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Abstract

Objective—This review summarizes a portion of the discussions of an NIH Workshop (Bethesda, 

MD, 2015) entitled, “Self-Regulation of Appetite, It's Complicated,” which focused on the 

biological aspects of appetite regulation.

Methods—Here we summarize the key biological inputs of appetite regulation and their 

implications for body weight regulation.

Results—These discussions offer an update of the long-held, rigid perspective of an 

“adipocentric” biological control, taking a broader view that also includes important inputs from 

the digestive tract, from lean mass, and from the chemical sensory systems underlying taste and 

smell. We are only beginning to understand how these biological systems are integrated and how 

this integrated input influences appetite and food eating behaviors. The relevance of these 

biological inputs was discussed primarily in the context of obesity and the problem of weight 

regain, touching on topics related to the biological predisposition for obesity and the impact that 

obesity treatments (dieting, exercise, bariatric surgery, etc.) might have on appetite and weight loss 

maintenance. Finally, we consider a common theme that pervaded the workshop discussions, 

which was individual variability.

Conclusions—It is this individual variability in the predisposition for obesity and in the 

biological response to weight loss that makes the biological component of appetite regulation so 

complicated. When this individual biological variability is placed in the context of the diverse 

environmental and behavioral pressures that also influence food eating behaviors, it is easy to 

appreciate the daunting complexities that arise with the self-regulation of appetite.
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Introduction

Our biology provides an important collection of neuroendocrine inputs that affect hunger, 

satiety and the ongoing flux of ingested nutrients (1, 2). This biological regulation of 

appetite is part of a larger homeorhetic system that governs energy reserves and functional 

mass. Its regulation is very complex, engaging a number of tissues, organs, hormones, and 

neural circuits throughout the body in a feedback loop between the brain and peripheral 

tissues. In its simplest description, the brain sends out signals that affect food eating 

behaviors, nutrient absorption, energy storage, and eventually expended energy. In turn, 

nutrient and energy sensing systems in the gut, liver, adipose and other peripheral tissues 

inform the brain about the immediate energy needs, the levels of stored energy, and the 

metabolic requirements, which are required to meet the demands of the organism.

In this review, we examine aspects of this feedback system which are involved in promoting 

and regulating appetite and eating behaviors. In particular, we have summarized the 

perspectives of four members of a 2015 NIH Working Group entitled, “Self-Regulation of 

Appetite, It's Complicated,” who discussed biological mechanisms inherent in appetite 

control. This review is not meant to provide a comprehensive overview of the entire body of 

literature on this topic. Rather, this work represents the synthesis and integration of these 

perspectives as presented at the 2015 Workshop held in Bethesda, MD.

Key Biological Inputs of Appetite Regulation

Over the course of the last 50 years scientific thinking about the mechanisms of appetite 

control has changed dramatically. In the 1950s and 1960s the hypothalamic ‘dual centre’ 

hypothesis was believed to provide a comprehensive account of the initiation and inhibition 

of food intake e.g. Anand & Brobeck (3). Following technological advances in the 

identification of neurotransmitter pathways in the brain, the two-centre hypothesis was 

replaced by a model based on aminergic systems (4). More recently, much of the field has 

embraced a theory of appetite control based on an interaction between adipose tissue and 

peripheral episodic signals from gut-derived signals (5), as this perspective has provided a 

working framework for understanding certain aspects of appetite regulation in the context of 

obesity, weight loss, and weight regain.

Here, we break down the critical components of this “adipocentric” perspective and build 

upon them to generate a broader, more complex view of the biological inputs of appetite 

regulation. This working group centered its discussion on four aspects of biology that inform 

appetite regulation: 1) long term energy reserves; 2) nutrient sensing and availability; 3) 

functional mass metabolic requirements; and 4) the establishment of taste and food 

preference.

Long Term Energy Reserves of Adipose Tissue

The best characterized signals reflecting the long term energy reserves within the body are 

thought to be leptin and insulin (6). Leptin is secreted directly from adipose tissues in 

relation to the level of adiposity, while circulating insulin levels increase with peripheral 

insulin resistance that commonly develops with increasing adiposity. Together, leptin and 
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insulin bind their respective receptors in the arcuate nucleus of the hypothalamus and brain 

stem regions to adjust key neural circuits of energy balance regulation to reduce food intake 

and increase energy expenditure. These hormones also convey their message to additional 

areas that include the prefontal cortex, the hippocampus, the ventral tegmental area, the 

nucleus accumbens, the amygdala, and other regions that are involved in learning, memory, 

decision making, and the rewarding aspects of eating behaviors (1, 7). Taken together, the 

overlapping signals reflecting energy reserves are integrated at a number of levels in a 

manner that exerts a concerted inhibitory impact on appetite and food eating behaviors 

(Figure 1).

While it is clear that the actions of leptin and insulin are important in appetite regulation, 

there are caveats that must be made about their conveyance of information about adiposity. 

First, this tonic inhibitory influence on appetite has a particularly strong influence under 

conditions when the energy reserves of adipose tissue are depleted and leptin and insulin 

levels in circulation are low. Under chronic conditions of energy surplus, the central and 

peripheral resistance to the actions of these hormones lessens their influence on appetite 

regulation. Second, the levels of both hormones are influenced by the prandial state of the 

organism. As such, low levels that would be observed during a chronically energy depleted 

state, like caloric restriction, would resolve very quickly with sustained overfeeding. Third, 

the signals that these hormones convey to the neural circuits affecting appetite are constantly 

integrated with the more immediate messages about nutrient availability, overlaid with the 

sustained influence of the energy demands of the functional mass, and placed in the context 

of other biological architecture of appetite regulation dictating food preference and reward.

Nutrient Availability: Gut-Derived Signals

There is extensive evidence that the gut provides important episodic inputs for the regulation 

of appetite that coincide with the prandial state and nutrient availability (Figure 1). There is 

a panoply of hormones secreted from peripheral tissues that have putative effects in appetite 

regulation (8). With the exception of ghrelin, the endocrine factors released from the gut 

promote satiety and/or satiation. Gut hormones secreted from the gastrointestinal (GI) 

enteroendocrine cells act as autocrine, paracrine and endocrine regulators of energy and 

glucose homeostasis via the circulation and indirectly via afferent nerves (9), targeting 

similar neural circuits that are affected by leptin and insulin.

The anorectic hormone peptide YY3-36 (PYY) and glucagon-like peptide-1 (GLP-1), an 

incretin hormone, are secreted in response to nutrient ingestion from enteroendocrine L-cells 

present throughout the GI tract. PYY has potent anorectic effects, with exogenous 

administration shown to reduce food intake in normal weight and obese humans (10). 

Robust evidence from experimental imaging and translational studies have identified that 

PYY mediates its anorectic effects predominantly by acting upon central appetite-regulating 

circuits and regions involved in food reward (11). GLP-1 also has appetite-suppressing 

effects and modulates neural activity within homeostatic and reward brain centers, in a 

manner additive to PYY (12). Circulating levels of the orexigenic hormone ghrelin, 

produced by P/D1 cells in oxyntic glands in the gastric fundus, increase in the fasted state 

and decrease post-meal. Ghrelin increases hunger and energy intake and leads to activation 
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of neuronal pathways within homeostatic and reward centers involved in appetite regulation 

to control energy intake (13).

Bile acids, in addition to their role in lipid metabolism are now recognized to play a key role 

in regulating energy balance and metabolism primarily via the nuclear farnesoid X receptor 

(FXR) and the G-protein coupled receptor TGR5 (14). Bile acids acting via TGR5 stimulate 

L-cell secretion of GLP-1 and PYY. In addition, bile acids directly and indirectly through the 

FXR-induced antimicrobial peptides, regulate the gut microbiota composition which in turn 

has been extensively linked to the pathogenesis of obesity and type 2 diabetes. Thus, there is 

a complex interplay between the gut microbiome, bile acids and gut hormones. However, the 

relative importance of each of these factors in regulating appetite and the directionality of 

the relationship between these remains to be determined.

Functional Mass Metabolic Requirements

This association between fat free mass (FFM) and eating behavior has implications for an 

energy balance approach to appetite control, and for the relationship between energy 

expenditure (EE) and energy intake (EI) as described by Edholm and others (15, 16). It is 

well established that FFM is the primary determinant of resting metabolic rate (RMR), and 

that RMR is the largest component (60-70%) of daily EE (17) From a homeostatic 

standpoint, an ongoing and recurring drive to eat arising from the physiological demand for 

energy (e.g. RMR) appears logical, as this energy demand would remain relatively stable 

between days and would ensure the maintenance and execution of key biological and 

behavioral processes. Consequently, it might be predicted that RMR could be associated 

with the quantitative aspect of eating behavior and with daily EI. When this was examined 

(18), it was demonstrated that RMR was a significant determinant of the size of a self-

determined meal, and of daily EI (when measured objectively and quantified – Figure 2). In 

addition, RMR was associated with the intensity of hunger objectively rated on hand held 

electronic data capture instruments (19).

Consequently, these findings – that are broadly consistent with the early predictions of 

Edholm – have demonstrated an association between the major components of daily EE and 

daily EI. In other words, they demonstrate that appetite control could be a function of energy 

balance. Importantly, the major findings have been replicated in completely independent 

large data sets that included participants from different ethnic groups showing a huge range 

of EI (20), and from participants of variable body mass indices (BMIs) allowed to freely 

select their own diet under meticulously controlled semi-free living conditions (21). These 

confirmatory reports suggest that the associations are robust and are not restricted to a 

particular group of people measured in a specific geographical location.

This putative role for FFM does not preclude a role that fat mass (FM) plays in appetite 

control. Rather, there is likely a con-joint influence of FFM and FM on appetite control (22), 

which is shown in Figure 1). The implications stemming from this effect of body 

composition is that FM has an inhibitory influence on EI, but the strength of this tonic 

inhibition is moderated by insulin and leptin sensitivity (23). As people overconsume (due to 

cultural obesogenic influences), FM increases and the consequential increase in leptin and 

insulin resistance weakens the inhibitory influence of FM on appetite. This amounts to a 
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‘dis-inhibition’, so that accumulating FM fails to suppress EI and permits more eating (over-

consumption). Indeed there is good evidence that low insulin sensitivity reduces post-

prandial satiety and weakens meal to meal appetite control (24). In addition, clear positive 

associations of FFM and EI, and negative associations of FM and EI, have been 

demonstrated – but overlooked – in a comprehensive analysis carried out by Lissner et al. 

(25) more than 25 years ago.

The complexity imposed by the FFM-related component of appetite control is difficult to 

appreciate, because we have yet to establish a clear mechanism by which the energy 

requirements of functional mass are conveyed to the neural centers that influence food 

intake. Our lack of understanding of this mechanistic link clearly deserves more research, as 

it has long complicated the broader picture of the biological control of appetite.

The Establishment of Food and Taste Preference

The biological inputs of appetite regulation stemming from FFM, FM, and nutrient sensing 

in the GI tract, operate in a neural architecture with established preferences for taste and 

food (Figure 1). Taste and olfactory signals influence food selection and, consequently, EI 

(26). Relevant to appetite regulation, there is emerging evidence for interplay between 

signals of energy homeostasis and taste and smell. Insulin, leptin, GLP-1, PYY and ghrelin 

have been found in saliva and their cognate receptors identified on taste buds and olfactory 

neurons. In preclinical studies, increasing saliva PYY concentrations has been shown to alter 

food preference, reduce caloric intake and reduce body weight (27).

Scientific investigations during the past century reveal that humans are born with well-

developed taste and olfactory systems (28, 29). Children prefer higher concentrations of 

sugars and salt, especially during periods of growth (30)—the adult pattern of preference 

emerges only in mid-adolescence(31)—and tasting something sweet can blunt expressions 

of pain for infants(32) and children(33), but not for most adults (33). Although bitter taste 

differs widely among individuals, at psychophysical and genetic levels, children are more 

sensitive to the taste of some bitters(34), which sweet and salty taste can partially mask or 

block (35, 36).

Early in life, children learn the rules of cuisine—how to eat, what to eat, when to eat, and 

what foods are supposed to taste like (37, 38). And this learning most often occurs in the 

context of the changing dynamic between mother and child(39) and the food environment in 

which they live (40, 41). Before their first taste of foods, they learn, like other animals, what 

their mother's diet “tastes like” since dietary flavors are transmitted to amniotic fluid and 

then mother's milk (42). These multiple routes of flavor learning suggest that there is 

redundancy of dietary information, providing complementary routes for the young to learn 

about the types of safe foods available in the environment before they themselves begin to 

eat (or forage on) foods (43, 44). Mothers eating diets rich in healthy foods transmit these 

flavors to amniotic fluid and mother's milk—when you feed a mother, you feed a child. Such 

early flavor lead to greater acceptance of those foods at weaning (45, 46). In contrast, infants 

fed formula learn to prefer its unique but monotonous profile and may have more difficulty 

initially accepting flavors not found in formula, such as those of fruits and vegetables (44). 
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Thus the detrimental consequences of not being exposed to a variety of flavors of healthful 

foods when young cannot be understated.

Opportunities to get children to accept a variety of healthy foods do not end with pregnancy 

and breastfeeding, but continues throughout complementary feedings. Research begun in the 

1980s (37, 38) revealed that regardless whether breastfed or formula fed, infants continue to 

learn to like the flavor of foods through several mechanisms. First, infants learn by repeated 

exposure to the same food. Infants exposed to the same fruit or vegetable, for different 

lengths of time (37, 38), ate significantly more of that fruit or vegetable compared with their 

initial acceptance of it. Merely looking at the food was not sufficient; children had to taste 

the food to learn to like it (47). Rapid increases in intake in infants after repeated exposure 

contrast with slower changes seen in toddlers (48), further highlighting the importance of 

starting early (49). Second, infants learn by repeated exposure to dietary variety. Eight days 

of tasting a variety of pureed fruits resulted in greater intake of a novel fruit (pears), similar 

to that observed in infants with repeated exposure to pears (50). Similar effects were 

observed after tasting a variety of pureed vegetables (50, 51). Such functional plasticity, one 

of the main characteristics of the brain, highlights the ability to change ingestive behavior 

based on experience (52).Experiencing the flavors of healthy foods, when part of the 

family's diet and food environment, helps children develop preferences for these foods. 

During childhood, they learn what to eat, how to eat and when foods are eaten on what 

occasions- they learn the rules of cuisine for their families. The food habits established 

during infancy track into childhood and adolescence for both nutrient-dense and nutrient-

poor foods (53, 54, 55, 56, 57). Such dietary patterns, which begin to be identified during 

childhood (58), are significant determinants of the quality of the adult diet (59, 60). In 

addition, providing foods low in salt and sugars (both nutritive and non-nutritive) may help 

protect the developing child from excess intake later in life (61, 62). However, because 

consumption of vegetables and fruits is below recommended levels among many families 

(63, 64), some children are deprived of early sensory experiences with healthy foods, 

parental modeling, and food environments needed to learn to like these foods (38). In other 

words, to influence the establishment of taste preferences and acceptance of a variety of 

healthy foods, focus needs to be on feeding infants and children in the context of their 

family food environment.

Implications for Obesity and Body Weight Regulation

Biological Preference for Obesogenic Foods

Chemical senses of taste and smell determine the flavor of our foods and serve as our body's 

primary gatekeepers, determining whether to accept or reject a foreign substance, and if 

accepted, to inform the gastrointestinal system about the quality and quantity of the 

impending rush of nutrients or toxins (65). Understanding the biopsychology of these, the 

chemical senses that determine flavor, provide a foundational first step to prevent the 

development of many chronic diseases that derive in large part from poor food choices, 

particularly excess caloric intake of sweet, fatty and salty foods. Contrary to the potential for 

early preventive effects of exposure to the diverse flavors of healthy foods, unhealthy eating 

habits are rampant among the youngest members of our society (66). From the age of two 
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years, Americans are more likely to eat a manufactured sweet than a fruit or vegetable on a 

given day (67). Dietary patterns established early in life (66), increasing an individual's risk 

for chronic non-communicable diseases, are the leading cause of death and disability 

worldwide (68). Thus, the importance of promoting healthy sustainable food habits from an 

early age cannot be underestimated.

Why is it so difficult to develop healthy food habits and to change unhealthy ones? Modern 

patterns of food choice that are antithetical to health must be considered. Two factors 

predispose toward obesogenic diets: (a) inborn, evolutionarily driven taste preference genes 

that make us vulnerable to the modern food environment rich in sugar, salt, and fat, and (b) 

the detrimental consequences of not being exposed to a variety of healthful foods in early 

childhood. However, there is inherent plasticity in the chemical senses. Although there are 

inborn responses (e.g., newborns like sweet taste, reject bitter), the senses interact with early 

experiences to determine what are appropriate and liked foods, which in turn ensures 

children are not restricted to a narrow range of foodstuffs (42, 69). That is, the biological 

drive to avoid bitter and prefer salty and sweet foods may have served children well in a 

feast-or-famine setting, but today their biology makes them especially vulnerable to 

environments abundant in highly processed and palatable foods, rich in added sugars, non-

nutritive sweeteners, and salt. Devoid of experience with the taste of alternatives as fruits 

and vegetables, some may never learn to like flavors associated with healthy foods. (37, 38).

Genetic Predisposition for Obesity and Biologic Variation

There is emerging evidence for interplay between common genetic variants and circulating 

gut hormone levels, with altered gut hormone levels contributing to the obesity-risk effects 

of genetic variants. For example, children and adults with the obesity-risk-variant of 

rs9939609, linked to the fat-mass and obesity-associated (FTO) gene, exhibit increased 

appetite, increased EI and a preference for energy dense foods. Normal weight subjects 

homozygous for the obesity-risk rs9939609 variant (AA subjects) exhibit an attenuated 

postprandial suppression of ghrelin. increased hunger, and altered brain responses to food 

cues within regions that drive eating behavior, compared to subjects with the low-risk variant 

(TT subjects) (70). In other studies, the melanocortin-4 receptor (MC4R), known to play a 

role both in monogenic and common obesity, has been shown to be present on 

enteroendocrine P/D1 cells that produce ghrelin and L-cells that secrete PYY and GLP-1. 

MC4R agonists have been shown to alter circulating levels of PYY and GLP-1, thus 

delineating an interaction between genetics and gut hormones (71).

There is also increasing evidence for an interaction between dietary factors, genetic variation 

and obesity susceptibility. In randomized control trials of different diets a person's genotype 

has been shown to modify the effect of the diet intervention on weight loss, weight 

maintenance and changes in related metabolic traits such as lipids, insulin resistance and 

hypertension. For example, in the Preventing Overweight Using Novel Dietary Strategies 

(POUNDS lost) study increased protein diets were found to be more efficacious in subjects 

with the obesity-risk variants of FTO (72). Interestingly, protein has been shown to reduce 

ghrelin levels more than fat and carbohydrate (73) thus potentially increased protein diets 
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may act via reducing the high ghrelin levels in FTO at-risk subjects. However, the impact of 

high-protein diets on gut hormone levels based on genotype has not been evaluated.

From an evolutionary perspective, key genes, like FTO and MC4R are likely representative 

of a vast number of genes that are critical for establishing the neural networks and endocrine 

systems inherent to the homeorhetic control of body weight. The long-held, but frequently 

debated, “thrifty genotype” hypothesis asserts that evolutionary pressures have over time 

selected for one or more multi-factorial genotypes that favored survival selective advantage 

through numerous feast/famine cycles in the past, but favor the development of obesity and 

metabolic diseases in the current environment with a readily available food supply (74). 

Compounding this genetic selection may be a more acute epigenetic insults from the 

environment that passed from one generation to the next through perinatal programming 

(75). While there remains about the origins of the predisposition for obesity, a polygenic and 

multi-factorial epigenetic variability between individials lays the foundation for the 

individual variability in the predisposition to become obese, our ability to self-regulate our 

food intake, and how our bodies respond to our attempt to lose weight through dieting.

Biological Adaptations to Dieting (76)

One of the most relevant circumstances in which the biological inputs emerge is in response 

to calorie-restricted weight loss (77). Almost every aspect of the homeorhetic system 

controlling body weight adapts to this challenge, culminating in an elevated appetite, 

suppressed energy expenditure, and a biological pressure to regain the lost weight (78). 

Proactively restricting ingested energy requires that endogenous stores be mobilized to meet 

the energetic demands of the individual. In response to this metabolic challenge, peripheral 

tissues send a signal, primarily through a decline in circulating levels of leptin and insulin, 

that energy stores are depleted. In addition, neuroendocrine signals from the gut send a 

signal of low nutrient availability, as ghrelin levels increase and the satiety signals of PYY, 

CCK, and GLP-1 decline. Along with changes in these surrogate signals, the nutrients in 

circulation also decline as they are absorbed and cleared with greater efficiency. This decline 

can be sensed in nutrient sensing nodes in both the peripheral tissues and in the brain 

(ventromedial hypothalamus) strengthen the signal of low nutrient availability that is 

conveyed by signals from the GI tract. These nutrient and neuroendocrine signals converge 

to convey an overwhelming signal that nutrients are in short supply and that energy reserves 

are depleted.

The consequence is that feelings of hunger emerge and the sensitivity to satiety signals from 

the periphery declines. At the same time, the brain sends signals out to peripheral tissues, 

primarily through the sympathetic nervous system, to enhance metabolic efficiency, reduce 

the metabolic demands, and prepare peripheral tissues to replete energy reserves when food 

becomes more available. The weight reduced state is thus characterized by elevated appetite 

and suppressed energy expenditure. To maintain weight loss, an individual must proactively 

ignore the strong feelings of hunger and limit their intake to the level that their metabolic 

requirements are suppressed. Studies in animal models of weight regain have shown that 

these biological pressures on appetite and metabolism can be very strong and persistent (79, 

80). They do not resolve with time after weight loss; rather, they may even strengthen with 
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time during weight loss maintenance. More studies of long-term metabolic recalibration 

after weight loss in humans are needed.

Biological Responses to Bariatric Surgery

Bariatric surgery is currently the only effective treatment for severe obesity, which is defined 

by a BMI equal to or greater than 40kg/m2, or greater than 35 kg/m2 in the presence of 

obesity-related complications (81). In contrast to weight loss though calorie-restricted 

dieting, bariatric surgery poses an effective treatment for severe obesity with significant 

weight loss, most often sustained in the long-term.

Bariatric surgery involves surgical manipulation of the GI tract, which alters nutrient flow 

and impacts upon GI biology. These changes engender beneficial effects upon energy and 

glucose homeostasis (9). The multi-factorial mechanisms promoting weight loss and 

improved metabolism following Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy 

(SG), the two most commonly performed procedures are incompletely understood. However, 

it is now clear that the beneficial effects of bariatric surgery are not achieved through 

restriction and malabsorption alone. Decreased EI as a result of altered eating behavior is the 

main driver for weight loss in humans (82). Reduced appetite, changes in subjective taste 

and food preference and altered neural response to food cues are thought to drive altered 

eating behavior. The biological mediators underlying these changes remain incompletely 

understood but gut-derived signals as a consequence of altered nutrient and/or biliary flow 

and/or microbiome changes are key candidates. In contrast to the effect of caloric restriction 

through dieting, RYGB and SG lead to a marked post-meal elevation of PYY and GLP-1 

with a concomitant decrease in ghrelin (83). These gut hormone changes are thought to 

contribute to the marked reduction in appetite, reduced interest in food, and attenuated sweet 

taste palatability, which occur post-surgery. In addition, the variation in weight loss response 

following surgery is thought to be related to differences in gut hormone response with good 

responders exhibiting higher circulating PYY and GLP-1 levels coupled with lower ghrelin 

compared to poor responders (84). For the vast majority of patients, bariatric surgery offers 

sustained marked weight reduction coupled with unparalleled health benefits. Gaining an 

understanding of the mechanisms underlying these sustained weight loss and metabolic 

benefits holds the key to developing novel non-surgical treatments for obesity and type 2 

diabetes (T2D).

Biological Responses to Exercise

Many studies have assessed EI during the manipulation of exercise. Most of these studies 

have been acute in nature i.e. often single dose, single day experiments (for a review, see 

(85) or (86)). The clear outcome is that exercise has little effect on EI within a single day 

(87). However, as the exercise is continued over several days the system begins to respond 

and a small compensatory rise in EI has been observed in both men and women (88, 89). 

Comparisons between participants undergoing high, medium and low volume sessions of 

exercise indicated a graded and proportional (but partial) compensatory increase in EI which 

accounted for approximately 30% of the EE (88). However there was a large range of 

individual variability. This variation became clearer when daily exercise sessions were 

continued for 16 days with participants showing between 0% and 60% compensation in EI 

MacLean et al. Page 9

Obesity (Silver Spring). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the exercise EE (89). As anticipated this variable response was reflected in small changes 

in body weight.

For medium term studies, in which mandatory exercise sessions were performed daily for 12 

weeks in overweight and obese individuals (90), an average weight loss of approximately 

3.3 kg was recorded but with weight change varying between –14.7 kg and +1.7 kg. This 

outcome is quite remarkable because the weight gain of some participants was achieved 

despite the performance of supervised and measured exercise sessions (5 days per week for 

12 weeks). Therefore, even though all participants completed the exercise sessions (with 

total exercise-induced EE calculated at 28 – 29,000 kcal), there was a large variation in the 

change in body weight and composition. The variability in body weight changes following 

12 weeks of supervised aerobic exercise has subsequently been replicated in a larger number 

of overweight and obese individuals (see Figure 3) and in several other trials of the effects of 

exercise on weight loss in obese people. More significant than the change and variability in 

body weight is the effect of exercise on body composition. The weight lost is almost entirely 

adipose tissue, where as the weight gain is reflected in lean mass (FFM) which is apparent in 

both men and women (91). Clearly, with exercise as an intervention, there are conflicting 

inputs to the regulation of appetite that involving both the biological feedback systems and 

the psychology of compensatory eating behaviors, which contributes to the complicated 

nature of self-regulation.

Common Theme in the Biological Regulation of Appetite – Individual 

Variability

There are a number of reasons why the biological control of appetite is, on its own, so 

complicated. First, the epigenetic and genetic variability between individuals impart nuances 

in how the energy homeorhetic system is established and how it responds to metabolic 

challenges. This may involve unique differences between the sexes that may have 

implications for how this feedback system functions. The control system is then subject to 

change through the lifespan (including the aging process), overall health and disease 

processes, and the ever changing milieu of environmental and behavioral stressors that are 

imposed. Compounding this individual variability is the vast number of different types of 

nutrients that must be sensed along the gastrointestinal tract and the wide variety of signals 

that are generated as these nutrients are consumed, absorbed, cleared, stored, and 

metabolized (92, 93). The numerous signals are integrated with a large amount of built-in 

redundancy to areas of the brain involved in both homeostatic and hedonic food eating 

behaviors (1, 7). When the complexities of the biological aspects of appetite control are 

considered in context of the behavioral and environmental diversity in which they operate, it 

is not surprising to find that individuals will vary quite dramatically in their ability to self-

regulate the food they eat. The complicated nature of self-regulation poses a considerable 

problem for devising public health (and intervention) strategies for dealing with eating 

behavior change in relation to the obesity epidemic (94). This complexity rhetorically 

answers: “Why is it so hard”?
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The description of susceptible and resistant phenotypes draws attention to the wide diversity 

in the pattern of the human eating response in the face of an obesogenic culture. Perhaps this 

should not be surprising given the great variability in the nutritional patterns adopted by the 

human species in extreme ranges of climate and habitat. Thus, inherent diversity in the 

variability in biologic mechanisms and environments, and responses effecting appetite 

regulation has implications for methodology used in studying these phenomena.

One methodological issue concerns the use of the statistical mean—or other measures of 

central tendency—to describe responses to interventions or treatments. In many studies of 

body weight, like the exercise intervention presented here (Figure 3), the average weight or 

body composition change would be regarded as the most important parameter of 

intervention effect. However, as Dilnot has (95) has pointed out, science is often weakened 

by subscribing to the ‘tyrany of the average’. Very often the mean outcome fails to 

adequately reveal the true effect of the intervention or treatment (weight loss response to 

enforced exercise is a good example). A truer reflection of intervention effects is described 

by the diversity of responses that encourages a deeper examination of the internal processes 

responsible. This implies that one unique explanation cannot account for all outcomes.

This issue draws attention, once again, to the nomothetic and idiographic approaches to 

scientific explanation (96). What should be the balance between seeking a common unifying 

principle and a regard for individual differences (quantitative and qualitative)? In light of 

this question, it may be an appropriate time for a paradigm shift to focus attention on 

individual variability rather than on the mean value of any set of responses. In scientific 

research the mean response is the statistical parameter associated with the elucidation of 

scientific principles. However, given cause-effect relationships and other features normally 

seen as the objectives of scientific inquiry, the great diversity of the human eating response 

suggests that we are dealing with a phenomenon for which the average may be 

inappropriate. This means that traditional use of research methodology may be missing 

much that is truly important in explaining human appetitive behavior. The identification of 

phenotypes—their behavioral expression, underlying physiology, genetics and interactions—

constitutes a partial step toward a recognition of the variability inherent in human energy 

balance behaviors.

Conclusion

In summary, the biological control of appetite involves a host of nutrient sensors, endocrine 

factors, and neural signals, which together convey a message reflecting both long term 

energy reserves, metabolic requirements of the body, and the type and availability of 

nutrients to meet the immediate needs of the body's tissues. Their influence on appetite is 

apparent early in life and is inherently integrated with the control of EE. Control of both 

aspects of energy balance are riddled with complex redundancy. Moreover, this homeorhetic 

system both affects and is affected by other systems known to influence appetite through 

hedonic inputs, as well as learning and memory, which, among other things, establishes our 

preferences and aversions to certain types of flavors and foods. Underlying the complexities 

of this integration are the complications of individual variability that are rooted in genetic 

heterogeneity and the diverse environmental pressures, behavioral choices, and personal 
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experiences that occur throughout the lifespan. In most individuals under normal conditions, 

biological influences on appetite exert a subtle, underlying tone of control, responding to 

eating behaviors that are modified by environmental pressures. However, their influence can 

emerge to become a driving force affecting the type and amount of food we eat under certain 

circumstances, as is the case with modern food patterns and di1eting. Thus when developing 

novel strategies to impact appetite regulation, individual variation and the complexity of 

inputs must be considered.
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Figure 1. Biological Inputs of Appetite Regulation
The key biological affectors of appetite are placed in the context of the energy balance 

relationship (energy intake, EI; expended energy, EE; thermic effect of food, TEF; exercise 

activity thermogenesis, EAT; resting energy expenditure, REE; resting metabolic rate, 

RMR)). Separate effects of fat-free mass (FFM) and fat mass (FM) denote stimulatory and 

inhibitory inputs, respectively. The gut provides feedback through neural and endocrine 

paths that involve the episodic hunger and satiety signals coincident to nutrient availability 

and the prandial state. These biological inputs operate in a neural architecture established 

early in life that dictates food preferences. Exercise may influence appetite through its 

impact on these biological inputs, but its overall impact is variable and complicated by 

compensatory food eating behaviors. The built-in redundancies, complexities, and individual 

variability, with each aspect of food preference and these feedback systems, which are 

rooted in the underlying genetics, establish a daunting biological complexity to the nature of 

appetite control.
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Figure 2. Relationship between RMR and Self-Determined Intake
Scatter plot and standardized β-coefficient to illustrate the relationship between resting 

metabolic rate RMR and daily energy intake in 59 individuals. While the underlying 

mechanisms remain elusive, this is one of many studies showing a strong association 

between fat free mass, the metabolic requirements of the body, and the drive to eat.
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Figure 3. Individual Variability in the Response to Supervised Exercise
Data taken from the studies of King et al (90, 97) showing the wide variation in body 

weights and body fat in a group of overweight and obese individuals who completed 12 

weeks of supervised and measured physical activity (5 sessions per week) designed to 

expend 2 MJ per session. These studies revealed that the effect of exercise on appetite 

regulation involves at least 2 processes: an increase in the overall (orexigenic) drive to eat 

and a concomitant increase in the satiating efficiency of a fixed meal. The individual 

variability in the overall response is likely rooted, at least in part, in how exercise 

differentially affects these two processes between individuals.
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