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Abstract

Lattice Boltzmann method was used to predict the fhsdicle interaction for
arbitrary shaped particles. In order to validate the néitialof the present approach
flow past a single stationary spherical, cylindrical or cydaidicle is conducted in a

wide range of Reynolds number (8cRe,<<1000). Simulated results indicate that the

drag coefficient is closely related to the particle shapge@ally at the high Reynolds
number. The resolution of spherical particle plays a kéy in accurately predicting
the drag coefficient at high Reynolds numbers. For the noarsghparticle, the drag
coefficient is more influenced by the particle morplggloat moderate or high
Reynolds numbers than at low ones. Good agreements betineammulated drag
coefficient values and the experimental date or empirical edioet are achieved for

both the spherical and non-spherical particles.
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1. Introduction

The fluid-particle flow occurs widelin natural and industrial processes, such as
dust and pollutant in air, sediment grains transport in rivas]jiguid-particle flows
in chemical reactors and many others (Holzer and Somme#@09; Ouchene et al.,
2015). The comprehensive knowledge about the drag force orgle garticle is
essential for understanding the complexly physics of fluidgarflow. Numerous
efforts have been focused on the fluid drag on a sphepadicle to obtain an
appropriate correlation (Fair and Geyer, 1954; Haider and kpian1989; Yow et
al, 2005). Most of the experimental drag coefficient valuesevobtained by partiel
settling experiments at low Reynolds number and by wind tuexperiments at high
Reynolds number (Holzer and Sommerfeld, 2009). Several latores for the
spherical particle have been proposed in the literature witarelift accuracy and
range of applicability (Brown and Lawler, 2003). Based oniticak review of the
published data, Clift et al. (1978) proposed a correlation consists of 6opugin
equations with 18 fitted constants.ikorrelation shows better goodness of fit to the
408 experimental data reportad the literature. Brown and Desmond (2003)
reviewed the historical experimental efforts about thedfldynamics drag on a
spherical particle since the beginning of"2@entury, and concluded that the
correlationby Clift et al. (1978) is the best for drag coefficient for spherespite of
the slight discontinuities at some transition points from one Régmaimber range to

another.

A noteworthy fact is that non-spherical particles rath@ntperfect sphes are
generally involved in practad fluid-particle systems. Such shape diversity adds
difficulties in estimating the fluid-particle interaction diRy et al., 2015). For the

non-spherical particles, Holzer and Sommerfeld (2008) plottedxjperimental drag



coefficients verse Reynolds numbers, for a number of diffesbapes including
spheres, disks and plates, lengthwise spheroids and streamline bodiestidasomet
particles (e.g., cubes, tetrahedrons and octahedrons) and somédailirrggaped
particles. It was observed that the particle shape had aystriturence on the profile

of drag coefficient. The correlations for spherical particlaeweot valid for the
non-spherical particle since the drag coefficient wasetjorelated to particle shape.
Up to now, several drag correlations for non-spherical particdes been proposed
from the experimental data (Haider and Levenspiel, 1989; Gal®@8; Holzer and
Sommerfeld, 2008). Haider and Levenspiel (1989) proposed thegérstralized
correlation to associate the drag coefficient with thenRkls number for spherical
particle and non-spherical particle, the so-called spherma@syintroduced to describe
the effect of particle shape. Ganser (1993) assumed Hudt isolated particle
experiences a StokKeas regime where drag was proportional to velocity and a
Newton's regime where drag was proportional to the square of velaoity then
developed a correlation for both spherical and non-spherictitlpa containing the
Stokes shape factor and the Newtsrshape factor. A simple correlation for the drag
coefficient of an arbitrary shaped partises established based on a large humber of
experimental data published in the literature (Holzer Sochmerfeld, 2008). The
mean relative deviation between this correlation and 2061 experinusttal for
different shapesvas 14.1%, whichwas much lower than that of 383% and 348% for
correlations of Haider and Levenspiel (1989) and Ganser (1993gctesly. The
commonly used correlations for spherical and non-spherical lpartare list in

Tablel.

Table 1 Drag correlation for single particle
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¢, is the crosswise sphericity
¢, is the lengthwise sphericity

Numerical simulations an effective alternative method for predicting the flow
past a single particleviost of these investigations were limited to ltsvmoderate
Reynolds numbers, based on the Finite Volume (FV) metboknson and Patel
(1999) simulated the flow of incompressible viscous fluid past arspiner flow

regime for Reynolds number up to 300. Their numerical resiitsved good



agreement with the experimental observations. Bagchi e2@01] investigated the
flow and heat transfer past a sphere in a uniform ctogsfér Reynolds numbers up
to 500. Atefi et al. (2007) carried out computations to deterrine fluid drag of
flow past a stationary sphere at low and moderate &tdéymumbers in the range of
0.1~200. For the case of non-spherical particle, Dwyer andyD@®®0) performed
the simulations of flow past a hon-spherical particle in a natedreynolds numbers
range (10<Rep<66), the effect of particle shape and orientation on the dyndunics
and heat transfer characteristics were investigated in thely. sBaha (2004, 2006)
simulated the flow transition and heat transfer past a tuReynolds number range
of 20~400. Valil and Green (2009) simulated the flow past two difoeal cylinders
for Reynolds numbers in the range of 1~40, the effeaspéct ratios and inclination
angle on the drag and lift coefficients were analyzedhiir work. Richter and
Nikrityuk (2013) investigated the dynamic force and heatsfeanprocess for flow
past ellipsoidal and cubic particles. On the other handl dlttece Boltzmann (LB)
method was developed to calculate the fluid-partigldrodynamics force by Ladd
(19944a; 1994b). The most notable feature of LB method is thabthputational cost
scales linearly with the number of particles. In the past afsy¢he increasing efforts
have been carried out on flow past single particle or arrayart€les (Peng and Luo,
2008 Holzer and Sommerfeld, 2009; Rong et al., 2013; Zhou and Fan). 204ty
and Luo (2008) simulated the steady and unsteady flows pastefsibnal circular
cylinder with the Reynolds number of 20 and 100. Rong et al. (46083tigated the
flow past a sphere for Reynolds number up to 400. The dragntiftorque for flow
past a non-spherical particle was determined in the Reynmlonber range of
0.3~240 by Holzer and Sommerfeld (2pOAIthough both the FV and LB methods

have been applied to simulate the flow past a single isgher non-spherical particle,



most of these investigations focused on the flatMow or moderate Reynolds

numbers R&<500).

Discrete element method (DEM) has become an effective dltexrta describe
the movement of non-spherical particle. Several methods heen developed for
modelling different shaped particles in DEM: composite padjckemooth and
continuous surface particles, combined surface particles and gigrtadles (Favier
et al., 1999; Jia and Williams, 2001; Jia et al., 2007; Wachs, &(dl2; Boon et al.,
2013). Each method has its advantages and disadvantagesng de accuracy,
versatility, complexity and speed (Dong et al., 2015). In thestigetions described
in this series, DigiDEM coupled with LB method is used to simulateicfa
movements in fluidised beds. DigiDEM is an implementation eDEM, but instead
of spheres it uses voxels (3d pixels) to represent particlagki@at al, 2009). The
basic concept of this voxel based approach is that any spapite— including its
internal structure, surface texture as well as the overglesheanbe represented by
a coherent collection of voxels. The resolution dependeown accurate the shape
needs in particular applications (Jia and Williams, 2001; tJ&. e2007). Compared
with other methods, the digital approach is not limited to nmastieally easily
describable shapes. The voxels are used to represertiiarg shaped particle; the
computational cost is dependent on the total number of woaet relatively
independent of shape complexity. Since both DigiDEM andnhéhod operate on
the same regular lattice grids, it is conceptually easgotuple the two, and the
coupling has the potential for describing fluid-particieractions better than existing
methods for fluidised beds involving particles of arbitrsingpes. Accurate prediction
of drag force on individual particle is fundamental in understandmgydrodynamic

behaviour of a fluidised bed. In order to validate the iptie ability of the program,



a LB implementation is tested over a much wider rang&ejfnolds number for
different shapes in this study. The fluid drag acting gmadicle is represented in
terms of the drag coefficienth€& influences of particle resolution, Reynolds number
and particle shape on the drag coefficient are carefudllysed, and results compared

with the experimental data and the empirical correlation publishte literature.

2. Mathematical model and numerical method
2.1. Lattice Boltzmann method

The LB method is originated from the Lattice Gas Automata (L.&&dmpared to
the traditional CFD method that solve the Navier-Stokgsgon for the macroscopic
fluid dynamics, i.e. pressure and velocity, tt® method can be used to simulate
fluid flow in terms of the particle distribution funoh, which exist at each of the grid
nodes that make up the fluid domain (Yu and Fan, 2010; Li,&2Gl6). The particle
distribution functions relate the probable amount of flpafticles moving with a
discrete speed in a discrete direction at each lattice abdach time increment. The
particle distribution functions are analogous to the continuous,ostopic density
function of the Boltzmann equation. For the LB method, tamd space coordinates
are discretized with velocity range in phase space limitedfituite set of vectors that
represent the directions in which the fluid particles wawel. The D3Q19 model is
employed in this study, as shown in Fig. 1. It has 18 discrdieelatelocities with

one fluid particle at rest. Components of D3Q19 lattice are listathtrix as
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Fig. 1. Schematic of D3Q19 lattice

The basic LB method algorithm involves the streaming@iiision processes at
each node and each time step: streaming process propagdiele jpistribution
function value between neighbour nodes (Eqg. 2); collision proessstnibutes the

functions that arrive at each node (Eq. 3), as expressed:

filx + ciAt, t + At) = fi"(x, t) (2)

filat) = filx, ) + Qi(f (x, 1)) ®3)

where AX is the lattice spacing, At is the explicit time stepf;*(x,t) and f;(x,t) are
the post-collision and pre-collision distribution functions, retipely. Q;(f(x,t)) is

the collision operator, it controls the relaxation rate of particdtribution function.

Kinetic model: The relaxation process of the LB method acts on the
non-equilibrium part of the distribution functions at a @dd drive them towards
equilibrium. By assuming that the collision operator relaXes lbcal particle

distribution functions at a single rate it can be simplifiedin conjunction with an



appropriate equilibrium distribution function, the BhatnaGaoss-Krook (BGK)

model was proposed by researchers, the collision term in BGK nsoagtten as

(@) = [t - £V 0)] (@)

here, 7 is the relaxation time and it controls the rate at which the distribution functions

tend toward equilibrium value, and fluid viscosity as follows

1, Ax?

v=3a-D5 ©)

where Ax is the lattice spacing, At is the time increment, and the lattice speed is

defined as ¢ = AXAt. £V (x,t) is the equilibrium distribution function which is

obtained from the macroscopic values of the velocity and density.

Cw? _ v

£ = wip [1 + a3 c2 2 (6)

For the D3Q19, it can be given as following
[ =2p[1-2%],  i=0 (7)
£V =2p [1 +34% :(C'Cj)z %‘C‘—j . i=1~6 (8)
fE0=Zpl1+3te 2@ 380 o718 )

where w; is the weight factor for the i velocity direction, p and u are the macroscopic

density and velocity, respectively.

It necessary to point out that the Navier-Stokes equationbeaecovered in the
near-incompressible limit with isotropy, Galilean invariane@ad a velocity
independent pressure from the lattice BGK model through thepi@an-Enskog

expansion (Owen et al., 2011; Delbosc et al., 2014) as



%+V-(pu)=0 (10)

a
28D 17+ (puu) = —Vp + v(V2(pu) + V(7 - (pu))) (11)
with an error proportional to O (Mpin space and proportional to O (M4} in time,

where Ma=lcs is the Mach number of the system= cZp is the pressuregs =

c/+/3 is the speed of sound.

2.2. Subgrid turbulence model

In order to model the unresolved scales of motion at heygm&ds numbers, the
Smagorinsky model is used to describe the physical effects (8imsgo 1963). This

model relates the eddy viscosity to the local strain rate tersstwll@vs
Viotal = Vo T V¢ (12)

where v is the total effective viscosity, vo and vt are the physical viscosity and eddy
viscosity, respectively. The eddy viscosity can be calculated fremottal stress

tensor
vy = CA?|S| (13)

where C is the Smagorinsky constant,is the filter width, and|S| is the magnitude

of the local stress tensor

|§| = ZSaBSaB (14)
Spp = S (Ca 4 8 15
aB ™ 2 Voxg axa) (15)

In the LB method, the fluid viscosity is governed by thilexation time. So the



eddy viscosity is incorporated inkacal relaxation time s as
1 = 1
Ts = 3Viotal +5 = 3(vo + CA?|S]) + 5 (16)

The local intensity of the strain tensor is computed fith non-equilibrium

momentum flux tensor

Mog = 22, ciaCip(f; — £°V) (17)

The solution of the intensity of local stress tensor is:

= 1
51 = 2 (V8 + 180202 T T — e (18)

2.3. Flow configuration

The influence of computational domain size on the timeaaest drag coefficient
was previously carried out to obtain the values for unbounded Based on the
independency simulation at lower and higher Reynoldsibers, the domain size
related to the geometry of 12d x 10d x 10d was found to bguatkein this study.
The computational domain is plotted in Fig. 2. The singlégbaurs fixed in the flow
domain. The no-slip boundary condition is imposed on the festizface. In relation
to this configuration, a uniform flow with constant velocitysigecified at the inlet,
and the periodic boundary is imposed at the side walls. The stestdundary
condition without effect on the flow in the upstream is erypgpdbat the outlet.nithe
present study, the Reynolds number of particle is based osl#itige velocity of the

fluid with respect to the particle and the kinematic viscosity, iMsidefinedas

Re, = — (29

where u is the averaged fluid velocity through the ceatethe particle,v is the



kinematic viscosity, d is the characteristic length. For the spbrere particle, the
diameter of the volume-equivalent sphere is used to defin@dieolds number and
the drag coefficient. The hydrodynamic drag force is defiaadthe parallel
component of the combined shear and pressure forces actitige aurface of the

immersed patrticle, as follows
1
FD = ECD’DAPU,Z (20)
here G is the drag coefficient, Ais the projected area, and for the non-spherical

particle it is calculated with the diameter of the volumehejent sphere.

Fig. 2. Computational domaiaf the flow past a single particle

3. Results and discussion

3.1. Flow past a stationary spherical particle

The resolution of spherical particle is determinedthy numbers of lattices for
discretizing the diameter of the sphere. As shown in Fidne3particle diameter has a
great impact on the particle resolution, which is increasédincreasing the particle
diameter. The increase in resolution results in a decrédke sphere roughness, and

a smoother sphere is obtained under the higher resolukan. 4 presentshe



evolution of drag coefficient at Reynolds numberspfRé¢ 3 and 722. As expected,
the flow around the sphere is steady at Ry, the predicted drag coefficient keeps
almost constant after 6000 time steps. With the increaRepjrthe flow will change
from steady to unsteady flow. Saha (2004) and Holzer and Sdehing2009)
investigated the transition flow from lower R® moderate Refor cube and sphere,
respectively. At higher RgRe, = 722), the variation of the drag coefficient is more
pronounced with a stronger oscillation, which is derived fromappearance of
vortex shedding at higher ReCombining the results for both the low and high,Re
the time step from 6000 to 10000 is applied to calculated the-dveraged drag

coefficient in the following discussion.

Fig. 3. Digitization of sphere particle
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Fig. 5 exemplarily indicates the time-averaged drag mefit (G) as a function
of spherical particle resolution. Here, two well-known cotretes are used to verify
the predicted ability of digital coupling with Lattice Boltzmamethods, i.e. Clift et
al correlation (1978) and Haider and Levenspiel correlation (198@)correlation of
Haider and Levenspiel (1989) was derived from experimental fdatapherical,
isometric and non-isometric particles in terms of Reynoldsbheurand sphericity,
which is calculated as the ratio between the surfacedrédze volume equivalent
sphere and the surface area of the considered particle. Quaehent between the
two correlations is obtained, whilst only a small differenbservedat the low Re.
Significant deviations have occurred between the corralatiedicted data and the
simulated @ for dy = 10 voxels With increasing the sphere diameter (particle
resolution), the simulated results are tend to close toatrelation predicted data for
different R@. The difference between the simulated result and cooelatiediction

increases with the increase ingRe

10 5
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Fig. 5. Effect of particle resolution on the drag coefficient at ddiféReynolds
number

The profiles of time-averaged drag coefficient in a widegeaof Reynolds
number are plotted in Fig. 6. It is obvious that tleishot sensitive with the number
of cells for discretizing the sphere diameter at loRey (Re<10). The simulated
results are consistent with the correlation prediction arpkrexental data. In the
current work, the experimental data are corrected fr&d-pbint raw data with
eliminating the influence of the wall effect (Brown adpawler, 2003). When the Re
is higher than 10, the simulated result is closely depératethe particle resolution,
and the influence of particle resolution on the relatiu®rein G increases with
increasing theRe. Meanwhile, the over prediction ofpCiend to decrease with
increasing the particle resolution. Despite the presmiparison is only performed in
the relevant range of Reas the Recontinues to increase higher than 1000, the
behavior of G progressively changes to tend asymptotically towards a cowstae
under different particle resolutions. The deviations gfa€Cthe highRe, are attributed
to the decrease in represented resolution along thel rdoection of sphere.

Therefore, a higher resolution is necessary for the accuradéciion of flow past a



fixed sphere particle at higRe,.
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Fig. 6. Comparison of the drag coefficient of sphere particle againstiexpntal data

and empirical correlation

3.2. Flow past a stationary non-spherical particle
The drag force acting on a ngpherical particle is expected to differ from a

spherical particle due to its geometrical shape. Three alpicorrelations are
employed to describe the profiles of non-spherical particégy coefficient in this
study. As can be seen in Figs. 7 and 8, all correlations alimareasing trend ingC
with increasingRe,. Different correlations are in good agreement with eachrath
low Re, (Rg<10) for both the square cylindrical and cubic particles.figherRe,
values, G beconesless sensitive to the changeRd. The minimum @ is predicted

at intermediateRe, by the the correlations of Haider and Levenspiel (1989) and
Ganser (1993), but not by the correlation of Holzer and Sommég#eas).

The predicted profiles for non-spherical particle are sinddahat of the spherical



particle. The drag coefficient is slightly higher than thatpherical particle, this
trend is more obvious at high Reynolds numbers. Compaoistine numerical results
and those from the derived correlations demonstrates the goodtioredi G at low
Re, for both cubic and cylindrical particles. However, an int&mgsobservation is
exhibited in the region from moderd®s, to highRe,. The simulated values tend to
agree with the correlation of Holzer and Sommerfeld (2008)yiarder. On the other
hand, the difference occurs for the cubic particle, the ledioa of Ganser (1993)
predicts more accurate drag coefficients before thesfivam point, whilst Fig.8b
shows the good agreement between the numerical resulteeapdetiction of Haider
and Levenspiel (1989) after the transform pointisTihenomenoiis consistent with
the finding of Holzer and Sommerfeld (2008). They pointaettioat the correlation of
Haider and Levenspiel (1989) and Ganser (1993) predict moreated®rthan that
of Holzer and Sommerfeld (2008) correlation for the isometaitigle (cube in this
study), the mean relative deviations between experimeataland the correlations of
Haider and Levenspiel (1989) and Ganser (1993) are approximate 6.5& 1 &80
for the correlation of Holzer and Sommerfeld (2008). HowewertHfe non-isometric
particle (cylinder), the mean relative deviations betwéerekperimental data and the
correlations of Haider and Levenspiel (1989) and Ganser (1993) are 42d332.4%,
respectively. A slightly better drag coefficient is préelicby the correlation of Holzer
and Sommerfeld (2008) with relative error of 29%. Moreover, itagthwnoting that
the current resolution for cylinder (L = D = 40 voxels) andbe (L = 40 voxels
produce an accurate and reasonable results. This also img@ietheéhdeviation for

sphere is largely due to the decrease in resolution in thé dagietion for sphere.
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Fig. 7. Comparison of the simulated drag coefficient against emapicarrelations

(cylindrical paticle)
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Fig. 8. Comparison of the simulated drag coefficient against écaprorrelations

(cubic particle)

4. Conclusions
Flow past a spherical or non-spherical particle has been conducted wider

range of Reynolds numbers than previously reported. The réswisbeen analyzed
and compared with published experimental data and empiocalations. The main
findings can be summarized as follows. The various tests spherical or

non-spherical particle confirm the reliability of the presemt nemputational method,

good agreement between the simulated drag coefficienth@nelxperimental date or



empirical correlations is achieved in a wide Reynaldsiber region. The prediction
accuracy for sphere is not sensitit@ the resolution at low Reynolds number
(Re<10), but becomes so in the moderate to high Reynolds emumdnge
(10<Rg<1000). Moreover, differences in the morphology of non-sphepatticles
result in different drag coefficient profile, and thiscbees more evident with
increasing Reynolds number. The simulated drag coefficientsyfindrical particle
(non-isometric particle) and cubic particle (isometric pkeiare consistent with the
empirical correlations, which are established based omga armber of experimental
data from the literature. This adds our confidence for the aaupli DigiDEM and

LB method for predicting the fluid-particle flow. The nexttpafrthe series will focus

on ....77777777
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