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Stabilizability of nonlinear in�nite dimensional switched

systems by measures of noncompactness in the space c0

Radosªaw Zawiskia,∗

aSchool of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract

This article studies the problem of stabilizability of nonlinear in�nite dimensional switched
systems. The switching rule is arbitrary and takes place between a countably in�nite
number of subsystems, each of which is represented by a di�erential equation in some
Banach space. Using a topological notion of a (locally �nite) cover and the Hausdor�
measure of noncompactness in the c0 space, we show how the problem of approximate
stabilizability of switched systems can be cast into a sequential framework and dealt
with. Examples of application are given.

Keywords: switched systems, nonlinear in�nite dimensional dynamical system,
measure of noncompactness, sequence spaces

1. Introduction

Switched systems are dynamical systems that consist of a given number of subsystems,
between which switching occurs. From the mathematical point of view, the subsystems
(also called modes) are usually described by di�erential or di�erence equations, indexed
according to a particular rule. The switching itself takes place according to a given
method, which may be a function of time or state of the given mode. The switched
systems are most frequently classi�ed according to the dynamics of their modes. Hence,
there are linear or nonlinear, continuous or discrete and �nite or in�nite dimensional
switched systems. If among the modes of the system the representation of each type
can be found, such switched system is usually referred to as a hybrid system. Hybrid
systems frequently arise in modern modelling challenges in various disciplines. Among
them are such diverse �elds as biomechanics [2], molecular biology or oncology [16] or
vibroacoustics [11].

From the theoretical point of view the analysis of switched systems strongly depends
on the characteristics of their modes. It frequently requires, especially in the case of
hybrid systems, a deep insight into the interactions between continuous and discrete
counterparts of the system. Literature such as [20, 30, 21, 29] together with references
therein shows a wide spectrum of the current state of knowledge of the analysis of dy-
namics of switched systems.
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In this article we focus on the problem of controllability of a speci�c type of dynam-
ical system. In general, we call a dynamical system controllable if it is possible to steer
it from an arbitrary initial state to an arbitrary �nal state using the set of admissible
controls. In mathematical control theory there are many di�erent de�nitions of control-
lability. They strongly depend both on the class of dynamical systems and on the form
of admissible controls [18]. The application of methods taken directly from di�erential
geometry, topology, functional analysis, theory of ordinary and partial di�erential equa-
tions and theory of di�erence equations may be required in controllability analysis for
di�erent types of hybrid systems. As an example, a short survey of such applications can
be found in [32].

The systems with controllability of which we deal in this article arise in e.g. analysis
of partial di�erential equations (PDEs) [31] or neural networks [25]. Article [31] dis-
cusses the so called longitudinal method of lines for parabolic PDEs, which consists in
replacing spatial derivatives by di�erence expressions. In [25] a sensitivity of randomly
distributed neural cells in a neural net is modelled. Although in both cases the resulting
dynamic systems have di�erent origins, they both represent a countably in�nite system
of di�erential equations. Such systems were analysed from the perspective of a solution
existence problem [24], but they are also worth to look at from the perspective of control
theory. This becomes especially interesting when taking into account that, due to the
origin of the equations forming an in�nite system, one should expect a mutual in�uence
between those equations. Incorporating such a phenomenon into the switched system
framework opens up new perspectives.

When representing a distributed system dynamics in a standard switched system
approach [20, 29], one should be aware that a state space of the system is in�nitely
dimensional to facilitate spatial changes of its counterparts. Among general control-
oriented analyses of in�nite dimensional switched systems the case of controller switching
with a state equation (often a PDE) unchanged seems to be one of the main approaches
[9]. Examples of it are in a design of boundary switching for semilinear hyperbolic
equations [12] or construction of algorithms for abstract systems on Hilbert spaces with
prede�ned switching times [17].

If the state equation is also switched the current state of knowledge is less developed.
Preliminary considerations can be found in [28]. Switched systems based on hyperbolic
semilinear PDEs with application to transport networks with switching control are ad-
dressed in [13] and [14]. In terms of adaptation of methods used for �nite dimensional
switched systems, especially in terms of stability analysis, a Lyapunov function approach
is not very fruitful. Under the assumption of permutation of semigroup generators for
abstract linear system on Hilbert space one result, providing the construction of common
quadratic Lyapunov function, can be found in [27]. With less restrictive assumptions an-
other result can be found in [15], where authors show the existence of Lyapunov (not
necessarily quadratic) function for switched linear system in a Banach space. When
a switching rule is subject to speci�c constraints, the authors of [22] present a set of
algebraic conditions for switched nonlinear systems on Banach spaces with Lyapunov
functions given for each mode. In [1] the authors consider an initial-boundary value
problem governed by systems of linear hyperbolic PDEs and study conditions for ex-
ponential stability under switches between a �nite set of modes. A similar problem
for switched hyperbolic PDEs with the use of Lyapunov techniques is discussed by the
authors of [26], where they give su�cient conditions of exponential stability under the
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assumption of a �nite set of modes.
The above-mentioned literature analysis of in�nite dimensional switched systems con-

cerns mostly stability of such systems. According to the author's knowledge there are no
previous results on controllability analysis in a setting proposed in this article. In this
setting a state space of the system is assumed only to be a Banach space; the nonlinear
in�nite dimensional state equation is switched and a set of modes is countably in�nite.

The main tool that carries the burden of the analysis presented here is the concept
of a measure of noncompactness. It is the foundation on which the main supplemen-
tary theorem - Theorem 2.2 - is based. Speci�cally, it is the condensing property of a
given operator which leads to the existence of a solution of di�erential equation, as was
shown by Darbo [7]. The main theorem of this article - Theorem 3.2 - builds on the
results obtained in [5], where the authors analyse the behaviour of abstract measures of
noncompactness in various sequence spaces.

This article is organized as follows. The second section gives basic de�nitions. The
third section shows the approach to stabilizability analysis in in�nite dimensional switched
systems. It also contains the main results of this article. The fourth section is devoted
to discussion of results in the context of control theory and its applications. The �fth
section gives examples of application of the results in three di�erent settings. The article
ends with conclusions and references.

2. Preliminaries

This section gives the basic de�nitions and background material. It also de�nes the
notation. If for lemmas or theorems given without reference to a particular source the
proof is short and simple, they are immediately followed by the � sign.

Following [3], we will introduce the axiomatic de�nition of the measure of noncom-
pactness (MNC).

De�nition 2.1 (Axiomatic measure of noncompactness). Let E be a Banach space,
ME be a family of all non-empty and bounded subsets of E and NE be the family of all
non-empty and relatively compact subsets of E. A function µ : ME → [0,+∞) is called
the measure of noncompactness if it satis�es all the following conditions:

(M1) The family ker µ = {X ∈ ME : µ(X) = 0} is non-empty and ker µ ⊂ NE ,

(M2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),

(M3) µ(clE X) = µ(conv X) = µ(X), where clE stands for closure in E,

(M4) µ(λX + (1 − λ)Y ) ≤ λµ(X) + (1 − λ)µ(Y ) for all λ ∈ [0, 1],

(M5) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n = 1, 2, . . .
and if limn→∞ µ(Xn) = 0, then the set X∞ :=

⋂∞

n=1 Xn is non-empty,

Remark 1. From axiom (M5) we infer that µ(X∞) ≤ µ(Xn) for n = 1, 2, . . . , what
implies that µ(X∞) = 0 and that X∞ is a member of the kernel of µ.

De�nition 2.2. Let µ be a measure of noncompactness in the Banach space E. We call
the measure µ to be
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(M6) homogeneous if µ(λX) = |λ|µ(X) for all λ ∈ R,

(M7) subadditive if µ(X + Y ) ≤ µ(X) + µ(Y ),

(M8) sublinear if µ is both, homogeneous and subadditive,

(M9) with the maximum property if µ(X ∪ Y ) = max{µ(X), µ(Y )},

(M10) regular if µ is sublinear, has the maximum property and ker µ = NE .

In the theory of di�erential equations in Banach spaces [4], the kernel set of a measure
of noncompactness plays an important role. It is given by the following

De�nition 2.3 (The kernel set). The kernel set of a measure of noncompactness µ :
ME → [0,∞) is given by

Eµ :=
{

x ∈ E : {x} ∈ ker µ
}

.

Remark 2. For X being a member of the family ker µ all singletons belonging to X are
elements of the kernel set Eµ. Notice also that if µ is a regular MNC in E, then Eµ = E.
But such an equality is not always true. For example, if we take the measure µ in a
Banach space E de�ned as µ(X) = ‖X‖ for X ∈ ME , then Eµ = {0E}. On the other
hand for the measure µ(X) = diam X, we have Eµ = E [5].

In this article, we will make use of the speci�c measure of noncompactness, namely
the Hausdor� MNC. It is given by the following

De�nition 2.4 (Hausdor� measure of noncompactness). For a bounded subset A ∈ ME

of a metric space Ξ we call

χ(A) := inf{ǫ ≥ 0 : A ⊆
n
⋃

i=1

B(xi, ri); xi ∈ Ξ, ri ≤ ǫ, i = 1, . . . , n; n ∈ N}

the Hausdor� measure of noncompactness, where the set B(xi, ri) ⊂ Ξ is a ball centred
at xi with a radius ri.

Particularly, in the case of the sequence space c0, the following theorem gives the
possibility to e�ectively calculate the Hausdor� MNC.

Theorem 2.1 (Hausdor� MNC in c0 space [5]). Let A be a bounded subset of a Banach
space E = c0. Then

χ(A) = lim
n→∞

{

sup
x∈A

(

max
k≥n

|xk|

)}

.

Consider a standard Cauchy problem of the form
{

d
dt

x(t) = f(t, x(t))
x(0) = x0,

(1)

where J := [0, T ] is a given time interval, x : J → E, f : J × E → E, x0 is the initial
condition and E is a Banach space.

Among the existence theorems for the Cauchy problem (1) used in this paper, the
following one plays an important role [5]:
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Theorem 2.2. Assume that f : [0, T ] × E → E is such that

(i) for any x ∈ E, with P and Q being a non-negative constants there is

‖f(t, x)‖ ≤ P + Q‖x‖,

(ii) f is uniformly continuous on the set [0, T ′] × B(x0, r), where QT ′ < 1 and r =
(PT ′ + Q′‖x0‖)/(1 − QT ′),

(iii) f satis�es a condition
µ(f(t, X)) ≤ p(t)µ(X)

with a sublinear measure of noncompactness µ such that x0 ∈ Eµ and p is a Lebesgue
integrable function on the interval [0, T ].

Then the problem (1) has a solution x such that x(t) ∈ Eµ for every t ∈ [0, T ′].

Remark 3. In the case when µ = χ, that is the Hausdor� MNC, the assumption of the
uniform continuity of f can be replaced by only its continuity. This is also true if µ is a
regular MNC equivalent to the Hausdor� MNC [23].

We will also use the following de�nitions of controllability and stabilizability.

De�nition 2.5 (approximate controllability). The control process is said to be approxi-
mately controllable in time T1 ≤ T when for any given admissible initial and target state
and any ε > 0 there exists an admissible control function such that the state of system
at time T1 falls within the ε-neighbourhood of the target state.

De�nition 2.6 (approximate stabilizability). The control process is said to be approx-
imately stabilizable if the target state from the de�nition of approximate controllability
is zero.

In the whole remaining part of this article, unless explicitly stated otherwise, X is a
Banach space of system trajectories called trajectory space, an element x ∈ X is a given
system trajectory, J is a time interval in which system operates, E is a Banach space of
trajectory values called state space, x(t) ∈ E is a state of the system at the time instant
t ∈ J .

3. Switched systems in sequence spaces

Following a canonical procedure we introduce a switched system by

{

d
dt

x(t) = fσ(t)

(

t, x(t)
)

x(0) = x0,
(2)

where σ : J → N is a piecewise constant map called the switching signal, with an image
Im(σ) := {σ(t) : t ∈ J} ⊂ N. Before introducing a formal de�nition of the trajectory of
the switched system (2), for every i ∈ Im(σ) consider a separate Cauchy problem

{

d
dt

xi(t) = fi

(

t, xi(t)
)

xi(0) = x0
i ,

(3)
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where t ∈ J , fi : J ×E → E is an appropriate function and xi(0) is the i-th mode initial
condition. The family of solutions of (3) forms a system of integral equations

xi(t) = xi(0) +

∫ t

0

fi

(

τ, xj(τ)
)

dτ, i ∈ Im(σ), (4)

where xi : J → E is called the trajectory of the i-th mode of the switched system (2). To
proceed further we introduce the following general topology de�nition [10], namely

De�nition 3.1. For any topological space X

(i) a family {As}s∈S of subsets of X such that
⋃

s∈S As = X is called a cover of X,

(ii) for any two covers A = {As}s∈S and B = {Bt}t∈T of X we say that A is embedded
in B if for every s ∈ S there exists such t ∈ T that As ⊂ Bt,

(iii) a cover A ′ = {A′
s}s∈S′ is called a subcover of a cover A = {As}s∈S of X if S′ ⊂ S

and for every s ∈ S′ we have A′
s = As.

(iv) a cover A = {As}s∈S of X is called locally �nite if every x ∈ X has a neighbourhood
U such that the set {s ∈ S : As ∩ U 6= ∅} is �nite.

To take a full advantage of the abstract setting stated above, we will explicitly relate
the switching signal σ to a cover of J . To do so, we �rstly introduce the following

De�nition 3.2 (Realisable cover). Consider J = [0, T ] with a standard Euclidean topol-
ogy. A cover {Js}s∈S of J is called a realisable cover if for every s ∈ S the set Js is
connected and for every s1, s2 ∈ S, s1 6= s2 there is Js1

∩ Js2
= ∅.

Denote by M ⊂ N the set of indices of modes of the switched system (2), such that
each mode is represented by only one element of M and let the number of modes be
|M| = m.

In general approach �x S ⊂ N, |S| ≥ m and a corresponding realisable cover {Js}s∈S

of J with a surjective function m : S → M called a translation function. Consider an
equivalence relation Rm in S de�ned by a decomposition of S into layers {m−1(i)}i∈M.
The switching signal σ is now de�ned as a quotient map σ : J → S/Rm, σ(t) := [s]
for every t ∈ Js, s ∈ S, where [s] indicates a class of abstraction of the relation Rm

containing s. It is obvious that |Im(σ)| = |M| = m.

Remark 4. Of course the switching signal σ results from both the selected cover {Js}s∈S

and the translation function m. In case of a countably in�nite number of modes |M| =
ℵ0 = |S|, the function m becomes a bijection and σ : J → N, σ(t) := i for every
t ∈ Ji, i ∈ N.

We may now formally de�ne the trajectory of the switched system (2), namely

De�nition 3.3. Let {Js}s∈S be a realisable cover of J , {xs}s∈S be a family of functions
corresponding to the cover {Js}s∈S , that is xs : Js → E. By taking x(t) := xs(t) for
t ∈ Js we de�ne a mapping x : J → E called a combination of functions {xs}s∈S and
denote it by ▽s∈S xs.
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De�nition 3.4 (Trajectory of a switched system). Let {Js}s∈S be a realisable cover
of J with a translation function m and a resulting switching signal σ. Let {xi}i∈Im(σ)

be a family of integral solutions (4) . The trajectory of the switched system (2) is a
combination x : J → E, x := ▽s∈S xs, where xs(t) := xσ(t)(t) for t ∈ Js.

To show our main results we will also make use of the following

Lemma 3.1. Let f : X × Y → E, where (X, dX), (Y, dY ), (E, dE) are metric spaces,
a ∈ X and b ∈ Y are accumulation points, respectively. If both conditions, namely

(i) there exists �nite or in�nite double limit

A = lim
x→a
y→b

f(x, y),

(ii) for every y ∈ Y there exists �nite limit

ϕ(y) = lim
x→a

f(x, y),

are satis�ed, then there also exists the iterated limit

lim
y→b

ϕ(y) = lim
y→b

lim
x→a

f(x, y)

and it is equal to the double limit.

Proof. Although the proof is not complicated we include it for the reader's convenience.
We show the proof in following steps:

1. From (i), for a given ε > 0 there exists δ > 0 such that

dE(f(x, y), A) < ε

if only dX(x, a) < δ and dY (y, b) < δ, where x ∈ X and y ∈ Y .

2. Now, let us �x such y that the inequality dY (y, b) < δ holds, and go to the limit in
1 with x → a. Because of (ii) the value f(x, y) goes to the limit ϕ(y). As a result,
we obtain

dE(ϕ(y), A) ≤ ε.

3. Because y is an arbitrary chosen element of Y satisfying only the condition dY (y, b) <
δ, we obtain

A = lim
y→b

ϕ(y) = lim
y→b

lim
x→a

f(x, y).

In the remaining part, to keep a su�cient level of generality and yet obtain speci�c
results, we will restrict our considerations to a particular case of the trajectory space X.
Speci�cally, we will investigate cases when trajectory x ∈ X is a combination of functions
which themselves form sequence spaces. The direct motivation behind such approach is
given by the examples of switched systems, where although each mode represents a
stable system, the speci�c switching strategy makes the overall switched system unstable
[20, 21, 30].
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3.1. Systems with solutions in the space c0

Consider a realisable cover {Js}s∈S of J where S = N, with a given translation
function m. For this setting let a switching signal be de�ned as previously, namely
σ : J → S/Rm, σ(t) := [s] for every t ∈ Js, s ∈ S. As explained in the introduction, we
will analyse a switched system model where, due to the origin of the model itself, modes
are allowed to in�uence each other.

Let a switched system be given by

{

d
dt

x(t) = fσ(t)

(

t, (xj(t))j∈Im(σ)

)

x(0) = x0.
(5)

An in�nite system of Cauchy problems corresponding to the above system is given by

{

d
dt

xs(t) = f[s]

(

t, (xj(t))j∈N

)

xs(0) = x0
[s],

(6)

where σ(t) = [s] for every t ∈ Js, s ∈ S. The family {xs}s∈N of integral solutions to (6)
is then

xs(t) = x[s](0) +

∫ t

0

f[s]

(

τ, (xj(τ))j∈N

)

dτ, s ∈ S, (7)

where xs ∈ C(J, E) with a standard supremum norm ‖xs‖C := supt∈J ‖xs(t)‖E .

Let X̃ be a sequential space consisting of all sequences x̃ = (xi)i∈N of elements
xi ∈ C(J, E) for i ∈ N. Considering only sequences converging to zero with the norm

‖x̃‖X̃ = ‖(xi)i∈N‖X̃ := max{‖xi‖C : i ∈ N},

space X̃ becomes a Banach c0 space.
Fix a realisable cover {Js}s∈S of J and a family {xs}s∈S , xs ∈ C(J, E) such that

xs := xi for every s ∈ m−1(i), i ∈ Im(σ). We may associate two functional sequences
with a trajectory x ∈ X, x := ▽s∈S xs of the switched system (5), namely (xs)s∈S and
(x̃s)s∈S , with the latter de�ned as

x̃s(t) :=







limτ↓ts−1
xs(τ), t ∈

⋃s−1
k=1 Jk

xs(t), t ∈ Js

limτ↑ts
xs(τ), t ∈

⋃∞

k=s+1 Jk,

where ts−1 := inf{t : t ∈ Js}, ts := sup{t : t ∈ Js} and t0 = 0. It is clear that if
(xs)s∈S ∈ X̃ than (x̃s)s∈S ∈ X̃ and ‖(xs)s∈S‖X̃ ≥ ‖(x̃s)s∈S‖X̃ . In what follows, it
is possible to analyse the switched system trajectory x by its sequence representation
(x̃s)s∈S or (xs)s∈S . The following theorem, being the main result of this article, shows
that under certain assumptions in�nite switching leads to approximate stabilizability.

Theorem 3.2 (Approximate stabilizability in c0). Let {Js}s∈N be a realisable cover of J ,
y := (yj)j∈N be a sequence of elements of the Banach space E such that (‖yj‖E)j∈N ∈ c0.
Assume also that

(i) initial values of functions in (7) are such that (‖xs(0)‖E)s∈N ∈ c0,
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(ii) the functions f[s] : J × E∞ → E are such that
(

‖fs(t, y)‖E

)

s∈N
∈ c0 for t ∈ Jand

the mapping f : J ×E∞ → E∞, f
(

t,
(

fs(t, y)
)

s∈N

)

:=
(

fs(t, y)
)

s∈N
is continuous,

(iii) there exists an increasing sequence (kn) of natural numbers such that for any t ∈ J
the following equality holds

‖fn(t, (yj)j∈N)‖E ≤ pn(t) + qn(t) sup{‖yj‖E : j ≥ kn},

where n = 1, 2, . . . ; pn : J → R is continuous and the sequence (pn)n∈N converges
uniformly on J to the function vanishing identically; qn : J → R is continuous and
the sequence (qn)n∈N is equibounded on J ,

(iv) denote also

q(t) := sup{qn(t) : n = 1, 2, . . .},

Q := sup{q(t) : t ∈ J},

p(t) := sup{pn(t) : n = 1, 2, . . .},

p(n) := sup{pn(t) : t ∈ J},

P := sup{p(t) : t ∈ J}.

Then the switched system (5) is approximately stabilizable on the interval J ′ := [0, T ′]
where T ′ < T and QT ′ < 1.

Proof. 1. Take an arbitrary element y = (yj)j∈N ∈ E∞ such that
(‖yj‖E)j∈N ∈ c0. From assumption (iii) for any t ∈ J and for a �xed n ∈ N we
have

‖fn(t, y)‖E = ‖fn(t, (yj)j∈N)‖E ≤ pn(t) + qn(t) sup
j≥kn

{‖yj‖E}

≤ P + Q sup
j≥kn

{‖yj‖E} ≤ P + Q‖y‖X̃ .
(8)

As a result we get
‖f‖X̃ ≤ P + Q‖y‖X̃ . (9)

2. Take the ball B
(

(‖xs(0)‖E)s∈N, r
)

⊂ c0, where r is chosen according to theorem

2.2. Then for arbitrarily �xed non-empty subset B0 of the ball B
(

(‖xs(0)‖E)s∈N, r
)

and for t ∈ J ′ the following estimate holds

χ(f(t, B0)) = lim
n→∞

{ sup
x∈B0

sup
s≥n

‖fs(t, x)‖E}

= lim
n→∞

{ sup
(xs)∈B0

sup
s≥n

‖fs

(

t, (xs(t))s∈N

)

‖E}

≤ lim
n→∞

{

sup
(xs)∈B0

{

sup
s≥n

{ps(t) + qs(t) sup
j≥ks

‖xj(t)‖E}
}

}

≤ lim
n→∞

{sup
s≥n

ps(t)} + q(t) lim
n→∞

{ sup
(xs)∈B0

sup
s≥n

sup
j≥ks

‖xj(t)‖E}

≤ q(t)χ(B0).

(10)
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3. From assumptions, results of points 1 and 2 and from theorem 2.2 with remark 3
it follows that there exists a solution x = (xs)s∈N of the initial value problem

{

d
dt

xs(t) = fs

(

t, (xj(t))j∈N

)

xs(0) = x0
s,

(11)

and is such that (‖xs(t)‖E)s∈N ∈ c0 for any t ∈ J ′.

4. Consider now the double limit

lim
s→∞
t→T ′−

‖xs(t)‖E = lim
s→∞
t→T ′−

‖xs(0) +

∫ t

0

fs

(

τ, (xj(τ))j∈N

)

dτ‖E

≤ lim
s→∞
t→T ′−

‖xs(0)‖E + lim
s→∞
t→T ′−

∫ t

0

‖fs

(

τ, (xj(τ))j∈N

)

‖Edτ

≤ lim
s→∞
t→T ′−

‖xs(0)‖E + lim
s→∞
t→T ′−

∫ t

0

(

(ps(τ) + qs(τ) sup
j≥ks

{‖xj(τ)‖E}
)

dτ

= lim
s→∞
t→T ′−

‖xs(0)‖E + lim
s→∞
t→T ′−

∫ t

0

ps(τ)dτ

+ lim
s→∞
t→T ′−

∫ t

0

qs(τ) sup
j≥ks

{‖xj(τ)‖E}dτ = 0.

(12)

Really, consider further evaluation of the elements of the above estimation

4.1 From assumption (i) we obtain

lim
s→∞
t→T ′−

‖xs(0)‖E = lim
s→∞

‖xs(0)‖E = 0.

4.2 From assumption (iii) we deduce

lim
s→∞
t→T ′−

∫ t

0

ps(τ)dτ ≤ lim
s→∞
t→T ′−

∫ t

0

p(s)dτ

≤ lim
s→∞

∫ T ′

0

|p(s)|dτ = lim
s→∞

1

T ′
|p(s)| = 0.

4.3 From assumption (iii) and point 3 we get

lim
s→∞
t→T ′−

∫ t

0

qs(τ) sup
j≥ks

{‖xj(τ)‖E}dτ ≤ lim
s→∞
t→T ′−

Q

∫ t

0

sup
j≥ks

{‖xj(τ)‖E}dτ

≤ lim
s→∞

Q

∫ T ′

0

sup
j≥ks

{‖xj(τ)‖E}dτ

4.4 The result of point 3 states that (‖xs(t)‖E)s∈N ∈ c0 for any t ∈ J ′, what means
that the sequence of mappings (xs)s∈N is pointwise convergent to the zero of
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C(J ′, E) space. On the other side, for each s ∈ N there is ‖xs(t)‖E ≤ ‖x‖X̃

for every t ∈ J ′. Now the Lebesgue dominated convergence theorem gives

lim
s→∞

Q

∫ T ′

0

sup
j≥ks

{‖xj(τ)‖E}dτ = Q

∫ T ′

0

lim
s→∞

sup
j≥ks

{‖xj(τ)‖E}dτ = 0.

5. From the results of points 3 and 4 and from lemma 3.1, it follows that

lim
s→∞

‖xs(T
′)‖E = 0

and
lim

t→T ′−

lim
s→∞

‖xs(t)‖E = lim
s→∞
t→T ′−

‖xs(t)‖E = 0,

what means that regardless of the switching strategy, if only assumptions are met,
the switched system (5) is approximately stabilizable.

4. Discussion

It is worthwhile to discuss some aspects of the above considerations in more detail,
especially from the control theory and its applications point of view.

4.1. Modes of the system

The switched system (5) is usually a result of a process of mathematical modelling
- an attempt to describe some physical phenomenon in mathematical terms. In such a
case the number of modes present in the model and their possible order of execution
results from physical properties of the phenomenon being described or the method of
description itself.

In this work we are concerned only with the number of modes, that is with the
cardinality m of the set M. If of interest, the possibility of their physical consecutive
execution must be incorporated into the translation function m.

4.2. Switching strategy

In the theory of switched systems a switching strategy is an important aspect of
analysis. It is frequently formulated as a problem of determining conditions which must
by satis�ed by coe�cients of (5) that guarantee that the system performs accurately e.g.
is stable, for arbitrary switching signal. The examples of approach to this problem in case
of linear systems include such techniques as common Lyapunov functions [29, 20, 15, 27],
theory of Lie algebras [19], generalised spectral radius [6] etc.

In this work such problem may be formulated in terms of a selection of a given pair
of a realisable cover {Js}s∈S of J and a translation function m.
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4.3. Zeno executions

An execution of a hybrid system is called Zeno if it takes in�nitely many discrete
transitions in a �nite time - see [33] and references therein. Typically, non-Zenoness is
hypothesized in the analysis of switched systems, either explicitly e.g [1] or implicitly
e.g. [29]. As physical systems are not Zeno but their hybrid models may be so due
to modelling abstraction, it is important to identify Zeno phenomenon and manage it
accordingly. This becomes of utmost interest when developing computational tools for
hybrid systems or when designing a regulator for a physical system modelled as Zeno
system.

In this article in terms of Zeno analysis it is worth to note that we are interested only
in approximate stabilizability. The required "accuracy" from De�nition 2.5 is expressed
by ε > 0. In the proof of Theorem 3.2, point 3 says that for every t ∈ J ′ there is
lims→∞ ‖xs(t)‖E = 0, what means that for every �xed time instant t ∈ J ′ by increasing
the index s - what corresponds to switching - it would be possible to approach zero
with an arbitrary accuracy. This by itself would be a Zeno execution with countably
many switches in a time interval degenerated to one point t. For this reason there
are double limit considerations which show that is possible to approach zero not only
along coordinate axes of the product space S × J ′, but along any "route" leading to the
boundary point (∞, T ′) ∈ S × J ′, cf. Lemma 3.1. What now point 5. of the same proof
says is that with t approaching T ′ there will always be a su�ciently high index number
s such that the given accuracy will be attained.

To guarantee a non-Zeno execution additional conditions must be imposed on the
realisable cover {Js}s∈S of J . We express this in the following

Corollary 4.1. Suppose that all assumptions of the theorem 3.2 are met and let {Js}s∈N

be a selected realisable cover of J such that for every T ′ < T there exists its subcover
{J ′

s}s∈S′ such that {J ′
s}s∈S′ is a locally �nite cover of [0, T ′′], where T ′ < T ′′ < T . Then

the switched system (5) is approximately stabilizable on the interval J ′ and does not
exhibit Zeno executions. �

Corollary 4.1 shows how to formally avoid Zeno executions, but one has to bear in
mind that the number of switches, although �nite, depends on the accuracy ε > 0. As
a general rule as ε becomes smaller the number of switches becomes bigger, what means
that is the cover {J ′

s}s∈S′ gets "denser" near T ′. From the perspective of developing a
computational tool the remaining problem now is whether the numerical algorithm will
be able to handle such a situation.

5. Examples

To analyse the examples below it is important to note that we do not assume any
control action other than the switching itself. As a consequence, once a given mode is
selected, the behaviour of the switched system entirely depends on this mode dynamics.

Let the set of modes be |M| = m ≤ ℵ0, S = N, sj := j and {Js}s∈N be a realisable
cover of J .
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5.1. Finite number of modes

In this trivial example |M| = m < ℵ0. To be able to apply Theorem 3.2 among
the modes i ∈ M, there has to be a null mode, say i0, for which xi0(0) = 0 and
fi0(t, y) = 0 for all t ∈ J . The translation function m : S → M has to be such that
m−1(i0) =

⋃∞

j=m
sj ⊂ N and the order of indices {sj : j < m} does not play a role.

This is the only method to make (‖xs(0)‖E)s∈N ∈ c0 and
(

‖fs(t, y)‖E

)

s∈N
∈ c0 for every

t ∈ J , that is to satisfy assumptions (i) and (ii) of Theorem 3.2.

5.2. Finite dimensional system with in�nitely many modes

Let |M| = m = ℵ0 and E = R
2 with a standard Euclidean topology. The translation

function m : S ։ M becomes a bijection and σ : J → N, σ(t) := s for every t ∈ Js, s ∈ N.

Remark 5. Note that in this case a realisable cover {Js}s∈N of J is not locally �nite - cf.
corollary 4.1.

Let each mode xs : J → R
2 be given by

xs(t) :=

(

x1
s(t)

x2
s(t)

)

=

(

as sin( bs

as

t − φs)

bs cos( bs

as

t − φs)

)

, (13)

where t ∈ J := [0, 4π], φs ∈ R, as ≥ bs for every s ∈ N and {as : s ∈ N} and {bs : s ∈ N}
are countable subsets of [0, 1].

Every member xs of an in�nitely countable family {xs}s∈N of ellipses in R
2 centred at

(0, 0) is a classical control theory example of a conservative system a trajectory of which
depends only on the initial condition xs(0). It is not di�cult to modify slightly a known
example (see e.g. [20], p.19) of switching scheme between stable systems that produces
an unstable one, to obtain a switched system that will not be stabilizable for su�ciently
small ε if not allowing Zeno executions. What is more, this property is preserved even
with a continuous trajectory.

The family {xs}s∈N is a family of integral solutions to the system of Cauchy problems

{

d
dt

xs(t) = Asxs(t)
xs(0) = x0

s,
(14)

where s ∈ N and

As =

(

0 1
b2

s

a2
s

0

)

.

Let us �x s ∈ N. Now fs : J × R
2 → R

2, fs(t, xs(t)) := Asxs(t) where we can
regard As : R

2 → R
2 as a linear bounded operator with a standard norm ‖As‖ :=

supy∈B(0,1) ‖Asy‖ with B(0, 1) being a closed unit ball in R
2 centred at (0, 0). What

follows, for every t ∈ J there is

‖Asxs(t)‖ ≤ ‖As‖‖xs(t)‖ ≤ ‖As‖as.

As above is true for every s ∈ N, theorem 3.2 with corollary 4.1 say that the su�cient
condition for the switched system

{

d
dt

x(t) = Asxs(t)
x(0) = x0 (15)
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to be stabilizable without Zeno executions is that lims→∞as = 0. This is an intuitive
result which can be interpreted as a requirement of proper order of mode selection by
the switching signal σ.

5.3. In�nite dimensional system with in�nitely many modes

This example, adapted from [5], tackles the problem of switched systems with solu-
tions forming a c0 space in the sense given in section 3.1. The example, in a simpli�ed
form, was originally considered in [8] and later applied to the numerical analysis of line
method approximations to the Cauchy problem for nonlinear parabolic di�erential equa-
tions [31] modelling a heat conduction in a one-dimensional rod.

Consider a rectangular plate of size l1 by l2. Let |M| = m = ℵ0 and E = C([0, l2], R)
with a standard norm-induced topology, the translation function m : S → M is again a
bijection and σ : J → N, σ(t) := s for every t ∈ Js, s ∈ N.

Let Q be a countable subset of [0, l1] ⊂ R and ρ : N → Q be a bijection. For every
s ∈ N and t ∈ J let xρ(s)(t) : [0, l2] → R be a temperature pro�le at time t along a cross
section ρ(s) ∈ [0, l1] of the plate. To simplify the notation we will write simply xs instead
of xρ(s).

Let (ks)s∈N be an increasing sequence of natural numbers. Consider an in�nite system
of Cauchy problems of the form

{

d
dt

xs(t) = fs

(

t, x1(t), x2(t), . . . , xks
(t)
)

+ Σ∞
j=ks+1asj(t)xj(t)

xs(0) = x0
s,

(16)

where t ∈ J := [0, T ]. Assume also that

(i) initial values of system are such that (‖xs(0)‖E)s∈N ∈ c0,

(ii) functions fs : J × Eks → E are uniformly continuous for s ∈ N and there exists a
function sequence (ps)s∈N such that ps : J → R is continuous on J for s ∈ N and
(ps)s∈N converges uniformly on J to the function vanishing identically. Also the
following inequality holds

‖fs(t, x1(t), x2(t), . . . , xks
(t))‖E ≤ ps(t),

for every t ∈ J , (x1(t), x2(t), . . . , xks
(t)) ∈ Eks and s ∈ N.

(iii) functions asj : J → R are continuous and function series Σ∞
j=ks+1asj converges

absolutely and uniformly on J to the function as : J → R, for every s ∈ N,

(iv) the sequence (as)s∈N is equibounded on J ,

(v) QT < 1, where Q = sup{as(t) : s ∈ N, t ∈ J}.

Then a switched system

{

d
dt

x(t) = fs

(

t, x1(t), x2(t), . . . , xks
(t)
)

+ Σ∞
j=ks+1asj(t)xj(t)

x(0) = x0,
(17)

satis�es all assumptions of Theorem 3.2. The switched system approach in this case is
an example of longitudinal method known from numerical analysis of PDEs where, as
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described in the introduction, spatial derivatives are replaced by di�erence equations. In
this case the distribution and order of consecutive cross sections on which the behaviour
of the plate is analysed is dependent on translation function m and function ρ. The
former is to be selected in such a way that the assumptions of Theorem 3.2 hold, while
the latter is to be selected according to agiven property of the plate which is of particular
interest. Note also that in the setting presented here there is no mention about the so
called growth condition, which in numerical analysis is frequently imposed on the initial
condition [31].

Another aspect of this case is that the Theorem 3.2 does not make use of any particular
norm on the state space E. The above assumption about continuous temperature pro�le
may be changed to better suit any particular analysis. This is the case when the plate is
not homogeneous and the state space may be changed to, say, L2([0, l2], R]) to account
for some speci�c artefacts or properties inside the plate.

6. Conclusions

This article showed the analysis of stabilizability of an in�nite dimensional switched
dynamical system by means of the concept of a measure of noncompactness. After
presentation and �tting the problem into the realm of the sequence space c0, appropriate
tools were used to deliver the results. The application of the results was also shown to
illustrate the technique and show the usefulness of the approach.

The future work consists of performing similar analysis, but in the case of a semilin-
ear in�nite dimensional dynamical switched system with a particular set of admissible
controls. The author's expectation is that imposing the requirements of the form of
equations forming the switched system will allow to obtain stronger results.
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