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Abstract. A monoid S satisfies Condition (A) if every locally cyclic left S-act

is cyclic. This condition first arose in Isbell’s work on left perfect monoids, that is,

monoids such that every left S-act has a projective cover. Isbell showed that S is left

perfect if and only if every cyclic left S-act has a projective cover and Condition (A)

holds. Fountain built on Isbell’s work to show that S is left perfect if and only if it

satisfies Condition (A) together with the descending chain condition on principal right

ideals, MR. We note that a ring is left perfect (with an analogous definition) if and only

if it satisfies MR. The appearance of Condition (A) in this context is, therefore, monoid

specific. Condition (A) has a number of alternative characterisations, in particular, it is

equivalent to the ascending chain condition on cyclic subacts of any left S-act. In spite

of this, it remains somewhat esoteric. The first aim of this paper is to investigate the

preservation of Condition (A) under basic semigroup-theoretic constructions. Recently,

Khosravi, Ershad and Sedaghatjoo have shown that every left S-act has a strongly flat

or Condition (P) cover if and only if every cyclic left S-act has such a cover and

Condition (A) holds. Here we find a range of classes of S-acts C such that every left

S-act has a cover from C if and only if every cyclic left S-act does and Condition
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324 ALEX BAILEY ET AL.

(A) holds. In doing so we find a further characterisation of Condition (A) purely in

terms of the existence of covers of a certain kind. Finally, we make some observations

concerning left perfect monoids and investigate a class of monoids close to being left

perfect, which we name left IPa-perfect.

2000 Mathematics Subject Classification. 20 M 30, 20 M 50

1. Introduction. Throughout this paper, S denotes a monoid. Our aim is to add

to the understanding of the so-called Condition (A) for S. Let A and B be left S-acts

and let θ : A → B be an onto S-morphism. We say that θ is co-essential if for any

proper S-subact C of A, the restriction of θ to C is not onto. In this case we say A is a

cover for B (more properly, (A, θ ) is a cover for B). If C is a class of left S-acts then S is

said to be left C-perfect if every left S-act has a C-cover, that is, a cover lying in C [4]. A

left perfect monoid is one which is left Pr-perfect, where Pr is the class of projectives.

Left perfect monoids were shown by Fountain [2] and Isbell [5] to be exactly those

satisfying Condition (A) and MR (the descending chain condition on principal right

ideals). We refer the reader to [7] for background details concerning acts over S.

After some preliminaries, we give known equivalent characterisations of Condition

(A) in Section 2. Section 3 is devoted to the preservation of Condition (A) under some

standard constructions. Next, for the convenience of the reader and for notational

consistency, we have a short section defining classes of S-acts related to projectivity

and flatness. These classes are used in Section 5 to find a new description of Condition

(A) purely in terms of the existence of covers of a certain kind.

We stress that our techniques in Section 5 are essentially based on interpreting

existing work. In Section 6 we then apply our results to investigate classes of left S-acts

having a cover which is a disjoint union of cyclic left S-acts, or more particularly, of

principal left ideals (thus, a cover from a rather larger class thanPr). In the commutative

case we can generalise known results for left perfect monoids. Our final section contains

a number of examples and counterexamples.

2. Condition (A). A left S-act A is cyclic if A = Sa for some a ∈ A (equivalently,

A ∼= S/ρ for a left congruence ρ on A) and locally cyclic if for any a, b ∈ A there exists

c ∈ A such that a, b ∈ Sc.

DEFINITION 2.1. A monoid S has Condition (A) if every locally cyclic left S-act is

cyclic.

The following lemma gives a number of alternative characterisations of Condition

(A), taken from [5, 2] and [4], with the exception of (v), which clearly follows from the

equivalence of its predecessors.

LEMMA 2.2. The following conditions are equivalent for a monoid S:

(i) S satisfies Condition (A);

(ii) every left S-act satisfies the ascending chain condition on cyclic subacts;

(iii) for every sequence a1, a2, . . . of elements of S, there exists n ∈ � such that for all

m ≥ n, there exists k ≥ 1 such that Samam+1 . . . am+k = Sam+1 . . . am+k;

(iv) for each left S-act A, there is a set {Ai : i ∈ I} of locally cyclic left S-acts such that

A =
⋃

i∈I Ai and for all j ∈ I, Aj �⊆
⋃

i �=j Ai;

(v) for each left S-act A, there is a set {Ai : i ∈ I} of cyclic left S-acts such that

A =
⋃

i∈I Ai and for all j ∈ I, Aj �⊆
⋃

i �=j Ai.
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COVERS FOR S-ACTS AND CONDITION (A)FOR A MONOID S 325

Further equivalent characterisations for Condition (A) may be found in [12,

Lemma 3.1]. Clearly Condition (A) implies the ascending chain condition on principal

left ideals of S but it is, in general, stronger [5].

REMARK 2.3. In checking Condition (A) by part (iii) of Lemma 2.2, it is enough

to consider sequences not containing the identity and not containing subproducts

aiai+1, . . . aj, which are right zeros.

Proof. First note that if the sequence contains only finitely many non-identities

then it is enough to choose n such that ai = 1 for every i > n. On the other hand,

if it contains infinitely many non-identities then it is easy to check that it satisfies

the required condition if and only if the subsequence consisting of all non-identity

elements does.

If for every m there exists i, j with m < i ≤ j such that aiai+1 . . . aj is a right zero,

then the sequence a1, a2, . . ., clearly satisfies the condition. So we can suppose that

there exists n ∈ � such that the sequence an, an+1, . . . , does not have any right zero

subproduct aiai+1 . . . aj. It is straightforward that the sequence a1, a2, . . ., satisfies the

required condition if and only if the sequence an, an+1, . . ., does, so the remark is

proved. �

COROLLARY 2.4. Let S be a monoid. Then S satisfies Condition (A) if and only if

S0 satisfies Condition (A).

3. Constructions and Condition (A). In this section we are going to investigate

when submonoids, homomorphic images, direct and semidirect products satisfy

Condition (A).

LEMMA 3.1. The class of monoids satisfying Condition (A) is closed under

homomorphic images.

Proof. Let S be a monoid that satisfies Condition (A) and φ : S → T a

homomorphism of monoids. Given any sequence s1φ, s2φ, . . . , of elements in the

image of φ, there exists n ∈ � such that for all m ≥ n there exist k ≥ 1, s ∈ S such that

ssmsm+1 . . . sm+k = sm+1 . . . sm+k, so (sφ)(smφ) . . . (sm+kφ) = (sm+1φ) . . . (sm+kφ) and the

result follows. �

We now turn our attention to submonoids. Since a group clearly satisfies Condition

(A), the next result shows that the class of monoids satisfying Condition (A) is not

closed under submonoids.

LEMMA 3.2. A cancellative monoid satisfies Condition (A) if and only if it is a group.

Proof. If S is cancellative and an L an+1, then it follows that a is a unit. Thus,

if S has Condition (A), considering sequences of the form a, a, . . . gives that S is a

group. �

On the positive side we have the following lemma, the proof of which is clear.

LEMMA 3.3. Let T be a submonoid of S such that for any a, b ∈ T we have

aL b in T ⇔ aL b in S.

If S satisfies Condition (A), then so does T.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089514000317
Downloaded from https:/www.cambridge.org/core. University of York, on 06 Apr 2017 at 13:20:53, subject to the Cambridge Core terms of use, available at



326 ALEX BAILEY ET AL.

Submonoids T of S satisfying the condition of Lemma 3.3 include regular

submonoids and retracts of S either as submonoids, or in the category of right T-

acts. Examples of the latter are right self-injective submonoids, by which we mean that

T is injective as a right T-act. (See Comments at the end of [7, Section IV.5] for some

examples of self-injective monoids). Further, it is shown in [1, Proposition 5.14] that if

T is a pure submonoid (for the definition, see [1]), then again T inherits Condition (A)

from S.

As the following lemmas show, Condition (A) is preserved under finite direct

products, but not under infinite direct products or free products.

LEMMA 3.4. The class of monoids satisfying Condition (A) is closed under finite

direct products.

Proof. It is sufficient to show preservation for a direct product of two monoids. Let

S = S1 × S2 be the direct product of monoids S1 and S2 that both satisfy Condition

(A). Now given any sequence (a1, b1), (a2, b2), . . . ∈ S there exist n1, n2 ∈ � such that

for all m ≥ n1, n2 there exist k1, k2 ≥ 1 such that

S1amam+1 . . . am+k1
= S1am+1 . . . am+k1

S2bmbm+1 . . . bm+k2
= S2bm+1 . . . bm+k2

.

Let N = max{n1, n2} and for all M ≥ N, let K = max{k1, k2}. Then

S(aM, bM)(aM+1, bM+1) . . . (aM+K , bM+K ) = S(aM+1, bM+1) . . . (aM+K , bM+K )

and so S satisfies Condition (A). �

The following examples show that the class of monoids satisfying Condition (A)

is not closed under infinite direct products nor under free products.

EXAMPLE 3.5. Let S =
∏

i∈�
Ti, where Ti = T is a monoid containing an element

t which has no left inverse. Considering the sequence

s1 = (t, 1, 1, . . .), s2 = (1, t, 1, . . .), s3 = (1, 1, t, . . .), . . .

we see that S does not satisfy Condition (A). Note that S is residually finite if T is

finite.

EXAMPLE 3.6. Let S1, S2 be non-trivial monoids and let S = S1 ∗ S2. Take any

sequence s1, s2, s1, s2, s1 . . . where s1 ∈ S1 and s2 ∈ S2 are non-identities. Then for any

m, k ≥ 1, smsm+1 . . . sm+k is a word of length k + 1 and sm+1 . . . sm+k is a word of length

k so the principal ideals generated by these words can never be equal.

We say that a monoid T acts on a monoid S by endomorphisms on the left, if

for every t ∈ T there exists a monoid endomorphism φt : S → S such that φt(φu(s)) =

φtu(s) (and φ1 = idS) for all t, u ∈ T , s ∈ S. We denote φt(s) by ts.

Given two monoids S and T , with T acting on S by endomorphisms on the left,

the semidirect product S ⋊ T is a monoid with underlying set S × T , with binary

operation

(s1, t1)(s2, t2) = (s1
t1s2, t1t2)
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COVERS FOR S-ACTS AND CONDITION (A)FOR A MONOID S 327

and identity (1, 1). It is then clear that (s1, t1) . . . (sk, tk) = (s1
t1s2

t1t2s3

. . . t1...tk−1sk, t1 . . . tk).

The wreath product S ≀ T of a monoid S by a monoid T is the semidirect product

ST
⋊ T where T acts on ST by t′( tφ) = (tt′)φ for all t′ ∈ T where φ : T → S.

LEMMA 3.7. Let S be a monoid and T a monoid acting on S by endomorphisms on

the left. If S ⋊ T satisfies Condition (A) then S and T satisfy Condition (A).

Proof. Note that φ : S ⋊ T → T , (s, t) �→ t is a surjective homomorphism and so

T satisfies Condition (A) by Lemma 3.1.

To show that S also does, let s1, s2, . . . , be a sequence of elements of S. Let us

consider the sequence (s1, 1), (s2, 1), . . . , in S ⋊ T . By Condition (A) there exists n ∈ �

such that for every m ≥ n there exist k ≥ 1 and (s, t) ∈ S ⋊ T satisfying

(s, t)(sm, 1)(sm+1, 1) . . . (sm+k, 1) = (sm+1, 1) . . . (sm+k, 1).

As a consequence we have that t = 1, so ssmsm+1 . . . sm+k = sm+1sm+2 . . . sm+k, which

proves that S satisfies Condition (A). �

LEMMA 3.8. Let G be a group and S a monoid satisfying Condition (A) acting on

G by endomorphisms on the left. Then the semidirect product G ⋊ S satisfies Condition

(A).

Proof. Given any sequence (g1, s1), (g2, s2), . . . ∈ G ⋊ S, there exists n ∈ � such

that for all m ≥ n there exist k ≥ 1, s ∈ S such that ssmsm+1 . . . sm+k = sm+1 . . . sm+k.

Now let

h = sgm
ssmgm+1

ssmsm+1gm+2 . . . ssm,...,sm+k−1gm+k

and g = gm+1
sm+1gm+2 . . . sm+1,...,sm+k−1gm+k.

(Note that if k = 1 then h = sgm
ssmgm and g = gm+1.) Calculating,

(gh−1, s)(gm, sm)(gm+1, sm+1) . . . (gm+k, sm+k) = (gh−1h, ssmsm+1 . . . sm+k)

= (g, sm+1 . . . sm+k)

= (gm+1, sm+1) . . . (gm+k, sm+k),

and so G ⋊ S satisfies Condition (A). �

COROLLARY 3.9. Let G be a group and S a monoid satisfying Condition (A), then a

wreath product G ≀ S satisfies Condition (A).

Proof. Recall that G ≀ S is a semidirect product of the form GS
⋊ S and cartesian

products of groups are still groups. �

As the following theorem shows, the most frequently used semidirect products

preserve Condition (A).

LEMMA 3.10. A monoid semidirect product S ⋊ G where G is a group satisfies

Condition (A) if and only if S satisfies Condition (A).

Proof. If S ⋊ G satisfies Condition (A) then by Lemma 3.7 so does S. Conversely,

if S satisfies Condition (A) then let (s1, g1), (s2, g2), . . . be a sequence in S ⋊ G. Let

us consider the sequence s1,
g1s2,

g1g2s3, . . . in S. Since S satisfies Condition (A), there
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328 ALEX BAILEY ET AL.

exists n ∈ � such that for every m ≥ n there exist k ≥ 1 and s ∈ S satisfying

s g1...gm−1sm
g1...gmsm+1 . . . g1...gm+k−1sm+k = g1...gmsm+1 . . . g1...gm+k−1sm+k.

As a consequence

g−1
m g−1

m−1...g
−1
1 s g−1

m smsm+1
gm+1sm+2 . . . gm+1...gm+k−1sm+k

= sm+1
gm+1sm+2 . . . gm+1...gm+k−1sm+k,

thus

( g−1
m g−1

m−1...g
−1
1 s, g−1

m )(sm, gm)(sm+1, gm+1) . . . (sm+k, gm+k)

= (sm+1, gm+1) . . . (sm+k, gm+k),

which shows that S ⋊ G satisfies Condition (A). �

COROLLARY 3.11. Let S be a monoid that satisfies Condition (A) and G a finite

group, then a wreath product S ≀ G satisfies Condition (A).

Proof. Recall that S ≀ G is a semidirect product of the form SG
⋊ G and so the

result follows by Lemmas 3.4 and 3.10. �

LEMMA 3.12. Let T be a semigroup satisfying uv L v for every u, v ∈ T and let S =

M0[T ; I ; �; P] be a Rees matrix semigroup with zero over T such that the matrix P is

regular (that is, every row and column of P contains a nonzero element). Then S1 satisfies

Condition (A).

Proof. To show that S1 satisfies Condition (A), by Remark 2.3, we need only

consider sequences s1 = (i1, t1, λ1), s2 = (i2, t2, λ2), . . . of elements in S. By the same

remark, we can also assume there are no pairs in the sequence whose product is zero,

so that pλrir+1
∈ T for all r ≥ 1. Let m ∈ �, so that smsm+1 = (im, tmpλmim+1

tm+1, λm+1).

Since P is regular, there exists some μ ∈ � (depending on m), such that pμim ∈ T . Since

pμim tmpλmim+1
tm+1 L tm+1, there must exist some t ∈ T such that tpμim tmpλmim+1

tm+1 =

tm+1. Let s = (im+1, t, μ) and note that ssmsm+1 = sm+1 and so S satisfies Condition

(A). �

COROLLARY 3.13. Every completely 0-simple and completely simple semigroup with

a 1 adjoined is left perfect.

Proof. By the Rees Theorem, every completely 0-simple semigroup is a Rees matrix

semigroup with zero over a group, so the resulting monoid satisfies Condition (A) by

Lemma 3.12. For the completely simple case, note that by Corollary 2.4, a monoid M

satisfies Condition (A) if and only if M0 does.

By definition, completely (0-)simple semigroups have MR, whence certainly so do

the corresponding monoids. �

LEMMA 3.14. Let L be a semigroup satisfying uv L v for every u, v ∈ L and let

S = {(n, x, m) : n, m ∈ �, n ≥ m, x ∈ L} ∪ {0}
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COVERS FOR S-ACTS AND CONDITION (A)FOR A MONOID S 329

with multiplication given by

(n, x, m)(m, y, l) = (n, xy, l),

all other products being 0 (that is, S is a subsemigroup of the ‘Brandt’ semigroup

B0(L, �)), and let M = S1.

Then the monoid M satisfies Condition (A) and does not have ML.

Proof. We first show that M satisfies Condition (A). Let a1, a2, . . . be a sequence

of elements in M. As in the proof of Lemma 3.12, by Remark 2.3 we can suppose that

ai �= 1 and that aiai+1 �= 0 for every 1 ≤ i. Putting ai = (ni, xi, mi), we have mi = ni+1 for

all 1 ≤ i. Hence n1 ≥ m1 = n2 ≥ m2 = . . . ; clearly the descending sequence stabilises

with w such that nw = mw = nw+1 = . . ..

For every u ≥ w we have that xuxu+1 Lxu+1 so there exists l ∈ L such that xu+1 =

lxuxu+1 which implies that

(nw, l, nw)auau+1 = (nw, l, nw)(nw, xu, nw)(nw, xu+1, nw) = (nw, xu+1, nw) = au+1,

so that Condition (A) is satisfied.

To see that M does not satisfy ML, fix x ∈ L and note that

M(1, x, 1) ⊃ M(2, x, 1) ⊃ M(3, x, 1) ⊃ . . .

is an infinite strictly descending chain of principal left ideals of M. �

4. The classes. We now describe the classes of left S-acts which will form the

main object of our concern in later sections of this paper. Further details may be

found, for example, in [7].

A left S-act A is decomposable if there exist left S-acts B and C such that A = B ∪ C

with B ∩ C = ∅. A left S-act which is not decomposable is called indecomposable. Every

left S-act A can be uniquely written as a disjoint union of indecomposable left S-acts

and these indecomposable components are the classes of ∼, where ∼ is the transitive

closure of {(sa, ta) : s, t ∈ S, a ∈ A}.

It is clear that every locally cyclic left S-act is indecomposable, but the converse is

only true in case S is a group [9, 12].

DEFINITION 4.1. Let X be a property of left S-acts. Then IX is the class of left

S-acts, the indecomposable components of which have property X .

Notice that classes of the form IX are precisely those that are closed with respect

to taking coproduct (disjoint union) and indecomposable components.

Let LC, C, Pa, Pe and S denote the properties of left S-acts of being locally cyclic,

cyclic, isomorphic to a principal left ideal, isomorphic to an idempotent generated

principal left ideal and isomorphic to S (regarded as a left S-act), respectively. Then

IS and IPe are the classes F and Pr of free and projective left S-acts, and we have

the class inclusions

F = IS ⊆ Pr = IPe ⊆ IPa ⊆ IC ⊆ ILC.
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330 ALEX BAILEY ET AL.

Of course if S is regular or even left abundant (that is, every principal left ideal Sa is

S-isomorphic to one generated by an idempotent e, where the isomorphism takes a to

e), then Pa is just Pe and Pr = IPe = IPa.

LEMMA 4.2. A left S-act A lies in ILC if and only if for all a, b ∈ A, if Sa ∩ Sb �= ∅

then Sa ∪ Sb ⊆ Sc for some c ∈ A.

Proof. Let A ∈ ILC and a, b ∈ A and suppose that Sa ∩ Sb �= ∅. Then a and b lie

in the same indecomposable component say C, since this is locally cyclic, a, b ∈ Sc for

some c ∈ C, i.e. Sa ∪ Sb ⊆ Sc.

Conversely, let U be an indecomposable component of A. Let u, v ∈ U so that as

u ∼ v there exists a sequence

u = s1a1, t1a1 = s2a2, . . . , tnan = v,

where n ∈ �, ai ∈ A, si, ti ∈ S for 1 ≤ i ≤ n. If n = 1, then u, v ∈ Sa1 where clearly

a1 ∈ U .

Suppose inductively that 1 ≤ k < n and Sa1 ∪ · · · ∪ Sak ⊆ Swk for some wk ∈ U .

With ak = rwk we have tkrwk = sk+1ak+1 and again we call upon our assumption to

obtain Swk ∪ Sak+1 ⊆ Swk+1 for some wk+1 ∈ U . Hence Sa1 ∪ · · · ∪ Sak+1 ⊆ Swk+1

and finite induction gives the result. �

Finally in this section we consider three further classes of left S-acts, namely SF ,

P , and WPF , consisting of the strongly flat, Condition (P) and weakly pullback flat

left S-acts, respectively. We recall that a left S-act A is strongly flat if it is a direct limit

of finitely generated free left S-acts, and this is equivalent to satisfying Conditions (P)

and (E):

(P) for all s, t ∈ S and a, b ∈ A, if sa = tb then su = tv, a = uc and b = vc for some

u, v ∈ S and c ∈ A;

(E) for all s, t ∈ S and a ∈ A, if sa = ta then su = tu and a = uc for some u ∈ S

and c ∈ A.

Condition (E)′ is defined as follows:

(E)′ for all s, t, z ∈ S and a ∈ A, if sa = ta and zs = zt, then a = uc and su = tu for

some u ∈ S and c ∈ A.

A left S-act A is weakly pullback flat if it satisfies (P) and (E)′. It is known that

Pr ⊆ SF and, using Lemma 4.2, it is clear that

SF = ISF ⊆ WPF = IWPF ⊆ P = IP ⊆ ILC.

5. The general result for covers. We now consider the question of existence of

covers. The proof of our result is easy, since the hard steps all follow from Lemma 2.2.

THEOREM 5.1. Let X be a property of left S-acts such that IX ⊆ ILC, that is, X is

stronger than being locally cyclic. Then S is left IX -perfect if and only if every cyclic left

S-act has an IX -cover and Condition (A) holds.

Proof. Suppose that every left S-act has an IX -cover and let A be a left S-act. It

follows from (ii) [4, Theorem 2.2] (and is easy to see from the definition of cover), that

A =
⋃

i∈I

Ai, Aj �⊆
⋃

i �=j

Ai for all j ∈ I,
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where each Aj is the image of an indecomposable S-act Bj with property X . Hence

Bj is locally cyclic and consequently, Aj is locally cyclic. From Lemma 2.2, S satisfies

Condition (A).

Conversely, suppose that every cyclic left S-act has an IX -cover and Condition

(A) holds. By Lemma 2.2, every locally cyclic left S-act is cyclic, hence has an IX -cover.

Let A be a left S-act. Since S satisfies Condition (A), Lemma 2.2 gives

A =
⋃

i∈I

Ai, Aj �⊆
⋃

i �=j

Ai for all j ∈ I,

where each Ai = Sai is a cyclic S-subact of A. Now each Ai has an IX -cover Bi (which

must actually be cyclic), so there is a co-essential S-morphism θi : Bi → Ai. Let B be the

disjoint union
⋃

i∈I Bi, so that B ∈ IX , and let θ : B → A restrict to θi on each Bi. If θ is

not co-essential, there is some j ∈ I and (possibly empty) proper S-subact Cj of Bj such

that θ :
⋃

i �=j Bi ∪ Cj → A is onto. Hence, either aj = cθj for some c ∈ Cj (contradicting

θj being co-essential) or aj = bθi for some b ∈ Bi with i �= j, contradicting Aj �⊆
⋃

i �=j Ai.

Hence, θ is co-essential. �

We immediately have our promised characterisation of Condition (A) by covers.

THEOREM 5.2. The following conditions are equivalent for a monoid S:

(i) S has Condition (A);

(ii) S is left ILC-perfect;

(iii) S is left IC-perfect.

Proof. Every cyclic left S-act is its own ILC-cover and IC-cover. �

We now proceed to deduce some known results.

COROLLARY 5.3 [4, Corollary 2.3]. A monoid is left Fr-perfect if and only if it is a

group.

Proof. As pointed out in [4], it is clear that the trivial left S-act � has a free cover

if and only if S is a group, and groups satisfy Condition (A). Moreover, if S is a group

then S is a free cover of S/ρ via the natural S-morphism, for any left congruence ρ. �

COROLLARY 5.4 [5]. A monoid S is left perfect if and only if every cyclic left S-act

has a projective cover and Condition (A) holds.

A submonoid T of S is right unitary if for any s, t ∈ S, if st, t ∈ T , then s ∈ T .

From [5, 1.3], a submonoid is right unitary (referred to as a block in that paper) if and

only if it is the class of the identity for some left congruence on S. It is well known and

easy to see that if ρT = 〈T × T〉, that is, ρT is the left congruence generated by T × T ,

then T = [1].

We observe that if a cyclic left S-act S/ρ has a projective cover, this must necessarily

be cyclic, hence of the form Se for some idempotent e ∈ S. Let θ : Se → S/ρ be co-

essential. We cannot immediately deduce that e ∈ [1]. However, if (pe)θ = [1], then it

follows from the co-essentiality of θ that qpe = e for some q ∈ S. It is easy to check

that peq ∈ E(S) ∩ [1] and peqD e. Isbell goes on to show:

PROPOSITION 5.5 [5]. Every cyclic left S-act has a projective cover if and only if S

satisfies Condition (D):

(D) every right unitary submonoid has a minimal idempotent generated left ideal.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089514000317
Downloaded from https:/www.cambridge.org/core. University of York, on 06 Apr 2017 at 13:20:53, subject to the Cambridge Core terms of use, available at



332 ALEX BAILEY ET AL.

Thus Corollary 5.4 and Proposition 5.5 completely describe left perfect monoids.

Fountain [2] shows that the conjunction of Conditions (A) and (D) is equivalent

to S satisfying Condition (A) and MR, thus providing an alternative description of

left perfect monoids. Further, he showed that a monoid is left perfect if and only if

SF = Pr.

Choosing X to be strongly flat or Condition (P) immediately yields:

COROLLARY 5.6 [4]. A monoid S is left SF-perfect (left P-perfect) if and only if

every cyclic left S-act has a strongly flat cover (Condition (P) cover) and Condition (A)

holds.

A monoid S is said to be left reversible if for all s, t ∈ S there exists p, q ∈ S with

sp = tq and right collapsible if for all s, t ∈ S there exists r ∈ S with sr = tr. Further, S

is said to be weakly right collapsible if for any p, q, r ∈ S with rp = rq there exists u ∈ S

such that pu = qu.

The next lemma follows from the definition of ρT , [10, Lemma 1.4] and [8, Lemma

7]. Note that if T is left reversible, then ρT takes on the simpler form that a ρT b if and

only if au = bv for some u, v ∈ T .

LEMMA 5.7 (Cf. [6, 8, 10]). Let T be a right unitary right collapsible (left reversible

and weakly right collapsible, left reversible) submonoid of S. Then S/ρT is strongly flat

(weakly pullback flat, Condition (P)) and [1] = T.

For comparison with what follows we recall the next result from [10, 11]:

PROPOSITION 5.8 [10, Theorems 3.2, 4.2], [11, Theorem 4.3]. Every cyclic left S-act

has anSF-cover (WPF-cover,P-cover) if and only if every right unitary submonoid T of

S contains a right collapsible (left reversible and weakly right collapsible, left reversible)

submonoid R such that for all u ∈ T we have Su ∩ R �= ∅.

There appears to exist no natural chain conditions binding those of Proposition 5.8

with Condition (A), as in Fountain’s result for left perfect monoids.

6. Left IX -perfect monoids. The aim of this section is to give new and non-trivial

applications of Theorem 5.1.

We begin with some notation. For an element a of a left S-act A we denote by L(a)

the set {t ∈ S : ta = a}, the (right unitary) submonoid of left identities of a, and by ℓ(a)

the set {(u, v) ∈ S × S : ua = va}, the left annihilator congruence σa of a. It is clear that

Sa is isomorphic to S/σa under the S-isomorphism sa �→ [s]. The next lemma slightly

reformulates results in Section 2 of [10].

LEMMA 6.1 (Cf. [10, Section 2]). Let D be a class of left S-acts. Then the following

conditions are equivalent:

(i) every cyclic left S-act has a D-cover;

(ii) for every right unitary submonoid T of S there is a cyclic left S-act Sa ∈ D

such that ℓ(a) ⊆ ρT and for all u ∈ T we have Su ∩ L(a) �= ∅;

(iii) for every right unitary submonoid T of S there is a left congruence σ on S such

that S/σ ∈ D, σ ⊆ ρT and for each u ∈ T there is a v ∈ S with vu σ 1.

Proof. (i) ⇒ (ii) Let T be a right unitary submonoid of S. Then T = [1] where [1]

is the ρT -class of the identity. By assumption, S/ρT has a D-cover, which must be cyclic

as S/ρT is. There is, therefore, a cyclic S-act Sa ∈ D and a co-essential S-morphism
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θ : Sa → S/ρT . By co-essentiality we may assume that aθ = [1]. Since θ is well defined

we have ℓ(a) ⊆ ρT . If u ∈ T then

aθ = [1] = [u] = u[1] = u(aθ ) = (ua)θ,

so that θ |Sua : Sua → S/ρT is onto. By co-essentiality we have Sua = Sa and so a = vua

for some v ∈ S. Hence Su ∩ L(a) �= ∅.

(ii) ⇒ (i) Let ρ be a left congruence and let T = [1], the ρ-class of the identity, so

that T is a right unitary submonoid. Notice that T × T ⊆ ρ and so ρT ⊆ ρ. Pick Sa

satisfying the given conditions. Since ℓ(a) ⊆ ρT ⊆ ρ we have θ : Sa → S/ρ given by

(ta)θ = [t] is a well defined onto S-morphism. If θ |Sya : Sya → S/ρ is onto, then we

must have that (xya)θ = [xy] = [1] for some x ∈ S. From u = xy ∈ [1] = T we obtain

v ∈ S with vu ∈ L(a) and so vxya = a. This gives that Sa = Sya and θ is co-essential

as required.

(ii) ⇔ (iii) This follows from the remarks preceding the lemma. �

As an immediate consequence of Theorem 5.1 and Lemma 6.1 we have our first

description of left IX -perfect monoids for suitable X , and, in particular, of left IPa-

perfect monoids.

COROLLARY 6.2.

(i) Let X be a property of left S-acts such that IX ⊆ ILC. Then S is left IX -

perfect if and only if S satisfies Condition (A) and for every right unitary

submonoid T of S there is a cyclic left S-act Sa ∈ IX such that ℓ(a) ⊆ ρT and

for all u ∈ T we have Su ∩ L(a) �= ∅.

(ii) Every cyclic left S-act has an IPa-cover if and only if for every right unitary

submonoid T of S there is an element s ∈ S such that ℓ(s) ⊆ ρT and for all

u ∈ T we have Su ∩ L(s) �= ∅.

(iii) A monoid S is left IPa-perfect if and only if it satisfies Condition (A) and the

condition in (ii) above.

We note that under the conditions in (ii) of Corollary 6.2 above, we immediately

have that L(s) ⊆ T . Unfortunately, from this latter condition we cannot deduce that

ℓ(s) ⊆ ρT . This is essentially because L(s) × L(s) need not generate ℓ(s) nor a suitable

ℓ(t) (compare with the analogous situations in [10]).

EXAMPLE 6.3. Let X be a set and let S be the null semigroup on X with an identity

adjoined (so that S = X ∪ {1, 0}). Let ρ be the Rees congruence associated with the

ideal S \ {1}. Pick any x ∈ X . The map θ : Sx → S/ρ given by (ux)θ = [u] is an onto

S-morphism which is clearly co-essential. However, L(x) = {1} and the congruence

generated by L(x) × L(x) is not ℓ(x) (nor indeed ℓ(u) for any u ∈ S such that there is a

co-essential S-morphism from Su onto S/ρ).

We now present a construction which will allow us to improve upon the description

of left IX -perfect monoids in Corollary 6.2, in particular in the case where S is

commutative.

Let T be a submonoid of S. Let F be the free left S-act on {xa : a ∈ T}, let ρ be

the congruence on F generated by H = {(xa, bxab) : a, b ∈ T} and put F(T) = F/ρ.

LEMMA 6.4. Let T be a right unitary submonoid of S and let F(T) be constructed as

above. Then
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(i) for any s, t ∈ S and a, b ∈ T we have [sxa] = [txb] if and only if s = t, a = b

or there exist u1, . . . , un ∈ S and v1, . . . , vn, c1, d1, . . . , cn, dn ∈ T such that

s = u1c1, u1d1 = u2c2, . . . , undn = t

and

a = v1c1, v1d1 = v2c2, . . . , vndn = b;

(ii) if T is left reversible, then [sxa] = [txb] if and only if sh = tk and ah = bk for

some h, k ∈ T;

(iii) if T is right collapsible, then [sxa] = [txb] if and only if sw = tw for some

w ∈ T;

(iv) if T has a right zero z, then [sxa] = [txb] if and only if sz = tz.

Proof.

(i) If s = t and a = b then clearly [sxa] = [txb]. On the other hand, if u1, . . . , un ∈ S

and v1, . . . , vn, c1, d1, . . . , cn, dn ∈ T exist connecting s to t and a to b as given,

then

[sxa] = [u1c1xv1c1
] = [u1xv1

] = [u1d1xv1d1
] = [u2c2xv2c2

] = · · · = [undnxvndn
] = [txb].

Conversely, if [sxa] = [txb], then either sxa = txb, so that s = t and a = b, or there

exists a ρ-sequence connecting [sxa] to [txb]. If the length of this sequence is 1,

then

sxa = wy, wz = txb

for some w ∈ S and (y, z) ∈ H ∪ H−1. Without loss of generality suppose (y, z) =

(xu, vxuv) for some u, v ∈ T . Then s = w1, wv = t and a = u1, uv = b so the

result is true with n = 1, w = u1, u = v1, c1 = 1 and d1 = v. Suppose for induction

that sxa is connected to txb by a ρ-sequence of length n, and the result is true for

all shorter sequences; moreover, we assume that a ρ-sequence of length m < n is

replaced by a pair of sequences of length m. Then

sxa = wy, wz = rxc

for some w ∈ S and (y, z) ∈ H ∪ H−1, where rxc is connected to txb via a ρ-

sequence of length n − 1. From the above and our inductive hypothesis we have

u2, . . . , un ∈ S and v2, . . . , vn, c2, d2, . . . , cn, dn ∈ T such that

r = u2c2, u2d2 = u3c3 . . . , undn = t

and

c = v2c2, v2d2 = v3c3, . . . , vndn = b

and u1 ∈ S, v1, c1, d1 ∈ T with s = u1c1, u1d1 = r, a = v1c1, v1d1 = c. The result

is just a matter of glueing the two pairs of sequences together.

(ii) If sh = tk for some h, k ∈ T with ah = bk then

s = s1, sh = tk, t1 = t and a = a1, ah = bk, b1 = b,

so that [sxa] = [txb] by (i).
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Suppose now that T is left reversible and [sxa] = [txb]. If s = t and a = b, take h =

k = 1. Otherwise there exist u1, . . . , un ∈ S and v1, . . . , vn, c1, d1, . . . , cn, dn ∈ T

such that

s = u1c1, u1d1 = u2c2, . . . , undn = t

and

a = v1c1, v1d1 = v2c2, . . . , vndn = b.

If n = 1 then use left reversibility of T to choose h, k ∈ T with c1h = d1k, so

that sh = u1c1h = u1d1k = tk and similarly ah = bk. If n > 1 we use induction to

obtain h, k, p, q ∈ T with sh = u2c2k, ah = v2c2k, u1d1p = tq, v1d1p = bq. Now

pick z, z′ ∈ T such that kz = pz′ and we see that shz = tqz′, ahz = bqz′ as required.

(iii) If T is right collapsible then it is certainly left reversible. If sw = tw, where

w ∈ T , then choose z′ ∈ T with az′ = bz′ and then z′′ ∈ T with wz′′ = z′z′′ = z

say, to obtain sz = tz and az = bz so that [sxa] = [txb] by (ii).

Conversely, if [sxa] = [txb] then we have in particular that sh = tk for some h, k ∈

T and so take z ∈ T with hz = kz to obtain sw = tw where now w = hz.

(iv) Follows directly from (iii).

�

The above result can be used to obtain a description of left IX -perfect monoids

(for suitable X), a little tighter than Corollary 6.2. For ease of notation, if s, t, a and b

are connected as in (i) of Lemma 6.4, then we write (s, a) ≡T (t, b).

THEOREM 6.5. Let X be a property of left S-acts such that IX ⊆ ILC. A monoid

S is left IX -perfect if and only if it satisfies Condition (A) and for every right unitary

submonoid T of S, there is a cyclic left S-act Sa with property X and c ∈ T such that for

any (p, q) ∈ ℓ(a) we have (p, c) ≡T (q, c) and for all u ∈ T we have Su ∩ L(a) �= ∅.

Proof. If S is left IX -perfect then it satisfies Condition (A) by Theorem 5.1. Let

T be a right unitary submonoid of S and consider F(T). By assumption, and the

fact that locally cyclic left S-acts are cyclic, it has an IX -cover G =
⋃̇

i∈I Sai where

each Sai has property X . Let θ : G → F(T) be co-essential and choose any i ∈ I . Then

aiθ = [uxc] say, where [xc] = (waj)θ for some w ∈ S and j ∈ I . By co-essentiality i = j

and Swai = Sai; we may, therefore, assume that aiθ = [xc].

Write a = ai. If (p, q) ∈ ℓ(a), then p[xc] = q[xc] and so (p, c) ≡T (q, c) by

Lemma 6.4. Let u ∈ T . From (A) we have that Sun = Sun+1 for some n ∈ � and

with un = zun+1 we see that

[xc] = un[xcun ] = zun+1[xcun ] = zu[xc],

so that by co-essentiality of θ we have that Sa = Szua, giving that a = vzua and

vzu ∈ L(a), for some v, z ∈ S.

The converse is clear from Corollary 6.2, since if (p, c) ≡T (q, c), then certainly

p ρT q. �

We now specialise to the case of commutative S, where we can make more

satisfactory progress. Where S is commutative, we drop the adjectives ‘left, right’,

where appropriate. The reader could compare our next result with [4, Proposition 1.7].

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089514000317
Downloaded from https:/www.cambridge.org/core. University of York, on 06 Apr 2017 at 13:20:53, subject to the Cambridge Core terms of use, available at



336 ALEX BAILEY ET AL.

LEMMA 6.6. Let S be commutative and let X be a property of left S-acts such that

IX ⊆ IC. Then every strongly flat S-act which has a cover in IX lies in IX .

Proof. Suppose first that S/ρ is strongly flat and cyclic. Let Sa be a cover with

property X and let θ : Sa → S/ρ be a co-essential S-morphism with aθ = [1]. If

(ua)θ = (va)θ then [u] = [v] so that u[1] = v[1] and by Condition (E) we have uh = vh

for some h ∈ S with [1] = h[1]. Hence θ |Sha : Sha → S/ρ is onto, giving us that kha = a

for some k ∈ S. From uhka = vhka we obtain ua = va, so that θ is an S-isomorphism

as required.

Now consider a strongly flat S-act A having an IX cover. Write A as a disjoint

union of indecomposable strongly flat S-acts and let B be one of these indecomposable

components. By [12, Theorem 3.7], B is locally cyclic. Clearly B has an IX cover⋃
i∈I Sai, where each Sai has property X and the union is disjoint. By [4, Lemma 1.4],

|I| = 1, so that B is cyclic. The result follows. �

Example 7.1 demonstrates that Lemma 6.6 need not be true if S is not commutative.

We recall from [2] that S is left perfect if and only if every strongly flat left act is

projective. Our next result is analogous.

THEOREM 6.7. Let S be commutative and let X be a property of S-acts such that

IX ⊆ IC. Then the following are equivalent:

(i) S is IX -perfect;

(ii) every strongly flat S-act is in IX ;

(iii) S satisfies Condition (A) and for any unitary submonoid T of S, there exists a

cyclic S-act Sa with property X such that for any p, q ∈ S, if pa = qa then pt = qt

for some t ∈ T, and for any u ∈ T we have Su ∩ L(a) �= ∅.

Proof. (i) ⇒ (ii) This follows from Lemma 6.6.

(ii) ⇒ (iii) Let a = (a1, a2, . . .) be a sequence of elements of S and define F(a) to

be F�/σ , where F� is the free S-act on {xi : i ∈ �} and σ is generated by {(xi, aixi+1) :

i ∈ �}. From [2, Lemma 1] we have that F(a) is strongly flat, hence inIX by assumption.

It follows that F(a) is cyclic. From [5, Lemma 1.2], as explicated in the ordered case in

[3, Lemma 3.4], we deduce that S has Condition (A).

Suppose now that T is a unitary submonoid of S and let F(T) = F/ρ be

constructed as above. We first claim that for any s, t ∈ S and b, b′ ∈ T , we have

[sxb] = [txb′ ] if and only if sb′c = tbc for some c ∈ T . Indeed, if the latter condition

holds, then with h = b′c and k = bc we have sh = tk and bh = b′k, so that [sxb] = [tx′
b]

holds by Lemma 6.4 (ii). Conversely, if [sxb] = [txb′ ] then by the same result, su = tv

and bu = b′v for some u, v ∈ T . Then sb′u = tvb′ = tbu as required.

We now show that F/ρ is strongly flat. If s, t ∈ S and [uxb], [vxb′ ] ∈ F/ρ with

s[uxb] = t[vxb′ ], then from our proven claim we deduce sub′d = tvbd for some d ∈

T . Now [uxb] = [ub′dxbb′d ] = ub′d[xbb′d ] and [vxb′ ] = [vbdxbb′d ] = vbd[xbb′d ], so that

Condition (P) holds and similarly, so does (E). Moreover, F/ρ is locally cyclic, for

given [sxb], [txb′ ] ∈ F/ρ, we have [sxb] = sb′[xbb′ ] and [txb′ ] = tb[xbb′ ]. Since Condition

(A) holds, we must have F/ρ = S[xc] for some c ∈ T .

Our assumption now gives that F/ρ is isomorphic to some cyclic S-act Sa with

property X via an S-isomorphism θ : Sa → F/ρ with aθ = [xc].

Let u ∈ T . Then [xcu] = w[xc] for some w ∈ S, and aθ = [xc] = u[xcu] = uw[xc] =

(uwa)θ so that as θ is an S-isomorphism, we have a = wua so that Su ∩ L(a) �= ∅.
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Finally, if pa = qa where p, q ∈ S, then [pxc] = [qxc] so our claim gives that pcd =

qcd for some d ∈ T , giving our result.

(iii) ⇒ (i) By Theorem 5.1 we need only show that every cyclic S-act has a (cyclic)

cover with property X .

Let ρ be a left congruence and let T = [1], so that T is right unitary. Let Sa be

the S-act guaranteed by our hypothesis and define θ : Sa → S/ρ by (ua)θ = [u]. If

ua = va, then by assumption, ut = vt for some t ∈ T and so

u = u1 ρ ut = vt ρ v1 = v,

giving that θ is well defined. Clearly θ is an onto S-morphism. If k ∈ S and θ |Ska :

Ska → S/ρ is onto, then we must have (hka)θ = [1] for some h ∈ S, that is, hk ∈ T .

By assumption, whka = a for some w ∈ S and it follows that Ska = Sa. Hence θ is

co-essential as required. �

REMARK 6.8. Theorem 6.7 can of course be applied to Fr and to Pr, and then

refined to produce existing results. The new applications of Theorem 6.7 are to IPa

and to IC. In the former case, the element a may of course be taken to be an element

of S.

7. Examples. In this section we give a number of examples and counterexamples

which we hope will be of interest in their own right. We focus on IPa-covers and left

IPa-perfect monoids, and their relation to left perfect monoids. The first example is

superceded by Example 7.13, but contains a useful construction.

EXAMPLE 7.1. Let 
 = {x0, x1, x2, . . . , } be an alphabet and let � = 
 ∪ {a}. If

u ∈ 
+, let i(u) be the highest x-index appearing in u, and define i(ǫ) = 0 where ǫ is

the empty word. Let φ : 
∗ → � and ψ : 
∗ × 
∗ → � be two injective maps having

disjoint image such that φ(u) > i(u) and ψ(u, v) > i(u), i(v) for every u, v ∈ 
∗. Let τ

be the congruence on �∗ generated by the set

H = {(xφ(u)ua, a), (uxψ(u,v), vxψ(u,v)) : u, v ∈ 
∗} ⊆ �∗ × �∗.

Denote the monoid �∗/τ by U . Then there is a strongly flat cyclic left U-act that has

an IPa-cover, but which does not lie in IPa.

We justify the above via a series of lemmas.

LEMMA 7.2. Let

u = wnawn−1a . . . w1aw0, v = w′
maw′

m−1a . . . w′
1aw′

0 ∈ �∗

where w0, . . . , wn, w
′
0, . . . , w

′
m ∈ 
∗. Then (u, v) ∈ τ if and only if n = m, (w0, w

′
0) ∈ τ

and (wia, w′
ia) ∈ τ for all 1 ≤ i ≤ n.

As a consequence, if u, v ∈ �∗ such that (ua, va) ∈ τ , then

uτ = wτu′τ and vτ = wτv′τ,

where u′, v′ ∈ 
∗.

Proof. Note that the letters a appearing in any word partition it into subwords

such that elements of H can only be applied to the subwords. As a consequence we
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have that every element of U can be uniquely written in the form

(wna)τ · (wn−1a)τ · . . . · (w1a)τ · w0τ

where w0, . . . , wn ∈ 
∗. �

DEFINITION 7.3. We say that a word u ∈ 
∗ has Property (p) if for every

factorisation u = vxiw where i is not contained in the image of φ, we have that v

contains a letter xj such that j > i and j is contained in the image of φ.

LEMMA 7.4. Let u, v ∈ 
∗ such that u has Property (p). Then if (u, v) ∈ τ or

(ua, va) ∈ τ , then v also has Property (p).

Proof. Observe that taking prefixes of a word, adding a as a suffix, or applying

relations from H, preserves (p). �

Let M be the submonoid of U generated by {x0τ, x1τ, . . . , }, denote by ρ the left

congruence generated by M × M, and let [wτ ] be the ρ-class of wτ , where w ∈ �∗.

It is clear from the definition of τ that M is a (right) unitary submonoid of U , which

implies that [ǫτ ] = M.

LEMMA 7.5. The cyclic left U-act U/ρ is strongly flat.

Proof. Since ρ is generated by M × M, Lemma 5.7 tells us that it is enough to

check that M is right collapsible. For this let uτ, vτ ∈ M where u, v ∈ 
∗. We have that

xψ(u,v)τ ∈ M, (uxψ(u,v), vxψ(u,v)) ∈ H and consequently, uτ · xψ(u,v)τ = vτ · xψ(u,v)τ , as

required. �

LEMMA 7.6. The cyclic left U-act U/ρ is not in IPa.

Proof. We have that U/ρ ∈ IPa if and only if there exists s ∈ U such that ρ = ℓ(s).

Suppose that such an element s exists. Then s = (wnawn−1a . . . w1aw0)τ for some n ≥ 0

and wn, . . . , w0 ∈ 
∗. If n ≥ 1, then since the word xφ(wn)wna has (p), but x0wna does

not, we have by Lemma 7.4 that (xφ(wn)wna, x0wna) �∈ τ . However, by Lemma 7.2 this

implies that

(xφ(wn)wnawn−1a . . . w1aw0, x0wnawn−1a . . . w1aw0) �∈ τ,

that is,

(xφ(wn)τ, x0τ ) �∈ ℓ(s).

A similar argument holds if n = 0. Since xφ(wn)τ, x0τ ∈ M we have (xφ(wn)τ, x0τ ) ∈ ρ,

so ρ �= ℓ(s) for any s ∈ U . �

LEMMA 7.7. The cyclic left U-act U/ρ has an IPa-cover.

Proof. We claim that U(aτ ) is an IPa-cover of U/ρ. For this we have to check that

ℓ(aτ ) ⊆ ρ and that U(uτ ) ∩ L(aτ ) �= ∅ for every uτ ∈ [ǫτ ].

For the inclusion, let (uτ, vτ ) ∈ ℓ(aτ ) where u, v ∈ �∗. Thus, (ua, va) ∈ τ which by

Lemma 7.2 implies that

uτ = wτ · u′τ and vτ = wτ · v′τ,
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where u′, v′ ∈ 
∗. That is, (u′τ, v′τ ) ∈ ρ, so that

(uτ, vτ ) = (wτu′τ,wτv′τ ) ∈ ρ,

which proves that ℓ(aτ ) ⊆ ρ.

Note that (xφ(u)u)τ ∈ U(uτ ) ∩ L(aτ ) for every u ∈ 
∗, because (xφ(u)ua, a) ∈ H.

Since [ǫτ ] = M = {uτ : u ∈ 
∗}, this proves the lemma and ends the justification of

Example 7.1. �

If every cyclic left S-act has an IPa-cover, then by considering the trivial act, it is

clear that S has a minimal left ideal. To the converse, we can show the following.

LEMMA 7.8. If S has the descending chain condition ML on principal left ideals, then

every cyclic left S-act has a principal left ideal cover.

Proof. Let S/ρ be a cyclic left S-act. The natural S-morphism νρ : S = Sa1 →

S/ρ is onto, where a1 = 1. Suppose we have constructed a sequence of elements

a1, a2, . . . , an of S such that Sa1 ⊃ Sa2 ⊃ · · · ⊃ San and νρ |San
: San → S/ρ is onto.

If San is a cover we are done, but if not, there exists an+1 ∈ S with San+1 ⊂ San and

νρ |San+1
: San+1 → S/ρ onto. Since S has ML this process must stop after a finite

number of steps, producing a cover. �

EXAMPLE 7.9. Let L be a left Baer-Levi semigroup, that is, L is left simple and left

cancellative with no idempotents, and let S = L1. Then S is left IPa-perfect.

Proof. Clearly S has Condition (A) and ML, so by Lemma 7.8 and Theorem 5.1 it

is left IPa-perfect. �

Isbell gives an example [5, page 106] of a left perfect monoid which does not have

ML. In fact, his is one of the kind given below.

EXAMPLE 7.10. Let S be a monoid with zero such that for any a1, a2, . . . ∈ S \ {1},

there is an n ∈ � such that a1a2 . . . an = 0. Then S is left perfect.

Proof. It is clear from Lemma 2.2 (iii) that Condition (A) holds. If T is a right

unitary submonoid, then either T = {1}, or there is an a �= 1 ∈ T . By assumption,

an = 0 for some n ∈ �, so that 0 ∈ T . Hence T satisfies Condition (D). �

We now present an example of a left IPa-perfect monoid that is not left perfect,

and does not have ML.

EXAMPLE 7.11. Let L be a left Baer-Levi semigroup, and define the monoid M as

in Lemma 3.14. Then the monoid M is left IPa-perfect, is not left perfect, and does

not have ML.

Proof. Since L is left simple, by Lemma 3.14 M satisfies Condition (A) and does not

have ML. Let ρ be a left congruence on M: we show that M/ρ has an IPa-cover. We

need to find an element s ∈ M such that ℓ(s) ⊆ ρ such that Mu ∩ L(s) �= ∅ for all u ∈ [1].

Note that if [1] = {1} then s = 1 satisfies these properties, and similarly, if ρ = M × M

(which happens if and only if 0 ∈ [1]) then s = 0 does. So we can suppose that [1] �= {1}

and ρ �= M × M. Let a = (i, x, j), b = (k, y, l) ∈ [1]. Then a2, ab ∈ [1] also, because [1]

is a submonoid of M, and it follows that i = j = k = l. As a consequence we have that

there exists i ∈ � such that all non-identity elements of [1] are of the form (i, x, i). We

fix one such s = (i, x, i) ∈ [1]. If (u, v) ∈ ℓ(s), then 1 ρ s implies that u ρ us = vs ρ v,
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thus (u, v) ∈ ρ, and we have that ℓ(s) ⊆ ρ. Now let w ∈ [1]; if w = 1 then clearly

1w ∈ L(s). Otherwise, w = (i, y, i) for some y ∈ L, and as L is left simple, x = zyx

for some z ∈ L. Hence (i, z, i)(i, y, i)(i, x, i) = (i, x, i) so with r = (i, z, i) we have that

rw ∈ L(s) as required.

Finally we wish to show that M is not left perfect. First, we note that for any x ∈ L

we have

xL1 ⊃ x2L1 ⊃ x3L1 ⊃ · · ·

for if the sequence were to terminate, we would have n ∈ � such that xn R x2n and as

certainly xn L x2n (L being left simple), we would have that xn H x2n so that by Green’s

theorem, xn H e for some e = e2, contradicting L being idempotent free. It is then easy

to see that

(1, x, 1)M ⊃ (1, x2, 1)M ⊃ (1, x3, 1)M ⊃ · · · ,

so that M does not have MR and, hence, is not left perfect. �

REMARK 7.12. If we replace the Baer-Levi semigroup L in Example 7.11 by a

group, then from Lemma 3.14 the resulting monoid has Condition (A) but does not

have ML. An easy calculation shows that it has MR, so is left perfect.

We now show that the implication (i) ⇒ (ii) in Theorem 6.7 need not hold if S is

not commutative.

EXAMPLE 7.13. Let

L = {φ : � → � : φ is one-one and im φ is infinite}

with composition of maps from right to left. Recall that L is an example of a Baer-Levi

semigroup, and hence left simple, left cancellative and without any idempotents. Let

S = L1 = L ∪ {I�}. By Example 7.9, S is left IPa-perfect. However, S has a strongly

flat cyclic left S-act that is not in IPa.

Proof. Let � =
⋃∞

i=0 Bi be a partition of � into infinite subsets, and for every 1 ≤ i,

let Ai =
⋃∞

j=i Bj,

Mi = {α ∈ S : α fixes every element of Ai},

and let M =
⋃∞

i=1 Mi. Note that M1, M2, . . . , M are submonoids of S.

We first show that the submonoid M is right unitary and right collapsible.

To see that M is right unitary, let α, β ∈ S such that β, αβ ∈ M. Then there exists

an i such that β, αβ ∈ Mi, that is, both β and αβ fix every element of Ai. If x ∈ Ai, we

have α(x) = α(β(x)) = (αβ)(x) = x, so that α ∈ Mi. Thus, M is indeed right unitary.

To see that M is right collapsible, let α, β ∈ M. Then there exists an i such

that α, β ∈ Mi. Let γ : � → � be such that γ fixes all elements of Ai+1 (so that

γ ∈ Mi+1), and maps � \ Ai+1 into Bi = Ai \ Ai+1 injectively. Notice that the image of

γ is contained in Ai, so that γ ∈ S and αγ = βγ = γ , which proves that M is right

collapsible.

Denote by ρ the left congruence generated by M × M. Lemma 5.7 and the above

argument imply that the cyclic left S-act S/ρ is strongly flat. In order to counter
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Theorem 6.7 we have to show that it is not contained in IPa, that is, that ρ is not the

left annihilator congruence of any element of S.

Let γ ∈ S and let x ∈ �. Then there exists 0 ≤ i such that γ (x) ∈ Bi. Define a

map α such that it fixes all elements of Ai+2 and maps � \ Ai+2 into Bi+1 injectively.

Then Bi ∩ im α = ∅, so that α ∈ L, and hence α ∈ Mi+2 ⊆ M. Since ρ is generated

by M × M we conclude that (α, I�) ∈ ρ. However, γ (x) ∈ Bi, so γ (x) �∈ Ai+2, and it

follows that α(γ (x)) ∈ Bi+1 and hence that α(γ (x)) �= γ (x). As a consequence αγ �= γ ,

that is, (α, I�) �∈ ℓ(γ ), which shows that ρ �= ℓ(γ ) and hence S/ρ cannot lie in IPa. �
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