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Abstract Introduction: Small vessel disease (SVD) is a common contributor to dementia. Subtle blood-brain
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barrier (BBB) leakage may be important in SVD-induced brain damage.
Methods: We assessed imaging, clinical variables, and cognition in patients with mild (i.e., nondis-
abling) ischemic lacunar or cortical stroke. We analyzed BBB leakage, interstitial fluid, and white
matter integrity using multimodal tissue-specific spatial analysis around white matter hyperinten-
sities (WMH). We assessed predictors of 1 year cognition, recurrent stroke, and dependency.
Results: In 201 patients, median age 67 (range 34–97), BBB leakage, and interstitial fluid were
higher in WMH than normal-appearing white matter; leakage in normal-appearing white matter
increased with proximity to WMH (P , .0001), with WMH severity (P 5 .033), age (P 5 .03),
and hypertension (P , .0001). BBB leakage in WMH predicted declining cognition at 1 year.
Discussion: BBB leakage increases in normal-appearing white matter withWMH and predicts wors-
ening cognition. Interventions to reduce BBB leakage may prevent SVD-associated dementia.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Background

Worldwide, 36 million people are estimated to be living
with dementia [1]. Cerebral small vessel disease (SVD)
causes about 40% of these dementias, alone or in mixed pa-
thologies [2]. SVD also causes a fifth of the 15 million
strokes that occur per year worldwide [1]. These three-
million SVD (or lacunar) strokes are not severe; so, most
lacunar stroke patients survive physically independent, but
36% have mild cognitive impairment or dementia [3]. The
frequent cognitive impairment may reflect the association
of lacunar stroke with other SVD features [4]. These features
(white matter hyperintensities [WMH], lacunes, and
microbleeds) are typically regarded as clinically “silent”
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but substantially increase the risk of dementia and stroke
individually [5–7] and combined predict cognitive
impairment [8].

Alzheimer’s disease (AD) and stroke are typically
managed and researched separately, but there is substantial
evidence of overlap in pathogenesis, for example, dementia
expression in life closely reflects the burden of microvas-
cular disease more than of typical AD pathology (b-amyloid
plaques and neurofibrillary tangles) at postmortem [9–11].
WMH are common in AD [12]. Management of vascular
risk factors [13], lifestyle interventions [14], and stroke pre-
vention [15] could help prevent dementia. However, direct
application of vascular prevention strategies that are effec-
tive in preventing large artery atherothromboembolic stroke
may be ineffective or hazardous if given long term to pa-
tients with SVD or AD. Thus, blood pressure reduction
and dual antiplatelet drugs failed to prevent cognitive
decline or recurrent stroke [16], dual versus single
eimer’s Association. This is an open access article under the CC BY license
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antiplatelet drugs were hazardous after lacunar stroke [17],
and antiplatelet drugs increased risk of cerebral hemorrhage
in AD [18], reflecting our incomplete understanding of
mechanisms underlying SVD and AD [19,20], and that a
different approach is needed [21].

A potential contributor to, or initiator of, the microvas-
cular damage common to both SVD and AD is cerebral mi-
crovessel endothelial (or blood-brain barrier [BBB]) failure
[2,22,23]. This could explain the perivascular cell and
protein infiltrates, perivascular edema, and secondary
axonal and neuronal damage seen pathologically in
sporadic SVD [24,25]. It could also provide a route for
entry of b-amyloid and inflammatory cells into the brain in
AD [26,27]. Human studies, mostly using cerebrospinal
fluid (CSF)/plasma albumin ratio, show that BBB leakage
increases subtly with advancing age and is worse in
dementia (including AD) than in age-matched controls
[28]. The BBB is also more leaky in white and deep gray
matter in diabetes-associated mild cognitive impairment
[29], in white matter and CSF in lacunar than atherothrom-
boembolic stroke [30], and in white matter in patients with
leukoaraiosis [31], vascular [32], and Alzheimer’s dementias
[33,34]. Recently BBB leakiness was noted to increase in the
hippocampus (but not other tissues) with mild cognitive
impairment [35].

These studies of BBB function in vivo in patients to
date have been small (all n , 50 except 1 [30]) sampled
small volumes of brain [35] or used permeability models
that ignore aging effects on blood volume and vascular
surface area [36,37] that limit the measurement of
permeability accurately. Thus, there is no
comprehensive, whole-brain, tissue-specific, in vivo
assessment of BBB leakiness in human SVD and none
with concurrent independent measures of brain interstitial
fluid or tissue damage, making it unclear if BBB leakage is
real, pathogenic, or an epiphenomenon in SVD. If
Fig. 1. Magnetic resonance brain imaging sequences and processed images. Left, d
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index infarct was masked by hand.
pathogenic, then we hypothesized that the leak should
worsen with worsening SVD burden, be spatially related
to major markers of SVD such as WMH, and be accompa-
nied by increased interstitial fluid. BBB leakage should in-
crease with age, in small vessel (i.e., lacunar) versus
atherothromboembolic (i.e., cortical or large artery)
ischemic stroke [30] and in hypertension (a major SVD
risk factor [38]), and predicts worsening of SVD-
associated clinical or imaging features.

We prospectively studied a large cohort of patients
with lacunar stroke (a model for vascular effects on neu-
rodegeneration that identifies patients at high risk of
cognitive impairment [3]) and cortical ischemic stroke
(a control group with similar vascular risk factors [39]
and medications), with a range of WMH, followed up at
1 year. We examined the magnitude and spatial distribu-
tion of BBB leak and tissue integrity in relation to
WMH as a major marker of SVD, using three-
dimensional (3D), whole-brain, dynamic contrast-
enhanced (DCE) magnetic resonance imaging (MRI),
diffusion-tensor imaging, T1 mapping, and spatially
detailed, tissue-specific analysis.
2. Methods

2.1. Recruitment and eligibility

We recruited patients prospectively who presented with
a lacunar or mild cortical ischemic stroke classified clini-
cally using the risk-factor-free Oxfordshire Community
Stroke Project classification [40]. We included patients
aged �18 years, able to consent, within 4 weeks of mild
ischemic stroke (i.e., National Institutes of Stroke Scale
score [NIHSS]�5, unlikely to cause physical dependency),
with an MR diffusion-weighted imaging (DWI) infarct
compatible with the index stroke symptoms (Fig. 1), or
iffusion-weighted image shows recent small deep infarct in the left centrum

nversion recovery and T2-, T2*-, and T1-weighted axial brain images at the

ight, colors indicated masking obtained by semiautomated image processing

eep gray matter (pink), and white matter hyperintensities (purple); note the
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no other cause of symptoms, and no life-threatening illness
to preclude 1 year follow-up. We excluded patients who
were unable to tolerate MRI or gadolinium-containing
intravenous contrast agent.
2.2. Ethics

Lothian Ethics ofMedical Research Committee (REC 09/
81,101/54) and NHS Lothian R1D Office (2009/W/NEU/
14) approved the study. All patients gave written informed
consent.
2.3. Clinical assessments and outcomes

A specialist stroke physician recorded the medical history
and examination including stroke severity (NIHSS, for de-
tails, see Supplementary Material). A panel of stroke experts
assigned the stroke subtype (lacunar or cortical) using the
clinical syndrome [40] and acute infarct appearance on
DWI MRI. In case of discrepancies, the imaging subtype
was used.

We introduced cognitive testing after the study had
started and assessed current cognition in as many patients
as possible thereafter (Addenbrooke Cognitive Assess-
ment—Revised [ACE-R]), premorbid intelligence (National
Adult Reading Test [NART]), and depression (Beck Depres-
sion Index) at 1–3 months after stroke concurrent with BBB
imaging (Section 2.4 below).

At 1 year, we assessed all patients for dependency (Ox-
ford Handicap Scale [41], similar to the modified Rankin
Scale), recurrent vascular events, cognition (ACE-R), and
repeated MRI for WMH burden, new infarcts, or hemor-
rhages. Patients unable to attend were followed up
remotely.
2.4. Neuroimaging

All MR examinations were performed on one 1.5-T GE
Signa HDxt scanner, with tight quality assurance. Diag-
nostic MR included T1, T2, T2*, and DTI sequences (see
“Online Methods” and Supplementary Table 1 in
Supplementary Material [42]) to assess infarcts and SVD
features [43]. We performed DCE MRI [37] for BBB
leak at 1–3 months after stroke (to minimize the index
stroke effect on BBB) and T1 mapping for brain water con-
tent (see Supplementary Material). After two 3D fast-
spoiled gradient-echo acquisitions (flip angles 2 and 12�)
for precontrast T1 (T10) maps, we injected gadoterate me-
glumine (Gd-DOTA, DOTAREM; Guerbet, Paris, France)
0.2 mL/kg (i.e., 0.1 mmol/kg body weight) at 2 mL/second
intravenously via injection pump and then repeated the 3D
T1-weighted sequence sequentially 20 times for 24 minutes
[36,37,44], using long acquisition times to detect subtle
BBB leak [35,36].
2.5. Image processing

We analyzed all imaging data blind to clinical and other
imaging information using validated, qualitative, and
quantitative assessments (see “Online Methods” in
Supplementary Material [42]), as previously [45]. We
identified the index infarct and SVD lesions using visual
scores (see “Online Methods” in Supplementary Material).
On coregistered images, we separated CSF, whole-brain,
WMH, and normal-appearing white and gray matter
[46,47] (Fig. 1), differentiating WMH into “more” and
“less” intense by degree of abnormality on fluid-attenuated
inversion recovery and T2 and T1 sequences. For spatial
analysis of BBB leak distribution, we also divided normal-
appearing white matter into 10 “contours” each two voxels
(z2 mm) wide from the WMH edge outward (piloted in
[48]). We extracted signal intensities from the DCE-MRI
pre-post contrast curves per tissue, per voxel, and per time
point after intravenous contrast (see “Online Methods” in
Supplementary Material) [44]. We used sagittal sinus to cor-
rect for intravascular contrast [44] as carotid arteries have
significant limitations especially in older subjects [37]. We
calculated precontrast T1 (longitudinal relaxation time, T10

[44], milliseconds) to control for precontrast tissue charac-
teristics [36,44].

2.6. Sample size

For 80% power, a two-sided test, the estimated sample
size was 170 patients to reach 1 year follow-up. Allowing
for about 10% dropout required 200 patients to have BBB
imaging (see “Online Methods” in Supplementary
Material).

2.7. Statistical analysis

Several mathematical models have been proposed to esti-
mate BBB permeability [36,37]. The Patlak method best
suits low permeability states [36,49,50], but all models
rely on assumptions regarding capillary surface area that
are invalid in low permeability states, for example, that
capillary density and blood volume are constant, whereas
both vary between tissues and decrease with age and in
disease [37]. In the individual tissues and subjects, the actual
capillary density is unknown, and it would introduce further
potential confounds to use constant values. We explored
permeability modeling methods extensively, including in
simulations [44,37], tried to obtain estimates of capillary
density to provide realistic factors, but none of these were
adequate for use in a wide age range and disease range
population such as here. We found strong effects of age on
BBB, T1, mean diffusivity (MD), and fractional anisotropy
(FA) in separate analyses [47,48]. Therefore, in our
prespecified analysis (see “Protocol Online” in
Supplementary Material), we did not calculate permeability
but used linear mixed modeling of the signal enhancement



Fig. 2. Change in signal postcontrast in different brain tissues by time aver-
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slopes (Fig. 2) to identify tissue- and patient-specific differ-
ences in BBB leakage. All BBB analyses were adjusted for
age, WMH burden, vascular risk factors, intravascular
contrast, baseline tissue T1, and time after contrast injection
(full statistical details, see “Online Methods” in
Supplementary Material). Analysis of ACE-R also tested
for interactions between lacunar and cortical subtypes. We
Table 1

BBB leakage and age, WMH burden (Fazekas score), and stroke subtype

Tissue Variable b c

Normal-appearing white matter Age 0

Fazekas score 0

Stroke subtype 20

Deep gray matter Age 0

Fazekas score 0

Stroke subtype 20

CSF Age 0

Fazekas score 0

Stroke subtype 0

WMH Age 0

Fazekas score 0

Stroke subtype 20

Index

infarct

Age 0

Fazekas score 0

Stroke subtype 20

Old infarct Age 0

Fazekas score 0

Stroke subtype 20

Abbreviations: BBB, blood-brain barrier; WMH, white matter hyperintensities

NOTE. Values are BBB leakage (change in postcontrast signal per minute) per 5

cortical stroke. The interaction coefficients for age, Fazekas score, and subtype are

predictors listed previously and simultaneous fitting of multiple interaction terms w

for each other and sagittal sinus signal, brain tissue signal precontrast (T10), mean a

status. In stroke subtype, a negative effect estimate indicates that values are lowe

indicates more WMH.
used SAS 9.3 (www.sas.com) for all analyses and R 2.13.1
for graphs.
3. Results

We recruited 264 patients (Supplementary Fig. 1): 42
declined detailed MRI, 14 were not well enough for BBB
imaging, and BBB or structural data were insufficient for
analysis in 7, leaving 201 with complete data. The 63
patients without BBB imaging had slightly more severe
strokes (median NIHSS 2, interquartile range [IQR] 2–4)
than the 201 with BBB imaging (NIHSS 2, IQR 1–3,
P 5 .03) and were slightly older (66 vs 69 years,
P 5 .025), but there were no other differences.

The 92 of 201 (46%) patients with lacunar stroke did not
differ significantly from the 109 (54%) with cortical stroke
in age (mean: 64, IQR 56–72; 68, IQR 60–76, respectively,
P5 .097) proportion of men, with hypertension, diabetes, or
hyperlipidemia (Supplementary Table 2). Lacunar strokes
were more severe than cortical strokes (NIHSS medians: 1,
IQR 0–2; vs 1, IQR 0–1, respectively, P5 .002), with no dif-
ference in time to initial assessment (medians: 3, 1–6; vs 3,
1–8 days, respectively, P 5 .71). Cortical patients had more
embolic sources than lacunar (25.7% vs 12%, P 5 .014).
Cognitive testing was available for 147 (73%) at 1–3 months
(median ACE-R, 90, IQR 83–95) and in 139 (69%) at 1 year
(median ACE-R 92, IQR 85–95).

Compared with normal-appearing white matter, BBB
leakage was higher in WMH (P 5 .025), CSF (P , .0001),
index (P, .0001), and old infarcts (P, .0001) andwas lower
oefficient ! 103 95% CI ! 103 P-value

.016 20.001, 0.033 .065

.024 0.002, 0.047 .033

.110 20.19, 20.030 .005

.025 0.002, 0.049 .031

.059 0.028, 0.09 .0002

.11 20.21, 20.0003 .049

.219 0.158, 0.28 ,.0001

.205 0.124, 0.287 ,.0001

.363 0.082, 0.644 .011

.059 0.035, 0.082 ,.0001

.104 0.072, 0.136 ,.0001

.040 20.150, 0.068 .46

.045 0.001, 0.089 .045

.017 20.040, 0.075 .57

.520 20.720, 20.330 ,.0001

.049 20.0015, 0.10 .057

.041 20.030, 0.11 .24

.430 20.680, 20.190 .0004

; CI, confidence interval; CSF, cerebrospinal fluid.

-year increase in age, per point increase in Fazekas score, or lacunar versus

derived from three separate models (the data were already adjusted for key

as not supported). Age, Fazekas score, and stroke subtype are each adjusted

rterial blood pressure, diagnosis of hypertension, pulse pressure, and smoker

r in patients with lacunar than with cortical stroke. A higher Fazekas score

http://www.sas.com/
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in deep gray matter (P , .0001, Supplementary Table 3,
Fig. 2). BBB leakage increased with (Table 1) age in all tis-
sues, significantly in deep gray, CSF, andWMH, for example,
in deep gray matter by 0.025! 103 (95% confidence interval
[CI] 0.0023 ! 103, 0.049 ! 103, P 5 .030), per 5-year age
increment; WMH burden, significantly in all tissues except
index or old infarcts, for example, in normal-appearing white
matter by 0.024! 103, (95% CI 0.002! 103, 0.047! 103,
P5 .033), per point increase inWMH score; and in index and
old infarcts of cortical versus lacunar subtype. BBB leakage
was significantly higher in lacunar than cortical subtype in
CSF but in cortical than lacunar stroke in normal-appearing
white matter and deep gray matter. BBB leakage also
increased with (Table 2): hypertension significantly in all tis-
sues, pulse pressure in some tissues, and with baseline tissue
T1 (i.e., water content) in all tissues.

Analysis of spatial distribution of BBB leakage in
normal-appearing white matter (Fig. 3) showed that BBB
Table 2

Association between BBB leakage, vascular risk factors, and brain parameters: hy

precontrast, and intravascular signal (sagittal sinus), adjusted for one another, age

Tissue Variable

Normal-appearing white matter Hypertension

Mean arterial pressure

Pulse pressure

Smoking status

Tissue T1

Intravascular contrast

Deep gray matter Hypertension

Mean arterial pressure

Pulse pressure

Smoking status

Tissue T1

Intravascular contrast

CSF Hypertension

Mean arterial pressure

Pulse pressure

Smoking status

Tissue T1

Intravascular contrast

WMH Hypertension

Mean arterial pressure

Pulse pressure

Smoking status

Tissue T1

Intravascular contrast

Index infarct Hypertension

Mean arterial pressure

Pulse pressure

Smoking status

Tissue T1

Intravascular contrast

Old infarct Hypertension

Mean arterial pressure

Pulse pressure

Smoking status

Tissue T1

Intravascular contrast

Abbreviations: BBB, blood-brain barrier; CI, confidence interval; CSF, cerebro
leakage increased linearly at 0.0099 ! 103 (95% CI
0.0114 ! 103, 0.0084 ! 103, P , .0001) per contour
closer to the WMH edge, adjusted for age, Fazekas score,
blood pressure, stroke subtype, and smoking. The leak was
worst in the WMH where it was worst in the most
abnormal areas (“intense” versus “less intense” WMH).
Additionally, MD increased from the 4 mm contour and
T1 from the 2 mm contour proximate to the WMH edge;
both were yet higher in less intense and highest in intense
WMH (Fig. 3), consistent with an increase in interstitial
water mobility and then in measureable interstitial water
close to the WMH, with the most abnormal values in the
WMH. Axonal integrity (FA) decreased with increasing
proximity to WMH, being lowest in the most intense
WMH, consistent with most axonal disruption being in
the most abnormal-looking tissue.

On further assessing the contours by Fazekas WMH
score corrected for age (Fig. 4), patients with most
pertension, mean arterial pressure, smoker status, brain tissue T1 signal

, and combined Fazekas score

b coefficient ! 103 95% CI ! 103 P-value

0.206 0.118, 0.295 ,.0001

20.00105 20.0036, 0.0015 .41

0.00121 20.00061, 0.0030 .19

20.050 20.130, 0.026 .18

0.46 0.153, 0.768 .0033

0.050 20.080, 0.181 .45

0.233 0.111, 0.354 .0002

0.00017 20.0033, 0.0036 .93

0.00380 0.0013, 0.0063 .003

0.035 20.080, 0.146 .53

0.365 20.0018, 0.732 .051

0.00062 20.180, 0.182 .99

0.338 0.016, 0.66 .040

0.016 0.0064, 0.025 .0009

0.017 0.011, 0.024 ,.0001

20.30 20.590, 20.010 .042

1.107 0.903, 1.31 ,.0001

1.363 0.878, 1.848 ,.0001

0.256 0.131, 0.38 ,.0001

0.000368 20.0032, 0.0039 .84

0.00333 0.00076, 0.00589 .011

20.110 20.23, 0.0002 .050

0.536 0.163, 0.909 .0049

0.237 0.052, 0.423 .012

0.677 0.444, 0.91 ,.0001

20.00298 20.009, 0.003 .35

20.00203 20.0066, 0.0025 .38

20.040 20.240, 0.154 .67

1.617 1.249, 1.984 ,.0001

20.040 20.390, 0.305 .81

0.472 0.208, 0.735 .0005

0.016 0.007, 0.024 .0002

0.00261 20.0033, 0.0085 .39

20.40 20.64, 20.16 .001

0.773 0.317, 1.228 .001

0.086 20.330, 0.499 .68

spinal fluid; WMH, white matter hyperintensities.



Fig. 3. Representative axial brain magnetic resonance imaging (left, same case as in Fig. 1) showing white matter hyperintensities and contours at two voxel

increments (approximately 2 mm width) extending concentrically into the normal-appearing white matter from which blood-brain barrier leakage (Pby, graph

top left), mean diffusivity (graph top right, !1029 mm2/s), fractional anisotropy (graph bottom left), and T1 (graph bottom right, ms) were extracted. White

matter hyperintensities are split into intense and less intense to determine the difference in these biomarkers by severity of white matter hyperintensities and by

all white matter hyperintensities, as indicated on the x-axis. WMH, white matter hyperintensities; FA, fractional anisotropy; iWMH, intense white matter hyper-

intensities; liWMH, less intense white matter hyperintensities.
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WMH (Fazekas score 5–6) had the highest BBB leakage,
water content (MD, T1), and lowest axonal integrity (FA)
in normal-appearing white matter and WMH (for details,
see Supplementary Fig. 2).

At 1–3 months after stroke, ACE-R was associated
negatively with age and positively with premorbid intelli-
gence (NART), but not with WMH score or concurrent
BBB leakage in any tissues, with no difference between
lacunar and cortical stroke patients (Supplementary
Table 4). At 1 year, BBB leakage in WMH predicted
lower ACE-R in lacunar (b 23.52, 95% CI 25.9,
21.13) but not cortical (b 0.03, 95% CI 25.77, 5.12)
stroke patients; high WMH score and NART, but not
age, predicted ACE-R in both stroke subtypes
(Supplementary Table 5). Incorporating ACE-R at 1–
3 months after stroke into the 1-year ACE-R prediction
model (to assess change in ACE-R and BBB leak) showed
that BBB leakage in WMH predicted a decline in ACE-R
at 1 year in both lacunar and cortical stroke patients (b
21.89, 95% CI 23.62, 20.16). ACE-R and NART at 1–
3 months also predicted decline in ACE-R at 1 year
(Supplementary Table 6) but not WMH score, hyperten-
sion, or age.

At 1 year, 21 patients had a clinically evident recurrent
stroke, 19 had a new infarct on MRI (21 of 201 could not
have repeat scanning, Supplementary Fig. 1), and 34 pa-
tients were dependent or dead (17%). WMH burden was
the strongest predictor of recurrent stroke or dependency,
overwhelming BBB associations except for BBB leakage
in CSF that showed a weak association with dependency
(Supplementary Table 7). Vascular risk factors did not
predict outcome.
4. Discussion

We show, in this large stratified patient cohort, that sub-
tle increases in BBB leakage appear to be widespread in
normal-appearing white matter and more pronounced in
WMH, increasing with the visible severity of tissue dam-
age. The BBB leak is accompanied by increased interstitial
water mobility and water content close to and in the WMH,
providing support for the BBB leak findings. BBB leakage
in normal-appearing white matter and in WMH was worst
in patients with severe WMH, with hypertension and
increased pulse pressure. BBB leakage in WMH predicted
cognitive impairment at 1 year in lacunar stroke and
cognitive decline between 1 and 3 months and 1 year after
stroke in both lacunar and cortical stroke patients. Taken
together, these observations suggest that BBB leakage pre-
cedes increases in interstitial fluid and axonal damage, all
which worsen as WMH worsen; BBB leak in WMH also
predicts cognitive decline at 1 year, particularly in lacunar
stroke patients who are already known to be at high risk of
cognitive decline after stroke [3]. We show that WMH asso-
ciate with BBB leakage regardless of the underlying stroke
subtype, findings that are generalizable to older subjects
with WMH. Thus, BBB leakage appears to be important
in pathogenesis of SVD-associated brain damage in large
clinical populations. The association between BBB leak,
hypertension, and pulse pressure provides a mechanism
whereby hypertension may worsen WMH [38] and thus
may contribute to declining cognition. Pathogenesis
involving BBB leak may also explain the apparent lack of
benefit for antithrombotic drugs and increased hemorrhage
risk in SVD [17,51] and AD [18].



Fig. 4. Changes in blood-brain barrier leakage (top left, Pby), mean diffusivity (top right,!1029 mm2/s), fractional anisotropy (bottom left), and T1 (bottom

right, ms) in white matter hyperintensities and 2 mm incremental contours expanding concentrically across normal-appearing white matter, according to white

matter hyperintensities burden categorized by Fazekas score into low (0–2), medium (3–4), and high (5–6) white matter hyperintensities burden. Contours as in

Fig. 3, left-hand image. Supplementary Fig. 3 shows these data by individual Fazekas white matter hyperintensities scores. Data are age adjusted. Faz_group,

Fazekas score group; WMH, white matter hyperintensities; MD, mean diffusivity; iWMH, intense white matter hyperintensities; LiWMH, less intense white

matter hyperintensities; FA, fractional anisotropy.
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We provide conclusive in vivo evidence that normal-
appearing white matter, in the presence of WMH, is not
normal, at any adult age, but increasingly abnormal with
increasing WMH burden [47,48] and by proximity to
WMH [52,53]. In comparison with recent work [52], our
study provides more extensive spatial sampling of brain
white matter and multiple independent imaging parame-
ters. We show, in this much larger sample, that subtle
BBB failure can be detected with DCE MRI in large clin-
ical studies. In comparison with recent work [35], our study
provides full brain coverage, volumetric analysis of BBB
leakage across spatially related tissue while preserving
sensitivity to low-grade BBB leak [37], a large, highly phe-
notyped, clinically relevant patient sample, and
assumption-free statistical analysis. This approach was
based on extensive testing of models including simulated
data which made it clear that current models were not suit-
able for low permeability states across a wide range of age
and disease [37]. The differences in BBB leakage in index
and old infarcts demonstrate the sensitivity of this method
to detect BBB leakage.

Why should increased BBB leakage occur in SVD and is
this also relevant to AD? AD and SVD pathologies
commonly co-occur, cognition is worse when SVD is pre-
sent in AD [12], vascular risk factors accelerate both disor-
ders, both are associated with elevated systemic
inflammatory markers, and microglial activation is com-
mon in both diseases pathologically. The BBB has a huge
surface area, handles a fifth of the cardiac output at rest,
and maintains the correct brain interstitial milieu within
tight limits for normal brain function, a major physiolog-
ical challenge [2]. A slight decline in barrier function could
result in vascular wall and perivascular parenchymal dam-
age from fluid shifts [54] or allow neurotoxins such as
serum amyloid P, an important precursor to amyloid depo-
sition [27], into the brain. The findings are consistent with
BBB failure being an early pathogenic step in SVD, with
axonal loss occurring secondarily [54,20]. BBB integrity
declines with normal aging and is worse in AD according
to biochemical [28] and pathological [33] analyses. BBB
failure may occur through multiple factors, for example,
hypertension, diabetes, inflammation [24], smoking, and
increased sodium intake [50], all damage the vascular
endothelium. Cerebral blood flow is reduced in both SVD
and AD: hypoperfusion triggers BBB failure in experi-
mental models, and fibrinogen leakage across the BBB
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was associated with astrocyte morphological changes,
reversal of aquaporin 4 distribution on end feet implying
glyovascular malfunction, and irreversible damage in
WMH seen at postmortem in patients with cognitive
impairment after stroke in life [55]. WMH heritability
[56] and genetics [57] suggest that some individuals may
be more susceptible to damage in the neurovascular unit,
including the BBB [58], perhaps accounting for variation
in SVD-related brain damage and clinical expression be-
tween individuals with apparently similar risk factor expo-
sures.

Our results provide evidence that BBB leakage is an
important, likely early pathological event in development
of SVD-associated brain damage. WMH should sound alarm
bells to identify potentially modifiable risk factors at all ages
and in all dementias. Brain interstitial fluid shifts are poten-
tially remediable, at least initially: reduction in interstitial
fluid, for example, by improved endothelial function and
reduced BBB leak, might prevent accumulation of perma-
nent brain injury, slowing neurodegeneration, preserving
cognition, and preventing dementia and stroke. Persistent
BBB malfunction may precipitate worsening of microvessel
wall injury, with secondary inflammation [24], impaired vas-
oreactivity [59], or luminal narrowing and hence tissue
ischemia—a vicious cycle of brain damage. Future research
should target ways to reduce small vessel endothelial dam-
age to prevent progressive BBB breakdown and brain injury
including, but not restricted to, improved management of
lifestyle factors (e.g., exercise [14], diet [50]) and vascular
risk factors (e.g., hypertension).
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the literature on
blood-brain barrier (BBB) leakage detected with
magnetic resonance imaging in humans during ag-
ing, in small vessel disease (SVD) or dementia, from
multiple electronic bibliographic databases and
identified six studies (n 5 203).

2. Interpretation: Our study doubles the available data
on BBB leakage and provides independent evidence
on the hypothesis that BBB leakage is pathogenic in
SVD-related brain damage including tissue fluid
measures, spatial distribution, two SVD markers,
age, disease burden, risk factor (hypertension), and
cognition associations.

3. Future directions: Our results provide a testable hy-
pothesis, a route for amyloid entry to the brain, and
should encourage new thinking about SVD and/or
aging-related brain damage and cognitive decline
beyond ischemia or amyloid deposition. Future
research should focus on the many lifestyle and risk
factor–modifying interventions that could protect the
cerebrovascular endothelium and developing new
specific drugs to preserve or enhance BBB function.
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