
This is a repository copy of Application of the adjoint approach to optimise the initial 
conditions of a turbidity current with the AdjointTurbidity 1.0 model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/114706/

Version: Published Version

Article:

Parkinson, Samuel D., Funke, Simon W., Hill, Jon orcid.org/0000-0003-1340-4373 et al. (2
more authors) (2017) Application of the adjoint approach to optimise the initial conditions 
of a turbidity current with the AdjointTurbidity 1.0 model. Geoscientific Model Development.
pp. 1051-1068. 

https://doi.org/10.5194/gmd-10-1051-2017

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Geosci. Model Dev., 10, 1051–1068, 2017

www.geosci-model-dev.net/10/1051/2017/

doi:10.5194/gmd-10-1051-2017

© Author(s) 2017. CC Attribution 3.0 License.

Application of the adjoint approach to optimise the initial conditions

of a turbidity current with the AdjointTurbidity 1.0 model

Samuel D. Parkinson1, Simon W. Funke2, Jon Hill3, Matthew D. Piggott1,4, and Peter A. Allison1

1Department of Earth Science and Engineering, Imperial College London, London, UK
2Scientific Computing, Simula Research Laboratory, Fornebu, Norway
3Environment Department, University of York, York, UK
4Grantham Institute – Climate Change and the Environment, Imperial College London, London, UK

Correspondence to: Simon W. Funke (simon@simula.no)

Received: 26 May 2016 – Discussion started: 13 July 2016

Revised: 6 January 2017 – Accepted: 8 February 2017 – Published: 7 March 2017

Abstract. Turbidity currents are one of the main drivers of

sediment transport from the continental shelf to the deep

ocean. The resulting sediment deposits can reach hundreds

of kilometres into the ocean. Computer models that simulate

turbidity currents and the resulting sediment deposit can help

us to understand their general behaviour. However, in order

to recreate real-world scenarios, the challenge is to find the

turbidity current parameters that reproduce the observations

of sediment deposits.

This paper demonstrates a solution to the inverse sediment

transportation problem: for a known sedimentary deposit, the

developed model reconstructs details about the turbidity cur-

rent that produced the deposit. The reconstruction is con-

strained here by a shallow water sediment-laden density cur-

rent model, which is discretised by the finite-element method

and an adaptive time-stepping scheme. The model is differ-

entiated using the adjoint approach, and an efficient gradient-

based optimisation method is applied to identify the turbidity

parameters which minimise the misfit between the modelled

and the observed field sediment deposits. The capabilities of

this approach are demonstrated using measurements taken in

the Miocene Marnoso-arenacea Formation (Italy). We find

that whilst the model cannot match the deposit exactly due

to limitations in the physical processes simulated, it provides

valuable insights into the depositional processes and repre-

sents a significant advance in our toolset for interpreting tur-

bidity current deposits.

1 Introduction

Turbidity currents are density currents driven by sediment

particles that are suspended by turbulence in the contain-

ing fluid (Lowe, 1979). They occur frequently throughout

the Earth’s oceans and are one of the main processes by

which sediment is moved from the continental shelf to the

deep ocean. The largest turbidity currents can involve several

hundred cubic kilometres of sediment (Talling et al., 2007c)

and can travel for hundreds of kilometres across the seabed

at speeds of tens of metres per second (Heezen and Ewing,

1952).

The vast majority of the available data on turbidity cur-

rents are contained in the sedimentary deposits that they

leave behind. Significant effort is spent on attempting to di-

agnose details about the turbidity current that produced these

deposits. Talling et al. (2007a, 2012) describe the current the-

ories on how deposits found in the field are formed. The ex-

perimental evidence cannot yet validate all of these theories.

Computer models, along with laboratory experiments, have

been useful tools in improving our understanding of the dy-

namics of turbidity currents (Talling et al., 2007a; Kneller

and Buckee, 2000; Parkinson et al., 2014). However, com-

puter models have not often been directly applied to recre-

ating deposits found in the field, despite their capacity to

do so. They are generally applied to idealised cases to un-

derstand a specific physical mechanism. It is useful to di-

rectly apply models in an attempt to recreate real-world de-

posits (Fukushima et al., 1985; Huang et al., 2009; Doyle

et al., 2010), but this requires good knowledge of the initial
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Figure 1. This schematic representation of a dense gravity current (left) and a corresponding depth-averaged shallow water approximation

(right) shows current height h, volume fraction c, depth-averaged volume fractionψ , velocity u, the forward component of the depth-averaged

velocity u, and deposit depth η.

and boundary conditions and accurate estimates of values for

other controlling model parameters, which are often hard to

determine (Talling et al., 2007a).

The task of obtaining a set of model input parameters

based upon a desired model output represents an inverse

problem. It can also be interpreted as an optimisation prob-

lem for which model parameters are sought to minimise the

misfit between the deposit profile generated by the model

and a target deposit profile, which is produced from mea-

surements taken in the field.

In this paper, a shallow water model is used to simulate tur-

bidity currents. The shallow water equations are a set of par-

tial differential equations (PDEs). The optimisation of PDE-

based models occurs throughout science and engineering and

is already applied, for instance, in ocean science (Menemen-

lis et al., 2008), renewable energy (Funke et al., 2014), and

design problems (Giles and Pierce, 2000). In addition, there

is a growing interest in applying inverse modelling tech-

niques to the modelling of turbidity currents (Lesshafft et al.,

2011; Naruse, 2013; Rowley, 2013). In particular, Lesshafft

et al. (2011) applied a gradient-free optimisation method to

reconstruct parameters for a turbidity model.

PDE models of turbidity currents require the definition of

initial and boundary conditions. In the simplest case, this

could involve the definition of a static lock-release labora-

tory configuration with uniform sediment depth and a sin-

gle, uniform sediment grain size. Such a simple configura-

tion would at least require the definition of the initial depth

of the current, the concentration of sediment in the fluid, the

ratio of initial depth to length, and the parameters control-

ling the particle settling velocity and flow front speed. More

realistic initial conditions would be an inflow condition with

time-varying depth, velocity, and concentrations of a wide

range of sediment grain sizes along with information defin-

ing the topography of the bed, its composition, the parameter-

isations governing bed erosion rates, flow rheology, and bed-

load transport. As the model complexity and the choices of

boundary and initial conditions increase, the range of deposit

shapes that can be generated by the model also increases such

that the model is capable of better recreating a range of de-

posits found in the field. However, with this added complex-

ity, the parameter space grows and the manual tuning of the

parameters becomes a greater challenge.

This paper presents a shallow water sediment-laden den-

sity current model, released under the name AdjointTurbid-

ity 1.0, that uses a novel finite-element mixed discontin-

uous Galerkin function space with adaptive time stepping

(Sect. 2). The model implementation is verified through com-

parison with analytical solutions and convergence analyses

(Sect. 2.5). The model is then differentiated using the adjoint

method, which is an efficient way of computing the sensi-

tivity of a model output to many input parameters (Sect. 3).

This enables the use of fast-converging gradient-based op-

timisation techniques. Finally, a gradient-based optimisation

technique is applied to minimise the data misfit between the

modelled sediment deposit and field measurements taken in

the Miocene Marnoso-arenacea Formation (Sect. 4). To the

best of the authors’ knowledge, this paper represents the first

published work in which adjoint-based optimisation is ap-

plied to turbidity currents and demonstrates the usefulness

of these techniques for interpreting sedimentary successions

that have been deposited by turbidity currents.

2 Model

Shallow water models solve the Navier–Stokes equations in

depth-averaged form (Fig. 1). They are a valid approximation

when the horizontal length scale, or the length of the current,

is much larger than the vertical length scale, or the height

of the current. This is the case for all sediment-laden density

currents a short period after an initial release. In this case, the

vertical pressure gradients are in near hydrostatic balance.

Sediment in the current is assumed to be well mixed by the

turbulence in the flow such that there is a vertically uniform

sediment distribution.

Shallow water sediment-laden density current models

come in a variety of forms. Parker et al. (1986) proposed the

“four-equation” model. This is a complex model which ac-

counts for entrainment of sediment from the bed and entrain-

ment of ambient fluid into the flow. It has an extra equation

for the internal kinetic energy of the flow, which is translated

into potential energy through these mixing processes. A drag

force is applied along the length of the current which takes
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into account the viscous forces impeding the flow motion at

the base and top of the flow. This model has been applied to

large-scale turbidity currents (Fukushima et al., 1985; Huang

et al., 2009). It is dependent upon the selection of numer-

ous governing parameters and hence is a good case for in-

verse modelling. A similar but slightly simplified model was

used by Doyle et al. (2008, 2010) for modelling the plume

of a dense pyroclastic basal flow. This model also included a

dense underflow that has been applied in direct comparison

with field measurements (Doyle et al., 2010).

Bonnecaze et al. (1993) proposed one- and two-layer

sediment-laden shallow water density current models. The

two-layer model includes equations for the motion of the am-

bient fluid through which the density current is propagating.

This is important when the ambient fluid depth is similar to

the initial current depth. The one- and two-layer models pre-

sented by Bonnecaze et al. (1993) use a coordinate system

that adapts relative to the length of the flow. The moving

coordinate system allows the speed to be prescribed at the

front of the current. This speed can be well approximated us-

ing the Froude number, the height, and the volume fraction

of sediment in the current. This is a good approach, as the

speed of the front of a gravity current is governed by dynam-

ics that cannot be resolved by a vertically averaged model.

The moving coordinate system also results in a discretisation

that scales with the horizontal length scale of the flow. This

is beneficial for capturing the important flow features. This

model has been used extensively in understanding turbidity

current flow characteristics (Harris et al., 2001; Hogg, 2006),

including the effects of modelling polydisperse suspensions

(Harris et al., 2002; Garcia, 1994) and the effects of external

flow (Hallworth et al., 1998). The model used in this paper

is based upon the single layer shallow water model of Bon-

necaze et al. (1993).

2.1 Governing equations

The equations governing the current column height, h, and

the vertically integrated momentum, q = uh, with u being

the depth-averaged current velocity, are described in non-

dimensionalised conservative form as

∂h

∂t
+
∂q

∂x
= 0, (1)

∂q

∂t
+
∂

∂x

(
q2

h
+
ϕh

2

)
= 0 (2)

with boundary conditions

q = 0 at x = 0, (3)

q = ẋNh at x = xN (t), (4)

given that

ẋN = Frϕ1/2 at x = xN (t), (5)

where xN is the location of the front of the current, ẋN is

the velocity of the front of the current, Fr is the Froude

number, and ϕ = ψh is the vertically integrated volume frac-

tion of sediment where ψ is the depth-averaged volume frac-

tion of sediment within the flow. Through experimentation,

the Froude number for a density current with a head height

< 0.075 of the total water depth has been found to be 1.19

(Huppert and Simpson, 1980). The evolution of ϕ is de-

scribed using

∂ϕ

∂t
+
∂

∂x

(qϕ
h

)
= −β

ϕ

h
, (6)

where β is a constant particle-settling parameter. Hence, the

gravitational forcing term in (Eq. 2) (the last term on the left-

hand side) changes with time as ϕ is advected and settles out

of the column.

This single layer model ignores the effect of the motion

of the overlying fluid on the current. This approximation is

valid for flows in which the maximum column height is sig-

nificantly less than the depth of the ambient fluid (Bonnecaze

et al., 1993; Hogg, 2006). Viscous forces are also ignored.

For high Reynolds number flows, the viscous forces will be

negligible in relation to the buoyancy forces. Bonnecaze et al.

(1993) found that this was valid while the Reynolds number

was greater than O(1).

The amount of deposited sediment, η, is also recorded and

is calculated using

∂η

∂t
= β

ϕ

h
. (7)

The model is non-dimensionalised with the length, time,

and velocity scales h0, (h0/g
′
0)

1/2, and (h0 g
′
0)

1/2 respec-

tively. Here, h0 is the dimensional depth of the initial sed-

iment release, g′
0 = ψ0g

(
ρp − ρa

)
/ρa is the initial reduced

gravity of the current, ρp is the sediment particle density, ρa

is the ambient fluid density, which is assumed to equal the

interstitial fluid density, ψ0 is the initial volume fraction of

sediment, and g is the acceleration due to gravity. Finally,

the volume fraction is scaled such that
∫ xN (0)

0 ϕdx = 1.

Following Bonnecaze et al. (1993), a coordinate transfor-

mation from (x, t) to (y,τ ) is applied where y = x/xN (t)

and t = τ . This is a convenient form for the equations as the

front of the current is always at the right-hand boundary of a

fixed computational domain, and hence the boundary condi-

tion at the front of the flow is applied at the right-hand side

of the domain. The transformed derivatives are given by

∂

∂t
=
∂

∂τ
−
yẋN

xN

∂

∂y
, (8)

∂

∂x
=

1

xN

∂

∂y
. (9)

Applying this coordinate transformation, but keeping

t in place of τ for notational simplicity following

Bonnecaze et al. (1993), produces the system of equations

www.geosci-model-dev.net/10/1051/2017/ Geosci. Model Dev., 10, 1051–1068, 2017
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∂h

∂t
=

1

xN

(
yẋN

∂h

∂y
−
∂q

∂y

)
, (10)

∂q

∂t
=

1

xN

(
yẋN

∂q

∂y
−
∂

∂y

(
q2

h
+
ϕh

2

))
, (11)

∂ϕ

∂t
=

1

xN

(
yẋN

∂ϕ

∂y
−
∂

∂y

(qϕ
h

))
−β

ϕ

h
, (12)

∂η

∂t
=

1

xN

(
yẋN

∂η

∂y

)
+β

ϕ

h
, (13)

∂xN

∂t
= ẋN (14)

with boundary conditions

q = 0 at y = 0, (15)

q = ẋNh at y = 1, (16)

η = 0 at y = 1, (17)

given that ẋN = Frϕ1/2 at y = 1.

Note that Eq. (14) for xN has been introduced to close the

system.

It is now shown that the boundary conditions (see Eqs. 15–

17) are sufficient to uniquely solve this system. Equa-

tions (10)–(13) are a hyperbolic system of PDEs. For such a

system to be well posed, there must be a boundary condition

for each inwardly propagating characteristic. This system of

equations has four characteristic velocities:

dy

dt
= c± :=

1

xN

(
u− yẋN ±ϕ1/2

)
, (18)

dy

dt
= c :=

1

xN
(u− yẋN ) , (19)

dy

dt
= cη := −

1

xN
yẋN . (20)

These are obtained using the method of characteristics,

where c± is the characteristic velocity of waves in shallow

water, c is the advection velocity of sediment, and cη is the

advection velocity of deposited sediment which is advected

away from the current head as the domain length increases.

Due to the boundary conditions on momentum, the follow-

ing is true: u= q/h= 0 at y = 0 and u= q/h= ẋN at y =

1. Hence, c = 0 at both y = 0 and y = 1. Therefore, there are

three inwardly propagating characteristics: c+ = ϕ1/2/xN at

y = 0, c− = −ϕ1/2/xN at y = 1, and cη = −y ẋN/xN at y =

1. Hence, three boundary conditions are required for the

problem to be well posed such that the three boundary con-

ditions (Eqs. 15–17) are exactly what is required.

2.2 Discretisation and numerical method

As the cell size grows throughout the simulation, it is possi-

ble to use a much larger time step at the end of the simulation

than at the start of the simulation. To exploit this property, an

adaptive time-stepping scheme is used in this model. A new

time-dependent variable is introduced, 1t , which will vary

according to a CFL criteria, C, based upon a velocity scale,

ẋN , and the mesh element size such that

1t = C
1x

ẋN
= C

xN1y

ẋN
, (21)

where 1x is the mesh element size in x, and 1y is the mesh

element size in the transformed coordinate system y. The

time-dependent model variables are defined as a vector

U =
[
h,q,ϕ,η,xN , ẋN ,1t

]T
. (22)

The system is discretised in time using a second-order ex-

plicit Runge–Kutta time discretisation (Cockburn and Shu,

2001). An implicit term is added to the semi-discrete system

in order to solve for the diagnostic variables ẋN and1t . With

Un as the solution at the beginning of the time step, Un+1 as

the solution at the end of the time step, and U (0), U (1), and

U (2) as intermediate values, the system of equations (discre-

tised in time) can be written as

U (0) = Un,

U (1) = A(U (0))+L(U (0))+K(U (1)), (23)

U (2) = A(U (1))+L(U (1))+K(U (2)),

Un+1 =
1

2
U (0)+

1

2
U (2),

where

A(U)=
[
h,q,ϕ,η,xN ,0,0

]T
, (24)

L(U)= (25)

1t

(
1

xN

(
yẋN

∂f1(U)

∂x
−
∂f2(U)

∂x

)
+ f3(U)

)
,

f1 =
[
h,q,ϕ,η,0,0,0

]T
, (26)

f2 =

[
q,
q2

h
+
ϕh

2
,
qϕ

h
,0,0,0,0

]T
, (27)

f3 =
[
0,0,−β

ϕ

h
,β
ϕ

h
,0,0,0

]T
. (28)

A(U) is non-zero where there is a time derivative term. L(U)

is the explicit right-hand side term multiplied by 1t . Note

that K(U) contains the implicit right-hand side terms. K(U)

can only be easily described well in weak form, so this is

defined later.

The spatially weak form of the semi-discrete system

(Eq. 23) is obtained as 9 and integrated over the domain �.
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This gives�. For all9 in an appropriately chosen test space,

∫

�

9 ·U (0)d�=

∫

�

9 ·Und�,

∫

�

9 ·U (1)d�=

∫

�

9 ·A(U (0))d� (29)

+

∫

�

9 ·L(U (0))d�+

∫

�

9 ·K(U (1))d�,

∫

�

9 ·U (2)d�=

∫

�

9 ·A(U (1))d�

+

∫

�

9 ·L(U (1))d�+

∫

�

9 ·K(U (2))d�,

∫

�

9 ·Un+1d�=
1

2

∫

�

9 ·
(
Un+U (2)

)
d�.

Piecewise linear discontinuous Galerkin (DG) elements

are used to discretise the spatially varying state variables.

Thus, the spatial and temporal discretisations both have

second-order accuracy. DG element types are known to

be particularly suitable for advection dominated problems

(Peraire and Persson, 2008). They are good at preserving dis-

continuities as they produce stable discretisations without the

need for diffusive stabilisation strategies, such as streamline

upwinding (Peraire and Persson, 2008). These are important

features in shallow water particle-laden density current mod-

els.

In order to construct a DG formulation, a regular partition

Th = {e} of� into non-overlapping subdomains�e ∈�with

boundaries ∂�e is considered. The piecewise linear DG func-

tion space is denoted DG1. For this function space, piece-

wise linear test functions with no global continuity require-

ment are considered; i.e. functions that have the potential to

be double valued on ∂�e. xN , ẋN , and 1t are defined on a

function space, R, which is constant throughout the spatial

domain. Therefore, the vector of model unknowns U is de-

fined on a mixed function space, Vh = DG1
4 ×R3. The func-

tion in the mixed function space is denoted with 9h ∈ Vh

and the discretised approximation of the state variable with

Uh ∈ Vh.

Notice that L(U) contains derivatives of discontinuous

functions. Its undiscretised weak form is
∫

�

9 ·L(U)d�= (30)

1t

∫

�

9 ·

(
1

xN

(
yẋN

∂f1(U)

∂x
−
∂f2(U)

∂x

)
+ f3(U)

)
d�.

The discretised DG formulation of Eq. (30) is then

∑

e∈Th

∫

�e

9h ·L(Uh)d�=1t
∑

e∈Th

∫

�e

9h (31)

·

(
1

xN

(
yẋN

∂f1(Uh)

∂x
−
∂f2(Uh)

∂x

)
+9hf3(Uh)

)
d�.

Integrating the gradient terms by parts and slightly rear-

ranging yields

∑

e∈Th

∫

�e

9h ·
xN

1t
L(Uh)d�=

−
∑

e∈Th

∫

�e

∂

∂x
(9hyẋN ) · f1(Uh)d� (32)

+
∑

e∈Th

∫

∂�e

9̂h · y ẋN f̂1(Uh)̂ndσ +
∑

e∈Th

∫

�e

∂9h

∂x
· f2(Uh)d�

−
∑

e∈Th

∫

∂�e

9̂h · f̂2(Uh) n̂dσ +
∑

e∈Th

∫

�e

9h · xNf3(Uh)d�,

where ·̂ indicates that the function is double valued and spe-

cial attention is required. The various summations can now

be rewritten as integrals over the entire domain�, all element

interfaces 6h, and the domain boundaries Ŵh. Note that

∑

e∈Th

∫

∂�e

9h · Ûh dσ ≡

∫

6h

9h · Ûh dσ +

∫

Ŵh

9h ·U0 dσ, (33)

and
∑

e∈Th

∫

�e

9h ·Uh d�≡

∫

�

9h ·Uh d�. (34)

Additionally, note that within domain boundary integrals,

the ·̂ notation is dropped as the function is single valued at

this location. Uh is also replaced with U0, which is either the

boundary value if a Dirichlet boundary condition is present

or the function value at the boundary if it is not. Note that in

the case of the boundary condition for q at y = 1, U0 is still

a function of Uh. Applying Eqs. (33) and (34) to (32) yields
∫

�

9h ·
xN

1t
L(Uh)d�= −

∫

�

∂

∂x
(9hy ẋN ) · f1(Uh)d�

+

∫

6h

9̂h · yẋN f̂1(Uh)̂ndσ +

∫

Ŵh

9h · y ẋN f1(U0)ndσ (35)

+

∫

�

∂9h

∂x
· f2(Uh)d�−

∫

6h

9̂h · f̂2(Uh) n̂dσ

−

∫

Ŵh

9h · f2(U0)ndσ +

∫

�

9h · xNf3(Uh)d�. (36)

A choice of flux term must be made to handle the double-

valued terms. This will involve some coupling between the

www.geosci-model-dev.net/10/1051/2017/ Geosci. Model Dev., 10, 1051–1068, 2017
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elements on either side of the interface. An upwind flux is

used for the advection term, f̂1, and based upon experience

an average flux works well for f̂2. This gives

∫

�

9h ·
xN

1t
L(Uh)d�= −

∫

�

∂

∂x
(9hy ẋN ) ·Uhd� (37)

+

∫

Ŵh

9h · y (ẋNn)downf1(U0)dσ +

∫

6h

(
9+
h −9−

h

)
·

y
(
f+

1 (Uh)(ẋN n
+)up + f−

1 (Uh)(ẋNn
−)up

)
dσ

+

∫

�

∂9h

∂x
· f2(Uh)d�−

∫

Ŵh

9h · f2(U0)ndσ

−

∫

6h

(
9+
h −9−

h

)
·

1

2

(
f2(Uh)

+ + f2(Uh)
−
)
n+dσ

+

∫

�

9h · xNf3(Uh)d�,

where (·)+ and (·)− indicate the function values on either

side of an interior element boundary. (·)up is equal to (·)

where ẋNn
± > 0 and 0 otherwise. Conversely, (·)down is

equal to (·) where ẋNn
± < 0 and 0 otherwise. K(U) can be

described in weak discretised form as
∫

�

9h ·K(Uh)d�= (38)

∫

�

9h ·K�(Uh)d�+

∫

∂�R

9h ·Kσ (Uh)dσ,

K�(Uh)=

[
0,0,0,0,0,0,C

xN1y

ẋN

]
, (39)

Kσ (Uh)=
[
0,0,0,0,0,F r(ϕ)1/2,0

]
, (40)

where ∂�R is the right-hand boundary at y = 1 such that a

solution for ẋN is obtained by solving only at the front of the

current.

Using Eqs. (29), (37), and (38) and applying Eq. (34), the

full weak, discontinuous form of Eq. (23) can be obtained.

Find U
(0)
h ,U

(1)
h ,U

(2)
h ,U

(n+1)
h ∈ Vh such that ∀9h ∈ Vh

∫

�

9h ·U
(0)
h d�=

∫

�

9h ·Unh d�,

∫

�

9h ·U
(1)
h d�=

∫

�

9h ·A(U
(0)
h )d�+

∫

�

9h ·L(U
(0)
h )d�

+

∫

�

9h ·K(U
(1)
h )d�, (41)

∫

�

9h ·U
(2)
h d�=

∫

�

9h ·A(U
(1)
h )d�+

∫

�

9h ·L(U
(1)
h )d�

+

∫

�

9h ·K(U
(2)
h )d�,

∫

�

9h ·Un+1
h d�=

1

2

∫

�

9h ·
(
U
(0)
h +U

(2)
h

)
d�.

This set of equations is solved for each time step of the

simulation as a nonlinear variational problem using Newton’s

method with an LU decomposition solver for the linear prob-

lems.

2.3 Slope limiting

Discontinuous Galerkin discretisations for convection dom-

inated problems can suffer from over- and undershoots at

discontinuities that can cause instability problems (Kuzmin,

2010; Cockburn and Shu, 2001). Slope limiting can be ap-

plied to solve this problem, but this typically involves dis-

continuous operations, which are problematic in a gradient-

based optimisation framework. Therefore, we do not use

slope limiting here and limit ourselves to the assumption of

smooth initial conditions where slope limiting is not neces-

sary. It would be possible to formulate a continuous slope-

limiting function to overcome this limitation if it was re-

quired.

2.4 Implementation

The shallow water sediment-laden density current model de-

scribed above was built using the FEniCS framework (Logg

et al., 2012), an open-source software project that provides

features for the automated, efficient solution of differential

equations. Using a high-level interface, the model partial dif-

ferential equations are described in variational form using

UFL (Unified Form Language) (Alnæs et al., 2012). This can

be achieved in Python or C++ code in a way that is remark-

ably similar to how one would describe the equations on pa-

per. At runtime, this model description is compiled into ef-

ficient C++ kernels that handle the assembly of the required

matrices to generate the systems of equations that are then

solved using PETSc (Balay et al., 2014).
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Figure 2. Schematic diagram of the lock-release static initial condition (a) and the following dam-break (b) and slumping (c) phases with

the shock wave propagation direction indicated by ( ).

2.5 Forward model verification

Many laboratory experiments and computer models are

based around the classical lock-release static initial condition

(Fig. 2a). Following the release of the lock-gate, the current

accelerates forwards. This is known as the dam-break stage

(Ungarish, 2010) (Fig. 2b). As the lock-gate is released, a

shock forms which travels in the opposite direction to the

front of the current. This shock carries information that sets

the fluid in motion. Once this shock reaches the rear wall, all

of the fluid behind the lock-gate is in motion. This marks the

point of transfer from the dam-break to the slumping phase

(Ungarish, 2010) (Fig. 2c). For a non-depositional current

(i.e. β = 0) with initial h and xN = 1, the slumping phase

begins at t = 1. The current front height and velocity remain

approximately constant during this phase of motion. The rear

propagating shock is reflected off the no-flow boundary and

travels faster than the front of the current. A short while later,

it reaches the front of the current, marking the end of the

slumping phase. The current is now able to “forget” the ini-

tial condition and begins adjusting to self-similar propaga-

tion (Ungarish, 2010). For a non-depositional current (i.e.

β = 0), the reflected shock reaches the front of the current

at t = 3 (Ungarish, 2010).

Hoult (1972) showed that a similarity solution, which is a

solution that looks the same at all times or at all length scales,

could be obtained for a single layer shallow water density

current model during the self-similar phase of propagation.

This is described as

xN = κt2/3, u=
2

3
κt−1/3us, h= κ−1t−2/3hs, ψ = 1, (42)

where

y = x/κt2/3, κ =

(
27Fr2

12 − 2Fr2

)1/3

, (43)

us = y, hs =
4

9
κ3

(
y2

4
−

1

4
+

1

Fr2

)
. (44)

The domain is unit length, as in all cases for this model.

This solution is valid for the model described in this paper

so long as the settling velocity of particles, β, is equal to

Figure 3. Similarity convergence analysis. All variables are shown

to converge on the correct solution at the correct order. ǫ(∗) indicates

the L2 norm of the error in the solution obtained for variable (∗).

0 (i.e. no particle settling). This analytical solution is use-

ful in verifying the implementation of the governing equa-

tions and boundary conditions for this model. The solution

to the model PDEs should converge on this analytical solu-

tion as the mesh resolution is refined at the correct rate for the

temporal and spatial discretisation. The use of piecewise dis-

continuous linear elements and a second-order time-stepping

regime means that the convergence order should be quadratic

in both space and time.

For the convergence test, the analytical solution is pro-

jected onto the model function space forming the initial con-

dition at t = 3. At t = 10, the L2 norm of the difference be-

tween the model variables and the analytical solution is ob-

tained and used to measure convergence. The analysis shows

that all variables converge on the analytical solution at the

correct order (Fig. 3). Note that the time step is adaptive and

will therefore decrease along with the element size such that

this test checks both spatial and temporal convergence. This

verifies that the model equations are implemented correctly

(Farrell et al., 2011). A qualitative comparison shows that the

solution matches the analytical solution very well (Fig. 4).
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Figure 4. Similarity results for the finest resolution mesh (solid

lines) compared against the analytical results (dashed lines) at t =

10.0.

3 The adjoint model

Here, we describe the adjoint model and its derivation gener-

ally rather than specifically applying it to this model.

Consider a problem with N input parameters forming a

vector, m. Let F(U,m)= 0 denote the set of PDEs that

describe a model where U represents the model variables

throughout time. Note that U can be seen as an implicit func-

tion of m, U = U(m), by finding a solution to F(U,m)= 0.

Suppose now that the aim is to minimise an objective func-

tional, J (U,m), by optimising m. Here, J (U,m) will be de-

fined as a function measuring the difference between a de-

posit profile generated by the model and a target deposit pro-

file. Where optimisation is required to a tolerance of δmi ,

with i being the index of each parameter and where each

parameter has bounds spanning a range 1mi , optimisation

through a brute force approach will require
∏N
i 1mi/δmi

evaluations of the model to find the solution. N may be

very large for a sediment-laden density current model, which

could potentially have time-varying boundary conditions for

sediment concentration, velocity and height, uncertainty in

the elevation profile, the friction coefficient of the surface

over which the current is flowing, and uncertainty in the pa-

rameters that govern the physics of the flow, such as entrain-

ment of ambient fluid, front speed, and sediment erosion.

Many of these parameters vary over space and time such that

the parameter space grows as the resolution in time or space

increases. Such a large potential parameter space motivates

the use of a more advanced and efficient optimisation strat-

egy.

Numerous algorithms have been developed to improve this

brute force approach. These optimisation algorithms begin

with an initial guess of the input parameters and iterate, then

generate improved estimates until they terminate, hopefully

at the optimised solution. The authors refer the reader to

Jorge and Stephen (1999) for an extensive description of the

range of numerical optimisation methods.

Most of these optimisation algorithms require the gradient

of the objective functional with respect to the input parame-

ters, dJ/dm. Approximation techniques, such as finite differ-

encing, could be used to evaluate the gradient, but this will

require an excessive number of PDE evaluations and may

suffer from noise (Jorge and Stephen, 1999). Here, the ad-

joint model is used to efficiently calculate the gradient. This

approach is favoured as it calculates dJ/dm for any number

of input parameters with a single evaluation of the adjoint

model.

Obtaining the adjoint model begins by applying the chain

rule to dJ/dm:

dJ (U(m),m)

dm
=

〈
∂J

∂U
,

dU

dm

〉
+
∂J

∂m
. (45)

∂J/∂U and ∂J/∂m are both vectors, and they are typically

straightforward to compute as J is typically a given analyt-

ical function of U and m. dU/dm, on the other hand, is a

matrix that is typically dense and expensive to compute. A

relationship for dU/dm can be obtained by taking the total

derivative of F(U,m)= 0 with respect to m:

0 =
dF(U(m),m)

dm
=
∂F

∂U

dU

dm
+
∂F

∂m
, (46)

⇒
∂F

∂U

dU

dm
= −

∂F

∂m
. (47)

Equation 47 is termed the tangent linear equation. ∂F/∂U

and ∂F/∂m are both matrices. The solution of this equation

is obtained by solving N systems of equations. When there

are many functionals, J , and a small set of parameters, m,

then this equation can be useful for obtaining dJ/dm via

Eq. (45). With a large set of parameters and only one func-

tional, as is the case here, this is not an efficient approach.

However, suppose that ∂F/∂U in Eq. (47) is invertible so

that one can obtain

dU

dm
= −

(
∂F

∂U

)−1
∂F

∂m
. (48)

This expression can be substituted for dU/dm directly into

Eq. (45) to obtain

dJ (m)

dm
= −

〈
∂J

∂U
,

(
∂F

∂U

)−1
∂F

∂m

〉
+
∂J

∂m
. (49)

A simple property of inner products, 〈y,Ax〉 = 〈A∗y,x〉,

where A∗ is the conjugate transpose or adjoint of A, can be

used to shift (∂F/∂U)−1 to the left-hand side of the inner

product:

dJ (m)

dm
= −

〈(
∂F

∂U

)−∗
∂J

∂U
,
∂F

∂m

〉
+
∂J

∂m
. (50)

Gathering the left-hand side of the inner product into a new

variable,

λ :=

(
∂F

∂U

)−∗
∂J

∂U
, (51)
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yields the linear system of equations that can be solved for

the adjoint variable, λ:

(
∂F

∂U

)∗

λ=
∂J

∂U
. (52)

Equation (52) is termed the adjoint equation. The right-

hand side is a vector and only one evaluation is required to

obtain λ for a specific functional, J . Once Eq. (52) is solved,

dJ/dm can easily be computed with respect to any parameter

m by substituting the value of λ into Eq. (49).

As mentioned above, ∂J/∂U and ∂J/∂m are typi-

cally straightforward to compute. However, (∂F/∂U)∗ and

∂F/∂m still need to be derived and implemented, which is

not a simple task for a large set of complex PDEs. The chal-

lenge of obtaining these matrices is the main obstacle to us-

ing the adjoint model. However, the high-level abstraction of

the coding provided by FEniCS to create this model makes

calculating (∂F/∂u)∗ and ∂F/∂m an automatable task using

an additional tool, dolfin-adjoint (Farrell et al., 2013). This

powerful tool automatically derives the discrete adjoint and

tangent linear models from a forward model written in FEn-

iCS. This makes differentiating the forward model and solv-

ing the adjoint equation to obtain the derivative of the ob-

jective functional a much simpler task. Additionally, dolfin-

adjoint contains tools for carrying out the optimisation of the

model parameters by interfacing with IPOPT (Wächter and

Biegler, 2006) optimisation algorithms (Funke and Farrell,

2013).

4 Estimation of the parameters for the turbidity

current that generated Bed 1.1 in the

Marnoso-arenacea Formation

The Marnoso-arenacea Formation spans 17 to 7 Ma (Late

Burdigalian to Tortonian) and is over 3500 m thick (Talling

et al., 2007b). Deposition occurred from two sources: the

northwestern Alpine source and the southwestern Apennine

source (Lucchi and Valmori, 1980; Gandolfi et al., 1983).

The depositional environment was an elongated foreland

basin adjacent to the Apennine thrust belt with turbidites

deposited in a relatively wide (> 60 km) basin in a non-

channelised manner (Talling et al., 2007b; Lucchi and Val-

mori, 1980; Gandolfi et al., 1983). The formation provides

the most extensive and detailed correlation of flow deposits

(beds) in any ancient turbidite system and is therefore a natu-

ral laboratory for studying turbidite depositional processes

(Amy and Talling, 2006). It has been extensively mapped

with more than 100 sections accurately recorded over a cor-

related distance of more than 120 km (Amy and Talling,

2006). Bed volumes range from O(10−3) km3 to several km3

(Talling et al., 2007a). It contains extensive data for evaluat-

ing the performance of the adjointed turbidity current model

described here.

Figure 5. The sandstone depths measured for Bed 1.1 along the

Pietralunga and Ridracoli structural elements orientated approxi-

mately parallel to the palaeoflow. This has been reconstructed from

Fig. 5 in Talling et al. (2007a). A fourth-order polynomial approx-

imation of the deposit profile, ηT, is also shown. This is used as a

target for the optimisation algorithm. The base of the bed is shown

as a horizontal datum in order to illustrate lateral changes in deposit

thickness. Note that a different datum is used in the source figure,

which uses the top of Bed 1.2.2 rather than the top of Bed 1. The

palaeoelevation of the base of the bed would have varied spatially,

reflecting the basin floor relief.

In this section, an optimisation algorithm is used to select

model parameters that produce an output deposit that best

matches part of Bed 1.1 in the Marnoso-arenacea Formation,

as recorded by Amy and Talling (2006). This is defined as a

small volume of flow deposit with a total sediment volume

of ≈ 0.215 km3 (Talling et al., 2007a). Talling et al. (2007a)

produced an approximate one-dimensional deposit parallel to

the palaeoflow (Fig. 5). The shape of the deposit strongly re-

sembles that of very low concentration currents in laboratory

tests, and it also resembles the shape of bed profiles gener-

ated by the Bonnecaze et al. (1993) model. This implies that

the flow that created this deposit was a very low concentra-

tion current. The model used in this chapter is very simple.

It does not model any stratification or particle–particle inter-

actions in the flow. As such, its application is limited to very

low concentration flows, and hence Bed 1.1 is a good candi-

date as a case study for this model.

The deposit consists of sandstone and mudstone compo-

nents. The focus here will be on attempting to recreate only

the sandstone portion of the deposit. It is likely that ponding

effects have influenced the shape of the mud deposit in this

bed (Talling et al., 2007b), which this model cannot repli-

cate. The outcrop quality also deteriorates beyond the extent

of the sandstone deposit. Therefore, no attempt is made to

model this portion of the bed.
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4.1 Choice of initial conditions and parameters

The initial conditions are based upon the analytical solu-

tion for a non-depositional flow at a non-dimensional time,

t = ts = 3, after a column collapse as described by Eq. (42).

Some assumptions are therefore made as to the initial shape,

sediment concentration profile, and velocity profile of the

flow.

The non-dimensional particle-settling velocity, β, is calcu-

lated using the standard Stokes settling law for a particle in

suspension (Lamb, 1993) non-dimensionalised by (h0 g
′
0)

1/2

to give

β =
g′D2

18ν (h0 g
′
0)

1/2
=

g′1/2D2

18ν (h0ψ0)
1/2
, (53)

where D is the average sediment diameter. The sediment-

reduced gravity, g′ = g′
0/ψ0 = (ρp − ρa)g/ρa = 16, is based

upon the reduced gravity of silica in water. Using these ini-

tial conditions, there are three unknowns: h0, the dimensional

length scale of the current; ψ0, the initial sediment concen-

tration throughout the current; and D, the mean sediment di-

ameter. These become the set of input parameters that will be

optimised with m= (h0,ψ0,D)
T .

The beginning of the basin is defined as being at the front

of the current at t = ts such that the current is not in the basin

prior to the start of the simulation. The current enters the

domain as soon as the simulation starts. The end of the sim-

ulation, tf, is defined as the time at which the total suspended

sediment is less than 1 % of the starting quantity.

4.2 Choice of optimisation functional

The aim here is to reduce the difference between the deposit

profile generated by this model and the target deposit profile

from field measurements. To do this, we need to map the non-

dimensional, transformed results from the model back to the

observation space. We also only measure the variation over

the length of the measured deposit. Therefore, the functional

that we will aim to minimise, J , has the form

J (U(m),m)=

x̂max∫

0

(̃η− ηT)
2dx̂, (54)

where ηT is the dimensional target deposit profile,

η̃ = ψ0 h0 η is the dimensionalised modelled deposit,

x̂max = 82 000 is the extent of the measured data, and x̂ =

x̃− x̃N (ts) is a coordinate transformation such that x̂ = 0 at

the front of the current at t = ts, x̃ = y x̃N (tf) is the dimen-

sionalised reverse of the coordinate transformation outlined

in Sect. 2.1; x̃N (t)= h0 xN (t) is the dimensional length of

the current.

To calculate this functional, ηT must be a function of x̂.

The deposit is approximated using a fourth-order polynomial

ηT =
4∑

i=0

ci x̂
i, (55)

where ci is the ith coefficient. The coefficients are obtained

using the least squares method. The fourth-order approxima-

tion fits the measured data points well (Fig. 5).

It is important to note that at the end of the simulation,

t = tf, the length of the current does not necessarily match

the length of the deposit, or x̂N 6= x̂max, where x̂N (t)=

x̃N (t)− x̃N (ts) is the dimensional length of the modelled de-

posit within the basin. This complicates the calculation of the

above integral.

The calculation of J is split into two components, an inte-

gral over the lesser of the length of the modelled current (or

the length of the measured data, J0) and an integral over any

remaining length of measured data, J1, such that

J = J0 + J1. (56)

The first integral takes the form

J0 =

min(x̂N , x̂max)∫

0

(
ηT(x̂)− η̃(x̂)

)2
dx̂. (57)

This can be approximately transformed into the model co-

ordinate system as

J0 =

∫

�

(
γ0ηT(x̂(y))− γ0η̃(x̂(y))

)2
dy, (58)

where γ0 is a scaled filter. This filter is 0 in the regions x̂ < 0

and x̂ > x̂max. Elsewhere, the filter value is a constant such

that the integral of the filter over the domain is equal to the

length of the dimensional integral, min(x̂N , x̂max). The filter

defines the region of the domain over which the integral is

evaluated and scales the resultant value appropriately. The

filter is defined as

γ0(x̂)= min(x̂N , x̂max)
exp

(
min(x̂− x̂max, x̂, 0)

)

sγ0

, (59)

sγ0 =

∫

�

exp
(
min(x̂− x̂max, x̂, 0)

)
dx̂. (60)

It is important that the functional is differentiable. Therefore,

the min and max functions are replaced by smooth approxi-

mations fmin and fmax defined as

fmin(a,b)= ln (exp(10a)+ exp(10b))/10, (61)

fmax(a,b)= fmin(−a,−b). (62)

The second integral, J1, takes the form

J1 =

x̂max∫

min(x̂N , x̂max)

ηT(x̂)
2dx̂, (63)

Geosci. Model Dev., 10, 1051–1068, 2017 www.geosci-model-dev.net/10/1051/2017/



S. D. Parkinson et al.: The adjoint approach for turbidity currents 1061

Table 1. Taylor remainders R0 = |Ĵ (xN (0)+ δxN )| and R1 =

|Ĵ (xN (0)+ δxN )− Ĵ (xN (0))− dĴ (xN (0))/duδxN | for the with

functional given by J (η)=
∫
�η(t = tf)

2d�.

δxN R0(δxN ) order R1(δxN ) order

1.0 1.16 ×10−8 2.67 ×10−9

0.5 5.11 ×10−9 1.18 6.54 ×10−10 2.03

0.25 2.39 ×10−9 1.01 1.56 ×10−10 2.07

0.0125 1.15 ×10−9 1.05 3.54 ×10−11 2.14

0.00625 5.64 ×10−10 1.03 6.97 ×10−12 2.34

such that J1 integrates the target deposit volume beyond the

extent of the modelled deposit. If the modelled deposit length

exceeds the length of the measured data, this integral will

be 0. Again, this can be approximately transformed into the

model coordinate system as

J1 =

∫

�

(γ1ηT(̃x(y)))
2dy, (64)

x̃(y)= min(x̂N + y(x̂max − x̂N ), x̂N ), (65)

where γ1 is a scaled filter similar to γ0 defined as

γ1(x̂)=
(
x̂max − min(x̂N , x̂max)

)
(66)

·
exp

(
min(x̂− x̂max, 0)

)

sγ0

,

sγ0 =

∫

�

exp
(
min(x̂− x̂max, 0)

)
dx̂. (67)

Again, min and max are replaced by smooth differentiable

alternatives.

4.3 Verification of the gradient calculation

The gradient computation was verified using the Taylor re-

mainder convergence test. Let Ĵ (m)≡ J (U(m),m), a pure

function of m. The zero-order Taylor expansion states that
∣∣Ĵ (m+ δm)− Ĵ (m)

∣∣ = O (‖δm‖) , (68)

while the first-order Taylor expansion states that
∣∣∣∣∣Ĵ (m+ δm)− Ĵ (m)−

dĴ (m)

dm
δm

∣∣∣∣∣ = O

(
‖δm‖2

)
. (69)

Even small errors in the derivative destroy the second-

order convergence in Eq. (69). Therefore, testing the conver-

gence of these expansions with the gradient calculated from

the adjoint yields a strong indicator of whether the adjoint

gradient computation is correct.

The above convergence was succesfully carried out for the

implemented adjoint model with a number of different con-

trols and functionals. As an example, Table 1 shows the re-

sults with m as the initial deposit length. The convergence of

the remainder term is second order with respect to varying

magnitudes of δm, providing strong evidence that the adjoint

model and gradient computation are implemented correctly.

4.4 Optimisation of a model with one sediment class

With confidence that the forward and backward models

are working, optimisation of the input parameters, m=

[h0,ψ0,D], to minimise the objective functional J can now

be performed as

min
m

= J (U(m),m), (70)

with the the following bounding constraints on the input pa-

rameters:

10m ≤ h0 ≤ 10km, (71)

0.001% ≤ ψ0 ≤ 50%, (72)

1µm ≤D ≤ 1mm. (73)

These bounding constraints are chosen based upon very

loose limits of expected values that each parameter may pos-

sibly take. The principal purpose of these bounds is to avoid

invalid negative values being generated for any of the param-

eters.

The nonlinear optimisation library, IPOPT (Wächter and

Biegler, 2006), is used to solve this problem. This library

implements a primal-dual interior point algorithm which has

good global and local convergence properties (Wächter and

Biegler, 2005). The interface to this library is supplied by

dolfin-adjoint (Funke and Farrell, 2013). The initial input pa-

rameters are set to

m=



h0 = 2.3km

ψ0 = 0.07%

D = 200.0µm


 . (74)

The aim is to recreate the sand deposit by modelling only

the sand in the flow using a single average grain size,D. The

value of ψ0 is based upon a combined initial volumetric con-

centration for the sand and mud mixture of 0.5 %, with 86 %

of the mixture being mud. The starting value for h0 is based

upon the area of the two-dimensional deposit profile and the

value of ψ0. The average sediment grain size is a reasonable

estimate of the average grain size based upon the information

provided by Talling et al. (2007a). The input parameters pro-

vided to the optimisation algorithm, m, are normalised such

that they are all equal to 1. Thus,

mi =mim0, (75)

where m0 indicates the initial parameter values in Eq. (74),

and mi indicates the value of m after optimisation iteration

i. This scaling helps the optimisation algorithm work effec-

tively (Jorge and Stephen, 1999).

www.geosci-model-dev.net/10/1051/2017/ Geosci. Model Dev., 10, 1051–1068, 2017



1062 S. D. Parkinson et al.: The adjoint approach for turbidity currents

Figure 6. Values of the parameters over the optimisation iterations

against the value of the objective functional, J , that we are aiming to

minimise. The values shown are normalised by their starting values.

(∗)n is the value of parameter ∗ at the start of iteration n.

Figure 7. The dimensional deposit output η̃0 from the initial param-

eter guess (Eq. 74) and the optimised dimensional deposit output η̃

from the optimised parameter (Eq. 77) shown against the field mea-

surement from Bed 1.1 (Talling et al., 2007a) and the fourth-order

polynomial target deposit profile, ηT.

The criteria for finishing the parameter optimisation is

based upon the relative change in J between iterations such

that

|Ji − Ji−1|

Ji
< 1.0 × 10−5, (76)

where Ji is the value of J after the ith iteration. The opti-

misation is completed in 21 iterations with a final functional

value of J = 1.75 (Fig. 6). The optimised deposit profile, η,

compares relatively well with ηT (Fig. 7). Most notably, there

is a significant variation in the thickness towards the end of

the deposit. This will be addressed later. The final optimised

values are

m=



h0 = 2.56km

ψ0 = 0.0494 %

D = 103µm


 . (77)

These optimised values are not completely acceptable. The

value for h0 represents the initial height of the current start-

ing from a static lock-release initial condition. This translates

to an initial current height of 993.3 m at the start of this sim-

ulation and as the current enters the basin plain. This value

appears to be quite large for a relatively small turbidity cur-

rent. Additionally, the average sediment diameter of 103 µm

is lower than expected. Talling et al. (2007a) defines the sand-

stone interval as dominated by sediment grains estimated to

be larger than ≈ 125 µm.

With the exception of the sediment diameter, the optimised

values are fairly similar to those chosen as input values. This

confirms that the input parameters chosen were sensible pre-

dictions of the starting conditions for the gravity current. To

test this hypothesis, we ran the same situation starting from a

number of alternative initial conditions. We found that there

are indeed a number of local minima. An optimisation with

initial conditions

m=



h0 = 3.0km

ψ0 = 0.02%

D = 100.0µm


 (78)

was optimised to

m=



h0 = 3.95km

ψ0 = 0.02%

D = 154.0µm


 . (79)

Figure 8 shows a comparison of the two generated deposit

profiles. The two profiles are very comparable, even though

the alternative profile is created by a much larger, but much

less dense, initial current.

The existence of alternative minima must always be con-

sidered when running optimisations of this type. It is impor-

tant to have a good understanding of the problem to choose

sensible initial starting conditions and also to assess the re-

sultant optimised values. A regularisation approach would

avoid this problem but assumes prior knowledge about the

target profile.

A clear omission from the model is the presence of mud

in the suspension. The presence of mud will significantly al-

ter the energy budget of the flow. A mud sediment class can

easily be included so that the model produces more realistic

optimised values. This is detailed below.
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Figure 8. The dimensional deposit output η̃ from the optimised de-

posit output from the initial parameter guess (Eq. 74) and the dimen-

sional deposit output η̃alt from an alternative minima achieved by

using the initial parameter guess (Eq. 78) shown against the fourth-

order polynomial target deposit profile, ηT.

4.5 Extending the model to include an additional

sediment class for the mud in suspension

Investigating the effect of including mud in the sediment

mixture can be achieved relatively simply by including an ad-

ditional transport equation with a form identical to Eq. (12)

(Dorrell et al., 2013),

∂ϕm

∂t
=

1

xN

(
yẋN

∂ϕm

∂y
−
∂

∂y

(qϕm

h

))
−βm

ϕm

h
, (80)

where ϕm = ψmh is the vertically integrated volume fraction

of mud in the suspension. ψm is the depth-averaged volume

fraction of mud within the flow, and βm is the settling ve-

locity of the mud particles. Using a single tracer equation,

we approximate the distribution of mud particle sizes using

a single mud diameter, the same way the distribution of sand

is modelled in the flow. We neglect the flocculation of mud

particles. Assuming that the density of both sediment classes

is the same, (Eq. 11) is modified to include this new sediment

class in the gravity term:

∂q

∂t
=

1

xN

(
yẋN

∂q

∂y
−
∂

∂y

(
q2

h
+
(ϕ+ϕm)h

2

))
. (81)

Finally, ϕ and ϕm are scaled such that at the start of the

simulation ϕ+ϕm = 1, where previously ϕ = 1. The aim is

still to recreate the deposit of sand, and hence the equation

for η stays the same. We term the sand deposit generated by

this modified model η2. The discretisation for Eq. (80) is con-

sistent with the rest of the model, as presented in Sect. 2.2.

The initial condition needs to be altered to include the new

sediment class. The initial vertically averaged volume frac-

tion of sand is changed to ψ = fs, and a new initial condition

for the vertically averaged volume fraction of mud is intro-

duced as ψm = 1 − fs. The sand fraction, fs, is estimated by

Talling et al. (2007a) to be 0.14 and is kept fixed.

βm must also be calculated. This is done in the same way

as for β, except that a different sediment diameter parameter

is used and optimised: Dm, the mean diameter of mud parti-

cles in the flow. The equation for βm is therefore

βm =
g′1/2D2

m

18ν (h0ψ0)
1/2
. (82)

Note that ψ0 is now the combined initial volume fraction of

sand and mud in the flow.

4.6 Optimisation for a model with two sediment classes

The set of optimised input parameters is redefined as

m= [h0,ψ0,D,Dm]T . An additional bounding constraint is

added for Dm such that the new bounding constraints for m

are

10m ≤ h0 ≤ 10.0km, (83)

0.001% ≤ ψ0 ≤ 50%, (84)

1.0µm ≤D ≤ 1.0mm, (85)

1.0µm ≤Dm ≤ 100.0µm. (86)

The initial input parameters are set to

m=




h0 = 2.1km

ψ0 = 5%

D = 200.0µm

Dm = 20.0µm


 . (87)

The input parameters are normalised as detailed in

Sect. 4.4 before being passed to the optimisation algorithm.

The criteria for finishing the optimisation are consistent with

the previous optimisation (see Eq. 76).

The optimisation of the model with two sediment classes

is completed in 17 iterations with a final functional value

of J = 2.13 (see Fig. 9). Therefore, the fit is quantitatively

slightly worse when mud is included in the model. This is a

surprising result, as the model now more closely matches re-

ality. Qualitatively, it is very hard to determine which model

fits the data better. The resultant deposit is very similar in

shape to that obtained when only modelling sand in the flow

(see Fig. 10). The fit appears to be worse at the start of the

deposit. The runout length is slightly longer when mud is

included such that the fit towards the end of the deposit is

slightly improved.

The fit with the measured data is still poor towards the

end of the deposit. Talling et al. (2007a) noted that the dis-

tal section of small deposits in the Marnoso-arenacea For-

mation show evidence of transport in a tractional boundary
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Figure 9. Values of the parameters from the model with both mud

and sand sediment classes over the optimisation iterations against

the value of the objective functional, J , that we are aiming to min-

imise. The values shown are normalised by their starting values.

(∗)n is the value of parameter ∗ at the start of iteration n.

Figure 10. Optimised dimensional deposit output from the model

with both mud and sand sediment classes, η̃2, shown against the

optimised results from the single sediment class model, η̃, the field

measurement from Bed 1.1 (Talling et al., 2007a), and the fourth-

order polynomial target deposit profile, ηT.

layer. This simulation does not model bedload transport or

erosion, which is the likely reason for the difference in the

results. The velocity of the head of the turbidity current in

this simulation varies between 10 and 2.4 m s−1 over the pe-

riod during which sand is deposited (Fig. 12). At these head

velocities, erosion is very likely to occur. Models for erosion

and bedload transport exist (Garcia, 1994; Sequeiros et al.,

2009). These could be added in future work.

The final optimised values are

m=




h0 = 1.92µkm

ψ0 = 5.94 × 10−3

D = 125µm

Dm = 28.1µm


 . (88)

A comparison of these results to those obtained without a

mud sediment class shows that the value of h0 has reduced by

25 % and translates to an initial current height of 745.0 m as

the current enters the basin plain. The average sediment di-

ameter has also increased by 21 % to 125 µm, bringing the

average diameter in line with the estimates from the field

measurements by Talling et al. (2007a). Arguably, the sand

and mud classes should be subdivided further. Dorrell et al.

(2013) described how polydisperse density currents will have

longer runout distances than equivalent currents with uni-

form sediment at the mean value of the poydisperse current.

It is also interesting to assess the sensitivity of the model

to variations in the input parameters by analysing the final

gradient of the objective functional,

dJ

dm
=




dJ/dh0 = 5.1 × 10−3

dJ/dψ0 = −1.8 × 10−3

dJ/dD = −2.4 × 10−3

dJ/dDm = 1.5 × 10−6


 , (89)

where · indicates a parameter value normalised by its value

on the initial optimisation iteration. The sensitivity of the

functional to changes in the mud diameter is several orders

of magnitude smaller than the sensitivity to changes in the

other variables.

It is indeed found that changing this value has very little

effect on the obtained deposit. The same simulation is run

with the mud diameter decreased by 2 orders of magnitude

such that the input parameter values are

m=




h0 = 1.92µkm

ψ0 = 5.94 × 10−3

D = 125µm

Dm = 0.281µm


 . (90)

The resulting functional value is J = 2.13, which is identi-

cal to that obtained for the optimised simulation. There is no

discernible difference in the resulting deposit, η3 (Fig. 11).

The head height and velocity only vary a small amount over

the period during which sand is deposited (Fig. 12a and b).

The current properties vary significantly after the sand has

been deposited and mud is still in suspension, but this does

not have any effect on the sand deposit.

Although the sandstone deposits generated by the single

and two sediment class models are very similar, the proper-

ties of the turbidity currents that produced them are very dif-

ferent (Fig. 12). The turbidity current with mud in suspension
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Figure 11. Optimised dimensional deposit output from the model

with both mud and sand sediment classes, η̃2, shown against the

results from the same model with the same parameters but a mud-

settling velocity reduced by 2 orders of magnitude, η̃3.

travels approximately twice as quickly due to the increased

gravitational forces produced by the sand and mud mixture

(Fig. 12b). Sand also drops out of the suspension much more

rapidly (Fig. 12d). All of the sand is deposited within ap-

proximately 6 h. The model without mud deposits sand over

a period of more than 20 h. This is due to the reduced height

of the current at the start of the simulation and the faster de-

crease in the height of the current as a result of the higher

head velocity (Fig. 12a and d). Clearly, the presence of mud

in the suspension has a significant impact on the resultant

flow and must be included in the model.

The simulated turbidity currents that produced η2 and η3

deposited sand over a similar time period. After all of the

sand had fallen out of suspension, less than 25 % of the mud

settled from the flow for both of these currents; the current

head is > 50 m tall, and the head is moving at > 1.0 m s−1

(Fig. 12). Hence, there is still a significant amount of energy

in the flow. The remaining mud suspension will reach the

end of the basin (̃xN ≈ 130 km) and will still have a signifi-

cant amount of energy left when it does so. It is very hard to

predict what will happen after this point. The current may be

partly reflected, and ponding of the suspended mud is likely

to occur. This result is in agreement with the explanations of

Talling et al. (2007b).

The height of the current in the optimised simulation with

both sand and mud sediment classes is ≈ 750 m as it enters

the basin, although this decreases very quickly as the cur-

rent propagates. It is possible that including processes such as

fluid entrainment, erosion, and bedload transport may reduce

the necessity for such a large initial current height in produc-

ing this deposit. More complex initial and boundary condi-

tions may also have a significant impact on this value. It is

unclear what effect an inflow boundary condition with time-

varying height, sediment concentration, and velocity would

have on the results. This would be an interesting addition to

the models capabilities.

The model also neglects variations in the bed profile. The

gradient of the sea floor in the basin where the Marnoso-

arenacea Formation was created was substantially less than 1

degree (Amy and Talling, 2006). Variations in gradient of this

magnitude will have a negligible impact on the head veloc-

ity (Middleton, 1966). However, small variations will have

an impact on the velocity of the body of the current. Future

work will address this.

5 Conclusions

This paper has presented a novel implementation of the shal-

low water equations for modelling density currents using a

mixed finite-element formulation. The model has been differ-

entiated to allow for parameter optimisation using gradient-

based optimisation techniques and the use of gradient infor-

mation in sensitivity analyses.

The proposed model is based upon simplifying shallow

water sediment-laden density current assumptions and has

been used here to recreate a low-volume deposit from the

Marnoso-arenacea Formation in Italy with some success.

However, the lack of many key flow processes within the cur-

rent model, including bedload transport and re-entrainment,

has arguably led to optimised parameters values which would

be improved upon with a more complete underlying model.

This paper has demonstrated the power of gradient-based

optimisation methods for determining the set of input param-

eters that best fits a particular turbidity current deposit. Since

the input parameters are rarely known with any accuracy for

these flows, optimisation represents a sensible way to better

estimate these values.

Future development of the model could enable more com-

plex boundary conditions and add parameterisations for am-

bient fluid entrainment, bed erosion, and bedload transport.

This will increase the capacity for the model to recreate a

range of deposits found in the field, while the parameter

space will grow significantly. The optimisation techniques

presented in this paper will allow for the efficient selection

of optimised values for a large parameter space.

6 Code availability

The model implementation and the test setups described in

this paper are freely available as a separate git repository on

bitbucket: https://github.com/funsim/adjoint-turbidity. This

repository contains a README file which guides the user

through the installation and how to reproduce the results

of the paper. The experiment configuration files can viewed
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Figure 12. The time evolution of the dimensionalised variables for three simulations: a simulation with a single sand sediment class and

optimised input parameters to match the Bed 1.1 sand deposit, a simulation with sand and mud classes and optimised input parameters to

match the Bed 1.1 sand deposit, and a simulation with sand and mud classes and the same optimised input parameters but a mud diameter 2

orders of magnitude smaller. The results are shown against the dimensional time, t̃ = t (h0/g0)
1/2.

and changed with the graphical configuration tool spud

from the Fluidity project (http://fluidityproject.github.io/).

The dynamical core of the model is implemented with the

finite-element software FEniCS and its extension dolfin-

adjoint. The documentation for FEniCS is available at http://

fenicsproject.org/documentation, and the documentation for

dolfin-adjoint can be found at http://www.dolfin-adjoint.org.

Dolfin-adjoint and all FEniCS core components are li-

censed under the GNU LGPL as published by the Free Soft-

ware Foundation, either version 3 of the licence or (option-

ally) any later version.
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