
This is a repository copy of Iterative learning control method for improving the 
effectiveness of upper limb rehabilitation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/114557/

Version: Accepted Version

Proceedings Paper:
Miao, Q, Lo, HS, Xie, SQ et al. (1 more author) (2017) Iterative learning control method for
improving the effectiveness of upper limb rehabilitation. In: 2016 23rd International 
Conference on Mechatronics and Machine Vision in Practice (M2VIP). 23rd International 
Conference on Mechatronics and Machine Vision in Practice, 28-30 Nov 2016, Nanjing, 
Jiangsu, China. IEEE . ISBN 9781509027644 

https://doi.org/10.1109/M2VIP.2016.7827302

© 2016, IEEE. This is an author produced version of a paper published in 2016 23rd 
International Conference on Mechatronics and Machine Vision in Practice (M2VIP). 
Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other users, including reprinting/ republishing this material for advertising or promotional 
purposes, creating new collective works for resale or redistribution to servers or lists, or 
reuse of any copyrighted components of this work in other works. Uploaded in accordance 
with the publisher’s self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Iterative Learning Control Method for Improving the 

Effectiveness of Upper Limb Rehabilitation

QING MIAO

Mechanical and Electrical Engineering

Wuhan University of Technology

Wuhan, Hubei Province, China

miaoqing0702@126.com

Ho Shing Lo

Mechanical Engineering

University of Auckland

Auckland, New Zealand

hlo015@aucklanduni.ac nz

Sheng Quan. Xie

Mechanical Engineering

University of Auckland

Auckland, New Zealand

s.xie@auckland.ac nz

Hong Sheng LI

Mechanical and Electrical Engineering

Wuhan University of Technology

Wuhan, Hubei Province, China

lihswh@gmail.com

Abstract—In rehabilitation, passive control mode is common 

used at early stages of the post-stroke therapy, when the 

impaired limb is usually unresponsive. The simplest is the use of 

a proportional-integral-derivative (PID) feedback control which 

usually regulates the position or the interaction force along a 

known reference. Nonetheless PID method cannot achieve an 

ideal tracking performance due to dynamical uncertainties and 

unknown time-varying periodic disturbances from the 

environment. In order to minimize steady-state error with 

respect to uncertainties in exoskeleton passive control, Iterative 

Learning Control(ILC) and Neural PID control are proposed to 

improve the control effective of conventional linear PID. In this 

paper, two different control algorithms are introduced. Moreover, 

an experimental study on a 5-DOF upper limb exoskeleton with 

them is addressed for comparison.
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I. ITRODUCTION

According to World Health Organization (WHO), stroke is 
the third most common cause of death in developed countries, 
exceeded only by coronary heart disease and cancer [1]. 
Conventionally, stroke rehabilitation needs one-to-one manual 
interactions with therapists [7]. Treatment plans mean that it 
should therapy for several weeks, which makes it difficult to 
offer highly intensive treatment for patients [10]. In recent 
years, using rehabilitation robot has been received increasing 
attention for stroke recovery [5], which can provide repetitive, 
task-specific and effective treatment of the impaired upper limb
[10].

In rehabilitation, it is hardy for patients to move their 
impaired upper limbs that are very unresponsive at the 
beginning [5]. Thus, passive training could be a feasible way in 
early period [11]. Thus, passive control has been to proposed
[16], which means to control the motion of an exoskeleton 
rigidly along a desired reference trajectory through position 

feedback control with high corrective gains [6]. Actually, 
passive control can adopt various techniques to achieve. 
Proportional-integral-derivative (PID) feedback control is the 
most common method [3]. It is usually regulates the interaction 
force or the position or along a known reference (e.g. a 
trajectory or a force field model), and also used either at the 
joint or at the end-effector level. Nevertheless, there are few 
research regarding PID gains tuning for upper limb robots. 
Independently using PID tuning algorithms is not possible due 
to the responses being nonlinear. Therefore, intelligent control 
strategies have been researched and widely used [2, 26, 28]. 
Neural PID is a typical one. Being similar with robust adaptive 
control methods [24, 29], it could adjust weights in order to 
adjust parameters of PID by updating laws to make the closed-
loop systems stable. Iterative Learning Control (ILC) has been 
important to provide improvement in tracking performance 
compared with the use of feedback controllers alone [19]. 
Initially, ILC algorithms were developed based on the 
contraction mapping theory and required priori knowledge [20]

In this paper, two different passive control methods were 
proposed for passive trajectory tracking of an upper limb 
exoskeleton robot in order to improve its effectiveness when 
treating stroke patients. The effectiveness of the proposed 
adaptation strategy is evaluated by experiments. The paper is
organized as follows: Section II, iterative learning control and 
neural PID control are introduced, and back propagation neural 
network (BPNN) algorithm was presented for PID parameters 
adjusting. A 5 DOF upper limb exoskeleton is presented and 
experiments are carried out in Section III. Section IV gives 
conclusions of this work.

II. METHODS

A. Iterative Learning Control (ILC)

Fig 1 shows the ILC Control Structure [23].UP represents 

the upper limb robot; C is the feedback of the controller, 



and L is the feed-forward of the controllers; MEM is the 

memory for the system; the control law ck uuu += ,which 

Nk ,...,2,1= is the current iteration number, where the feed-

forward ku is the input trajectory; kq is the real output trajectory; 

and dq is the desired output trajectory. 1+ku is next term 

of ku ,which presents the feed-forward off-lined calculated 

iteration result The feed-forward controller is based on the 
update control law that improves the feed-forward control 

term )( ku .For the nonlinear dynamic model, we propose the 

following update control law[19]:
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Fig. 1 ILC Control Structure  
initial input of feed-forward control is )(0 tu ; ],0[: Ttt is the 

tracking time, and ],0[ T is the robot tracking time interval.

Learning algorithm convergence analysis is very important 
for ILC. An adequate condition called spectral radius method is 
a good way to measure whether proposed update control law
could guarantee robustness and convergence. It has been 
proved the considered dynamic model of the upper limb robot
if it can be satisfied as followed [18]:

1<1 ȡLAI                              (2)

where I is the identity matrix, A is the inertia matrix of the 
dynamic equations of motion, L is the learning operator that is 

to be specified, and .. is the Euclidean matrix norm.

B. Neural PID Control

Neural PID control method is to adjust the weights of each 
neural network in order to achieve optimal PID parameters by 
training[27]. Back propagation neural network (BPNN) 

structure has been used. Where, dmm xxx =~ ,

dmm xxx %%% =~ , dmm xxx %%%%%% =~ .There are two inputs and three

outputs for the controller. First one is the l th error of 

positionand lldlp PPe = second one is the l th error of 

velocity lldlp PPe %%% = .Outputs are the l th desired PID 

parameters lpK , liK and ldK .

This neural network included two inputs, four hidden 
neurons and three output neurons.
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where ni are inputs, which )1(= eelp and )2(= eelp
% , hmnet is the 

input of the m th hidden layer, The variable hmnȦ denotes the 

weight between neurons m and n .Then use the logistic function 

to squash (8) in order to get the output of . )(zO is in general 

non-linear and differentiable so that it is commonly used as a 
logistic function. Correspondingly, it could be calculated both 
inputs and outputs of output layer.
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The squared error function can be used to achieve the error 
for each output neuron and sum them to get the total error

2
1 ))()((

2

1
=)( kKkKkE lptpo                     (9)

2
2 ))()((

2

1
=)( kKkKkE litio                   (10)

2
3 ))()((

2

1
=)( kKkKkE ldtdo                  (11)

)(+)(+)(=)( 321 kEkEkEkE ooototal          (12)

Where )(kKtp , )(kKti and )(kKtd are the training target PID 

parameters, which are compared with real 

outputs )(kKlp , )(kKli and )(kKld . The goal is to update each 

of the weights in the network so that they cause the actual 
outputs to be closer the target outputs, thereby minimizing the 
error for each output neuron and the network as a whole.
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With gradient descent method, learning rate Ș and inertia 

coefficient Ȗ can be used to describe weights changing.

III. EXPERIMENT AND RESULTS

In order to test these two passive control methods, a 5DOF 
exoskeleton has been used to track trajectory experiments. The 
exoskeleton consists of 5 DOF, including actuating 4 DOF (3 
DOF for shoulder joint spherical motion and 1 DOF for 
actuating)and elbow 1 DOF(Fig.3). In addition, the exoskeleton 
could achieve flexion & extension, for both shoulder and elbow, 
medial & lateral rotation running and abduction & adduction 





Fig. 4 Elbow Angle Errors in first test

 

          
Fig. 5 Elbow Angle Errors in second test

  
Fig. 6 Elbow Angle Errors in second test

Clearly, both Neural PID control and ILC could 
successfully achieve a good performance of tracking trajectory. 
Because they have compensator to handle the uncertainties, 
instead of using fixed PID parameters. Neural PID has good 
performance of the transient response due to its previous 
training parameters. However, ILC has advantage improving 
effectiveness by learning laws

TABLE I RMSE of first test 

RMSE

ILC Neural PID Linear PID

1.44 1.75 2.92

1.75 1.81 2.76

0.44 0.96 2.44

0.07 0.39 2.37

0.19 0.29 1.92

TABLE II RMSE of second test  

RMSE

ILC Neural PID Linear PID

5.50 9.44 10.90

3.50 7.45 9.84

2.41 7.43 9.88

4.48 8.43 11.90

1.88 6. 91 9.81

IV. CONCLUSION

The paper proposed a new ILC method and neural PID 
control method for improving the effectiveness of upper limb 
rehabilitation. The control methods have been developed for a 
passive control mode of an upper limb exoskeleton, which was 
developed at the Medical and Rehabilitation Robotics group at 
the University of Auckland. The neural PID and ILC have been 
developed to control the 5-DOF exoskeleton robot. Theory and 
experiment analysis show the different characteristics and 
reliable validity of control methods in the passive control mode. 
Neural PID method is an available control strategy displacing 
linear PID by achieving training parameters, the method has 
been compared with ILC method. Evidences showed that the 
ILC method is an effective technique for repetitive 
rehabilitation passive training because of its learning ability, 
which will increase tracking accuracy. 
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