
This is a repository copy of Are neotropical predictors of forest epiphyte–host relationships
consistent in Indonesia?.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/115011/

Version: Accepted Version

Article:

Hayward, Robin Martin, Martin, Thomas Edward, Utteridge, Timothy Michael Arthur et al. 
(2 more authors) (2017) Are neotropical predictors of forest epiphyte–host relationships 
consistent in Indonesia? Journal of Tropical Ecology. pp. 1-5. ISSN 0266-4674 

https://doi.org/10.1017/S0266467416000626

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Are neotropical predictors of forest epiphyte-host relationships consistent in Indonesia? 

 

Running head: Tropical epiphyte diversity 

 

Key Words: canopy, epiphytes, palaeotropics, phorophytes, rain forest, Sulawesi 

 

Robin Martin Hayward
1
*, Thomas Edward Martin

2
, Timothy Michael Arthur 

Utteridge
3
, Abdul Haris Mustari

4
,  Andrew Robert Marshall

1,5
.  

 

1
CIRCLE, Environment Department, Wentworth Way, University of York, Heslington, 

York, YO10 5NG, UK. 

  

2
Operation Wallacea Ltd, Wallace House, Old Bolingbroke, Lincolnshire, PE23 4EX, 

United Kingdom. 

 

3
Identification & Naming Department, Royal Botanic Gardens, Kew, Richmond, 

Surrey, TW9 3AE, United Kingdom.  

 

4
Faculty of Forestry, Department of Conservation of Forest Resources and Ecotourism,  

Kampus Fahutan, IPB Darmaga, Kotak Pos 168, Bogor 16001, Indonesia. 

 

5
Flamingo Land Ltd., Malton, North Yorkshire, YO17 6UX, United Kingdom 

 

*Corresponding author. E-mail: robinmhayward@gmail.com  

mailto:robinmhayward@gmail.com


2 

 

Abstract: Epiphytes represent keystone resources for many arthropod and vertebrate species, 

however their ecology remains poorly explored, especially within the palaeotropics. Several 

recent studies have examined relationships between epiphyte richness and characteristics of 

local habitats, although these have all focussed on neotropical forests. Here, we aim to 

determine whether predictors of neotropical epiphyte richness are consistent at a 

palaeotropical site. A total of 44 host trees (dbh range 25–288 cm) were sampled at two study 

sites on Buton Island, Indonesia. For each tree, epiphyte richness and six variables relating to 

characteristics of the host tree and surrounding habitats were recorded: site (a proxy value for 

disturbance level and water availability), host above ground biomass (agb), bark texture, 

exposure, emergence and crown area. Gaussian GLM analyses indicated that the percentage 

deviance explained in epiphyte richness per host was greatest for agb (20.9%), crown area 

(19.6%) and site (15.5%); similar to previous findings from the neotropics. Results therefore 

suggest that high epiphyte diversity within palaeotropical forests is most likely to be found in 

large tracts of undisturbed forest, supporting large, broad-crowned trees. 
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Epiphytes are key components of tropical forest ecosystems (Gentry & Dodson 1987), 

although they remain relatively poorly studied (Barker & Pinard 2001). Methodological 

advances have facilitated a recent increase in studies of environmental and anthropogenic 

influences on epiphyte relationships with host trees. Altitude, water availability, bark texture, 

crown area and heterogeneity, and host size all positively influence epiphyte species richness 

(Callaway et al. 2002, Gentry & Dodson 1987, Woods et al. 2015), with negative influences 

also arising from excess precipitation, and anthropogenic deforestation and degradation 

(Benzing 1998, Dias-Terceiro et al. 2015, Gentry & Dodson 1987). However, these studies 

have focussed almost exclusively on the neotropics (Nadkarni et al. 2011). Epiphyte research 

elsewhere concentrates more specifically on cataloguing geographic distributions (Hsu & 

Wolf 2009) or species-specific ecology (Fayle et al. 2009, Hsu et al. 2012). Therefore, given 

that each major tropical zone is subject to unique ecological processes and compositions 

(Corlett & Primack 2011), we cannot yet generalise key factors influencing epiphyte diversity 

for the broader tropics. 

   Here, we use canopy surveys to determine whether the principal drivers of epiphyte-host 

relationships, as identified in the neotropics, are consistent in a palaeotropical forest. We 

examine the relative influence of multiple environmental variables on vascular epiphyte 

richness in a lowland Indonesian rain forest. We then construct multivariate models from 

these data to determine which variables best predict epiphyte richness. In doing so, we aim to 

test a null hypothesis that epiphytes in a palaeotropical study site will be influenced by the 

same environmental variables as those identified as significant in the neotropics. 

 

   Fieldwork was completed on Pulau Buton, a 5600-km2 island, located off the south-eastern 

coast of mainland Sulawesi, Indonesia. Approximately 70% of Buton is covered by seasonal 

lowland rain forest, with a dry season running June–September, and a wet season running 
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November–April. Average annual rainfall ranges between 1500 and 2000 mm, and mean 

average temperatures range between 25°C and 27°C (Whitten et al. 2002). A review of the 

flora of Buton (Powling et al. 2015) indicates that over 300 vascular plant species occur on 

the island, including approximately 150 tree species and more than 50 epiphyte species.  

   We studied two sites in the South of Buton; one in the interior of the Lambusango Reserve, 

close to the Lapago forest camp, and the other within the smaller Kakenauwe Reserve, 

located near the village of Labundo-bundo. These two sites (henceforth ‘Lapago’ and 

‘Kakenauwe’) were selected as their differences allow for the exploration of environmental 

variables beyond host morphology. The two sites differ both geologically (Lapago being 

underlain by a complex mosaic of limestones, sandstones and alluvial material, while 

Kakenauwe is entirely on karstic limestones), and hydrologically (Lapago, located in a steep-

sided valley, allows for greater water retention than the relatively flat Kakenauwe site) 

(Powling et al. 2015). They also differ in levels of disturbance. Kakenauwe, bordering an 

asphalt road and in close proximity to two villages, has historically been logged and 

experiences ongoing low-level timber extraction, whereas Lapago experiences little 

anthropogenic disturbance, due to its isolation (Gillespie et al. 2015). Altitude is fairly 

consistent between sites, ranging between 220 m and 280 m.  

   Identical sampling techniques were completed at both study sites between June and August 

2014, recording data for 44 trees along four transects. Points were systematically marked 

along transects at 50-m intervals, with the closest climbable tree to each point being sampled. 

   For each tree, data reporting: (1) above-ground biomass (agb), (2) altitude, (3) crown area  

(4) height, (5) bark texture, (6) emergence, and (7) epiphyte richness were measured. 

Variables 1-3 were sampled from the forest floor and the remainder from the canopy. 

   Agb (kg) was determined by the revised allometric equation for tropical tree agb (Chave et 

al. 2015), using measured diameter at breast height (dbh), defined as 1.3 m or immediately 
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above buttresses if these were present at 1.3 m, and a specific density value taken from the 

mean of Indonesian trees (Chave et al. 2009, 

http://datadryad.org/resource/doi:10.5061/dryad.234). Altitude (m asl) was recorded by GPS, 

and crown area was estimated by multiplying together the crown extents along North-South 

and East-West axes. 

   To measure the remaining variables, single-rope techniques were used to ascend to the 

highest safe point within the crown. A weighted tape measure was then lowered to record 

observer height and an estimate of remaining distance to the top of the tree was added to 

provide a metric of tree height. Bark texture was characterised using a three-point index of 

flakiness, roughness and fissuredness. Indices were ranked: 1 – characteristic not present; 2 – 

characteristic present; or 3 – characteristic strongly present (Male & Roberts 2005). 

Emergence (yes/no) was determined by whether the tree was >5 m taller than surrounding 

trees. Epiphyte richness was counted by scanning foliage above the observers’ height, and 

then slowly descending the tree while searching for epiphytes on all sides of the tree. 

Epiphytes were identified to a morphospecies level (Cardelus et al. 2006), in response to 

local restrictions on sampling within protected areas.  

   Following data collection, we examined the relative importance of different environmental 

variables through multivariate analyses, incorporating the seven variables measured at each 

tree, plus site (Lapago or Kakenauwe). Data exploration was performed and severely skewed 

variables transformed to achieve Gaussian distributions (epiphyte richness, host agb, bark 

fissuredness and crown area were transformed by log10 and Bark flakiness by log10 twice).  

   Predictor variables with the highest Variance Inflation Factors (VIFs) were sequentially 

removed to create three models where no VIF exceeded 2, minimising intercorrelation (Zuur 

et al. 2010). Models 1 and 2 prioritised retention of different, non-collinear, host-size 

predictor variables (host agb and crown area), while model 3 focussed solely on bark texture. 
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Bidirectional elimination by stepwise regression further reduced these models to form 

Minimum Adequate Models (MAMs), which were found, by analysis of deviance, to have no 

significant difference from the full models. Gaussian Generalised Linear Models (GLMs) 

were run for each MAM, calculating the percentage deviance of epiphyte species richness 

they were able to explain. Where MAMs retained more than one predictor variable, GLMs 

were also run removing one variable at a time to calculate their relative influence on the 

deviance of the response variable. P-values from each GLM were used in false discovery rate 

end-point adjustment to create a new alpha value of 0.029 by which the significance of each 

variable was determined. All analyses were carried out in R version 3.2.1. 

    

   From our sample of 44 trees (18 in Lapago and 26 in Kakenauwe), a total of 275 individual 

epiphytes from 74 taxa (60 in Lapago and 41 in Kakenauwe) were recorded. Trees sampled in 

Lapago hosted a significantly higher number of epiphyte species (8.94 ± 2.42) compared to 

those in Kakenauwe (4.12 ± 1.17) (Mann-Whitney U = 73.5, P < 0.001)). GLMs (Table 1; 

Figure 1) show that epiphyte richness was mainly influenced by tree size (as indicated by 

crown area and host agb), and variables associated with the attributes of the two study sites. 

 

   Our findings support the hypothesis that the principal drivers of epiphyte epiphyte-host 

relationships identified in the neotropics (i.e. host size, crown area and disturbance level) 

remain consistent in our palaeotropical study site on Buton Island. The significance of most 

of these findings is expected, e.g. host size and crown area are known to relate to available 

substrate accumulation and surface area of branches and trunk for phorophyte colonisation 

(Flores-Placios & García-Franco 2006, Goodman et al. 2014), and disturbance level is known 

to influence host size, resulting in declining epiphyte populations (Es’kov 2013). 

Interestingly, bark texture, previously indicated as being a driver of epiphyte diversity in the 
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neotropics (Callaway et al. 2002, Gentry & Dodson 1987), was found not to be significant in 

this study, although this could be due to the categorical nature of the bark data collected. Bark 

fissuredness was, however, selected to be used in minimum adequate models (Table 1) due to 

its strength of correlation with species richness, suggesting some cross-validation of the 

neotropical conclusions. Another variable shown to be an important driver of epiphyte 

diversity in the neotropics is water availability (Callaway et al. 2002, Laube & Zotz 2003). 

We could not test this directly in this study due to the lack of local year-round meteorological 

data. However, it is likely that Lapago, which possesses more alluvial sediment and a central 

river within its steep sided valley, has better water availability than the fast-draining 

limestones of Kakenauwe (Powling et al. 2015). Thus the significance of the site variable 

may be partially explained by differences in water resources.  

   In conclusion, this study demonstrates, by assessing a wide range of variables for the first 

time in palaeotropical literature, that epiphyte richness on Buton is most strongly influenced 

by the same key drivers as those described in the neotropics. While some variables require 

further investigation, our findings suggest that the best means of maintaining high epiphyte 

diversity in the palaeotropics is by protecting primary forests which support high densities of 

large, broad-crowned trees; a conservation recommendation echoed for other taxa (Barlow et 

al. 2007) although not specifically for epiphytes of the palaeotropics before. While further 

research is required to develop a full understanding of regional influences on epiphyte 

diversity, this recommendation provides important insight for forest managers to account for 

enigmatic and often overlooked canopy species. 
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Table 1. Gaussian Generalised Linear Models, simplified into minimum adequate models 

using elimination by stepwise regression, to explain deviance in epiphyte species richnesslog10 

on host trees on Buton Island, Indonesia. Akaike Information Criterion (AIC) shows the 

parsimony of each model.  Asterisks (*) denote significant P-values (α FDR = 0.029).  

 

 

 Minimum adequate 
model 

P-value 
(FDR = 
0.029) 

AIC % 
Deviance 
explained 

Model 1 - - -17.89 51.3 
Altitude, Bark 
flakinesslog10log10, Bark 
roughness, Bark 
fissurednesslog10, Canopy 
openness, Emergence, 
Exposure, Host agblog10, Site 

Host agblog10 <0.001*  20.9 
Site 
 

<0.001* 
 

 15.5 
 

Model 2 - - -15.07 52.6 
Altitude, Bark 
Flakinesslog10log10, Bark 
Roughness, Bark 
Fissurednesslog10, Canopy 
Openness, Crown Arealog10, 
Emergence, Exposure, Site 

Bark Fissurednesslog10 

Crown Arealog10 

0.092 
<0.001* 

 3.62 
19.6 

Exposure 
Site 

0.157 
0.017* 

 2.53 
7.51 

Model 3 - - - - 
Bark Flakinesslog10log10, Bark 
Roughness, Bark 
Fissurednesslog10 

Bark Fissurednesslog10 0.063 8.10 8.00 

 

 

 

 

 

 

 

 

Legends to Figures  
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Figure 1. Epiphyte species richnesslog10 versus host crown arealog10 (m
2) (a) and host agblog10 

(kg) (b) on Buton Island, Indonesia. GLM regression lines shown on both graphs. 
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