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Abstract

Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing

functional independence and quality of life. To date little research has been undertaken to

investigate control strategies of arm/hand movements following cervical spinal cord injury

(cSCI). This study aimed to investigate unimanual and bimanual coordination in patients

with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp

actions with one hand, or with both hands together (symmetrical task), and compare this to

the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI

(mean 61.61 years) with lesions at C4-C8, with an American Spinal Injury Association

(ASIA) grade B to D and 16 uninjured younger adults (mean 23.68 years) and sixteen unin-

jured older adults (mean 70.92 years) were recruited. Participants with a cSCI produced

reach-to-grasp actions which took longer, were slower, and had longer deceleration phases

than uninjured participants. These differences were exacerbated during bimanual reach-to-

grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier

by people with cSCI. Participants with a cSCI were less synchronous than younger and

older adults but all groups used the deceleration phase for error correction to end the move-

ment in a synchronous fashion. Overall, this study suggests that after cSCI a level of biman-

ual coordination is retained. While there seems to be a greater reliance on feedback to

produce both the reach to grasp, we observed minimal disruption of the more impaired limb

on the less impaired limb. This suggests that bimanual movements should be integrated into

therapy.

Introduction

Many activities of daily living require the two hands to interact simultaneously with each other

to accomplish functional reach-to-grasp tasks [1]. Furthermore, bimanual actions require
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both intralimb (reach and grasp) and interlimb coordination i.e. the hands have to function

together [2]. After a cervical spinal cord injury (cSCI), the cord is often damaged bilaterally [3]

and this results in functional impairments in both limbs [4] [5]. For an individual with tetra-

plegia this means that they have to regain function not only of the arms and hands indepen-

dently, but also the ability to move both limbs together in a functionally meaningful way.

Despite this, and the growing trend for bimanual training strategies [6], there is limited infor-

mation on bimanual control strategies after SCI and how the movement of one limb affects the

other during bimanual tasks [5].

Unimanual reach-to-grasp actions have been examined extensively, and several landmark

kinematic characteristics have been identified which aids our understanding of movement

control [7], [8], [9]. Compared to uninjured participants (UP), the transport phase of a unim-

anual reach-to-grasp in individuals with a cSCI, is slower [10], longer in duration [11–13],

with a longer deceleration phase; which is suggested to represent the need to use visual feed-

back to guide the hand to the object [11–14]. During grasping, maximal grasp aperture is

scaled to object size [15], but performed earlier in the transport phase, resulting in the reach

and grasp being performed sequentially [11].

In UP bimanual reach and grasp actions take longer to complete, have lower peak velocities,

longer deceleration phases (suggesting the need for more visual feedback), and have larger

grasp apertures than unimanual movements [16,17]. Furthermore, the movement of one arm

affects temporal and spatial kinematics of the contralateral arm. Early research shows that UP

produce temporally synchronous bimanual movements, irrespective of the distance each limb

travels [16],[17]. However, more recent work argues that while the hands may start moving

together (and end in temporal proximity), there is coordinative asynchrony during the move-

ment, even when moving the same distance [18,19] which could be due to the need to look

from one hand to the other [18–20].

Research that has examined bimanual reach-to-grasp actions and interlimb synchrony of

the limbs during bimanual functional tasks after cSCI is limited to one study following

chronic cSCI [5]. This study showed that the more impaired limb had a detrimental influ-

ence on the motion of the less impaired limb, in that the less impaired limb was excessively

delayed during bimanual reach-to-grasp tasks. In addition, bimanual movements were lon-

ger, but grip aperture was scaled to object size. The authors also noted reduced interlimb

synchrony between the time it took the hands to reach maximum grasp aperture and make

contact with the object, which was exacerbated in those individuals who showed prolonged

times to open the hand.

Despite the bilateral deficits in the chronic stage of injury [5] and the potential effectiveness

of bimanual training strategies [6], to our knowledge there is little work which has examined

bimanual reach-to-grasp actions in individuals with a cSCI in the acute stage of injury. In this

stage of injury the spared sensorimotor pathways provide avenues to be exploited to facilitate

functional improvement through task specific training [21] [22,23] [24]. Understanding

bimanual control strategies at the acute stage of injury is crucial in further optimising rehabili-

tation strategies to aid recovery of arm and hand function, which for many individuals with a

cSCI, is the most important goal during neuro-rehabilitation [25].

In this study, the objective was to use kinematic analyses to investigate bimanual control

strategies after a cSCI. Based on previous work we expect that (1) individuals with a cSCI will

exhibit spatially and temporally different kinematic parameters during reach-to-grasp actions

compared to UP, (2) that bimanual reach-to-grasp tasks will be longer and slower than unim-

anual actions for all participants (cSCI and UP), and (3) participants with a cSCI will have

greater asynchrony during the bimanual condition than UP.

Bimanual reach to grasp after cSCI
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Methods

Participants

Eighteen inpatients from two UK Spinal Injuries Centres, who were in the acute stage of recov-

ery were recruited to participate (Participant characteristics are presented in Table 1). Persons

with a cSCI were included if they were >18yrs old, could understand and follow verbal

instructions, could give written consent and had no history of additional neurological

impairment. The preferred limb of participants with an cSCI was determined as the less

impaired limb, which was identified according to the Chedoke Arm and Hand Inventory-9

[26]. UP were recruited from the local community, and comprised 16 young adults (YA)

(mean age = 23.68±4.54yrs; 14 right handed; 9 Female) and 16 older adults (OA) (mean

age = 70.92± 7.2yrs; 12 right handed, 9 Female). We consider the recruitment of uninjured

young (YA), and older (OA) participants necessary due to the changing demographic of cSCI

[27], and the already well documented differences in control strategies between YA and OA

during reach-to-grasp tasks [28,29]. Ethical approval was sought from the Biological Sciences

Faculty Research Ethics Committee, University of Leeds and Leeds West Research Ethics

Committee, NHS. All participants gave written informed consent and the procedures con-

formed to the declaration of Helsinki.

Experimental set-up

Participants sat in a chair or their wheelchair at a height adjustable table with the hips and

knees at 90 degrees. Before testing, maximal active forward reach distance with the marker on

the dorsum of the hand was recorded to standardize the object placement across participants

with different arm lengths and disabilities.

Table 1. Participants with a cSCI characteristics.

cSCI subject Age (years) Gender (M/F) Level ASIA Aetiology Time since injury (weeks) More Affected limb CAHAI-9

1 73 M C6 B NT 17 R 42

2 68 M C5 D T 7 L 60

3 67 M C7 C T 17 R 56

4 57 M C8 C NT 11 L -

5 79 F C5 D T 23 L 62

6 69 M C5 - T 8 L 58

7 79 M C5 C NT 9 L 63

8 73 M C4 C T 18 R 52

9 65 M C6 D T 15 R 44

10 40 M C6 D T 14 L 63

11 65 M C5 C T 14 L 56

12 47 M C5 D T 29 L 63

13 56 M C5 C NT 21 L -

14 45 M C6 C T 6 L 63

15 35 F C5 D NT 97 L 63

16 67 M C4 D T 6 L 63

17 86 M C4 D NT 10 L 63

18 37 M C4 D NT 7 L 63

cSCI: cervical Spinal Cord Injury; M: Male; F: Female; ASIA: American Spinal Injuries Association Classification; T: Traumatic; NT: Non-Traumatic; L: Left;

R: Right.

https://doi.org/10.1371/journal.pone.0175457.t001
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We investigated the kinematics and coordination between the two hands while the partici-

pants were asked to reach and grasp (using a precision grip) either one (unimanual) or two

(bimanual) plastic blocks (30mmX30mmx18mm), which were placed at 50% of each individu-

al’s maximal reach, 20cm apart (10cm at either side of the participant’s midline), at a self-

selected, comfortable speed. After task familiarisation, participants performed 24 trials; 8 trials

with the preferred/less impaired limb (P/LI), 8 trials with the non-preferred/more impaired

limb (NP/MI) and 8 bimanual trials (B), with the order of trials blocked and pseudo-rando-

mised between participants. Participants were instructed to complete the task as fast and as

smoothly as possible when ready following the go signal. All participants completed the required

number of trials, without the need for additional trunk support or compensatory trunk move-

ments. All participants had full view of the arms/hands and the objects during each trial.

Data acquisition

Markers were placed on the right and left medial styloid process, and the distal portion of the

index finger and thumb, and recorded with a 5-camera motion analysis system (Proreflex,

Qualysis, Sweden) sampling at 120Hz. Data were filtered using a low-pass Butterworth filter

with a cut-off frequency of 10Hz [8,30], and were then analysed using Visual3D software (C-

motion, USA). Kinematic landmarks were identified on the tangential velocity profiles (see Fig

1 for examples) using a custom-written program and confirmed by concurrent visual analyses

of the velocity and displacement profiles.

Data analyses

We calculated several parameters related to the transport and grasp phases in line with past

research[11,28,31–34]. From the wrist marker we computed: (1) Movement time (MT): the

Fig 1. An example of a kinematic velocity profile for a participant with a cSCI (solid black line) and an

uninjured young adult (dashed black line), in a unimanual condition (graphed between the start (0%)

and the end of the movement (100%)) when the preferred/less impaired limb was reaching to the

object. The cross markers show the average timing of peak velocity and the vertical lines how the start of the

final adjustment phase. (cSCI = cervical Spinal Cord Injury).

https://doi.org/10.1371/journal.pone.0175457.g001
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duration between movement onset and end, with movement onset (MO) defined as when the

velocity of the wrist reached 50mm/s, and movement end (END) once the object moved in the

vertical direction (z), (2) Peak velocity (PV): maximal velocity of the wrist during the reach, (3)

Percentage of MT spent decelerating (PropDT): the time between PV and END expressed as a

percentage of total MT, (4) Final adjustment phase (FAP): the time between the velocity of the

wrist reaching 50 mm/s during the deceleration phase and END, as a percentage of total MT

(PropFAP), (5) ‘Interlimb synchrony’ the absolute difference in time between the P/LI and

NP/MI limbs at MO, PV, start of FAP and END.

From the markers on the thumb/s and index finger/s of each hand we calculated: (1) Maxi-

mum grasp aperture (MGA); the largest distance between the index finger and thumb during

the reach, (2) the time at which this MGA occurred during MT (expressed as a percentage of

total MT), (3) the coupling of the grasp and transport phase (TrG) calculated as the time of

peak deceleration (time at which the wrist was decelerating fastest) minus the time of MGA,

with a smaller value indicating greater coupling.

Statistical analyses

Data were examined using separate 3 group (cSCI, YA, OA) x 2 condition (unimanual, biman-

ual) x 2 limb (P/LI, NP/MI) repeated measures ANOVAs. When sphericity could not be

assumed F and P values were generated using the Greenhouse-Geisser correction. Significant

main effects were investigated using pairwise comparisons with Bonferonni adjustments, and

all significant interactions were explored using the appropriate inferential statistics. Interlimb

synchrony was examined using one-way ANOVAs. Statistical significance was set at p<0.05.

Results

Transport phase: MT, PV, PropDT and PropFAP

In comparison to the unimanual task, all participants (cSCI and UP) took longer to complete

the bimanual reach-to-grasp task [F(1,46) = 7.58, p<0.01, η2 = 0.14] (Fig 2a). Furthermore, a

longer period of deceleration (PropDT) [F(1,43) = 23.64, p<0.001, η2 = 0.36] and final adjust-

ment (propFAP) [F(1,43) = 7.93, p<0.01, η2 = 0.16] were also noted for bimanual tasks. Fig 2a

clearly shows that participants with a cSCI produced movements which were significantly lon-

ger in duration than UP (YA and OA) [F(2,46) = 27.62, p<0.001, η2 = 0.55] and reached a sig-

nificantly lower PV than YA [F(2,43) = 9.89, p<0.001, η2 = 0.32] (Fig 2b). Participants with a

cSCI also had a longer PropDT than UP (YA and OA) [F(2,43) = 19.94, p<0.001, η2 = 0.48]

(Fig 2c). Differences in PropFAP [F(2,43) = 7.01, p<0.01, η2 = 0.25] were noted between the

YA and the cSCI group with no significant difference between cSCI and OA (Fig 2d). There

was no significant main effect of limb for MT, PV, PropDT or PropFAP (p>0.05).

Further analysis of the significant condition by group interaction for PropFAP [F(2,43) =

4.31, p<0.05, η2 = 0.17] via paired t-tests (limb collapsed) revealed that OA exhibited a longer

PropFAP during the bimanual condition compared to the unimanual condition [t(14) = 3.142,

p<0.01]. However, in contrast while participants with a cSCI had a longer PropFAP, this was

not exacerbated by the bimanual condition; this pattern of results was also evident for the YA.

One-way ANOVAs also revealed that when comparing groups, while in the bimanual condi-

tion the YA had a smaller PropFAP than participants with cSCI [F(2,46) = 6.47, p<0.01, η2 =

0.22] there was no significant difference between OA and people with cSCI. In contrast, in the

unimanual condition differences between groups were noted between all UP and participants

with cSCI [F(2,49) = 8.04, p<0.01, η2 = 0.25].

Bimanual reach to grasp after cSCI
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Grasp phase: MGA, Time of MGA, TrG

While there was no difference between the groups [F(2,43) = 1.46, p>0.05, η2 = 0.06], the

bimanual condition elicited larger MGAs than the unimanual condition [F(1,43) = 34.731,

p<0.001, η2 = 0.447] (Fig 3a). MGA was reached earlier during the bimanual condition than

the unimanual one for all participants [F(1,43) = 14.05, p<0.01, η2 = 0.24] and participants

with a cSCI reached MGA significantly earlier than the UP [F(2,43) = 13.13, p<0.001, η2 =

0.38] (Fig 3b). The earlier MGA also resulted in a less coupled reach and grasp phase [F(2,43) =

15.89, p<0.001, η2 = 0.43] for participants with an cSCI compared to UP (Fig 3c). There was no

significant main effect of limb for MGA, Time of MGA or TrG (p>0.05).

Interlimb synchrony

Differences between the groups were noted for MO [F(2,46) = 3.73, p<0.05, η2 = 0.14], PV [F

(2,46) = 7.67, p<0.01, η2 = 0.25], start of final adjustment phase (FAP) [F(2,46) = 14.38,

p<0.001, η2 = 0.38], and END [F(2,46) = 6.89, p<0.01, η2 = 0.23] (Fig 4). Overall, analyses

showed that participants with a cSCI were less synchronous than YA at the start, and less

Fig 2. Group and limb means (±standard error) for Movement Time (MT) (a), Peak Velocity (PV) (b), proportion of

movement time spent Decelerating (propDT) (c), proportion of movement time spent in Final Adjustment Phase

(propFAP) (d) for unimanual (grey) and bimanual (white) conditions. (* denotes significant difference between

conditions and ‡ represents a significant difference between groups), (cSCI_LI = cervical Spinal Cord Injury less impaired

limb, cSCI_MI = cervical Spinal Cord Injury more impaired limb, YA_P = non-injured younger adults preferred limb,

YA_NP = non-injured younger adults non-preferred limb, OA_P = non-injured older adults preferred limb, OA_NP = non-

injured older adults non-preferred limb).

https://doi.org/10.1371/journal.pone.0175457.g002
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synchronous than both UP groups at each further time point. Fig 4 clearly indicates that irre-

spective of group the limbs become more synchronous between the start of FAP and END.

Discussion

This paper explores control of unimanual and bimanual reach-to-grasp in individuals with an

acute cSCI, and how this differs compared to uninjured younger and older adults. The main

findings indicate that individuals with a cSCI produced longer, slower reach-to-grasp actions,

with a longer deceleration and final adjustment phase before object pick up. While differences

in kinematic characteristics were exacerbated when performing a bimanual reach-to-grasp

compared to those performed unimanually (see Fig 2a–2d), both arms produced similar move-

ment patterns (no significant main effect of limb for any of the variables). While maximal

grasp aperture (MGA) was no different to uninjured participants, individuals with a cSCI

reached MGA earlier in the overall reach-to-grasp. Finally, interlimb synchrony was reduced

in individuals with cSCI, but endpoint temporal synchrony i.e. the point at which the object

was picked up, was evident.

Fig 3. Group and limb means (±standard error) for Maximum Grasp Aperture (MGA) (a), time of Maximum Grasp Aperture as

a percentage of Movement Time (MGA as a percentage of MT) (b) and transport and grasp coupling (c) for unimanual (grey)

and bimanual (white) conditions. (* denotes significant difference between conditions and ‡ represents a significant difference

between groups),(cSCI_LI = cervical Spinal Cord Injury less impaired limb, cSCI_MI = cervical Spinal Cord Injury more impaired limb,

YA_P = non-injured younger adults preferred limb, YA_NP = non-injured younger adults non-preferred limb, OA_P = non-injured

older adults preferred limb, OA_NP = non-injured older adults non-preferred limb).

https://doi.org/10.1371/journal.pone.0175457.g003
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As expected [11–14,35,36], individuals with a cSCI produced movements of a longer dura-

tion than UP, with a lower peak velocity than YA (Fig 2a and 2b). The longer movement time

was primarily due to a prolonged deceleration phase when compared to UP and final adjust-

ment phase when compared to YA (Fig 2c and 2d). The prolonged low velocity phase suggests

a more corrective mode of movement control, possibly mediated by visual feedback [28],

while the overall motor slowing following cSCI, has been thought to occur in order to maintain

end-point accuracy and due to declines in triceps strength [10].

When comparing unimanual and bimanual data, in general the data from uninjured adults

agree with previous findings [16,17]. Bimanual movements are longer in duration with an

increased reliance on the deceleration and final adjustment phase and maximal grasp aperture

is larger and reached earlier [37,38]. However, this data showed no real detrimental impact of

the more impaired limb on the less impaired limb as no main effects of limb or interactions

emerged.

Analyses of our data showed that the increases in overall movement duration seen in indi-

viduals with a cSCI could have risen from a more prolonged deceleration phase (PropDT) and

a longer final adjustment phase (PropFAP) during the reach phase (see Fig 2c and 2d). This is

in contrast to previous work [5], which noted that in chronic stage of injury, arm acceleration

Fig 4. Group means (±standard error) for absolute interlimb synchrony at movement onset, peak velocity, start of

the final adjustment phase and end of the movement. (‡ represents a significant difference between groups),

(cSCI = cervical Spinal Cord Injury, YA = non-injured younger adults, OA = non-injured older adults).

https://doi.org/10.1371/journal.pone.0175457.g004
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did not differ compared to UP. This suggests that one key difference between arm function in

the chronic and acute stages could be the contribution afferent feedback has in guiding trans-

portation of the limb. Furthermore, the data suggests that visual feedback could be of even

greater importance to individuals with an acute cSCI due to altered or absent afferent feed-

back, and this is reflected in a longer deceleration phase during arm transport (see Fig 2c).

This has clinical implications as integrating somatosensory stimulation [39] or functional elec-

trical stimulation [6] into bimanual therapy has been shown to increase cortical motor excit-

ability and improve sensory function. This may subsequently reduce the reliance on visual

feedback and therefore reduce the kinematic differences seen in acute cSCI when compared to

UP.

In terms of the grasp phase, much like previous work, all participants were able to scale

their MGA to the object with no group differences emerging [15]. Furthermore, MGA

occurred earlier in the bimanual reach-to-grasp tasks than the unimanual one for all groups

(see Fig 3b) [17]. However, participants with a cSCI produced their maximal grasp aperture

significantly earlier during hand transport than UP, prolonging the time it took to close the

hand around the object. This supports previous work where reaching for a small object (10m

in diameter vs 30mm in diameter used in the current study) increased the time it took to close

the hand after MGA [5] while reaching for a large object (75mm in diameter) caused an

increase in the time it took to reach MGA [5]. The earlier MGA noted in the present study

could be a compensatory mechanism to deal with the increased amount of time required to

scale the hand to the object size [7] and/or the time required during hand closing to utilise

visual and proprioceptive online feedback [40] to perform a successful grasping action [5].

The earlier MGA also resulted in a reduced intralimb coordination, as in UP MGA and

peak deceleration are often temporally coupled [11,36], while in people with a cSCI the reach

and grasp phase are performed sequentially (see Fig 3b). Other research shows that proprio-

ceptive deficits have been found to increase the duration of hand closure [40], therefore it may

be that sensory deficits of individuals with cSCI could contribute to the early MGA, and this

could impact overall interlimb coordination [5].

The interlimb synchrony data shows that the people with a cSCI produced less synchronous

movements than YA at movement onset and both YA and OA at all other kinematic land-

marks investigated (PV, Start of FAP, END). However, as seen in Fig 4 all participants used the

final adjustment phase to improve synchrony of the limbs when picking up the objects. The

results of the study suggest that despite disparate abilities of the two limbs following cSCI par-

ticipants still attempted to complete the bimanual task in a synchronous fashion even with no

specific instructions to do so. This suggests that a level of bimanual coordination is retained

and this could be improved with integration of bimanual movements into rehabilitation.

Bimanual upper limb function has previously been shown to improve following bimanual

therapy interventions in participants with cSCI [6, 39]. Additionally, as the participants in this

study were in the acute stages of injury, incorporating bimanual therapy at this early stage will

help to maximise neuroplasticity and improvements in function [41].

One potential limitation to this study is that participants had C4-C8 injuries which resulted

in differing levels of upper limb muscle paresis. Although, skeletal level and time since injury

were investigated as covariates no significant main effects or interactions emerged. This could

have been due to the small number of participants for each skeletal level and time since injury

(see Table 1). Future work could include a larger sample size split across differing skeletal levels

to explore this further as research has shown that individuals with a cSCI often develop new

neuromotor strategies in order to produce functional movements of the upper limbs [42]. Fur-

ther work should consider using surface electromyography and examine individual joint con-

tributions in the control of bimanual reach-to-grasp tasks to further characterise bimanual

Bimanual reach to grasp after cSCI
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control strategies after cSCI [43]. Together, these data will enable the more targeted rehabilita-

tion strategies where specific muscle synergies can be re/trained. Finally, the inclusion of fMRI

data in future studies would allow for discussion of neurodegenerative changes following cSCI

and how this may change bimanual control. This may aid the design of future bimanual ther-

apy interventions.

The present study only examined a non-cooperative symmetrical bimanual control task.

Given that interlimb coordination must be flexible to adjust to an ever-changing environment

[44], and previous research has shown that altering the size of the object resulted in alterations

to the movement strategy used by people with a cSCI [5], future work should examine asym-

metrical reach-to-grasp tasks which pose an even more complex control problem [18], but are

possibly more representative of activities of daily living.

Conclusions

The overall clinical message from these data suggests that a level of bimanual control is

retained following cSCI, and there seems to be little detrimental effect of the more impaired

limb on the less impaired limb. The acute stages of the injury are known to induce the greatest

neuroplasticity [41], thus incorporating bimanual therapy at this early stage may maximise

functional recovery and improve bimanual upper limb function as shown by previous inter-

ventions [6, 39]. Furthermore, given what appears to be a reliance on visual/proprioceptive

feedback of the limb and hand, future research should establish whether supplementing task

specific practice with augmented feedback, or somatosensory stimulation could aid arm and

hand recovery [6,45]. These data also show that it is important to assess bilateral impairments

and quantify performance and control of bimanual tasks. Kinematic analyses of arm and hand

movements are likely to provide more sensitive measures with which to judge efficacy of

bimanual training strategies.
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