi = 0 ⇔ fi = 0. As a result, V̇ = 0 ⇔ fi = 0

for all i and hence the invariant set is exactly the same as

that of control law (1). The rest of the proof is same as

Theorem 1.

The convergence condition on hi in Theorem 2 is mild

since it merely requires hi to be uniformly continuous and

not to be orthogonal to
∑

j∈Ni
aijgij . This mild condition

provides great flexibility to design appropriate hi for various

tasks as we show in the following sections. This mild

condition can be even further relaxed. For example, if hi

is orthogonal to
∑

j∈Ni
aijgij only for a finite time period,

the convergence is still guaranteed. We will demonstrate this

point when we study the application of the proposed control

law in unicycle robots (see Theorem 3).

IV. APPLICATIONS OF THE FLEXIBLE CONTROL LAW

A. Application to Two-Dimensional Nonholonomic Robots

Although control law (4) is designed for the single-

integrator model, we now show that this control law can

be adapted for nonholonomic models.

Consider a group of unicycle robots in R
2. Let pi =

[xi, yi]
T ∈ R

2 and θi ∈ R denote the position coordinate

and heading angle of robot i, respectively. The motion of

robot i is governed by the unicycle model

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = wi, (5)

where vi ∈ R and wi ∈ R are the linear and angular

velocities to be designed.

We next use the flexible control law (4) to design a

rendezvous control law for the unicycle model (5). Since

the velocity of a unicycle must be aligned with its heading

angle, we choose the heading vector to be

hi =

[
cos θi
sin θi

]

.

Substituting hi into (4) yields

ṗi =

[
ẋi

ẏi

]

= hih
T
i

∑

j∈Ni

aijgij

=
(

[cos θi, sin θi]
∑

j∈Ni

aijgij

)[ cos θi
sin θi

]

. (6)

By comparing (6) with the unicycle model, we design the

linear velocity vi to be

vi = [cos θi, sin θi]
∑

j∈Ni

aijgij (7)

such that the nonholonomic constraint is satisfied.

The design of angular velocity wi can be very flexible.

The rule of thumb is that wi may be designed arbitrarily

as long as the heading of the unicycle robot is not always



fi =
∑

j∈Ni
aijgij

hih
T
i fi

h⊥
i (h⊥

i )T fi

hi

h⊥
i

wi

Fig. 1: An illustration of the unicycle control law in (7) and (8).

orthogonal to
∑

j∈Ni
aijgij . For example, we can simply

choose wi = cos t as in [2]. We next present a new angular

velocity control law

wi = [− sin θi, cos θi]
∑

j∈Ni

aijgij . (8)

Let h⊥
i = [− sin θi, cos θi]

T . Then, equation (8) can be

rewritten as wi = (h⊥
i )

T
∑

j∈Ni
aijgij . Note h⊥

i ⊥ hi. The

control law in (7) and (8) has a clear geometric interpretation:

The linear and angular velocities are equal to the magnitudes

of the orthogonal projection of
∑

j∈Ni
aijgij onto hi and h⊥

i ,

respectively. See Figure 1.

The convergence result under the control law in (7) and

(8) is given below.

Theorem 3. For the unicycle model (5), given a connected

graph G, the linear and angular velocity control laws in (7)

and (8) solves the bearing-only rendezvous problem.

Proof. Let fi =
∑

j∈Ni
aijgij . The convergence of (7) and

(8) does not follows from Theorem 2. That is because hi may

be orthogonal to fi for certain time t. The time derivative

of V satisfies V̇ = −
∑

i∈V fT
i ṗi = −

∑

i∈V(f
T
i hi)

2 ≤ 0.

Assume V̇ = 0 but fi 6= 0 for certain i. Then, we know hi ⊥
fi. In this case, wi = h⊥

i fi 6= 0 and hence the corresponding

state is not in the invariant set. As a result, the system will

converge to the invariant set where fi must be zero. The rest

of the proof is similar to Theorem 1.

The control law in (7) and (8) can be implemented with

locally measured bearings. By rewriting the control law

in terms of local bearing measurements, the control law

becomes the bearing-only rendezvous control law proposed

in [5]. As a result, some existing control laws may be viewed

as special expressions of the flexible control law (4).

B. Application to Three-Dimensional Nonholonomic Robots

Consider a group of nonholonomic robots in R
3. Let pi =

[xi, yi, zi]
T ∈ R

3 be the position coordinate robot i. The

direction of the velocity of robot i is characterized by the

yaw and pitch angles αi and βi, respectively. The motion of

robot i is governed by the three-dimensional nonholonomic

model

ẋi = vi cosβi cosαi,

ẏi = vi cosβi sinαi,

żi = vi sinβi,

α̇i = wαi
,

β̇i = wβi
, (9)

where vi, wαi
, wβi

∈ R are the linear and angular velocities

to be designed. The three-dimensional nonholonomic model

can be used to characterize unmanned aerial vehicles.

We now use the flexible control law (4) to design a ren-

dezvous control law for the three-dimensional nonholonomic

model (9). Since the direction of the velocity is constrained

by the azimuth and altitude angles, we design the heading

vector hi to be

hi =





cosβi cosαi

cosβi sinαi

sinβi



 . (10)

Substituting hi into (4) yields

ṗi =





ẋi

ẏi
żi



 = hih
T
i

∑

j∈Ni

aijgij

=
(

hT
i

∑

j∈Ni

aijgij

)





cosβi cosαi

cosβi sinαi

sinβi



 . (11)

By comparing (11) with the nonholonomic model (9), we

design the linear velocity vi to be

vi = hT
i

∑

j∈Ni

aijgij (12)

such that the nonholonomic constraint is satisfied.

Again, the angular velocities wαi
and wβi

are flexible to

design. Here we also present a specific one that is intuitively

easy to understand. Let wi ∈ R
3 be the angular velocity

vector satisfying

ḣi = wi × hi = [wi]× hi = − [hi]× wi, (13)

where [·]× denotes the associated skew-symmetric matrix for

a vector [10, Chapter 2]. Specifically, if x = [x1, x2, x3]
T ∈

R
3, then

[x]× =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 ∈ R
3×3.

The vector wi is orthogonal to hi and characterizes how the

heading vector hi changes. We design the angular velocity

as

wi = hi ×
∑

j∈Ni

aijgij = [hi]×

∑

j∈Ni

aijgij . (14)

The control input wi attempts to rotate hi so that hi aligns

with
∑

j∈Ni
aijgij . Substituting (14) into (13) gives

ḣi = − [hi]
2
×

∑

j∈Ni

aijgij = Phi

∑

j∈Ni

aijgij , (15)



obstacle

∑
j∈Ni

aijgij

hi

robot i

Fig. 2: A simple and effective way to design hi for obstacle avoidance. The
heading vector is always pointing to the leftmost (or rightmost) point on
the obstacle.

where Phi
= I3 − hih

T
i is an orthogonal projection matrix

that projects any vector onto the orthogonal complement of

hi. Note Phi
x = 0 for any x ∈ R

3 if and only if x is parallel

to hi. The last equability in the above equation is due to the

fact [x]
2
× = xxT − ‖x‖2I3 for any x ∈ R

3 [10, Thm 2.11].

On the other hand, take the time derivative of (10) gives

ḣi =





− cosβi sinαi − sinβi cosαi

cosβi cosαi − sinβi sinαi

0 cosβi





︸ ︷︷ ︸

Ai

[
α̇i

β̇i

]

. (16)

By comparing (16) and (15), we have
[

α̇i

β̇i

]

= (AT
i Ai)

−1AT
i Phi

∑

j∈Ni

aijgij . (17)

The convergence result is given below.

Theorem 4. For the three-dimensional nonholonomic model

(9), given a connected graph G, the linear and angular

velocity control laws in (12) and (17) solves the bearing-

only rendezvous problem.

Proof. Let fi =
∑

j∈Ni
aijgij . The time derivative of V

satisfies V̇ = −
∑

i∈V fT
i ṗi = −

∑

i∈V(f
T
i hi)

2 ≤ 0.

Assume V̇ = 0 but fi 6= 0 for certain i. Then, we know

hi ⊥ fi. In this case, wi = Phi
fi 6= 0 and hence the

corresponding state is not in the invariant set. As a result,

the system will converge to the invariant set where fi must

be zero. The rest of the proof is similar to Theorem 1.

C. Application to Bearing-Only Obstacle Avoidance

We next demonstrate how to apply the flexible control law

(4) to obstacle avoidance. One simple and effective way is

to design hi such that hi points to the leftmost or rightmost

point on an obstacle (see Figure 2). Loosely speaking, if

hi is not always orthogonal to
∑

j∈Ni
aijgij , convergence

of rendezvous can be guaranteed. When there are multiple

obstacles and hi must be orthogonal to
∑

j∈Ni
aijgij in order

to avoid obstacles, then the convergence of rendezvous may

not be ensured.

Since we merely need to choose appropriate hi to avoid

obstacles, the bearing information of the obstacle is sufficient

to achieve obstacle avoidance by the proposed approach.

In practice, distance information of the obstacle may be

required to trigger the obstacle avoidance mechanism, but

it does not have to be accurate because it is not used in the

control law. Our approach is different from the conventional

artificial potential approaches where distance information is

used to calculate repelling forces generated by obstacles. In

the case of using visual sensing, we assume the obstacle does

not block the line of sight for the neighbors for robot i. If the

obstacle blocks some of the neighbors of robot i, the sensing

graph in this case is time-varying, which will be studied in

the future.

To demonstrate, simulation results are given in Figures 3

and 4, where there are three robots and the underlying graph

is complete. The weight aij is set as 1 for all edges and

the threshold for robot merge is set as 0.2 meter. Figure 3

demonstrates the case without obstacle avoidance. It can be

seen that rendezvous can be successfully achieved under the

proposed bearing-only control law (1). Figure 4 shows that

obstacles can be successfully avoided and, in the meantime,

rendezvous can also be achieved under the flexible control

law (4). In this example, each agent is assumed to have

limited distance sensing ability. When a robot senses that

the minimum distance between the robot and any point on

an obstacle is less than 2 meters, the obstacle avoidance

mechanism is triggered and the heading vector is designed

to point at the leftmost or rightmost point on the obstacle.

It can be seen that the Lyapunov function always decreases

and there are some discontinuous decreases caused by robot

merging.

V. CONCLUSIONS

The first contribution of this paper is to propose a multi-

robot rendezvous control law that merely requires local

bearing measurements. The control law provides a simple

solution to vision-based multi-robot rendezvous problems

and verifies that inter-robot distance information is not nec-

essarily required in order to achieve rendezvous. The second

contribution of this paper is to generalize the proposed

bearing-only rendezvous control law by introducing an extra

heading vector. It has been proved that the convergence of

rendezvous is still guaranteed under some mild conditions.

The heading vector provides great flexibility to adapt the

control law to adapt for nonholonomic models and obstacle

avoidance.

Many problems regarding bearing-only rendezvous are

still unsolved. For example, this paper merely considered

undirected and fixed sensing graphs. Directed and switching

sensing graphs should be addressed in the future. In addition,

the simulation has shown that the control law achieves

rendezvous within finite time. How to prove finite-time

convergence and estimate the convergence time need to be

studied.
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