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In vivo models in breast cancer research: progress, challenges
and future directions
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ABSTRACT
Research using animal model systems has been instrumental in
delivering improved therapies for breast cancer, as well as in
generating new insights into the mechanisms that underpin
development of the disease. A large number of different models are
now available, reflecting different types and stages of the disease;
choosing which one to use depends on the specific research question
(s) to be investigated. Based on presentations and discussions from
leading experts who attended a recent workshop focused on in vivo
models of breast cancer, this article provides a perspective on the
many varied uses of these models in breast cancer research, their
strengths, associated challenges and future directions. Among the
questions discussed were: how well do models represent the different
stages of human disease; how can we model the involvement of the
human immune system and microenvironment in breast cancer; what
are the appropriate models of metastatic disease; can we usemodels
to carry out preclinical drug trials and identify pathways responsible
for drug resistance; and what are the limitations of patient-derived
xenograft models? We briefly outline the areas where the existing
breast cancer models require improvement in light of the increased
understanding of the disease process, reflecting the drive towards
more personalised therapies and identification of mechanisms of
drug resistance.
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Introduction
Clinical management of breast cancer has improved significantly
over the past 30 years, with almost 87% of women surviving their
diagnosis for at least 5 years compared with only 53% of those
diagnosed in the early 1970s (cancerresearchuk.org; accessed
December 2016). Nonetheless, breast cancer remains the leading
cause of cancer-related female death worldwide with more than half
a million women succumbing to the disease annually (Torre et al.,
2016) including around 11,500 in the UK (breastcancernow.org;
accessed December 2016). One of the reasons for this is that breast
cancer is not a single disease entity (Curtis et al., 2012) and ‘one
size’ does not ‘fit all’ for clinical management, treatment nor, as
discussed here, modelling of the disease. Breast cancer is treated
based on the receptor status of the tumour, specifically oestrogen

receptor (ER), progesterone receptor (PR) and human epidermal
growth factor receptor-2 (HER2), and the main molecular subtypes
are termed Luminal A (ER/PR-positive); Luminal B (ER/PR-
positive, higher histological grade than Luminal A); HER2-
positive; and triple-negative (ER/PR/HER2-negative) (Cardiff and
Kenney, 2011). Tailored therapies have led to considerable success
in treating some breast cancers, such as hormone therapies (e.g.
tamoxifen, and inhibitors of the enzyme aromatase, involved in
oestrogen synthesis) for ER-positive disease, and trastuzumab
(Herceptin) for HER2-positive breast cancer; however, drug
resistance to these regimes is common (Osborne and Schiff, 2011;
Palmieri et al., 2014; Luque-Cabal et al., 2016). Furthermore, there
is still no good targeted therapy for triple-negative breast cancer,
which is one of the more aggressive subtypes of the disease
(Kalimutho et al., 2015; Gu et al., 2016). In addition, whilst primary
breast cancer is highly treatable [80-99% of women diagnosed with
stage I/II breast cancer survive to 5 years; (cancerresearchuk.org;
wcrf.org)], there is no cure currently available for metastatic breast
cancer, which affects an estimated 40% of UK patients
(breastcancernow.org) and likely accounts for the decline in
survival rate to 65% at 20 years post-diagnosis. Genetic
sequencing endeavours have identified many of the mutations
implicated in breast cancer (Nik-Zainal et al., 2016), which may
lead to the development of new therapeutic options; however, the
functional role of these alterations in the different subtypes has still
to be confirmed, and their distinct roles during disease progression,
tumour heterogeneity and dormancy, clarified (Eccles et al., 2013).

Scientists have capitalised on in vivo models as important
research tools to study the pertinent questions in breast cancer
research (Fig. 1). By ‘in vivo’ we refer to a living organism and we
will restrict our discussions to the mouse, a physiologically relevant
system in which to explore cancer initiation, invasion and
metastasis, and which represents an essential step between in vitro
systems and clinical studies. Researchers now have access to a broad
range of mouse models, each with its own strengths and limitations
(see overview in Table 1). A clear understanding of these parameters
is paramount in order to choose the model best suited to address the
specific research questions posed. SEARCHBreast, an organisation
dedicated to sharing animal resources (see Box 1), hosted a
workshop (searchbreast.org/workshop3.html) to showcase the
contribution these complex models have made to breast cancer
research highlighting recent developments and discussions on how
shortfalls in existing models could be addressed in the foreseeable
future. The workshop, open to all UK researchers with an interest in
breast cancer, involved presentations and discussions from leading
groups with broad expertise in utilising breast cancer mouse models
in a variety of areas, from disease mechanisms to preclinical trials.
In this workshop-inspired perspective, we highlight recent progress
in mouse models of breast cancer, and discuss some of the
outstanding issues researchers are grappling with in their pursuit of
the best in vivo model for their research question. The article is not
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First transplantable mouse mammary
tumour linea

Mouse mammary tumour virus
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causes high incidence of
mammary tumoursb 
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First xenograft models of breast cancer
Heterotransplantation of human malignant

tumours into the nude moused
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CDX models show therapeutic benefit of
Herceptin in HER2+ breast cancer cellsi

First GEMM to model BRCA1
breast cancerj

Patient-derived xenograft (PDX)
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Fig. 1. Modelling breast cancer
through the ages. The figure depicts a
timeline of key events or developments
in the evolution of mouse models of
breast cancer over the years.
Lowercase letters denote the following
references, to which the reader is
referred for further reading on specific
milestones: aCardiff and Kenney, 2011;
bBittner, 1936; cDeOme et al., 1959;
dRygaard and Povsen, 2007; eFidler,
1973; fStewart et al., 1984; gMuller et al.,
1988; hFu et al., 1993; iBaselga et al.,
1998; jXu et al., 1999; kBeckhove et al.,
2003; lBehbod et al., 2009; mDeRose
et al., 2011; nWhittle et al., 2015; oWurth
et al., 2015; phttps://www.jax.org/news-
and-insights/jax-blog/2015/april/the-
next-big-thing-in-cancer-modeling-
patient-derived-xenografts-in-humaniz.
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intended to give an exhaustive review of the vast literature but will
give readers a current overview of the advantages, limitations and
challenges that lie ahead for breast cancer researchers and especially
those utilising, or wishing to adopt, mouse models to study this
heterogeneous disease.

Modelling breast cancer development, therapeutic targeting
and drug resistance
One of the main challenges in developing in vivo models has been
the increasing understanding of the many different subtypes of
breast cancer (Perou et al., 2000; Sorlie et al., 2003; Curtis et al.,
2012; Cancer Genome Atlas Network, 2012). Ideally, this
complexity should be faithfully reflected in model systems.
Although the field has access to a wide variety of mouse models
that have evolved over the years (Fig. 1), certain models are much

more commonly used than others and not all subtypes are
represented. The main model systems and their application to date
are briefly outlined below.

Cell-line-derived xenografts
One of the simplest and therefore most commonly used model
systems is based on engraftment of human cell lines (Neve et al.,
2006) to immunocompromised animals [cell-derived xenografts
(CDX)]. These have proven to be extremely useful for assessment of
breast cancer genetics, biological processes, and to some degree,
metastatic potential; but are limited by their reduced intra-tumoural
heterogeneity and their poor record of predicting clinically effective
therapies (Whittle et al., 2015 and references therein). In addition,
the lines used are frequently derived from highly aggressive
malignant tumours or plural effusions (fluids drained from lung

Table 1. Advantages and disadvantages of the main types of in vivo murine models of breast cancer

Model Advantage Disadvantage

Ectopic CDX (human tumour
cells implanted subcutaneously)

Fast, cheap, technically simple
Involves human tumour cells
Tumour volume is easy to measure with callipers
Resectable tumours possible

Immunocompromised host
Not all subtypes grow
Tumour growing in peripheral site
Models advanced disease only

Orthotopic CDX (in mammary
gland/fat pad)

Appropriate microenvironment
Tumour size measurable with callipers
Resectable tumours possible

Technically more complex than ectopic models
Immunocompromised host
Not all subtypes grow
Models advanced disease only

Metastatic CDX (following tail
vein or intra-cardiac injection)

Reproducible tumour growth in specific sites (bone, lung) No primary tumour so early stages not mimicked
Technically demanding (e.g. intra-cardiac injection for
bone metastases)

PDX Human tumour cells or fragment implanted
Tumours maintain histopathological features and genetic
profiles of the original patient tumours

Resectable tumours possible

Aggressive subtypes favoured
Requires access to fresh patient material
Relatively high cost
Immunocompromised host
Mouse stroma replacing human with increasing passages
Protracted time

Syngeneic (mouse tissue
implanted to strain-matched host)

Usually fast-growing tumours
Tumour and microenvironment derive from the same
species

Immunocompetent host
Resectable tumours possible
Can be metastatic

Mouse microenvironment
Metastatic site, frequency and latency highly variable
Models advanced disease state only

Conventional GEMM Natural microenvironment
Immune system intact
Early and late stages of tumour progression modelled
Can be metastatic (e.g. MMTV-PyMT/lung)

Mouse microenvironment
Genetics not truly representative of human disease
Often supra-physiological gene expression levels due to
uncontrolled integration of transgene

Lacks temporal control
Cannot be used to test certain therapies (e.g. monoclonal
antibody)

Conditional GEMM Natural microenvironment
Targeting of specific cell types (i.e. ER−/ER+)
Immune system intact
Early and late stages of tumour progression modelled
Recapitulates genetic heterogeneity
Representative histopathology
Time-controlled tumour initiation

Mouse microenvironment
Low frequency of metastasis and rarely models clinical
metastasis

Extensive breeding programmes involved (cost and time
implications)

Undesirable expression/activity in non-mammary tissues
(e.g. driven by Krt5-Cre)

Cannot be used to test certain therapies (e.g. monoclonal
antibody)

Humanised models (including human
immune cells, human primary bone
cells or tissue samples)

Involve human tumour cells and humanmicroenvironment Not standardised between laboratories with large
variability

Protracted time
Relies on access to fresh human ‘normal’ tissue or using
immortalised human cell lines

Very high cost
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metastasis) such as the frequently studied MDA-MB-231 line,
making these less useful for modelling early events in the evolution
of the primary tumour. Although well-characterised cell lines
representing the common clinical subtypes – luminal A (e.g. MCF-
7, T47D), luminal B (e.g. BT474, MDA-MB-361), HER2+ (e.g.
SKBR3, HCC202) and triple negative (e.g. BT20, MDA-MB-231,
MDA-MB-468) – have been extensively studied, not all can be
established in vivo (Holliday and Speirs, 2011) and in particular
there is a dearth of tumourigenic HER2+ lines. Furthermore, long-
term growth in vitro can result in aberrant selection pressures.
CDX models represent a relatively homogenous mass of

transformed breast epithelial cells and as such do not capture the
heterogeneity of human breast tumours, which arise in a niche of
cell types that have symbiotically evolved together (Hanahan and
Weinberg, 2011). Indeed the use of CDX to model the native
tumour microenvironment is difficult, particularly because of the
necessity to use immunocompromised recipients lacking an
effective immune system. The site of transplantation should also
be considered. This can be straightforwardly achieved via
subcutaneous injection (ectopic), or by implanting cells in the
mouse mammary gland (orthotopic), which is more complicated.
The diverse microenvironment of these sites, particularly the
tumour vasculature, significantly impacts tumour growth rate
(Fleming et al., 2010), drug delivery and therapeutic efficacy –
something that should be considered when choosing a cell-line-
based model for preclinical testing of novel agents and/or treatment
schedules (Talmadge et al., 2007; Fung et al., 2015).
Finally, spontaneous metastasis from CDX models is rare,

hampering studies of breast cancer metastasis using this type of
model. However, a few characterised murine cell lines (e.g. 4T1) do

metastasize in syngeneic models (involving transplant of mouse-
derived cells to an independent strain-matched mouse), although
these are currently a limited resource (Johnstone et al., 2015; Erler
et al., 2009; Paschall and Liu, 2016). Otherwise, direct injection of
breast cancer cells into ectopic sites (e.g. bloodstream, femur) can be
used as an experimental metastasis assay.

Patient-derived xenografts
Patient-derived xenografts (PDXs) – involving the transplantation of
primary human cancer cells or tumour pieces into host mice – were
developed to address the shortcomings of CDX, heralding hope for
models with improved clinical relevance. Although transplantation of
human tumour fragments into immunocompromised mice has a long
history (reviewed in Hoffman, 2015), there is renewed interest in
PDXmodels because of the preservation of many relevant features of
the primary human tumour, including growth kinetics, histological
features, behavioural characteristics (such as invasiveness and
metastatic capacity) and most importantly, response to therapy
(Marangoni et al., 2007; DeRose et al., 2011; Tentler et al., 2012;
Hidalgo et al., 2014). Indeed, Ledford (2016) reported that the US
National Cancer Institute (NCI) are planning to replace their NCI-60
cell line resource with PDX samples, which underscores the
importance and acceptance of this resource.

Use of PDX models to model disease subtypes and metastasis
Modelling luminal ER+ subtypes, which are found in over 70% of
diagnosed individuals, making these the commonest form of human
breast cancer, has been particularly challenging. This is partly
because successful xenotransplantation selects for the most
aggressive subtypes, hence biasing both CDX and PDX towards
the triple-negative subtype (reviewed by Tentler et al., 2012; Cottu
et al., 2012). The recent demonstration, however, that transplanting
ER+ cells (derived from cell lines and primary patient material)
directly into the mouse ductal epithelium rather than the fat pad
(Behbod et al., 2009) can preserve the luminal/ER+ phenotype of
these cells through avoiding activation of the TGFβ signalling
pathway, is encouraging (Richard et al., 2016; Sflomos et al., 2016).
Not only does this facilitate establishment of a less-aggressive
breast cancer subtype, but more importantly maintains faithful
representation of the naïve human disease and has been described as
a ‘potential game-changer’ for preclinical modelling of ER+ breast
cancer (Haricharan et al., 2016). Indeed, PDXs derived from ER+,
HER2+ and triple-negative disease, representing the main clinical
subtypes, have been described (Dobrolecki et al., 2016).

Importantly, encouraging results have been obtained in which
PDX models effectively model metastasis, with recent protocols
showing preservation of patterns of metastatic spread representative
of the clinical situation (DeRose et al., 2013). However, as PDXs are
most commonly generated at the point of breast cancer surgery, it is
difficult to assess to what extent their capacity to form metastases
recapitulate that of the patient without a follow-up period of at least
5 years. A number of studies have reported apparent discrepancies
between the metastatic patterns of PDX compared with those of the
patient from which they originate. The most common metastatic site
in the PDX models are lungs and lymph nodes, whereas brain and
bone metastases are rarely reported, despite occurring frequently in
patients (Eyre et al., 2016; Whittle et al., 2015).

PDX models for preclinical therapy testing
Evidence supporting the usefulness of PDX models in identifying
clinically relevant treatment resistance mechanisms is amassing (ter
Brugge et al., 2016). This has even been demonstrated in hard-to-

Box 1. SEARCHBreast and EurOPDX
The workshop was hosted by SEARCHBreast (sharing experimental
animal resources: coordinating holdings – Breast, www.searchbreast.
org); a novel resource funded by theNational Centre for theReplacement,
Refinement and Reduction of Animals in Research (NC3Rs) to create a
secure, searchable database of archived material derived from in vivo
breast cancer models, which is available to share between researchers
(Blyth et al., 2016). Use of this resource could allow new animal
experiments to be avoided, or refined, ultimately reducing the number of
animals used for research, as well as saving the time andmoney required
to run in vivo experiments from scratch (Morrissey et al., 2016). At the
heart of SEARCHBreast is the fact that many labs have surplus tissues
from in vivo experiments left over at the end of a study, while other
researchers would benefit from access to such material. SEARCHBreast
is a no-cost mediator that brings together these collaborations. The web-
based platform contains information on thousands of tissue samples that
are available for immediate use following a simple online request.
Samples are available free of charge from over 85 different mouse
models, including GEMM, xenograft and patient-derived xenografts. With
almost 250 members across the UK and internationally, SEARCHBreast
is a large network of breast cancer researchers with collective experience
with in vivo, in vitro and in silico models of breast cancer.

The EurOPDX consortium (www.europdx.eu), established from
partners in 10 different European countries covering 16 academic
institutions, is a network of cancer scientists and clinicians who have
pioneered the standardisation of PDX models as clinically relevant
models of human cancer. EurOPDX has created an extensive virtual
collection of PDX models (>1500) encompassing many cancer types
that have been genomically and histologically characterised in well-
established laboratories. The aim of the consortia is to unify and
harmonise the use of PDX models, which could lead to better resources
for investigating predictive biomarkers and testing novel therapeutic
approaches, and ultimately, personalised cancer treatment.
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model ER+ breast cancer, inwhich phosphoinositide 3-kinase (PI3K)
pathway activation and outgrowth of stem cell populations, have been
found during acquired resistance to anti-oestrogen therapies (Cottu
et al., 2014; Simões et al., 2015). Key challenges that still need to be
addressed, however, include the overall under-representation of ER+

tumours, as well as the aforementioned bias towards more aggressive
tumours. Furthermore, such bias towards aggressive tumours may
falsely infer therapeutic benefit (or indeed not) considering that less-
aggressive cancers may not respond in the same way to therapy as
those which are more proliferative and/or have different molecular
alterations. Finally, the study of the tumour microenvironment is
compromised both by intrinsic species differences (e.g. mouse fat
pad) and the lack of immune cells in tolerant hosts. This latter point is
notable considering the impact of immune-based therapies in the
clinic (Varn et al., 2016) and is discussed below.
Some have mooted the possibility of PDX models as mouse

‘avatars’ for personalising treatment to individual patients; however,
clinical decision-making is quick (weeks), compared with the time
taken to establish a PDX and using it to test the response to different
therapeutic regimens (months to years), so currently the potential of
these models is limited to cohort-based preclinical studies.
Regardless of these limitations, the wide acceptance of PDX
models in the pharmaceutical industry is worthy of mention. There
has been an explosion in the commercial sector in the use and
availability of PDXs as the model of choice for translational
research. Companies such as Champions Oncology and Crown
Biosciences offer partnerships to run preclinical drug trials, while
certain suppliers such as Horizon Discovery and The Jackson
Laboratories make these models available to academic institutions.
This is a fast-moving field and efforts are now being honed into
producing humanised systems (see below).

Genetically engineered mouse models
For addressing early events in the tumour process, genetically
engineered mouse models (GEMMs) come into their own. In these
models, spontaneous tumour initiation occurs within the correct
microenvironment from an otherwise normal mammary cell. These
may be simple oncogenic-driven transgenic mice, referred to here as
conventional GEMM (e.g. MMTV-PyMT). One limitation to the
conventional GEMM models is that not only are the regulatory
sequences used to drive transgene expression not well-defined in
terms of specific lineage/expression domains, but also, the specific
oncogenes may not necessarily reflect those observed in human
tumours. Nonetheless, these models continue to serve a purpose in
breast cancer research (Blaas et al., 2016; Arun et al., 2016).
With these limitations inmind, the field has turned tomore specific

models emulating the genetics of human disease with spatial and
temporal activation of oncogenes and deletion of tumour suppressors
targeted to the mouse mammary gland (e.g. Blg-Cre;Brca1fl/fl;p53fl/
fl). These conditional GEMMs use the Cre/loxP system in which a
tissue-specific promoter drives expression of the bacterial enzyme
Cre recombinase (e.g. Blg-Cre) within the mammary gland to elicit
recombination of DNA between loxP sites (e.g. introduced into the
coding region of tumour suppressors such as p53 andBrca1). Lists of
the many different breast cancer GEMMs (conventional and
conditional) can be found in other recent reviews (Pfefferle et al.,
2013; Borowsky, 2011; Menezes et al., 2014; Dabydeen and Furth,
2014; Greenow and Smalley, 2015; Ben-David et al., 2016).

Recreating tumour pathology in GEMMs
Pathological profiling has been essential in disease classification,
prognosis and disease management and remains the clinical basis of

stratification, so it is important that as well as genetic complexity,
the tumour pathology is faithfully recapitulated in genetic models
(Blyth et al., 2012). This has worked well for some epithelial
cancers (e.g. pancreas, colon); however, there is a concern that
models of breast cancer do not always reflect the pathology of the
human disease. Historical models of spontaneous and mouse
mammary tumour virus (MMTV)-infected tumours (Fig. 1) do not
share histological features of human tumours (Cardiff et al., 2004)
while specific oncogenic models in the form of conventional
GEMMs (e.g. MMTV-Wnt1 and MMTV-PyMT) can demonstrate
phenotypic similarities as well as disparities (Cardiff and Wellings,
1999). A consensus of medical and veterinary pathologists voiced
caution over the interpretation of tumours derived from breast
cancer GEMMs and advocated the inclusion of pathology expertise
in any research team using these models (Cardiff et al., 2000). With
an exponential rise in the number of breast cancer models now
available, there has been a push to revisit these guidelines and a
meeting of in vivo biologists and pathologists is planned for the near
future. Meanwhile, publications (Munn et al., 1995; Cardiff et al.,
2000; Ponzo et al., 2009; Cardiff, 2010; McCarthy et al., 2007;
Fathers et al., 2010; Meyer et al., 2013; Melchor et al., 2014; Bao
et al., 2015) and online tools (tvmouse.ucdavis.edu/pathology/) are
available to aid in the comparative assessment of GEMM tumour
pathology.

Modelling breast cancer subtypes in genetic models
The mature mammary gland is principally composed of two
epithelial lineages comprising the luminal and basal cells. At the
simplest level, breast cancer heterogeneity arises from origins in
these different cell types with unique and associated gene signatures
in distinct breast cancer subtypes (Sorlie et al., 2001; Prat and Perou,
2011). Recreating these subtypes in GEMMs has been attempted by
targeting a variety of oncogenic drivers to the different mammary
lineages. To this end, keratin 14 promoter (Krt14)-Cre or keratin 5
promoter (Krt5)-Cre have been used to direct oncogenic events to
the basal lineage; whey acidic protein promoter (Wap)-Cre and
keratin 8 (Krt8)-Cre to target luminal cells, and β-lactoglobulin
(Blg)-Cre and Cited1-Cre to specifically target ER− and ER+

luminal cells, respectively. However, despite the use of lineage-
specific promoters, a complete characterisation in the expression
pattern of these Cre recombinases has not been done, and so ‘off-
target’ and/or unexpected expression can confound studies. For
example, Krt14-Cre can be active in the luminal as well as basal
lineages (Jonkers et al., 2001; Regan et al., 2012), hampering
complete separation of events in these populations. Furthermore,
there is a lack of specificity in some Cre recombinases, such as with
Krt14-Cre, which is expressed in skin and dental epithelium
(Dassule et al., 2000), resulting in issues with skin tumours (Liu
et al., 2007) or normal feeding capability, depending on the genetic
changes introduced by that promoter. Caveats aside, genetic
profiling has aligned GEMMs with specific molecular subtypes
(Herschkowitz et al., 2007; Pfefferle et al., 2013; Hollern and
Andrechek, 2014), highlighting the utility of genetic models in
modelling the human disease.

Usefulness of GEMMs in determining the cell of origin
The use of lineage-restricted GEMMs has been instrumental in
studies to identify the cell of tumour origin (Lindeman and
Visvader, 2010; Beck and Blanpain, 2013; Brooks et al., 2015;
Koren and Bentires-Alj, 2015). A prime example of this was the
demonstration that breast cancer 1 susceptibility gene (Brca1)-
deficient breast cancers originated from luminal progenitors,
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contrary to the expectation that these were of basal stem cell origin
(Molyneux et al., 2010; Lim et al., 2009). However, breast cancer is
not just one disease and whether there are one or more different
types of tumour-initiating cell remains to be determined. The origin
of the normal post-natal mammary tissue itself (from either a multi-
lineage basal mammary stem cell, or a lineage-restricted progenitor)
has been a source of contention, and extensively explored using in
vivo lineage tracing and transplantation models (Visvader and
Stingl, 2014; Wuidart et al., 2016). Studying the tumour-initiating
cell in genetic models is also hindered by the variable efficiencies of
different reporters that are used to ‘tag’ cell populations and the
specificity/off-target expression of Cre recombinase, as described
above. Furthermore, the effect of the driver mutation on the targeted
cell needs to be considered. PIK3CA (phosphatidylinositol 3-
kinase, catalytic, alpha polypeptide), a common genetic driver of
breast cancer, invokes mixed-lineage tumours even when expressed
in unipotent progenitor cells, demonstrating plasticity (Van
Keymeulen et al., 2015; Koren et al., 2015) as well as lineage
switching (i.e. expression of PIK3CA in a basal-progenitor cell
giving rise to luminal tumours).

Preclinical testing in genetic models
Whilst targeted therapies have been a resounding success in breast
cancer, relapse due to drug resistance remains a problem. GEMMs
have been used to define the molecular mechanisms of drug
resistance in vivo and have the advantage that pathway inactivation
can be achieved either genetically and/or pharmacologically. For
example, deregulation of cell cycle control (Goel et al., 2016) or loss
of phosphatase and tensin homologue (PTEN) (Creedon et al.,
2016) were shown to be important in conferring resistance to anti-
HER2 therapies (e.g. trastuzumab). Of course, these mechanisms
have to be shown to be relevant to the human disease; hence
validation in primary patient material is essential. Towards this goal,
c-Myc amplification in a genetic model of PIK3CA-related breast
cancer was discovered to circumvent PI3K-targeted treatment, in
agreement with the observation that high MYC levels aligned with
mutation of PIK3CA in patient samples (Liu et al., 2011). Also,
when searching for mechanisms of resistance to poly(ADP ribose)
polymerase (PARP) inhibitors in BRCA1-associated disease,
downregulation of the tumour suppressor p53-binding protein 1
(53BP1) and its downstream effector MAD2L2 (MAD2 mitotic
arrest deficient-like 2; previously known as REV7 ), led to rescue of
homologous recombination in BRCA1-deficient cells through
reinstatement of double-strand-break signalling (Jaspers et al.,
2013; Xu et al., 2015). These genes are also downregulated in the
human disease, showing their credibility for clinical relevance,
while there is some doubt over whether upregulated expression of
ATP-binding cassette 1 (ABC1) transporters, also seen in the same
mouse models, is a bone fide resistance mechanism in patients
(Rottenberg and Borst, 2012; Borst, 2012).
The use of GEMMs in ‘preclinical breast cancer trials’ for new

drug combinations is gaining momentum, but as highlighted in the
SEARCHBreast workshop, the successful design and execution of
appropriate preclinical in vivo trials requires close collaboration
between clinicians and scientists from the outset. As a proof of
concept, a BRCA1 breast cancer model shown to respond to a
combination of cisplatin with PARP inhibition (Rottenberg et al.,
2008) with further benefit provided by long-term PARP inhibition
(Jaspers et al., 2013), led to the US Food and Drug Administration
(FDA) approving such a regime for treatment of platinum-sensitive
relapsed ovarian cancer (Ledermann et al., 2012; Matulonis et al.,
2016). Disease-specific genetic and syngeneic models (in particular

involving transplant of GEMM tissue to recipient strain-matched
mice) together with PDX models, hold great potential for the
evaluation of patient-relevant regimes. For instance, GEMM-
derived and PDX tumours could be used as platforms for
preclinical testing of monotherapies versus dual/combination
treatment for direct comparison; or testing the merits of neo-
adjuvant (first-line) therapy against surgical resection plus adjuvant
treatment for efficacy.

Modelling clinically relevant metastasis in GEMMs
A few key conventional GEMM models (e.g. MMTV-PyMT and
MMTV-Erbb2) show manifestation of spontaneously arising
metastatic disease in lymph nodes and lungs. These models have
been, and continue to be, used to study metastatic disease (Kabeer
et al., 2016). So for example by genetically deleting their gene of
interest, investigators showed how transforming growth factor beta
(Tgfb1) and β1-integrin (Itgb1) are important in metastasis (Bierie
et al., 2008; Huck et al., 2010). Furthermore, conventional GEMMs
were instrumental in demonstrating that metastatic spread was an
early step in breast cancer progression (Hüsemann et al., 2008).
However, as with CDXs and some PDXs described above, an
impediment of GEMMs is that relatively few mimic clinical
metastasis (i.e. to the brain and bone), which is responsible for the
majority of breast-cancer-associated deaths.

A drawback of using conditional GEMMs to study metastatic
disease is low penetrance of metastasis. Therefore, large cohorts of
animals have to be followed for a prolonged period of time in order
for metastatic disease, and effects of therapies thereon, to be
accurately measured. While individual GEMM cohorts develop
tumours with highly variable latency and inconsistent metastatic
penetrance, the syngeneic system used by the Jonkers lab of
implanting orthotopic GEMM tumour fragments (Rottenberg et al.,
2007) allows a more homogeneous cohort at the study outset.
Surgical resection of the mammary tumours in the Jonkers’
syngeneic model then permits the development and subsequent
evaluation of metastasis, although the authors still report
considerable heterogeneity in latency and number of organs
affected (Coffelt et al., 2015). This approach could prove useful if
it can be extended to other genetic models, although one must
consider that in vivo transplant/passage of GEMM tissue requires
the use of an inbred mouse strain to benefit from immune
competency. Propagation of tumours originating from a mixed
strain can of course still be performed using immunocompromised
recipients to avoid host-graft rejection but this is more costly and
limited by a non-physiological microenvironment lacking a
functional immune component.

The impact of technological advances on breast cancer
models
The sophisticated models now at our disposal have only been made
possible through ongoing technological advancement. It thus seems
fitting to chart some of the relevant history as a preface to how we
could improve the toolbox to assist in addressing the topical issues
of the here and now.

The imaging revolution
Precise imaging modalities, which are now at the disposal of
researchers, have permitted imaging at the single-cell and whole-
organism levels. A new era of cancer imaging was heralded with
the discovery of green fluorescent protein (GFP) and the realisation
that cells could be genetically engineered to express this without
detrimental effects (Misteli and Spector, 1997), enabling
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researchers to locate and track cancer cells and tumour colonies
without the need for specific markers or antibodies. This has
facilitated mapping of breast tumour development and metastatic
progression, as well as evaluation of responses to therapy (Hoffman,
2002). GFP continues to be a useful tool in most breast cancer
research laboratories, despite the development of the next
generation of imaging probes, allowing easy identification and/or
separation of GFP+ tumour cells from a mixed population (Lizier
et al., 2016; Holen et al., 2015).
Subsequently, the use of bioluminescence allowed sensitive and

rapid in vivo imaging following injection of the substrate luciferin in
animals bearing tumour cells genetically engineered to express
firefly luciferase (Edinger et al., 1999). Tumour growth kinetics, as
well as therapeutic responses, can now be monitored in the same
animal over time (Gross and Piwnica-Worms, 2005; Henriquez
et al., 2007). Researchers have embraced this new capability and
used it to explore the role of specific molecules in breast cancer
development, progression and response to treatment (examples in
Serganova et al., 2009; Lu et al., 2010).
Technological advances, such as the use of mammary imaging

windows pioneered by the Condeelis and van Rheenen labs (Kedrin
et al., 2008), in parallel with the increasing sophistication of
molecular probes and other tools have enabled visualisation of
tumours in vivo. A new generation of confocal and multi-photon
microscopes allows visualisation of the interactions between
individual breast tumour cells and the microenvironment (e.g. the
microvasculature) (Malladi et al., 2016). Initially, this was only
possible ex vivo, but increased capability for intra-vital microscopy
has provided new information regarding how cancer cells move and
respond to stimuli in the live animal (Wyckoff et al., 2011; Patsialou
et al., 2013; Nakasone et al., 2013). For example, the early stages of
local breast cancer invasion (Giampieri et al., 2009) and stromal cell
dynamics (Lohela and Werb, 2010; Ewald et al., 2011) have been
elucidated using this technology. Furthermore, elegant in vivo
imaging studies have been used to decipher the behaviour of
metastatic cells in real time (Zomer et al., 2015; Harney et al., 2015;
Beerling et al., 2016).
Although not widely available, a range of quantitative functional

imaging capabilities, e.g. PET (positron emission tomography)/CT,
SPECT (single photon emission computed tomography)/CT and
PET/MRI (magnetic resonance imaging) are being adapted for
preclinical research, leading to increased understanding of tumour
development and effects of therapy (Consolino et al., 2016).
Furthermore, the advancements in imaging capability have
facilitated sophisticated lineage-tracing studies in GEMMs,
enabling insights into different cell populations, and in particular
the tracking of the mammary stem cell (Rios et al., 2014; van
Amerongen, 2015; Sale and Pavelic, 2015) and cancer stem cell
(Zomer et al., 2013).

Improved molecular engineering and the development of targeted
genetic models
The application of gene targeting to manipulate the mouse genome
(Thomas and Capecchi, 1987; Capecchi, 2005) revolutionised the
use of GEMMs to model cancer. Another key advance was the
ability to direct these changes to the tissue of interest using site-
specific recombinases (e.g. the Cre/loxP system, described above)
circumventing lethal and off-target effects elicited by germline
deletion of fundamental genes (Sauer and Henderson, 1988). This
has permitted targeting of breast cancer mutations, such as deletion
of key tumour suppressors BRCA1, BRCA2, p53 and PTEN,
specifically to the mouse mammary epithelium to provide models

for the human disease (Jonkers et al., 2001; Diaz-Cruz et al., 2010;
Melchor et al., 2014). Whilst conditional GEMMs are a key
resource, one limitation is the inability to model natural tumour
evolution (early versus late events), because of the simultaneous
rather than temporal activation of multiple genetic events. The
principle of different site-specific recombinases (Olorunniji et al.,
2016) to achieve sequential mutations in a time-dependent way is
possible, although have not yet been widely applied.

Another major impediment to using GEMMs for dissecting
multistage tumourigenesis is the extensive, and time-consuming,
breeding programmes required to achieve relevant compound
genetic alleles (sometimes requiring in excess of five alleles).
Some groups have expedited this process by targeting new alleles in
embryonic stem cells derived from pre-existing GEMMs (GEMM-
ESCs), an approach that shows excellent potential for streamlined
and high-throughput studies (Huijbers et al., 2014, 2015;
Henneman et al., 2015). Others meanwhile have applied inducible
in vivo short hairpin RNA (shRNA)-based knockdown as ameans to
investigate loss of specific tumour suppressor genes without the
need for protracted breeding programmes (Ebbesen et al., 2016).

Within the last decade, increasingly fast, cheap and reproducible
genetic sequencing, coupled with improved bioinformatics and
pathway analysis tools, has resulted in the identification of
mutations that are potentially involved in breast cancer development
and progression (Banerji et al., 2012; Ellis et al., 2012; Curtis et al.,
2012; Nik-Zainal et al., 2016; Ferrari et al., 2016). Whether these
genetic alterations are indeed functional can only be established
through experimental validation using in vivo tumourigenesismodels.
High-throughput approaches – such as those using GEMM-ESCs and
shRNA –will be necessary if biological verifications of new genes are
to match the speed of these discoveries. A recent report, describing
how the CRISPR/Cas9 gene-editing system could be combined with
GEMM to provide in vivo validation of a candidate tumour suppressor
in invasive lobular breast cancer demonstrates a powerful new system
for the elucidation of functional relevance in the context of mammary
carcinomas (Annunziato et al., 2016). This is a perfect example of
how advances in one field (gene editing) can be utilised to drive
continued development of preclinical modelling in breast cancer.
Furthermore, applying high-throughput ‘omics’ and forward genetic
screens (e.g. retrovirus or transposons) (McIntyre et al., 2012) to
murine-derived tumours provides a platform for discovery of
additional cancer-associated mutations (Francis et al., 2015). Of
course, these also need to be cross-referenced for relevance in the
human disease, but have demonstrable potential to open up new
therapeutic avenues; for example, where profiling of mouse tumours
highlighted the druggable targetMet as a secondary mutation in p53-
deficient tumours, pointing to a putative new target for treating triple-
negative breast cancer (Francis et al., 2015; Pfefferle et al., 2016).

The expertise in cultivating PDXs provides more clinically relevant
models
As discussed above, PDX models have been welcomed by the
community as possibly the most promising for precision medicine
(Hidalgo et al., 2014; Whittle et al., 2015). Thus, refinement in the
protocols to manipulate and propagate primary patient material over
recent years (Zhang and Lewis, 2013; DeRose et al., 2013) has been
a key advancement. The choice of recipient strains, use of hormone
supplementation and site of implant (i.e. intraductal delivery) have
all contributed to the success of creating a renewable resource in the
form of stably transplantable PDX models that faithfully maintain
the characteristics of the original tumour (DeRose et al., 2011).
Access to patient samples via clinical interactions or engagement
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with specialist biobanks such as the Breast Cancer Now Tissue
Bank (breastcancertissuebank.org/) is a necessity and the relevant
expertise is currently limited to a relatively small number of labs.
However, as increasing numbers of breast cancer PDX models are
made available through commercial entities (as discussed above)
and consortia such as EurOPDX (see Box 1) and the International
Breast Cancer Patient-derived Xenograft Consortium (Dobrolecki
et al., 2016), enhanced use of these models is expected. In addition,
short-term cultures have been generated from some of these and
used as models for high-throughput drug screening (Bruna et al.,
2016) and to determine mammosphere-forming efficiency in vitro
(Eyre et al., 2016). These studies illustrate the power of these
models, which are likely to be used increasingly in the future. For a
comprehensive review of breast cancer PDXs, including their
limitations, the reader is referred to Dobrolecki et al. (2016).

Building a toolkit fit for the future
Although models are continually evolving to incorporate novel
technological and biological advances to improve their utility and
clinical relevance, there are still refinements to be made. These
require tailoring to address the pertinent questions in the field. In
this section, we forecast what the future landscape in development
of optimised models and tools might be.

Using GEMMs to model the microenvironment
The importance of the microenvironment in tumour evolution is
undisputed (Hanahan andWeinberg, 2011). For example, researchers
have demonstrated how macrophages and a highly interactive stroma
with cross-talk between the microenvironmental cell types and
tumour cells are part of tumour evolution (Qian and Pollard, 2010;
Dovas et al., 2013; Noy and Pollard, 2014; Lewis et al., 2016).
Furthermore, the immune system can be hijacked into fuelling breast
cancer growth and metastasis (Coffelt et al., 2015). Whilst co-
injection of stromal and cancer cells to generate CDXs has its place
(Orimo et al., 2005), it is time to refine these models. GEMM and
syngeneic models are superior for studying the microenvironment as
they have an intact immune system, which needs to be given due
consideration when testing therapeutic strategies (Coffelt and de
Visser, 2015). One caveat of all models is that the microenvironment
ismurine-derived; even in PDX tumours, the stroma of themouse host
gradually replaces that of the human within 3-4 passages. Regardless,
it is noteworthy that studies using GEMMs have elegantly
demonstrated just how important the (murine) stroma is for tumour
evolution. For example, specific deletion ofPten in stromal fibroblasts
(Trimboli et al., 2009) or E2f3 in macrophages (Trikha et al., 2016)
modifies tumour growth and metastasis, respectively. Limitations
arise, however, because the micro-environmental gene alteration
tends to be under Cre/loxP control (e.g. LysCre:E2f3fl/fl), which
prohibits application in Cre/loxP-driven tumour models. Therefore,
syngeneic tumour implants or conventional transgenic tumourmodels
(e.g. MMTV-Erbb2; MMTV-PyMT) are used rather than more
physiologically relevant GEMMs. As stromal influences are likely
to impact differently on subtypes of breast cancer (Wallace et al.,
2011), it is important to consider the use of alternative site-specific
recombinases (Olorunniji et al., 2016) to direct the stromal gene
modification (e.g. Flp/Frt), whichwould permit investigationwith the
many available Cre/loxP GEMMs.

Humanisation of models in CDX and PDX models
For many situations – such as preclinical studies using monoclonal
antibody therapy, which do not act on the murine gene homologue –
there is a desire to use human cells in transplantation models. In

order to make in vivo models more clinically relevant, researchers
have incorporated cells and tissues to increase the human
component of the tumour microenvironment i.e. to humanise
models. Examples are the implantation of human bone pieces
(Kuperwasser et al., 2005; Holen et al., 2015) or tissue-engineered
scaffolds seeded with human osteoblasts in immunocompromised
animals for studies of bone metastasis (Thibaudeau et al., 2014).
The bone discs were either pre-seeded with human tumour
cells or tumour cells were injected via the intra-cardiac route
once the humanised bone scaffolds were established in the host.
These models allow investigation of the interactions between
human tumour cells and components of the human bone
microenvironment, but they are not yet widely available and
standardisation between laboratories is limited by the intrinsic
variability in donor bone specimens (Holen et al., 2015).

Furthermore, with the increasing interest in immuno-oncology,
efforts have been made to create PDXmodels that incorporate human
immune cells, such as theMiXeno platform fromCrownBiosciences.
One approach to achieve this is by incorporation of immune cells
through co-transplantation of human CD34+ hematopoietic stem cells
and breast cancer cells in immunodeficient mice (Wege et al., 2011,
2014).

Recently, the Jackson Laboratories described humanised PDX
models as the next ‘big thing’ in cancer modelling (www.jax.org/
news-and-insights). Indeed, humanised mice in which triple-
negative breast cancer PDX responds to immunotherapy are now
commercially available. The high cost of these animals is likely to
present a barrier to their general uptake, but they represent an
important step forward in terms of our ability to investigate the
potential utility of immunotherapies in breast cancer.

Optimising the timelines
A particular challenge for researchers is that breast tumour growth
in vivo is most often quite rapid (progressing within weeks), in
contrast to the longer latency of human disease (involving years and
even decades). In this respect, model systems do not represent the
clinical reality; however, it is notoriously difficult to work with
slow-growing models because results need to be delivered within
the normal funding cycle or within the duration of a standard PhD
project (3-5 years). As discussed in the workshop, the realisation
that ‘slow is better’ is often balanced against the need to know
whether a specific genetic or therapeutic manipulation works in a
model whilst sufficient time is still left on a particular grant. It was
agreed that science funding bodies generally support the use of
short-term (and therefore less representative) models, rather than
accepting a more limited (but more clinically relevant) output from
models where it may take 1-2 years before tumours develop. Many
of the workshop participants are members of scientific committees
that make decisions on which projects to fund, so there are
opportunities to influence thinking in this area with the aim of
providing the longer-term funding required to implement the use of
more clinically relevant model systems.

Increasing access to models and material
Working with in vivo model systems is expensive, requires expert
staff and facilities, and can be time-consuming, presenting a barrier
for many researchers. In addition, translation of basic findings into
patient benefit requires evidence to be obtained from several model
systems. Paradoxically, those who routinely use in vivo models are
almost always generating more material than they need for the
purpose of testing the original hypothesis. The SEARCHBreast
initiative (see Box 1) was established in order to bridge this gap by
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allowing researchers to register the availability of surplus archival
material from breast cancer models, providing resources that can be
accessed on a collaborative basis, saving time and money (Blyth
et al., 2016). Although SEARCHBreast contains material from a
range of models, including PDXs, a much larger PDX collection is
available through the EurOPDX consortium (europdx.eu/, see
Box 1). A rapidly expanding resource, this currently contains 54
luminal, 89 triple-negative and 18 HER2+ PDX models, many with
associated transcriptomic characterisation; researchers can access
these models instead of establishing them de novo. With the
increasing cost of carrying out large-scale animal studies, we
envisage that the sharing of models and material will become the
norm, supporting collaborations with laboratories with extensive
expertise, with SEARCHBreast as the trailblazer for this type of
thinking.

Developing the models for the future
Breast cancer progression is characterised by the extended period –
usually several years – between successful treatment of the primary
disease and subsequent relapse (most likely due to the reactivation
of dormant disseminated tumour cells in the bone marrow) (Zhang
et al., 2013). Model systems that incorporate a dormant phase have
been lacking, but some recent studies presented at the workshop
have demonstrated that intra-cardiac injection of human tumour
cells in mature animals (>12 weeks) shows promise in
recapitulating the latency of breast cancer bone metastasis
(Ottewell et al., 2014).
As for other models, it was interesting to see one described recently

for inflammatory breast cancer, a rare but very aggressive type of
breast cancer (Wurth et al., 2015), but there is still a need for a
generation of models of male breast cancer and of systems that allow
separation of pre- versus post-menopausal disease. We highlight the
importance of this point regards disease before and after menopause
because recent clinical trials demonstrated therapeutic benefit of bone-
targeted agents only in post-menopausal women [Early Breast Cancer
Trialists’ Collaborative Group (EBCTCG) et al., 2015]. In addition,
new models will be needed as molecular profiling of human breast
cancers further stratifies this heterogeneous and complex disease.
Better consideration must be given to the specific gene mutations too;
for example, genetic modelling of BRCA1 disease has been achieved
predominantly through allelic deletions, but these are not truly
representative of the patient-derived pathogenic mutant alleles. The
importance of this was recently demonstrated: different Brca1
mutations elicited similar disease patterns but showed differences in
therapeutic response and resistance mechanisms (Drost et al., 2011,
2016). Modelling metastatic disease remains a challenge due to the
need to resect the primary tumour to allow sufficient time for
metastatic disease to develop, as well as the highly variable number,
sites and growth kinetics of resulting metastases. This means that
experimental groups need to be large in order to produce meaningful/
significant data, which increases the number of animals used in
research, puts a burden on resources and can be costly. Furthermore, a
flexible study design, such as treatment starting at different time points
in different animals, is required for such studies. Finally, the use of
models in experimental designs that mimic clinical trials (including in
the context of adjuvant therapy) may become more common,
suggesting that the clinical relevance of experimental systems will
have greater significance in the future.

Summary and conclusions
In vivo models of breast cancer have proven their usefulness in
many different contexts and will continue to contribute to our

understanding of disease progression, therapeutic response and
resistance mechanisms. The field has progressed incredibly in the
last 20-30 years and is likely to evolve further with technological
advances that enhance the growing arsenal with which researchers
can probe unanswered questions. Nonetheless, scientists need to
consider the limitations of each model and choose the one that best
represents the process they aim to model and addresses their specific
research question. New models being developed using patient-
derived tumour material have shown promise, but sharing of these
resources is very important to allow comparison between studies
and make them widely available to the research community.
Meanwhile, new and improved models for metastasis and study of
the microenvironment are urgently required. In sum, although no
perfect in vivo model of human breast cancer will ever exist, such
models remain valuable research tools complemented by clinical
material, ex vivo and in vitro systems, and we are equipped with the
knowledge and technologies to continue improving them.
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