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The Emergence MAC (E-MAC) Protocol for Wireless
Sensor Networks

Tautvydas Mickusa,∗, Paul Mitchella, Tim Clarkea

a Department of Electronics University of York, Heslington, York, YO10 5DD, UK

Abstract

Large scale biological systems often exhibit emergent properties that are at-

tractive in an engineering context. In this paper, the context is a class of wire-

less sensor networks for emergency environmental monitoring. The attractive

properties are simplicity, self-organisation, adaptiveness to scenario change

and a lack of scenario-specific parameter tunings. Emergence Medium Access

Control (E-MAC) is a scheme inspired by biological social populations that in-

dividually react to environmental stimuli. Using a very simple protocol, it ex-

hibits the desired emergent properties. When compared to a well established

practical counterpart, the IEEE 802.11 CSMA/CA standard, it exhibits better

throughput, end-to-end delay and fairness. This paper describes the motiva-

tion and design of E-MAC, and presents the above comparison.

Keywords: Medium Access Control, Distributed Artificial Intelligence,

Wireless Sensor Networks

1. Introduction

Imagine the scenario where an emergency service, such as Fire and Rescue,

is required to monitor a large area of moorland for spontaneous outbreaks of

brush fire [1]. Any such monitoring would be required to report on tempera-

ture and humidity levels that indicate high risk conditions and, subsequently,5
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the movement of fire fronts. The movement of fire fronts can be highly un-

predictable and poses a serious danger to personnel and equipment. This is

an ideal opportunity to deploy a wireless sensor network (WSN) over a wide

area from a suitable aerial platform. Based on the operational need it is also

possible to deploy more of these low-cost nodes.10

This scenario presents a set of significant challenges [2]. Long-term remote

operation necessitates low power usage and a very simple MAC protocol in

each inexpensive node. In contrast, nodes are required to minimise end-to-

end delay with no sensor node being dominant (high fairness levels). In the

case of these simple nodes, only one communications channel will be available,15

necessitating an efficient MAC protocol to control the transmissions, ensure

correct operation and achieve high throughput. Nodes will be required, at

different times, to act purely as relay nodes whilst at other times, they may be

additionally required to generate and place data on the network. The protocol

must facilitate adaptability.20

Many protocols have been proposed for WSNs which offer different bene-

fits [3][4][5]. Schemes that employ sophisticated synchronisation or significant

information exchange to achieve organisation and performance are inappro-

priate in the context presented here. Yet, as the scale of networks increases,

the need for some form of synchronisation and information exchange becomes25

overwhelming even if only at a local level.

Routing becomes a challenging task in large-scale networks as well. Dis-

semination of routing information and discovery of routes becomes difficult

process. There are, however, many examples and proposals for good routing

practices in the scientific community [6][7]. In this paper we focus on the MAC30

layer.

Here, we present our proposed solution, Emergence Medium Access Con-

trol (E-MAC), and compare its performance to that of a basic implementation

of the IEEE 802.11 standard. We choose this latter protocol because it is well

understood and well established. Even though it uses some hardware capabili-35

ties such as carrier sensing and additional RTS/CTS messages, the IEEE 802.11
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protocol itself is very simple and clean. We focus on comparative performances

over a multi-hop chain. The contributions of E-MAC are:

• A different approach to MAC. The nodes search for the throughput they

are able to achieve and then use this information for data transmissions/generation,40

regulating traffic flow.

• A very simplistic MAC protocol that allows nodes to achieve high through-

put through multi-hop networks under a variety of situations without the

need to tune system parameters.

• The proposed protocol also shows several emergent behaviours:45

– self-organisation

– flow control on both hop-by-hop and end-to-end basis

– indirect synchronisation between the nodes as packets are relayed

– minimal latency

The structure of this paper is as follows: Section 2 outlines the biological50

inspiration for the E- MAC protocol. We then describe the protocol itself in

Section 3. Section 4 presents the scenario and simulation parameters for the

comparative performance. The results are described in Section 5.

2. Biological Metaphors

The ability of natural systems to self-organise, reorganise and provide fault-55

tolerant operation has inspired a huge diversity of mathematical and engineer-

ing solutions [8][9][10]. For example, the evolutionary metaphor (e.g. genetic

algorithms and genetic programming) has enabled otherwise intractable opti-

misations and facilitated the discovery of novel processes, algorithms and sys-

tems [11]. Similarly, the social metaphor (e.g. particle and robotic swarms and60

multi-agent systems) has done the same, and contributed to the understanding

of the emergent properties of complex systems [12].

E-MAC was inspired by the social metaphor.
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In this case, very simple entities, generally referred to as agents, can offer

significant benefits and highly complex behaviours when operating in groups65

and interacting with each other using simple rules. This swarming offers emer-

gent behaviour on a higher social level [13]. Examples from nature include:

• locust swarms which can fly in perfect synchrony in their billions, effi-

ciently exploiting localised air streams [14]

• ant colonies which exhibit complex foraging and task allocation behaviour70

without central coordination [15]

• termite colonies that can build complex structures without a global blueprint [16]

All of these are achieved without central control, and only through very

simple rules, interactions and reaction to the local agent environment, and

without explicit encoding of the emergent behaviours. In each case there are75

up to millions of very simple entities that are continuously changing with-

out affecting the overall performance. The complex behaviours arise from

the interactions between individuals affecting their local environment. Self-

organisation, adaptation and fault-tolerance are frequently the emergent prop-

erties of these systems. This simplicity and the same emergent properties cor-80

respond to what could be defined as ideal for WSNs.

When monitoring harsh environments over large areas of undulating ter-

rain, we require cheap, simple nodes that can adapt to different communication

scenarios without the need to tune specific system parameters. Also, network

fault-tolerance is needed where nodes are likely to progressively fail at the on-85

set of a fire front. Furthermore, adding nodes should not trigger wholesale

network reconfiguration to accommodate them; only locally-affected regions

should adapt without affecting global emergent behaviour.

All of this can be otherwise achieved with precise deployment planning

and complex algorithms. Such approaches tend to introduce many tunable90

parameters which require more operational maintenance. Also, it is not usually

possible to anticipate every scenario and its conditions. We assert that it is
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better exploit biological metaphors that offer appropriate emergent properties

through simple rules of interaction.

The E-MAC protocol employs the notion of reaction to the intensity of stim-95

ulus from neighbouring agents. We use a stochastic approximation of the prob-

ability of successful message packet transmission as that stimulus.

2.1. Task Allocation and Division of Labour in Social Insects

Here we represent an example of stimulus-based self-organising emergent

behaviour to illustrate our motivation for the development of the E-MAC scheme.100

It has been observed that many species of social insects exhibit emergent

task allocation and division of labour [17]. Without the need for a leader,

colonies comprising huge number of individuals are able to organise their var-

ious tasks. The process usually arises through emergence from simple actions

taken by individuals. In addition, such processes are highly robust and adapt105

to the different needs of the colony.

Bonabeau [18] proposed a model based on a response threshold that models

the behaviour of ants and bees and shows emergence behaviour at the colony

level for task allocation. The response threshold defines how individuals react

to their environment (stimulus). It provides a way to define a probability of110

taking an action, given certain stimuli from environment and its relationship

with the threshold of that stimulus. A threshold can be varied among differ-

ent individuals - therefore creating specialised workers. For example, in an ant

colony we can consider forager and fighter ants. Foragers will have a lower

threshold for collecting food and a higher threshold for fighting. Therefore115

they will more likely take up foraging. Fighter ants with a reversed threshold

would show a higher tendency towards fighting. Nevertheless given the lack

of foragers, the stimuli for foraging increases, therefore fighter ants would start

to get involved into foraging tasks as well. The process also involves a learn-

ing process. If an agent is performing a task, the threshold for that task will120

decrease (increasing the likelihood of performing that task again). This also

provides a natural process for specialisation.
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For example the probability to take up a task given a certain threshold and

stimuli can be expressed as:

Tθ(s) =
sn

sn + θ
(1)

where s is the environmental stimuli, θ - the response threshold and n defines

the steepness of the curve (see Figure 1).

θ essentially defines the tendency to take up action given the environmen-125

tal stimuli, so differently-specialised insects would have different threshold to-

wards certain tasks. For example, when θ is 1 in Figure 1 the stimuli has to

be very high to increase the probability of performing the task defined by this

threshold. However, when θ is 50, even a small stimuli will have high proba-

bility of eliciting a response.130

Another example (Figure 2) of a response curve function is given by Plowright

[19] [18]:

Tθ(s) = 1− e−s/θ (2)

Similar trends arise in both functions where the probability of engaging is

small for s << θ and is close to 1 for s >> θ [18].
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Figure 1: Response threshold curves based on Equation 1

The very simple model presented here can provide very powerful and com-

plex behaviour. Without explicitly specifying a behaviour, it emerges due to so-
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Figure 2: Exponential response curves based on Equation 2

cial interactions between insects and the stigmergy (the phenomena of indirect135

communication through altering the environment). In addition very robust,

self-organising, scalable and adaptive behaviour is achieved.

This type of behaviour can be applied to a variety of optimisation prob-

lems as well as resource allocation algorithms. In addition, the same process

of response thresholds and stimuli can be found in other emergent swarm be-140

haviours such as clustering or sorting [20][18].

3. Protocol Design

The goal of E-MAC is to provide good performance with very low complex-

ity. The protocol is based on a simple implementation inspired by the biologi-

cal social metaphor of swarm reactions to an environment. The bare minimum145

amount of data is shared during each data packet transmission. No additional

transmissions are made and there is no need for carrier sensing.

This section will start with a basic overview of components in E-MAC and

present an overall view of what E-MAC does. Then it will continue with de-

tailed information on the algorithm.150
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3.1. Transmission Delay

Many MAC schemes or protocols employ the concept of back-off to reduce

congestion and offered traffic, allowing other transmissions to compete for

channel access. Once a packet is either received or dropped, back-off is usually

reset. Any information on previous actions and outcomes in the environment is155

then lost. E-MAC employs a back-off strategy that does not subsequently reset,

but either increases or decreases incrementally. We more appropriately use the

term transmission delay which is changed after each (un)successful packet trans-

mission. Increasing or decreasing transmission delay controls the overall trans-

mission rate and, in the manner of conventional back-off, allows other nodes160

to transmit on the channel. However, unlike traditional back-off schemes, it

maintains a transmission rate that becomes periodic and predictable. In effect,

the transmission delay retains historical information about the environment

which helps to prevent nodes from experiencing repeated congestion.

3.2. Basic Operation165

E-MAC performs a simple update action which is called when an acknowl-

edgement is received or a time-out occurs. During an update E-MAC simply

changes the transmission delay duration depending on the acknowledgement

outcomes. The adjustable transmission delay is engaged every time the MAC

layer passes a packet to the physical layer for transmission. Therefore once the170

transmission delay is engaged, the node is not allowed to transmit packets, in

the manner of conventional back-off. When the transmission delay expires, the

node is again allowed to send a packet. Controlling the transmission delay can

effectively allow control of the time period between packet transmissions. The

way transmission delay is varied is based on a biological social metaphor. Both175

the averaged and most recent acknowledgement outcomes are used to define

an apppropriate stimulus to modify the transmission delay.

3.3. Robbins Monro and Probability of Success

The stimulus used to increase/decrease transmission delay is the average

observed probability of successful packet transmission. Here we employ a
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stochastic approximation, the Robbins Monro algorithm [21]. It offers approx-

imate averaging without the need for significant storage of past values. Addi-

tionally, it approaches an average value in a non-linear way, which provides a

more realistic stimulus representation and offers the possibility of continuous

reaction. The Robbins Monro algorithm is given by Equation (3):

Xi = (1− α)Xi−1 + αXnew (3)

where Xi is the approximated mean after iteration i and Xnew is a new sample.

In E-MAC, Xnew represents the outcome of the ith transmission (0 or 1 for180

failure or success respectively). Updating Xi at each transmission outcome

gives an approximate average (probability of success). It provides a way to

track the current probability of success at each node. This can be then used

as the intensity of stimulus for appropriate agent action. α weights current

experience against the prior approximation of the mean.185

This forms the response threshold which was discussed in Section 2.1. If

we draw a random number between 0 and 1 and take action if the drawn num-

ber is larger than Xi then the probability of responding is 1 −Xi. For a lower

Xi value the algorithm will be more likely to respond. Figures 3 and 4 show

the response probabilities given the starting value and number of consecutive190

events (success or failure). The curves also show very similar trends to the ex-

ponential response functions shown in Figures 1 and 2 and Equations 1 and 2.

3.4. The Basic E-MAC Algorithm

Using the stimulus proposed in Section 3.3 we implement Algorithm 1 that

determines the changes to the transmission delay.195

When a node experiences contention on the channel there is a greater like-

lihood of corrective action otherwise there is none (lines 9 - 10 and 17 - 18). In

addition to responding to acknowledgement failures (lines 11 - 12) we want a

node to react to the historical performance of the adjacent downstream node

(lines 19 - 20) which prevents congestion. The whole algorithm mimics the200
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Algorithm 1: The E-MAC Algorithm

// Initialisation

1 set α , change scale , pSuccess , tx delay

2 while network running do

// Update

3 if ack failed then

4 recent outcome = 0

5 else

6 recent outcome = 1

7 end

8 pSuccess = (1− α) ∗ pSuccess+ α ∗ recent outcome

// Ack Effect

9 R = generate random number between 0 and 1

10 if R > pSuccess then

11 if recent outcome = 0 then

12 tx delay = tx delay + change scale

13 else

14 tx delay = tx delay − change scale

15 end

16 end

// Queue Effect

17 R2 = generate random number between 0 and 1

18 if R2>pSuccess then

19 if queue at next hop > my queue then

20 tx delay = tx delay + change scale

21 end

22 end

23 end
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way in which swarm colonies react to their immediate environment which is

usually represented as the stimuli intensity.

Experimentation shows that direct response to acknowledgement perfor-

mance (Ack Effect at lines 9 - 16) effectively controls transmission delay. The

network settles at reasonable delay values throughout and avoids collisions205

along a multi-hop chain. Nevertheless, congestion can build up at nodes. To

alleviate queue build-up we have added another action (Queue Effect at lines

17 - 22). It requires each node to share its queue size with its adjacent upstream

node by adding this small amount of information to every transmission and

acknowledgement.210

3.5. Multiple source operation

The protocol, in the form depicted in Algorithm 1, does not search for a

transmission delay that gives fair operation when more than one source node

exists in a multi-hop chain. For this, some extra functionality is necessary. In

the spirit of the biological social metaphor, the chain continues to use estab-215

lished information and forces nodes that become active to join the flow rather

than disrupt it through dissonant transmission delays.

Using a simple extension, if a relay node also starts to function as a source

node (or source node also starts to function as a relay), its packets joins the

flow by limiting its own transmissions to the incoming receptions. It is only al-220

lowed to send a packet forward once the relay packet is received. This prevents

collisions between flows from different sources along the chain.

3.6. Fair Queuing

We have adopted a fair queuing strategy in E-MAC. This implies that pack-

ets in the queue from different sources are treated fairly to avoid the formation225

of dominant nodes. The queue prioritises packets from different sources in a

round-robin fashion. In addition if there is more than one packet in the queue

from a specific source, the most recent one is transmitted and older ones asso-

ciated with that source are discarded. The use of such queueing is justified by
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the emergency environmental monitoring scenario which requires up-to-date230

data. Nevertheless, the queuing itself does not guarantee fair operation as the

relayed packets can be lost based on MAC behaviour and collisions further

down the chain.

This strategy may seem wasteful as not all packets coming from upstream

sources are passed on, but all are acknowledged - despite some later being235

dropped. However, the pay-off is that the chain can quickly adapt to new

sources arising along a chain using one simple protocol. Given the scenario de-

scribed at the start, the availability of information from all active source nodes

at a high and sustainable data rate is important.

We could have taken a more parsimonious approach where new-source240

nodes inform those upstream to send only every nth packet. However, our

experimentation shows that, if a particular node then stops sourcing packets,

it takes a lot longer for upstream source nodes to re-adapt and begin appropri-

ately to send data more frequently.

3.7. Overall protocol process245

Several different events take place during wireless node operation at the

MAC layer. These are packet reception from the Physical Layer, packet recep-

tion from the Network Layer, Acknowledgement Timeout and Back-off Time-

out or, in E-MAC, Transmission Delay expiry.

Initialisation of Algorithm 1 occurs during node startup. When packet re-250

ception from the Physical layer occurs, the MAC layer passes the packet to the

Network Layer if appropriate, and an acknowledgement is sent back. When

packet reception from the Network Layer occurs, if the node is currently not

receiving a packet at the Physical Layer and/or a Transmission Delay is not

in progress, the node passes the packet for transmission to the Physical Layer255

immediately and the Transmission Delay is then engaged. Otherwise it waits

until the current Transmission Delay expires. Once the acknowledgement is re-

ceived or a time-out occurs Algorithm 1 lines 2-23 execute to update the Trans-

mission Delay value.

13



4. Simulation Parameters and Assumptions260

4.1. The Basic Scenario

We evaluate E-MAC as a 12-node multi-hop chain, indexed from 0 to 11 (0

is the sink). All nodes use the same channel for transmission and reception.

All nodes are identical and can act either as relays, sources, or both. There is

no direct synchronisation between the nodes and the inter-hop distance is 200265

meters. This scenario is shown for clarity in Figure 5.

4.2. Propagation and Radio

A traditional hop based model is used for the communication and inter-

ference where nodes are able to transmit their data over 1 hop (nearest neigh-

bours) but interference is experienced over 2 hops (as shown in Figure 5). Later,270

we increase the interference range to observe the adaptability and performance

of the protocols in different conditions. Packets are only received correctly if

no interference and collisions are present. We define propagation delay based

on the distance between the nodes. Given that real device hardware can only

perform one action, transmit or receive, in simulation nodes are not permitted275

to transmit if they are in successful reception state.

11 10 9 8 7 1 

transmission 

interference 

0 … 

Figure 5: The chain scenario

4.3. Traffic

We use saturated traffic to simulate packet generation. This is to test the sta-

bility and maximum performance of the protocol. Also, we want to mimic the

behaviour that would be required during critical monitoring situations where280

as much data as possible needs to be generated and conveyed along the chain.
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A new packet is generated as soon as one is successfully transmitted and that

node is available to transmit again. The initial packet transmissions start within

the first second of simulation according to the uniform random distribution.

The purpose of this is to avoid starting multiple sources at the same time.285

4.4. The Comparison Scheme

This is the IEEE 802.11 standard - CSMA/CA with RTS/CTS and Binary

Exponential Backoff (BEB). It is a widely used scheme that provides simplic-

ity and great performance without requirements for synchronisation. It uses

Collision Avoidance by means of carrier sensing and uses RTS/CTS messages290

to inform surrounding nodes of transmissions to deal with the hidden node

problem on multi-hops. BEB aims to avoid further collisions or interference.

Compared to many other much newer WSN protocols, CSMA is very low in

complexity but offers good performance without synchronisation even for sub-

stantial networks. State-of-art MAC protocols that address particular aspects295

of WSN, in fact, use raw CSMA or 802.11 standard as a fall-back mechanism to

maintain good performance when synchronisation is not available [22]. Due to

its popularity and clearly defined implementation many researchers also use

this scheme for comparison [23][4]. While IEEE 802.11 is not an energy efficient

protocol, it still provides comparable or even better performance under vary-300

ing conditions when compared to state-of-art protocols [24]. There are many

alternative protocols for WSN. Some of more well known and established ones

are S-MAC, Z-MAC, LEACH. S-MAC achieves an energy efficient operation

via periodic sleeping, auto-synchronisation of sleep schedules and formation

of virtual clusters [25]. Z-MAC is a hybrid protocol that combines TDMA and305

CSMA to improve performance and robustness to synchronisation errors [22].

LEACH,on the other hand,is a very different approach. It focuses on distribut-

ing the load evenly throughout the network, therefore prolonging the useful

system lifetime [26]. There is a considerable range of approaches, many of

which are complex. We now make some general comments on their suitability.310

Contention schemes are appropriate for distributed networks but suffer from
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energy waste through collisions. Distributed scheduling is potentially energy

efficient but requires a lot of signalling and therefore scalability suffers. With

the increased complexity of the state-of-art schemes, their appropriateness for

comparison becomes questionable, whereas the classical IEEE 802.11 scheme is315

well known and established which aids in the understanding of performance.

This is why we chose it for comparison. E-MAC is of even lower com-

plexity as it does not employ RTS/CTS messages or any hardware sensing to

avoid collisions. E-MAC exploits collisions as part of the notion of reaction to

the stimulus intensity of neighbouring agents. For clarity and comparison, we320

also show and discuss maximum theoretical bounds when evaluating the per-

formance. Note, the same fair queuing policy is adopted in the CSMA scheme.

4.5. Simulation Parameters

Table 1 shows the simulation parameters.

Table 1: Simulation Parameters

Parameters Values

Channel bit rate 250 Kbits/s

Data packet length 1000 bits

ACK packet length 20 bits

RTS/CTS packet length 20 bits

Transmit range 200 m (1 hop)

Interference range 400 m (2 hop)

5. Results325

5.1. Metrics for Analysis

We assume that routing would be pre-initialised using Djikstra’s shortest

path routing (through a simple pure ALOHA scheme). We plot results as

16



Cumulative Distribution Functions (CDF) over 1000 simulations using differ-

ent random number seeds. We use CDF because it provides an informative

statistical view of protocol operation. Mean and standard deviation tables

are additionally provided. Three different performance metrics are evaluated.

Throughput is measured in Erlangs and is calculated based on the number of

successful packets received at the sink throughout each simulation. It can be

expressed as:

Throughput =
number of packets received at the sink ∗ packet size/bitrate

simulation time
(4)

End-to-end delay is measured in seconds from packet generation to arrival

at the sink. We also establish the throughput fairness for different sources using

Jain’s Fairness Index [27] which is expressed as:

J =
(
∑n

i=1
xi)

2

n ·
∑i+1

n x2
i

(5)

where, in this case, n is the number of source nodes and xi is the throughput

from ith source node. The results range from 1/n (worst case) to 1 (best case).

5.2. Performance evaluation

Figures 6 & 7 and Table 2 show throughput performance of E-MAC and the330

comparison CSMA scheme. There are two sources on a chain - one at the end

(node 11) and one in the middle (node 5). For the 2-hop interference model, in

all the simulations E-MAC significantly outperforms CSMA. For 3-hop inter-

ference, it occurs 97% of the time. Even though CSMA employs interference de-

tection on the channel and avoids the hidden node problem through RTS/CTS,335

it is still not fully able to exploit channel capacity. The significantly simpler

E-MAC protocol nevertheless achieves much better results. Furthermore, re-

sults also incorporate the period during which E-MAC is self-organising and

settling towards the best transmission delay. This self-organisation of trans-

mission delay indirectly synchronises the network to source transmissions,340

thereby avoiding collisions. If a source places packets on the network at the
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correct rate, they will move sufficient hops downstream before the next packet

is sent, thereby avoiding collisions. Through the emergence of rate searching,

hop-by-hop flow control occurs. Once settled to the correct rate the end-to-

end flow control becomes operational and throughput quickly rises close to345

the theoretical bounds. Under E-MAC, without the need for an explicit timing

mechanism, the network achieves very good throughput performance.
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Figure 6: Throughput for system with 2 sources and 2 hop interference range

Table 2: Throughput (Erlangs) (mean ± standard deviation)

CSMA E-MAC Maximum Theoretical

2 hop interference 0.1186 ± 0.0010 0.2344 ± 0.0140 0.25

3 hop interference 0.1015 ± 0.0009 0.1853 ± 0.0186 0.20

Figure 8 and 9 show the packet end-to-end delay results for 2 hop and 3

hop interference respectively. Both graphs represent delay for packets arriv-

ing from 2 different sources (nodes 11 and 5) for both schemes. Again, sig-350
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Figure 7: Throughput for system with 2 sources and 3 hop interference range

nificantly better end-to-end delay performance can be seen using the E-MAC

protocol. Note, from Table 3, that end-to-end delay statistics for E-MAC and

CSMA delay performance are both fairly consistent over the 1000 simulations.

The minimal latency of E-MAC also arises through the same rate interactions.

Once source nodes find a good transmission delay, the packets travels through355

the route with minimal collision or interference. This ensures that a packet is

not held up at any node due to back-off or failure. The outcome is reduced

end-to-end delay.

Figure 10 and Table 4 show fairness results (Jain’s Fairness Index, as de-

scribed in Section 5.1) for the 2 hop and 3 hop interference models using E-360

MAC and CSMA protocols. The results indicate ideal performance from the

E-MAC scheme and near ideal performance from CSMA. Despite both schemes

using the same fair queuing mechanism, some packets are lost under the CSMA

protocol, due to collisions. This slightly reduces CSMA fairness.

To extend the scope of the results to show the performance of E-MAC with365

different numbers of source nodes ranging from 1 to 10, we consider the chain
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Figure 8: End-To-End delay for system with 2 sources and 2 hop interference range
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Figure 9: End-To-End delay for system with 2 sources and 3 hop interference range
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Table 3: End-to-end delay (mean ± standard deviation)

CSMA E-MAC

2 hop interference src 5 0.1002s ± 0.0011 0.0503s ± 0.0027

src 11 0.2104s ± 0.0024 0.0748s ± 0.0027

3 hop interference src 5 0.1108s ± 0.0014 0.0598s ± 0.0079

src 11 0.2262s ± 0.0029 0.0847s ± 0.0104
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Figure 10: Fairness for system with 2 sources

Table 4: Fairness (Jain’s Fairness Index) (mean ± standard deviation)

CSMA E-MAC

2 hop interference 0.9740 ± 0.0031 ∼ 1 ± 0.00000797

3 hop interference 0.9745 ± 0.0032 ∼ 1 ± 0.00002833

scenario where the specified number of source nodes are placed at the end of

the chain. These results are shown in Figures 11 and 12, which exhibit the
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same trends as the previous results. Note that the throughput results for the

two node case in Figure 11 differ slightly from the results presented in Table 2,370

due to the different placement of source nodes in the original topology (where

one of the two source nodes is located in the middle of the chain). E-MAC

clearly outperforms CSMA RTS/CTS and performance reaches very close to

theoretical boundaries in the scenario. We can see a sudden variance in CSMA

RTS/CTS fairness results. Even with a fair queuing policy CSMA RTS/CTS375

seems to become unstable once a clear dominating node appears in the net-

work. Under 10 source operation, essentially every-node in the network is a

source. The source closest to the sink is only 1 hop away. This source, due to

its success and quick delivery, starts over-dominating the network, thereby op-

erating as a single hop (breaking throughput bounds) and blocking out other380

transmissions (significant drop in fairness).
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Figure 11: Mean throughput comparison for different numbers of sources

Overall, we have observed significant performance benefits of E-MAC over

CSMA in two measured performance criteria (throughput and end-to-end de-

lay) and better performance for fairness. The simplicity of E-MAC, in terms of
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Figure 12: Mean fairness comparison for different numbers of sources

hardware and computational requirements, is truly encouraging. The basis for385

this is the exploitation of emergence through simple exchanges of information

piggy-backing an otherwise trivial MAC protocol. The network is able to self-

organise and adapt to different scenarios without requiring extra parameters

or a shift in the simple agent behaviours. Emergence provides us with indi-

rect synchronisation which boosts throughput and reduces end-to-end delay.390

Furthermore, the reduced number of collisions improves overall fairness.

5.3. Parameters

Earlier, we stated that a property of biological systems is a lack of scenario-

specific parameter tunings. The reader will have noted that two parameters

seem to abuse this notion in E-MAC: α and change scale.395

Figure 13 and 14 are contour plots which show the variation of throughput

when α and change scale are varied. Actual change scale values are related

to packet length. It is clear that performance is generally insensitive to these

parameter values. However some trends can be observed.
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Figure 13: Throughput variation when α and change scale are varied, 2 hop interference
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Figure 14: Throughput variation when α and change scale are varied, 3 hop interference
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We have set change scale values to be 10% of packet length, where E-MAC400

performs well. Greatly increasing the value causes the resolution of Transmis-

sion Delay to be too coarse so that E-MAC does not perform well. An exces-

sively low value causes very slow settling and adaptive response.

We also see from Figure 13 and 14 that the value of α should be in the

general region of 0.2. Choosing more extreme values will cause the transmis-405

sion delay to settle very slowly (low α), or away from a value commensurate

with good throughput and reduced ability to adapt (high α). In fact when α

approaches value of 1, the Robbins Monro algorithm no longer tracks past val-

ues and essentially only line 12 in Algorithm 1 remains active. The protocol

will only respond to the last acknowledgement outcome, leading to unstable410

behaviour.

The same observations can be seen in the end-to-end delay performance for

different parameter values given in contour plots in Figures 15, 16, 17 and 18.

It is important to note from the contour plots that, given almost any values

for these parameters, in the scenarios presented, E-MAC will perform better415

than CSMA.
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Figure 15: End-to-end delay variation from source 5 when α and change scale are varied, 2 hop

interference
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Figure 16: End-to-end delay variation from source 5 when α and change scale are varied, 3 hop

interference
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Figure 17: End-to-end delay variation from source 11 when α and change scale are varied, 2 hop

interference
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Figure 18: End-to-end delay variation from source 11 when α and change scale are varied, 3 hop

interference

6. Conclusion

We have discussed some notions derived from a biological metaphor and

applied them to the development of a new type of MAC protocol for WSNs.

E-MAC follows very simple rules based on the reaction of social agents to the420

intensity of a localised environmental stimulus. Without explicit synchroni-

sation and using very simple hardware it is able to out-perform its compara-

tor, the widely-known IEEE 802.11 CSMA/CA RTS/CTS scheme. Throughput,

end-to-end delay and fairness were compared using multi-hop chain networks.

E-MAC exhibits self-organisation, flow control on both hop-by-hop and end-425

to-end basis, indirect synchronisation between the nodes as packets are relayed

and minimal latency. Its parameter insensitivity means that it can be adopted

in different environmental conditions without the need for specific set-up tun-

ing.
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