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Abstract  

 

We provide a user guide on the analysis of data (including best-worst and best-best data) 

generated from discrete choice experiments (DCEs), comprising a theoretical review of the 

main choice models followed by practical advice on estimation and post estimation.  We 

also provide a review of standard software.  In providing this guide we endeavor not only to 

provide guidance on choice modeling, but to do so in a way that provides Ă ͚ǁĂǇ ŝŶ͛ ĨŽƌ 
researchers to the practicalities of data analysis. We argue that choice of modeling 

approach depends on: the research questions; study design and constraints in terms of 

quality/quantity of data and that decisions made in relation to analysis of choice data are 

often interdependent rather than sequential.  Given the core theory and estimation of 

choice models is common across settings, we expect the theoretical and practical content of 

this paper to be useful not only to researchers within but also beyond health economics.   
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Key Points for Decision Makers 

 We provide a user guide on the analysis of data, including best-worst and best-best 

data, generated from DCEs, addressing the questions of ͚ǁŚĂƚ ĐĂŶ ďĞ ĚŽŶĞ ŝŶ ƚŚĞ 
ĂŶĂůǇƐŝƐ ŽĨ DCE ĚĂƚĂ͛ ĂŶĚ ͚ŚŽǁ ƚŽ ĚŽ ŝƚ͛͘ 

 We provide a theoretical overview of the main choice models and review three 

standard statistical software packages: Stata; Nlogit; and Biogeme. 

 Choice of modeling approach depends on the research questions; study design and 

constraints in terms of quality/quantity of data and decisions made in relation to 

analysis of choice data are often interdependent rather than sequential. 

 A health based DCE example for which we provide the data and estimation code is 

used throughout to demonstrate the data set up, variable coding, various model 

estimation and post estimation approaches.   
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1. Introduction  

 

Despite researchers having access to ever-expanding sources and amounts of data, gaps 

remain in what existing data can provide to answer important questions in health 

economics. Discrete choice experiments (DCEs) [1] are currently in demand because they 

provide opportunities to answer a range of research questions, some of which cannot 

otherwise be satisfactorily answered. In particular, they can provide: insight into 

preferences (e.g., to inform clinical and policy decisions and improve adherence with 

clinical/public health programs or to understand the behaviour of key agents in the health 

sector such as the health workforce, patients, policy makers etc.); quantification of the 

tradeoffs individuals are prepared to make between different aspects of health care (e.g., 

benefit-risk tradeoffs); monetary and non-monetary valuation (e.g., valuing healthcare 

and/or health outcomes for use in both cost-benefit and cost-utility analysis and priority 

setting more generally); and demand forecasts (e.g., forecasting uptake of new treatments 

to assist in planning appropriate levels of provision).  

 

DCEs are a stated preference method which involve the generation and analysis of choice 

data. Usually implemented in surveys, respondents are presented with several choice sets, 

each containing a number of alternatives between which respondents are asked to choose. 

Each alternative is described by its attributes and each attribute takes one of several levels 

which describe ranges over which the attributes vary.  

 

Existing reviews [2, 3] document the popularity and growth of such methods in health 

economics while others [4-6] provide guidance on how to use such methods in general.  

Given the detailed research investment needed to generate stated preference data via 

DCEs, not surprisingly, more detailed user guides on specific components of undertaking a 

DCE have also been developed, including the use of qualitative methods in DCEs [7], 

experimental design [8] and external validity [9].  A natural next large component of 

undertaking and interpreting DCEs to be addressed is guidance on the analysis of DCE data. 

This topic has recently received some attention; Hauber et al (2016) [10]provide a useful 

review  of a number of statistical models for use with DCE data. We go beyond that work in 

both scope and depth in this paper, covering not only model specification which is the focus 

of the Hauber et al paper, (and within model specification we cover more ground), but also 

estimation, post estimation and software.   

 

We provide an overview of the key considerations that are common to data collected in 

DCEs and the implications these have in determining the appropriate modeling approach 

before presenting an overview of the various models applicable to data generated from 

standard first-best DCEs as well as for models applicable to data generated via best-worst 

and best-best DCEs.  We discuss the fact that the parameter estimates from choice models 

are typically not of intrinsic interest (and why that is) and instead encourage researchers to 

undertake post estimation analysis derived from the estimation results to both improve 

interpretation and to produce measures that are relevant to policy and practice.  Such 

additional analysis includes predicted uptake or demand, marginal rates of substitution, 

elasticities and welfare analysis.  Coupled with this theoretical overview we discuss how 

such models can be estimated and provide an overview of statistical software packages that 

can be used in such estimation. In doing so we cover important practical considerations such 
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as how to set up the data for analysis, coding and other estimation issues.  We also provide 

information on cutting edge approaches and references for further detail. 

 

Of course, there are many steps involved in generating discrete choice data prior to their 

analysis including reviews of the relevant literature and qualitative work to generate the 

appropriate choice context and attributes and levels, survey design and, importantly, 

experimental design used to generate the alternatives between which respondents are 

asked to make choices and of course piloting and data collection.  As noted, many of these 

͚ĨƌŽŶƚ ĞŶĚ͛ ƐƚĞƉƐ ŚĂǀĞ ƌĞĐĞŝǀĞĚ ĂƚƚĞŶƚŝŽŶ ŝŶ ƚŚĞ ůŝƚĞƌĂƚƵƌĞ ĂŶĚ ǁĞ ĚŽ ŶŽƚ ĚŝƐĐƵƐƐ ƚŚŽƐĞ ƚŽƉŝĐƐ 
here.  Instead, we take as the starting point the question of how best to analyse the data 

generated from DCEs.  Having said that, it is important to note that model specification and 

experimental design are intimately linked, not least because the types of models that can be 

estimated are determined by the experimental design. That means the analysis of DCE data 

is undertaken within the constraints of the identification and statistical properties 

embedded in the experimental design used to generate the choice data. For that reason, 

consideration of the types of models one is interested in estimating (and the content of this 

current paper) is important prior to creating the experimental design for a given DCE.  

 

In providing this guide we endeavor not only to provide guidance on choice modeling, but to 

do so in a way that provides Ă ͚ǁĂǇ ŝŶ͛ ĨŽƌ ƌĞƐĞĂƌĐŚĞƌƐ ƚŽ ƚŚĞ ƉƌĂĐƚŝĐĂůŝƚŝĞƐ ŽĨ ĚĂƚĂ ĂŶĂůǇƐŝƐ͘  
To this end we refer throughout to and demonstrate the data set up, variable coding, 

various model estimation and post estimation approaches using a health based DCE 

example by Ghijben et al., (2014) [11] for which we provide the data and Stata estimation 

code in supplementary appendices.  This resource adds an additional dimension which 

complements the guidance provided in this paper by providing a practical example to help 

elucidate the points made in the paper and can also be used as a general template for 

researchers when they come to estimate models from their own DCEs. 

 

AƐ ƐƵĐŚ͕ ƚŚĞ ƚǁŽ ŵĂŝŶ ĐŽŵƉŽŶĞŶƚƐ ŽĨ ƚŚĞ ƉĂƉĞƌ ĂƌĞ ͚ǁŚĂƚ ĐĂŶ ďĞ ĚŽŶĞ ŝŶ ƚŚĞ ĂŶĂůǇƐŝƐ ŽĨ 
DCE ĚĂƚĂ͛ ĂŶĚ ͚ŚŽǁ ƚŽ ĚŽ ŝƚ͛. Given many (but not all) considerations in the analysis of DCE 

data are common across contexts in which choice data may be collected, we envisage the 

content of this paper being relevant to DCE researchers within and outside of health 

economics. 

 

  

 

2. Choice models 

 

2.1 Introduction 

Continual reference to the case study provided by Ghijben et al. (2014)[11] allows  us to 

provide insights behind some of the modelling decisions made in that paper as well being 

able to make the associated data available as supplementary material to enable replication 

of all results produced in the current paper; some but not all of which appear in Ghijben et 

al. (2014). This carefully chosen example is broadly representative of the type of studies 

found in health economics and enables us to illustrate a relatively wide range of features of 

DCEs. Naturally one example cannot provide an exhaustive coverage of issues likely to be 

faced by practitioners and when appropriate, reference will be made to other applied work 
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that supply templates for aspects that fall outside the scope of our case study.   

 

Ghijben et al. (2014) [10] were motivated by the growing public health problem associated 

with atrial fibrillation and concerns of under treatment. The study aimed to examine patient 

preferences for warfarin and new anticoagulants and motivated a decision problem where 

individuals faced with atrial fibrillation and an elevated risk of stroke needed to decide upon 

alternative treatments. These considerations motivated the development of the final choice 

task, an example of which is presented in Figure 1. Sequences of such tasks were presented 

to respondents and forms an integral part of the data collection. Again we emphasize that 

getting to the stage of having a data set amenable to analysis is a significant part of 

conducting a DCE and should not be underestimated. But this is not our focus and 

interested readers should consult [8, 12, 13] for details on the important topics of 

experimental and survey design. 

 

 

 
 

Figure 1: Example of a discrete choice experiment choice set (Ghijben et al. (2014))  

 

It is useful to first introduce some terminology and to discuss a number of key features that 

are common to data collected in DCEs. In broad terms the features are:  
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A. Discrete choices: On each choice occasion, respondents face a choice set containing 

two or more discrete and mutually exclusive alternatives. Respondents are then 

required to answer one or more questions reflecting their evaluation of these 

alternatives. In Figure 1, respondents are required to first choose their most 

preferred alternative amongst the choice set of three options.  They are then asked 

a follow-up question requiring them to choose the better of the two options 

remaining after their initial choice which delivers a complete ranking of the three 

alternatives.  Including just the first question is possibly the most common way to 

generate choice outcomes and our discussion will focus on this case. However, the 

second type of question is an example that falls under the rubric of best-worst 

scaling that is becoming increasingly popular because of the extra preference 

information provided at low marginal cost; [14, 15].  

 

B. Choice sets: Choice sets contain two or more alternatives1. The choice set in our 

case study contains three alternatives, two referring to hypothetical drugs and one 

being a no-treatment option. Variants of such a structure  include a status quo 

option so the investigator is determining which hypothetical alternatives would be 

attractive enough to make respondents switch from what they currently use; see 

[16, 17] for examples2.   

 

Where no-choice is a realistic alternative but it is not provided as part of the choice 

set, the situation is referred to as a forced choice problem. Including no-choice or 

status quo options usually adds realism to the choice task and is especially relevant 

in forecasting exercises and welfare analysis.  

 

The two hypothetical alternatives in Figure 1 are fully described by their attributes 

and the drugs are denoted by generic titles, Drug A and Drug B. They are said to be 

unlabelled alternatives. Sometimes it is more appropriate to provide a descriptive 

name for the hypothetical alternatives. For example, the choice set could include 

warfarin and a new oral anticoagulant such as dabigatran and the alternatives are 

now said to be labelled.  

  

C. Alternatives defined by attributes: Alternatives are defined by a set of attributes that 

are individually assessed by consumers in coming to an evaluation of the product as 

a whole [17].  The levels of the attributes are varied over choice occasions as part of 

the experimental design. Thus the structure of these variables that figure 

prominently in subsequent analysis are under the control of the analyst. A good 

experimental design is one that ensures that they deliver the best possible 

estimates and so problems prominent with revealed preference data, such as 

limited variation in key variables and multicollinearity, can be avoided in DCEs. It is 

true though that this comes with added responsibility on the part of analysts. For 

example, if there are interaction effects between attributes that are theoretically 

relevant then it is necessary for the design to ensure that such effects are in fact 

                                                      
1
 This can include presenting a single profile and asking respondents to accept or reject it. 

2
 In our case study the status quo is no treatment but more generally status quo and no treatment need not 

coincide. 
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identified.  

  

D. Repeated measures: The data have a panel structure with the same respondent 

providing multiple outcomes for a sequence of different choice occasions or 

scenarios. While asking respondents to answer more than one choice task is an 

economical way of gathering more information it is clear that extra observations 

from the same respondent do not represent independent information. As in our 

case study there are also examples where multiple outcomes are available for each 

scenario.     

 

E. Respondent characteristics: In a section of the survey instrument separate from the 

choice scenarios, personal characteristics of respondents are routinely collected. 

Different respondents may value different alternatives and attributes in different 

ways and so trying to capture these sources of preference heterogeneity with 

observable characteristics will typically form part of the analysis plan. In our case 

study the medical history of respondents including any history of atrial fibrillation is 

potentially very relevant. While personal characteristics and relevant health history 

are natural inclusions, there is scope to collect and use less standard characteristics 

such as attitudinal variables [18-20]. 

 

F.  Context: Choices depend on the environment or context in which they are made 

[21]. In designing a DCE, the choice context plays a major role in making the 

hypothetical choice realistic. Context can also be manipulated as part of the 

experimental design by defining different contexts in which the choice is to be made 

and then allocating respondents to these context treatments and by including 

context variables as attributes. For example, our case study could be extended by 

allocating respondents to treatments that differed in the form or amount of 

information they were provided on atrial fibrillation or by including attributes of the 

cardiologist that respondents visited. 

 

Apart from providing an overview of typical DCE data and introducing some terminology, 

this initial discussion is important because several features of these data will eventually 

impact model specification.   

 

2.2 Standard discrete choice models 

It is natural to start with the classical multinomial logit (MNL) and its link to the random 

utility model established by McFadden (1974, 2001) [22, 23]. This provides an opportunity 

to introduce most of the key specification and estimation issues and represents the baseline 

for most extensions to more sophisticated models and for research on the theoretical 

underpinnings of decision-making in choice problems. 

  

Assume the utility that respondent i derives from choosing alternative j in choice scenario s 

is given by 

 ሺͳሻ  ௜ܷ௦௝ ൌ ௜ܸ௦௝ ൅ ௜௦௝Ǣߝ ݅ ൌ ͳǡ ڮ ǡ ܰǢ ݏ ൌ ͳǡ ڮ ǡ ܵǢ ݆ ൌ ͳǡ ڮ ǡ    Ǣܬ
 

where there are ܰ decision-makers choosing amongst ܬ alternatives across ܵ scenarios.  



8 

 

௜ܸ௦௝ represents the systematic or predictable component of the overall utility of choosing 

alternative j and ߝ௜௦௝ is the stochastic disturbance term representing characteristics 

unobservable by the analyst. We have data on the discrete choice ݕ௜௦ ൌ ݆ which is then 

linked to the associated utilities by assuming the individual decision-maker chooses 

alternative j if it delivers the highest utility in comparison with the utility associated with all 

other alternatives in the choice set. Thus we model the probability of choosing alternative j 

as: 

 ሺʹሻ  ௜ܲ௦௝ ൌ ௜௦ݕሺܾ݋ݎܲ ൌ ݆ሻ ൌ ሺܾ݋ݎܲ ௜ܷ௦௝ െ ௜ܷ௦௟ ൐ Ͳሻ ݈׊ ് ݆. 

 

(1) and (2) imply that the overall scale of utility is irrelevant in that multiplying both ௜ܸ௦௝ and ߝ௜௦௝  by a positive constant yields a different utility level but does not change the resultant 

choice. Consequently the scale of utility needs to be normalized which is equivalent to 

normalizing the variance of ߝ௜௦௝.   

 

Econometric analysis proceeds within this framework by making a number of assumptions 

and specification decisions. First consider the distribution of the stochastic disturbance 

terms.  Under the assumption that these are independently and identically distributed Type-

I extreme value, the probability of choosing j takes the familiar MNL form: 

 ሺ͵ሻ  ௜ܲ௦௝ ൌ exp൫ߣ ௜ܸ௦௝൯σ expሺߣ ௜ܸ௦௟ሻ௃௟ୀଵ  

 

where ߣ is the scale parameter (inverse of the standard deviation of the disturbance). We 

will return to a further discussion of scale but in a standard MNL model ߣ cannot be 

separately identified and by convention is set to unity.  Such normalizations should be 

familiar to anyone with knowledge of basic binary choice models such as logit and probit.   

 

For modelling purposes there is no compelling reason to prefer this specification for the 

disturbance distribution in preference to say normality that leads to a multinomial probit 

model. Historically the preference for MNL arose because of the availability of a closed form 

solution for the probabilities as in (3) which leads to considerable computational advantages 

over multinomial probit where such representations of probabilities are not available. While 

computational considerations are today less of an issue, as we will see later, more 

complicated estimation problems can still benefit from having a MNL model as its base.  

 

Turning to the specification of ௜ܸ௦௝ as an initial starting point one might consider a linear 

specification: 

 ሺͶሻ  ௜ܸ௦௝ ൌ ௝ߙ ൅ ௜௦௝ᇱܣ ߜ ൅ ܼ௜ᇱߛ௝ 

 

where ܣ௜௦௝ is a vector of attributes describing alternative j, ܼ௜  is a vector of characteristics of 

the individual decision-maker and ߙ௝ ǡ ǡߜ  ௝ are parameters to be estimated.  Note theߛ

different sources of variation in the covariates. The attributes by design will typically vary 

over individuals, scenarios and alternatives while personal characteristics will only vary over 

individuals and will be constant over scenarios and alternatives. According to (2) only 
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differences in utilities matter and so another generic specification issue is that 

characteristics of the individual have an impact on choice only to the extent that their 

associated parameters vary over alternatives, specified here as ߛ௝. Similarly, the alternative 

specific constants, ߙ௝, are specified to vary over alternatives. As there are ܬ െ ͳ differences 

in utilities it is also necessary to apply at least one normalization to the alternative specific 

constants and the parameters for the individual characteristics. This can be accommodated 

in a number of ways but typically one alternative is set as the base and the associated 

parameters are normalized to zero. Because attributes do vary over alternatives, it is 

possible to estimate associated effects or preference weights that are not alternative 

specific. One could allow ߜ to vary over alternatives but it is not necessary for the purposes 

of estimation.  

 

Some discussions make a distinction between models of multinomial outcomes based on 

the structure of the regressors calling a model with alternative-specific regressors a 

conditional logit model, one with case-specific regressors a MNL model and where there is a 

mixture of alternative-specific and case-specific regressors as we have specified in (4) some 

authors call this a mixed model.  They are essentially the same model and so such 

distinctions can lead to confusion. Thus we simply call the model given by (1)-(4) a MNL 

specification[24].  

 

One way to interpret (4) is that the alternative specific constants vary by respondent 

characteristics. Faced with a choice between the same alternatives, different individuals 

make different choices that can be predicted by differences in their observable 

characteristics.  A natural extension to (4) also allows attribute weights to vary with 

respondent characteristics. Such heterogeneity can be captured by including interactions 

between attributes and individual characteristics. Decisions about these specification 

choices will depend on the subject matter of the particular problem and the research 

questions being considered.  

 

As various models are introduced, we will supply associated estimation results produced 

using Stata and collect these in Table 1. Section 3 provides a comparison of estimates using 

alternative packages and more detail on estimation issues. The first column of results are for  

MNL, where we have used the first-best data and Model B of Table 5 in [10] as the particular 

specification.  

 

There are three alternatives, ݆ ൌ ܰǡ ǡܣ  .ǡ corresponding to no treatment and Drugs A and Bܤ

The no treatment choice parameters are normalized to zero;  ߙே ൌ Ͳǡ  ߛே ൌ Ͳ. These 

constraints are necessary for identification. Ghijben et al. (2014) [10] impose two further 

constraints, neither of which is necessary for the purposes of identification but both are 

sensible in this case. The first constraint, ߙ஺ ൌ  ஻ǡ implies a single ͞treatment͟ alternativeߙ

specific constant. Because the hypothetical alternatives are unlabelled, we would expect 

any preference for one drug over the other to be attributed solely to differences in 

attributes. In other words, if A and B were described by the same attribute levels, 

respondents would be expected to be indifferent between them. Conversely, in the case of 

labelled alternatives it would not be prudent to impose such constraints. In such 

applications, alternative specific constants would be capturing effects attributable to the 

label or brand over and above those captured by the attributes and hence these would be 



10 

 

expected to differ across alternatives. Ghijben et al. (2014) [10] also imposed the constraint  ߛ஺ ൌ ேߛ ஻. Onceߛ ൌ Ͳ has been imposed, this second constraint is not necessary.  It would 

be possible to specify  alternative specific attribute effects, for example, preferences over 

risk could differ depending on the treatment option, but specifying generic attribute effects 

is appropriate with these data.   

 

In Table 1, the block effect, which is a dummy variable to control for which version of the 

survey the respondent answered, is written as an interaction with the treatment alternative 

specific constant as are the personal characteristics in Model C of Table 5 [10] (an exception 

is age which is interacted with the risk attribute). This is operationally equivalent to allowing 

the associated parameters to vary between treatment and no treatment and depending on 

the options available in the software this may be how the data needs to be constructed for 

estimation to be undertaken. (These and other estimation issues are addressed in Section 

3.)   

 

 

Table 1: Estimates of standard discrete choice models using data from Ghijben et al. 

(2014)* 

 MNL MXL SH G-MNL ROL MROL 

 

Estimate 

(std.err.) 

Estimate 

(std.err.) 

Estimate 

(std.err.) 

Estimate 

(std.err.) 

Estimate 

(std.err.) 

Estimate 

(std.err.) 

Stroke risk 0.698 

(0.080) 

0.774 

(0.088) 

0.886 

(0.165) 

0.867 

(0.117) 

0.503 

(0.058) 

0.705 

(0.076) 

Bleed risk 0.684 

(0.080) 

0.742 

(0.094) 

0.790 

(0.135) 

0.816 

(0.120) 

0.572 

(0.066) 

0.767 

(0.088) 

Antidote 0.066 

(0.116) 

0.137 

(0.133) 

0.108 

(0.192) 

0.137 

(0.147) 

0.149 

(0.121) 

0.228 

(0.146) 

Blood test -0.079 

(0.075) 

-0.088 

(0.081) 

-0.107 

(0.099) 

-0.120 

(0.092) 

-0.052 

(0.059) 

-0.038 

(0.079) 

Dose 

frequency 

-0.064 

(0.061) 

-0.079 

(0.065) 

-0.132 

(0.096) 

-0.107 

(0.078) 

-0.014 

(0.051) 

-0.019 

(0.067) 

Drug/food 

interactions 

-0.267 

(0.083) 

-0.314 

(0.091) 

-0.319 

(0.097) 

-0.338 

(0.090) 

-0.280 

(0.078) 

-0.385 

(0.099) 

Cost -0.010 

(0.001) 

-0.011 

(0.002) 

-0.009 

(0.002) 

-0.011 

(0.002) 

-0.011 

(0.001) 

-0.014 

(0.002) 

Bleed risk* 

antidote 

-0.337 

(0.081) 

-0.321 

(0.094) 

-0.320 

(0.105) 

-0.327 

(0.100) 

-0.213 

(0.060) 

-0.273 

(0.077) 

ASC *block -0.589 

(0.518) 

-0.655 

(1.533) 

-0.810 

(0.825) 

-1.513 

(0.575) 

-0.216 

(0.335) 

-0.327 

(0.656) 

ASC (mean) 0.926 

(0.404) 

2.767 

(0.966) 

1.824 

(0.738) 

3.201 

(0.538) 

1.043 

(0.233) 

1.514 

(0.431) 

ASC (SD) 

 

3.052 

(0.948) 

 3.178 

(0.332) 

 2.438 

(0.246)  ߬ 
 

 0.961 

(0.240) 

-0.388 

(0.109) 

  

Log-

likelihood 

-944.3 -786.1 -884.7 -781.8 -1713.2 -1377.9 

* ROL/MROL estimates use the complete ranking data coming from the best-best choices of respondents 

while all other columns of estimates only use the first best choices. All standard errors are cluster-robust, 

which allows for arbitrary correlation between the disturbance terms at the individual level.  Estimation 
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was undertaken in Stata 14.2. MNL (multinomial logit); MXL (mixed logit); SH (scale heterogeneity model); 

GMNL (generalised multinomial logit); ROL (rank ordered logit); MROL (mixed rank ordered logit). ASC 

(alternative specific logit). SD (standard deviation). 

While the specification has been shaped somewhat by the generic features of DCE data, 

there are a number of features that have been overlooked in this basic MNL model. 

Simplicity of estimation and interpretation are among the main advantages of MNL but 

these come at the cost of some restrictive assumptions that are clearly unrealistic in the 

context of DCEs. 

 

The assumption of iid disturbances is especially problematic. We have already noted that 

the panel structure of the data is likely to induce correlation across choice occasions. A 

respondent in the case study with a preference for no treatment that is not captured by 

observable characteristics will carry that preference across choice occasions inducing 

persistence in their choices. Such effects cannot be explicitly captured by any aspect of the 

current specification, but it is possible to adjust the standard errors to allow for clustering at 

the respondent level and this we have done in Table 1.   

 

It has long been recognized that the independence of irrelevant alternatives (IIA) is a 

problematic aspect of the MNL.  Proportional substitution across alternatives is a 

consequence of this model, irrespective of the actual data. Empirically it may be a 

reasonable approximation in some settings such as when all alternatives are generic. But in 

many DCE settings, especially those involving labelled alternatives this is unlikely to be the 

situation. In the case study, it is highly likely that the impact of changing the cost of Drug B is 

going to have a very different impact on the demand for Drug A relative the impact on the 

choice of the no treatment option.  But for MNL we know beforehand that the predicted 

relative market shares would not change in response to a change in the cost of one drug. 

Thus in situations where differential substitution patterns are likely it is advisable to move 

to a more flexible specification.  

 

It has already been suggested that attribute weights may vary with respondent 

characteristics. However, in modelling individual behavior, unobserved heterogeneity is 

pervasive implying a need to allow some or all of the parameters in (3) and (4) to vary over 

individuals even after controlling for variation explained by observable characteristics.  

 

Rather than building up the model with extensions targeting separate issues we will move to 

a very general model specification provided by the Generalized MNL (G-MNL) developed in 

Fiebig et al. (2010)[25]. This is not the only model that could be chosen and it is not without 

its critics [26] although these criticisms are more about interpretation rather than the model 

itself. It is a convenient choice in our discussion because it has the potential to capture all of 

the issues just raised. Moreover, it is a very flexible specification nesting several models 

often used in empirical applications and therefore provides a convenient framework for 

choosing between competing models. G-MNL is based on a utility specification that 

explicitly includes both individual-specific scale and preference heterogeneity. In other 

words we allow ߣ, the scale parameter in equation (3), to vary by respondent: a form of 

heteroscedasticity.  This allows for differential choice variability in that the errors are more 

important relative to the observed attributes for 

some respondents compared to others. Differences in scale are often interpreted as 

differences in choice consistency.  In addition, the utility weights in (4) are assumed to be 
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random coefficients that vary over respondent. G-MNL is written as:  

 ሺͷሻ  ௜ܷ௦௝ ൌ ܺᇱ௜௦௝ߚ௜ ൅ ௜ߚ ௜௦௝ ሺ͸ሻߝ ൌ ߚ௜ߣ  ൅ ௜ߟߛ ൅ ሺͳ െ  ௜ߟ௜ߣሻߛ
 

For notational convenience all variables and parameters have been collapsed into single 

vectors X and ߚ.  

 

If ߣ௜ ൌ  implying no scale heterogeneity, G-MNL reduces to the mixed logit (MXL) ߣ

specification which has long been the most popular model used in DCE work; see for 

example [27-30].   After normalizing scale to unity (6) becomes ߚ௜ ൌ ߚ  ൅ ௜ߟ  so that MXL is a 

random coefficient specification designed to capture preference heterogeneity where ߟ௜represents random variation around the parameter means. There are error component 

versions of MXL [25] where the motivation comes from the need to induce correlation and 

heteroscedasticity across alternatives rather than from preference heterogeneity. Suppose 

only the alternative specific constants are specified to be random. Assuming they are 

correlated provides a convenient way to avoid IIA and allow more flexible substitution 

between choices.  It also provides a means to capture dependence due to the panel 

structure because  ߟ௜  varies over individuals but it is assumed to be fixed over choice 

occasions. This then induces a positive correlation across choice occasions and represents a 

typical baseline specification common in panel analyses. Importantly, it will provide 

estimated standard errors that better reflect the nature of the data. Such a specification has 

been estimated and the results are denoted by MXL in Table 1.    

 

If ߟ௜ ൌ Ͳ so that there is no preference heterogeneity, G-MNL reduces to a model where ߚ௜ ൌ  Allowing only for scale heterogeneity (SH), indicates how this specification is .ߚ௜ߣ 

observationally equivalent to a particular type of preference heterogeneity in the utility 

weights, an observation that has led Louviere et al. (2008)[31] to be critical of the standard 

MXL model. The estimation results for this model are denoted by SH in Table 1. While 

conceptually there is a difference between scale and preference heterogeneity, they are 

intrinsically linked and hence in practice it is difficult to disentangle the two empirically [26]. 

In particular, rather than making this distinction one could simply motivate the G-MNL as a 

flexible parametric specification for the distribution of heterogeneity.  

 

Restricting ߛ to zero implies  ߚ௜ ൌ ߚ௜ሺߣ  ൅ ௜ߚ equal to one implies ߛ ௜ሻ whileߟ ൌ ߚ௜ߣ  ൅  ௜. Inߟ

these two variants of G-MNL, it is either the random coefficients or just their means that are 

scaled. Both of these are sensible alternatives although the choice between them may not 

be a priori obvious. Freely estimating ߛ allows more flexibility in how the variance of 

residual taste heterogeneity varies with scale. The estimation results denoted by G-MNL in 

Table 1 are for a specification that simply combines the features of the current MXL and SH 

specifications with ߛ ൌ ͲǤ The full G-MNL model provides flexibility in how scale and taste 

heterogeneity are combined but can involve a large number of parameters especially when 

there is a large number of alternatives and their random coefficients are assumed to be 

correlated. Given the relatively small sample size in the case study this parsimonious 

specification is a sensible choice here. 

 

The specification is completed by choosing distributions that capture the individual 
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heterogeneity. Preference heterogeneity is often specified to follow a multivariate normal 

distribution. This is what has been assumed in the results used to generate MXL and G-MNL 

in Table 1. In principle, the choice of distribution is flexible, but in practice normality is by far 

the most common choice. Lognormality is another popular option used when restricting 

coefficient signs. Scale heterogeneity in the SH and G-MNL models is assumed to be: 

 ሺ͹ሻ ߣ௜ ൌ exp൫ߣҧ ൅ ߬߭௜൯  
 

where  ɓ୧̱ܰሺͲǡͳሻ and ߣҧ  is a normalizing constant required to ensure identification of ߣ௜. 
Note, the GMNL results in Table 1 include scaling the ASC; in other situations it may be 

problematic to do so; see Fiebig et al. (2010) for further discussion.  The additional 

parameter ߬ provides a measure of scale heterogeneity. If ߬=0, the G-MNL model reduces to 

a standard MXL specification. The work of Fiebig et al. (2010) highlights the empirical 

importance of accommodating this extra dimension of heterogeneity. One attraction of this 

specification of scale heterogeneity, is a considerable amount of flexibility with the addition 

of only one parameter. In principle, researchers have considerable flexibility in choosing 

these distributions but in practice most are confined to what options are offered in available 

software. (Again these are issues to be addressed below in Section 3.) 

 

We stress that there are different approaches to model specification. An alternative to 

specifying random coefficient models that is quite popular in applications is to assume that 

there are a finite number of types where parameters vary within but not across types. So 

modelling heterogeneity is again the motivation but finite mixture or latent class models 

result; see [30] for an example.  Keane and Wasi (2013)[32] provide a comparison of the two 

approaches in terms of fit and while they do not proclaim a clear winner they do suggest 

that G-MNL performs well in comparison with finite mixture  models in part because the 

former tends to be more parsimonious.  

 

 

2.3 Best-worst and best-best discrete choice models 

The term best-worst scaling (BWS) has been used somewhat loosely in the literature.  It is in 

fact a generic term that covers three specific cases: (1) best-worst object scaling, (2) best-

worst attribute scaling and (3) best-worst discrete choice experiments (BWDCE).  All three 

involve asking respondents to choose the best and worst (most and least preferred) from a 

set of three or more items.  In reverse order, respondents choose best and worst between 

alternatives in (3); between attribute levels within a single alternative or profile in (2) and 

between whole objects (or sometimes statements, principles etc.) which are not 

decomposed into attributes in (1). See [14] [15] for further description and comparison of 

the three cases.  Here we focus on BWDCEs for two reasons.  First, they are the form of BWS 

closest to traditional DCEs, or can be thought of as a specific type of DCE. Second, the 

models we discuss here for BWDCE data can readily be applied to the other two types of 

BWS.   

Like standard DCEs, respondents make repeated choices between alternatives offered in 

choice sets, each described by a number of attributes.  However, BWDCEs are designed to 

elicit extra preference information per choice set by asking respondents not only to choose 

the best option but also to sequentially choose the worst option, potentially followed by 
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choice of best of the remaining options and so on until an implied preference ordering is 

obtained over all alternatives in a set. For a choice set containing J alternatives, respondents 

can be asked to make (and the analyst build models based on) up to J-1 sequential best and 

worst choices. At a minimum, a BWDCE doubles the number of observations for analysis (or 

more if more alternatives are included per set and additional best and worst questions are 

answered), which in turn can be used to increase the statistical efficiency of the choice 

models or reduce sample sizes for a given target number of observations [14].  By providing 

a higher number of degrees of freedom for analysis, the extra preference data obtained via 

BWDCEs also opens up new research avenues such as the estimation of individual level 

models [5], something generally not possible with the amount of data collected per person 

in a standard DCE.  

 

More recently, Ghijben et al. (2014) introduced a variation of BWDCE, namely a best-best 

DCE in which best is chosen from the full choice set followed by repeated choice of best 

(instead of worst) from the remaining alternatives until a preference order is obtained over 

all alternatives and used this elicitation process in their study.  Like a BWDCE, this increases 

the number of observations collected per choice set but does so without asking respondents 

to swap to a new mental task of choice of worst.   

 

We discuss three ways to analyse best-worst data that account for varying amounts and 

composition of preference information. The first is to simply harness the first (best) choice 

in each choice set, ignoring the additional choice data using models outlined above in 

Section 2.2 (as done by [33, 34]).  Alternatively, the additional preference information 

obtained from a BWDCE can be used to estimate discrete choice models by noting that the 

best and worst choice questions produce an implied rank order over alternatives which can 

be modelled with rank ordered logit (ROL) (e.g. [35, 36]).  ROL ([37-39] models the 

probability of a particular ranking of alternatives as the product of MNL models for choice of 

best.  For example, the ranking of three alternatives A>B>C is modelled as the product of 

the (MNL) probability of choosing A as best from the set (A B C) times the probability of 

choosing B as best from the remaining alternatives (B C) 

 

(8) Prሺܣ ݃݊݅݇݊ܽݎǡ ǡܤ ሻܥ ൌ Prሺݏ݅ ܣ ͳݐݏܾ݁ ݐݏሻ כ Prሺݐݏܾ݁ ݀݊ʹ ݏ݅ ܤሻ ൌ expሺ ஺ܸሻσ exp൫ ௝ܸ൯௝ୀ஺ǡ஻ǡ஼ כ exp ሺ ஻ܸሻσ exp ሺ ௝ܸሻ௝ୀ஻ǡ஼  

 

Subscripts are omitted for notational brevity. In using ROL to estimate the implied 

preference order from a BWDCE the best-worst structure used to generate that order is 

ignored since ROL assumes best (not worst) is chosen from successively smaller choice sets. 

In contrast, the ROL matches exactly the data generation process of a best-best DCE in 

which best is chosen from successively smaller choice sets.  The data are modelled using 

ROL in Table 1. 

 

The sequential best-worst MNL (SBWMNL) model [14, 35] directly models the series of 

sequential best and worst choices made in each choice set as the product of MNL models. 

Using the above example of a choice set containing three alternatives (A B C), the 

probability of observing the preference order A>B>C is modelled as the (MNL) probability of 

choosing A as best from the set (A B C) times probability of choosing C as worst from the 
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remaining alternatives (B C) which can be expressed as 

 

(9) Prሺܾ݁ܣ ݃݊݅ݎ݁݀ݎ݋ ݐݏݎ݋ݓ ݐݏǡ ǡܤ ሻܥ ൌ Prሺݐݏܾ݁ ݏ݅ ܣሻ כ Prሺݐݏݎ݋ݓ ݏ݅ ܥሻ                                                                               ൌ ୣ୶୮ ሺ௏ಲሻσ ୣ୶୮ ሺ௏ೕሻೕసಲǡಳǡ಴ ൈ ୣ୶୮ ሺି௏಴ሻσ ୣ୶୮ ሺି௏ೕሻೕసಳǡ಴   

 

Here the best-worst ordering of the three alternatives is represented as the two choices 

made by respondents per choice set in the BWDCE and the deterministic part of utility of 

choosing an alternative as worst is modelled as the negative of the deterministic utility of 

choosing that alternative as best. SBWMNL models the choice data in the way they were 

generated so that the worst choice is modelled in the second MNL model in equation (8) 

and the composition of the denominator reflects the actual choice sets considered by 

respondents associated with each choice set in the sequence.   

 

Equations (7) and (8) can both be generalized to account for the types of heterogeneity 

discussed in Section 2.2. For example, Lancsar et al. (2013)[14] demonstrated how mixed 

logit, heteroscedastic logit and G-MNL versions of ROL and SBWMNL could be estimated.  

The mechanics of doing so is made very straight forward due to the fact that (as we will 

discuss in Section 3) both ROL and the SBWMNL models can be estimated by ͞exploding͟ 

the data into the implied choice sets and then estimating MNL on the exploded data.  As 

such, it is straightforward to estimate any of the models discussed earlier on rank or best-

worst data. In the final column of Table 1 we present the estimates for the mixed ROL 

(MROL) that reproduces the specification B results from Table 3 in Ghijben et al. (2014). 

Thus these results are directly comparable to the MXL estimates in Table 1 that just uses the 

first best choice. 

 

2.4 Post estimation 

Good econometric practice suggests one should conduct various robustness checks to 

ensure the internal validity of the estimated model. When dealing with revealed preference 

data a constant threat is omitted variable biases meaning that effects of interest may be 

very sensitive to the variables not included in the model. This is much less of a concern with 

stated preference data where the effects of interest are typically associated with the 

attributes that are created as part of the experimental design, meaning that there is 

typically no correlation between attributes and no reason to believe they will be correlated 

with respondent characteristics.  For omitted variable biases to arise in stated preferences, 

attributes would need to be omitted from the design that lead respondents to change their 

evaluation of included attributes because of expectations about the relationship between 

omitted and included attributes. This would lead to biased estimates of coefficients of 

included attributes and these biases could depend on respondent characteristics. But such 

problems can readily be minimized at the design stage and is an argument for avoiding 

simple designs with minimal numbers of attributes. 

 

What is a potential threat are features of the design such as when respondents are assigned 

to different versions of the survey. In the case study the authors included a dummy variable 

to control for block effects. From Table 1 we see that these effects are never statistically 

significant at any conventional level and so at least in this dimension one should be 

confident about the results.  
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Often issues of model choice can be resolved by testing restrictions associated with nested 

versions of more general models. Because maximum likelihood is the basis for estimation 

likelihood ratio tests can easily be conducted for this purpose. For example, in Table 1 MNL, 

MXL and SH are nested within G-MNL. It is wise to remember that except for MNL, the log-

likelihood function is simulated rather than known exactly and so subject to simulation 

noise. In the case of non-nested models such as a comparison between MXL and SH or 

between MROL and MXL information criteria such as AIC and BIC may be used to 

discriminate between alternative models.  

 

While model fit may provide some guidance in choice of models, often what is more 

important is the specific research question being considered and the specific features of the 

data being used and how they map into the model being considered. For example, if data 

are being pooled across very different subsamples of respondents, scale heterogeneity 

would be an obvious concern; see for example [29]. If one is simulating the impact of the 

introduction of a new product or treatment as in [34] then it would be prudent to avoid 

MNL and allow for flexible substitution patterns.     

 

Section 3.4 discusses other post-estimation issues, such as how the estimated model can be 

used to generate measures of marginal willingness to pay (mWTP) and carry out predictive 

analyses.   

 

 

3. Software and estimation  

 

3.1 Discrete choice  

This section provides an overview of software for estimating the models described in the 

previous section. The focus will be on general statistics/econometrics packages with built-in 

commands for estimating discrete choice models3, rather than programming languages 

which require user-written code.4  

 

Nlogit 

Nlogit (www.limdep.com/products/nlogit) is an extension of the Limdep statistical package. 

It has a very comprehensive set of built-in commands for estimating discrete choice models, 

and can be used to estimate all of the models covered in Section 2. It has various post-

estimation routines for generating predicted probabilities, performing simulations and 

calculating elasticities.  Nlogit is relatively easy to use and comes with a comprehensive PDF-

manual. 

 

Stata 

                                                      
3
 Our overview is not exhaustive as other software packages capable of estimating some of the discrete choice 

models in our review are available. The three packages that we have reviewed are among the most commonly 

used for estimating these models, however.  
4
 This implies that we will not cover software such as Gauss, Matlab and R, despite there being excellent 

routines written in these packages for estimating e.g. mixed logit models. A prominent example is Kenneth 

TƌĂŝŶ͛Ɛ ĐŽĚĞƐ ĨŽƌ ŵŝǆĞĚ ůŽŐŝƚ ĞƐƚŝŵĂƚŝŽŶ ;ĂǀĂŝůĂďůĞ Ăƚ http://eml.berkeley.edu/~train/software.html), which 

served as inspiration for many of the routines later introduced in other statistical packages.    
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Stata (www.stata.com) is a general statistics package which offers a broad range of tools for 

data analysis and data management. While it has fewer built-in commands for estimating 

discrete choice models than Nlogit, there is a range of user-written commands freely 

available that can be used to implement the methods covered in Section 2 [40-43]. It has 

routines for generating predicted probabilities, and simulations can be performed and 

elasticities calculated by using the generated probabilities. Like Nlogit, Stata is relatively 

easy to use and comes with a comprehensive PDF-manual. User-written commands are 

often documented in articles published in the Stata Journal (www.stata-journal.com).  

 

Biogeme
5
 

Unlike Stata and Nlogit, which are general statistical packages, Biogeme (biogeme.epfl.ch) is 

specifically created for estimating discrete choice models. It also stands out for being the 

only package of the three which is free; both Stata and Nlogit require the user to pay a 

licence fee. Biogeme is capable of estimating MNL models with both linear and non-linear 

utility functions and with random coefficients, which means that all of the models covered 

in Section 2 can be implemented. It also has a routine for performing simulations (biosim). 

While Biogeme is somewhat less easy to use for beginners than Stata and Nlogit in our 

experience, the documentation is comprehensive and has helpful examples. Since Biogeme 

requires a somewhat higher initial time investment, it is recommended in particular for 

more advanced users that wish to go beyond standard model specifications. As Biogeme has 

fewer built-in commands for data management than Stata and Nlogit, it will often be 

necessary to use an alternative software package to set up the data in the form required by 

Biogeme. 

 

Table 2: A summary of the modelling capabilities of the main software packages covered 

in the review 

Software 

Package 

MNL MXL 

 

Latent class MXL Bayesian  G-MNL 

Nlogit      

Stata  UW UW UW UW 

Biogeme      
Notes: This is not an exhaustive list; all of the packages have options for estimating other discrete choice 

models not covered in this review. The packages differ in terms of which distributions are supported for the 

random coefficients in the mixed logit routines, with Nlogit having the widest selection of distributions. GMNL 

can be fit in Biogeme by exploiting the option for specifying non-linear utility functions, however it is less 

straightforward to do than in the other two packages. Scaled ASCs are the default GMNL option in Stata and 

Nlogit and can be done in Biogeme. However, this can be potentially problematic depending on the context 

and model and we suggest testing with and without scaling the ASC (in our case it made little difference).  UW 

= user-written. MNL (multinomial logit); MXL (mixed logit); GMNL (generalised multinomial logit) 

 

To sum up, Nlogit, Stata and Biogeme are all good options for estimating discrete choice 

models. We would argue that there is no ͞ŽŶĞ ƐŝǌĞ ĨŝƚƐ Ăůů͗͟ no package strictly dominates 

the others, and it will therefore be up to the individual user to choose the package that best 

suits their needs. As mentioned, BŝŽŐĞŵĞ ŚĂƐ ƚŚĞ ĂĚǀĂŶƚĂŐĞ ƚŚĂƚ ŝƚ͛Ɛ ĨƌĞĞ ĂŶĚ ǀĞƌǇ 
powerful, but requires a somewhat greater time investment on the part of the user to learn 

how to use it effectively. Nlogit has a very comprehensive set of built-in commands which 

                                                      
5
 Two versions of Biogeme are available: BisonBiogeme and PythonBiogeme. We focus on BisonBiogeme, 

which is designed to estimate a range of commonly used discrete choice models. 



18 

 

cover most, if not all, of the models that the majority of DCE analysts would want to 

estimate. Stata has a less comprehensive set of built-in commands, but has user-written 

routines which cover the most commonly used models. Both Nlogit and Stata have the 

advantage that all data processing and cleaning can be done in the same package which is 

used to run the analysis. All three packages have active on-line user group discussion forums 

where queries are typically answered quickly. The forum archives are searchable, and 

ĐŽŶƚĂŝŶ Ă ǁĞĂůƚŚ ŽĨ ƵƐĞĨƵů ŝŶĨŽƌŵĂƚŝŽŶ ŝŶ ƚŚĞ ĨŽƌŵ ŽĨ ƉĂƐƚ ƋƵĞƐƚŝŽŶƐ ĂŶĚ ĂŶƐǁĞƌƐ͕ ƐŽ ŝƚ͛Ɛ 
typically worth spending some time searching the archives before posting a new question.  

 

 

3.2 Estimation of discrete choice models 

 

3.2.1 Data setup 

Before proceeding to the estimation stage the analyst needs to organise the data in the way 

required by the estimation software. In general there are two ways the data can be 

organized: ͚long form͛ (see Appendix 1) and ͚wide form͛ (see Appendix 2):  

 

 Long form, which is the data structure required by Stata and Nlogit6, implies that the 

dataset has one row per alternative for each choice scenario that the decision-

makers face. Thus, with ܰ decision-makers choosing amongst ܬ alternatives across ܵ 

scenarios the dataset will have ܰ ൈ ܬ ൈ ܵ rows. The dependent variable is coded 1 

for the chosen alternative in each scenario and 0 for the non-chosen alternatives.  

 

 Wide form, which is the data structure required by Biogeme, implies that the dataset 

has one row for each choice scenario that the decision-makers face. The dataset will 

therefore have ܰ ൈ ܵ rows. In this case the dependent variable is coded ͳǡ ǥ ǡ  ,ܬ

indicating the chosen alternative. Each design attribute will have ܬ associated 

variables, containing the level of the attribute for the respective alternative. This 

contrasts with the long form structure, where there is only one variable per design 

attribute. 

 

Both Stata and Nlogit have built-in commands for transforming the dataset from long to 

wide form, and vice versa. For convenience the example dataset is available as 

supplementary material in both long and wide form. 

 

When the data is in long form, ASCs can be defined as a dummy variable which is equal to 

one in the row corresponding to the relevant alternative and zero otherwise. Alternative-

specific coefficients can then be estimated by interacting the ASCs with the desired 

attribute(s) and including the interactions in the model. In Biogeme such effects are 

specified by explicitly defining the utility function of the different alternatives, an option 

which is also available in Nlogit.  More generally, categorical attributes and covariates can 

be coded as dummy variables or effects coded, either being appropriate as long as 

interpreted appropriately [44, 45]. Indeed even for continuous variables (e.g. price), it can 

often prove useful to initially treat the levels as categorical in exploratory testing in order to 

                                                      
6
 Nlogit also optionally allows the data to be organized in wide form, although the manual suggests that long 

form is typically more convenient. 
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plot the coefficients to help inform choice of functional form for the continuous variable. 

 

 

3.2.2 Other estimation issues 

Implementing the models presented in Section 2 in practice requires the analyst to make a 

number of choices at the estimation stage.7 As we will show these choices can impact on the 

results, and it is therefore recommended to carry out a sensitivity analysis to examine the 

robustness of the findings.  

 

Starting values 

Estimating the parameters in the model involves maximising a non-linear log-likelihood 

function, and the maximisation process requires the user to provide an initial guess of the 

parameter values.8 The software package then searches for improvements in the log-

likelihood iteratively, by changing the values of the parameters using an optimisation 

algorithm. In the case of the MNL model the choice of starting values typically does not 

matter in practice, as the MNL log-likelihood function has a single maximum. The algorithm 

will therefore find the maximum even if the starting values are far from the values that 

maximize the log-likelihood. In the case of models such as MXL and G-MNL, however, 

matters are less simple. For those models the log-likelihood may have several optima, of 

which only one is the overall (global) optimum which we seek to identify. Starting from a set 

of parameter values far away from the global optimum may lead the algorithm to identify 

one of the inferior local optima, at which point the algorithm will declare convergence as it 

cannot distinguish between local and global optima. Only the parameter values associated 

with the global optimum have the desirable properties of maximum likelihood estimates, 

and it is therefore recommended to investigate the sensitivity of the results to a different 

choice of starting values. Hole and Yoo (2014)[46] discuss these issues in the context of the 

G-MNL model. Czajkowski anĚ BƵĚǌŝŷƐŬŝ (2015) [47] find that increasing the number of 

simulation draws (see below) improves the chance of the algorithm converging to the global 

optimum.     

 

Simulation draws 

Another issue that the analyst needs to be aware of when estimating MXL and G-MNL 

models is that the log-likelihood function must be approximated using simulation methods, 

as it cannot be calculated analytically. Simulation methods involve taking a large number of 

random draws, which represent the distribution of the coefficients at the current parameter 

values. As the draws are generated by a computer they are not truly random, but created 

using an algorithm designed for the purpose of generating draws which have similar 

properties to random draws. The analyst needs to decide how many draws to use to 

approximate the log-likelihood function and which method to use to generate the draws. 

Regarding the number of draws there is a tradeoff between accuracy and estimation time; a 

large number of draws gives a better approximation of the true log-likelihood function, but 

slows down the estimation process. It is therefore common to start with a relatively small 

number of draws at the exploratory stage, for example using the default setting in the 

                                                      
7
 Interested readers are referred to chapters 8-10 in Train (2009) for more information about the issues 

covered in this section. 
8
 Both Nlogit and Stata will use a default set of starting values unless explicitly specified by the user, while 

Biogeme requires the user to specify the starting values. 
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software used.9 It is then strongly advisable to check for the stability of the final solution to 

be reported in a paper, report etc. by increasing the draws. The number of draws required 

to stabilize the results will depend on the model specification; typically a larger number of 

draws is needed if there are more random coefficients in the model. The number of draws 

required is also related to the method chosen to generate the draws. For example, in the 

context of mixed logit estimation, 100 Halton draws have been found to be more accurate 

than 1000 pseudo-random draws [48, 49]. For this reason Halton draws are often used 

when estimating MXL and G-MNL models.10 

 

Table 3 below shows the results from estimating a simplified version of the MXL model 

described in Section 2 (Model A from Ghijben et al., 2014) in Nlogit, Stata and Biogeme. The 

starting values are set at the default values in Nlogit and Stata, and the Biogeme starting 

values are set to be identical to the Stata default values.11 While it can be seen that there 

are no qualitative differences between the results ʹ the coefficients have the same sign and 

significance and the point estimates are similar - they are not exactly identical. This is in 

spite of using the same number of simulation draws (500) and the same method for 

generating the simulation draws (Halton).12 As long as the results do not differ to the extent 

that it has an impact on the substantive implications of the findings, however, this should 

not give much cause for concern.     

 

Table 3: Results from estimating a MXL model in the different software packages* 

 Nlogit Stata Biogeme 

 Coef. SE Coef. SE Coef. SE 

Stroke risk 0.706 0.060 0.706 0.060 0.706 0.060 

Bleed risk 0.578 0.049 0.578 0.049 0.578 0.049 

Antidote 0.600 0.081 0.600 0.081 0.600 0.081 

Blood test -0.082 0.077 -0.082 0.077 -0.082 0.077 

Dose frequency -0.089 0.077 -0.089 0.077 -0.089 0.077 

Drug/food interactions -0.340 0.079 -0.340 0.079 -0.340 0.079 

Cost -0.012 0.001 -0.012 0.001 -0.012 0.001 

ASC x block -1.051 0.862 -1.003 0.856 -1.000 0.854 

ASC (mean) 3.108 0.759 3.086 0.750 3.090 0.742 

ASC (SD) 3.102 0.492 3.069 0.477 3.050 0.478 

Log-likelihood -791.03 -790.91 -790.85 

                                                      
9
 The default number of draws is 100 in Nlogit, 50 in Stata and 150 in Biogeme. 

10
 In models with several random coefficients alternative approaches such as shuffled or scrambled Halton 

draws 50. Hess S, Train KE, Polak JW. On the use of a Modified Latin Hypercube Sampling (MLHS) 

method in the estimation of a Mixed Logit Model for vehicle choice. Transportation Research Part B: 

Methodological. 2006;40(2):147-63.or Sobol draws 51. Garrido RA. Estimation performance of low 

discrepancy sequences in stated preferences.  10th International Conference on Travel Behaviour Research. 

Lucerne2003, 52. MƵŶŐĞƌ D͕ L͛EĐƵǇĞƌ P͕ BĂƐƚŝŶ F͕ CŝƌŝůůŽ C͕ TƵĨĨŝŶ B͘ EƐƚŝŵĂƚŝŽŶ ŽĨ ƚŚĞ ŵŝǆĞĚ ůŽŐŝƚ ůŝŬĞůŝŚŽŽĚ 
function by randomized quasi-Monte Carlo. Transportation Research Part B:Methodological. 2012;46(2):305-

20. are sometimes used to minimise the correlation between the draws, which can be substantial for standard 

Halton draws in higher dimensions. See Train (2009, chapter 9) for a discussion.  
11

 NůŽŐŝƚ ĂŶĚ “ƚĂƚĂ͛Ɛ ĚĞĨĂƵůƚ ƐƚĂƌƚŝŶŐ ǀĂůƵĞƐ ĂƌĞ ƚŚĞ MNL ƉĂƌĂmeters for the means of the random coefficients 

and 0 (Nlogit)/ 0.1 (Stata) for the standard deviations. 
12

 Differences can still arise, for example because the optimisation algorithms differ in the three packages, 

subtle differences in terms of how the Halton draws are generated and different starting values (in this case 

Stata/Biogeme vs Nlogit). 
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*The following versions were used for estimation: Stata 14.2, NLOGIT 5 and Biogeme 2.0. Coeff (coefficient); 

SE (standard error). 

 

3.3 Estimation of best-worst and best-best models 

Estimation of choice models harnessing just the first best choice from best-worst or best-

best data proceeds as outlined in Section 3.1.  Estimation of ROL in Stata involves the rologit 

command. In Nlgoit ROL models can be estimated using the rank as the dependent variable 

ĂŶĚ ĂĚĚŝŶŐ ͞ƌĂŶŬƐ͟ ƚŽ ƚŚĞ ƵƐƵĂů ŵŽĚĞů ƐǇŶƚĂǆ͘  IŶ BŝŽŐĞŵĞ ƚŚĞ Ěata need to be exploded 

manually (See Appendix 3).  Indeed, an attractive property of both ROL and SBWMNL is that 

they can be estimated using standard MNL (or extensions such as MIXL, G-MNL etc.) after 

the data have been set up appropriately.  In fact, ROL is ĂůƐŽ ŬŶŽǁŶ ĂƐ ͞ĞǆƉůŽĚĞĚ ůŽŐŝƚ͟ 

because, drawing on the IIA property of MNL models, it can be estimated by exploding the 

data from each choice set into statistically independent choice subsets.  For a choice set 

with J alternatives, the data can be expanded into J-1 sub choice sets.  For example, for a 

ranking over J=3 alternatives, the data can be exploded into two sub choice sets.  The first 

contains three rows of data representing the three alternatives contained in the original 

choice set with the dependent variable equal to 1 for the alternative ranked first (chosen as 

best) and 0 for the remaining alternatives which is identical to data set up for standard first 

best choice model.  The second sub choice set identifies best from the remaining 2 

alternatives and contains two rows of data pertaining to the two alternatives not ranked 

first with the dependent variable equal to 1 for the alternative ranked second (chosen as 

best from the two on offer) and 0 for the remaining alternative.  So for each original choice 

set containing 3 alternatives, there are five rows of data13.  Once the rankings are exploded 

in the dataset to the implied choices made in each of the subsets, the ROL parameters can 

be estimated using a traditional MNL model (or extensions of the MNL model) from the 

expanded choice data.  Indeed, prior to ROL routines being programmed in software 

packages, this was the standard way to estimate a ROL. A good check that the data have 

been exploded correctly before moving on to more sophisticated models accounting for 

unobserved heterogeneity etc. is to run an MNL (e.g. via the clogit or asclogit command in 

Stata) on the exploded data and then run a ROL on the un-exploded data (e.g. using rologit 

in Stata).  The results should be identical in all decimal places.  

 

In all three software packages (Stata, Nlogit and Biogeme), the data need to be exploded to 

estimate SBWMNL models. Like the ROL model, estimation of the SBWMNL model draws on 

the IIA property and exploits the additional preference information obtained in each choice 

set in a BWDCE, expanding the data in a similar but slightly different way.  Again, for a 

choice set with J alternatives, the data can be exploded into J-1 sub choice sets.  So data 

from a choice set containing 3 alternatives from which best and worst are chosen are 

expanded into two sub choice sets.  The first contains three rows of data corresponding to 

the three alternatives presented in the original choice set with the dependent variable equal 

to 1 for the alternative chosen as best, and 0 for the remaining alternatives.  The second sub 

choice set contains two rows of data representing the two alternatives not chosen as best in 

the full choice set with the dependent variable equal to 1 for the alternative chosen as 

worst and 0 for the remaining alternative.  Thus, again for each original choice set 

containing 3 alternatives, there are 5 rows of data.  In addition, for the sub choice set in 

                                                      
13

 Applying this procedure modifies the data from the standard set up in Appendix 1 to the exploded set up in 

Appendix 3. 
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which worst is chosen the utility of worst is scaled to be the negative of the utility of best 

which in practice means multiplying the data for the alternatives in the second sub choice 

set by -1.  Parameters can then be estimated using MNL (or its extensions) on the exploded 

choice data.  Code for all estimation contained in this paper is provided in Appendix 4. 

 

3.4 Post estimation 

 

As discussed in Section 2.4 issues of model choice can be resolved by testing restrictions 

associated with nested versions of more general models. Such tests can easily be carried out 

using the tools available in Nlogit and Stata for performing Wald tests. In all packages an 

alternative approach is to carry out a likelihood ratio test using the reported simulated log 

likelihood values for the restricted and unrestricted models. 

 

Information criteria such as AIC and BIC may be used to discriminate between alternative 

models which are not nested. Apart from the examples mentioned in Section 2.4 this can be 

useful when assessing the goodness of fit of MXL models with different distributions for the 

random coefficients, for example. The information criteria can be readily calculated in all 

packages using the reported simulated log likelihood values, along with the relevant 

information regarding the number of parameters in the competing models and (in the case 

of BIC) the sample size. 

 

It is worth re-iterating that while model fit may provide some guidance in choice of models 

often what is more important is the specific research question being considered and the 

specific features of the data being used. Rather than choosing one preferred specification it 

is typically better to report the output of interest (such as mWTP measures, predictive 

analyses) for a range of model specifications and compare and contrast the results, as 

demonstrated below. 

 

Marginal willingness to pay measures 

Calculating marginal willingness to pay measures is a convenient and useful way to compare 

attribute estimates. mWTP can be derived as the marginal rate of substitution between 

attribute Xk and cost (C):  

 ሺͳͲሻ ܹ݉ܶܲ௑ೖ ൌ െ ஼ܷܯ௑ೖܷܯ  

 

where ܷܯ௑ೖ and ܷܯ஼  are the marginal utilities of attribute Xk and cost, respectively. When 

the utility function is specified to be linear in parameters the marginal utility of an attribute 

is equal to its coefficient, which means that mWTP is given by the negative of the ratio of 

the coefficients for attribute Xk and cost.  In Table 4, we use the MNL, MXL and MROL 

results from Table 1 to produce mWTP estimates for the most important attributes, stroke 

risk and bleed risk. The latter replicate the results in Table 4 in Ghijben et al. (2014).  

 

Table 4: Selected estimates of marginal willingness to pay for a subset of attributes using 

data from Ghijben et al. (2014)* 

 MNL MXL MROL 

 Estimate Estimate Estimate 
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(95% CI) (95% CI) (95% CI) 

Stroke risk 68.37  

(44.24-92.51) 

70.53  

(44.31-96.75) 

50.48  

(33.68-67.28) 

Bleed risk  

(without antidote) 

67.02  

(42.29-91.75) 

67.66 

(41.09-94.23) 

54.87  

(35.70-74.05) 

Bleed risk  

(with antidote) 

34.02 

(18.55-49.50) 

38.36 

(21.93-54.79) 

35.70 

(21.70-48.99) 

* mWTP/month in AUD$ for a 1 percentage point reduction in absolute risk   MNL (multinomial logit); MXL 

(mixed logit); MROL (mixed rank ordered logit). CI (confidence interval). 

 

The MNL results indicate that, for example, the willingness to pay for a one-percentage-

point reduction in the stroke risk is about 69 AUD per month. The remaining estimates can 

be interpreted in an analogous way. The estimates are reasonably stable across models, 

with the MNL and MXL estimates being especially close while the MROL stroke risk mWTP is 

somewhat of an exception. If we refer back to the actual parameter estimates used in these 

calculations, those for MNL are systematically smaller in magnitude, a scaling effect, but 

those for MXL and MROL are very similar as we would expect.  

 

While mWTP measures are straightforward to calculate when the utility function is linear in 

parameters, routines for obtaining confidence intervals using either the delta method or 

parametric (Krinsky-Robb) or non-parametric bootstrapping [53] are useful since a measure 

of the precision of the estimates should always be reported. Such routines are available in 

both Nlogit and Stata. In some cases the assumption of linearity is not appropriate, as a 

researcher may want to allow the marginal utility of a change in an attribute to depend on 

the level of the attributes (e.g. due to interactions or non-linear functional form; see 

e.g.[33]). In such cases the calculation of mWTP is slightly more involved, but we can still use 

general routines for calculating non-linear combinations of parameters in Stata and Nlogit to 

obtain point estimates and measures of precision.  

 

Calculating mWTP measures following the estimation of a model with random coefficients, 

such as MXL or G-MNL, can be more complicated depending on the model specification. If 

both the attribute coefficient and the cost coefficient are fixed, as in our examples, the 

calculation is the same as for the MNL model. If the attribute coefficient is normally 

distributed and the cost coefficient is fixed, which is a common specification, the mean 

mWTP is simply given by the ratio of the mean attribute coefficient to the negative of the 

estimated cost coefficient. Relaxing the assumption that the cost coefficient is fixed can lead 

to complications: a normally distributed cost coefficient, for example, leads to a distribution 

for mWTP that has no defined mean since the cost coefficient can now be equal to zero. 

Researchers therefore often choose a distribution for the cost coefficient which is 

constrained to be negative to avoid this problem, such as the negative of a log-normal 

distribution.14 While this solves the problem of the mWTP distribution not having a defined 

mean it can lead to a non-standard distribution whose mean may not be straightforward to 

                                                      
14

 Log-normal parameter distributions are supported by all of the packages. The negative of the log-normal can 

easily be implemented by multiplying the price attribute by -1 before entering the model. This is equivalent to 

specifying the negative of the price coefficient to be log-normally distributed. The sign of the coefficient can 

easily be reversed post-estimation. 
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calculate.15 One solution is to approximate the mean using simulation by taking many draws 

from the distribution of the attribute coefficient and the price coefficient, calculate the ratio 

for each draw and taking the average of the calculated ratios. If we take a large number of 

draws the resulting average should be close to the true mean of the mWTP distribution.  

 

An alternative to estimating the model in the usual way and calculating mWTP as the ratio 

of parameters is to reformulate the model so that mWTP is estimated directly. This 

approach, called estimation in willingness-to-pay space [54], is appealing as it avoids the 

complications described above. The recent paper by Ben-Akiva et. al. (2015)[55] covers this 

estimation approach in detail with illustrative examples. Estimation in WTP-space is 

supported in both Nlogit and Stata, and is possible to implement in Biogeme by exploiting 

the option for specifying non-linear utility functions. 

 

The marginal willingness to pay measures can be conditioned on observed choices to obtain 

individual-level estimates of mWTP; see for example [30, 56]. The individual-level mWTP 

measures can be useful for policy analysis, for example to identify respondents who are 

likely to benefit particularly highly from a policy improvement. 

 

Predictive analysis 

A predictive analysis is an extremely flexible post estimation tool. It is a convenient way to 

characterize how predicted probabilities change in response to changes in attributes as well 

as providing a means to simulate interesting scenarios. We illustrate the former here and 

refer interested readers to [57] for an application involving policy changes and for 

applications where the impact of the introduction of a new product is investigated see [34] 

and [11] who operationalize procedures outlined in Train (2009)[49]. 

 

Again using the MNL, MXL and MROL results from Table 1 consider a base case where all 

attributes have been set to zero. This produces predicted probabilities for each of the 

ĞƐƚŝŵĂƚŝŽŶ ŵĞƚŚŽĚƐ ŐŝǀĞŶ ŝŶ ƚŚĞ ƌŽǁƐ ůĂďĞůĞĚ ͞BĂƐĞůŝŶĞ͟ ŽĨ TĂďůĞ 5. Then subsequent rows 

show how these predicted probabilities would change in response to two particular changes 

in the attributes of Drug B. The first is a AUD$50 increase making Drug B less attractive and 

the second that makes Drug B more attractive is a 1percentage point eduction in stroke risk. 

Each of these changes in Drug B is simulated separately and so the appropriate comparison 

in each case is with reference to the baseline probabilities.  

 

Nlogit, Stata and Biogeme all have built-in routines for conducting predictive analyses. 

Confidence intervals for the predictions can be generated by taking many draws from the   

attribute coefficients, generating the predicted probabilities of interest for each draw and 

calculating the desired percentiles of the generated distributions. 

Table 5: Comparison of predictions for each alternative in response to changes in selected 

attributes using data from Ghijben et al. (2014)* 

 No treatment  Drug A Drug B 

 

Probability 

(95% CI) 

Probability 

(95% CI) 

Probability 

(95% CI) 

MNL    

                                                      
15

 One exception is when both the attribute coefficient and the negative of the price coefficient are log-

normally distributed, in which case the distribution of mWTP is also log-normal. 
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Baseline 0.165  

(0.079-0.317) 

0.417  

(0.341-0.461) 

0.417 

(0.341-0.461) 

Increase cost of $50 for Drug B   0.198 

(0.098-0.363) 

0.501 

(0.394-0.567) 

0.301 

(0.238-0.348) 

Reduction of 1% in stroke risk for Drug B  0.116 

(0.054-0.234) 

0.294 

(0.244-0.331) 

0.590 

(0.515-0.640) 

MXL    

Baseline 0.177 

(0.020-0.389)  

0.412 

(0.306-0.490)  

0.412 

(0.306-0.490) 

Increase cost of $50 for Drug B   0.193 

(0.025-0.408) 

0.511 

(0.377-0.620) 

0.295 

(0.215-0.366) 

Reduction of 1% in stroke risk for Drug B  0.148 

(0.013-0.348) 

0.269 

(0.199-0.327) 

0.583 

(0.445-0.682) 

MROL    

Baseline 0.243 

(0.174-0.336) 

0.379 

(0.332-0.413) 

0.379 

(0.332-0.413) 

Increase cost of $50 for Drug B   0.273 

(0.200-0.372) 

0.486 

(0.415-0.542) 

0.242 

(0.203-0.279) 

Reduction of 1% in stroke risk for Drug B  0.204 

(0.142-0.289) 

0.263 

(0.226-0.298) 

0.533 

(0.474-0.581) 

* Notes: (i) These are the probabilities that each alternative is chosen as best.  

(ii) Baseline refers to the case when all of the attributes for Drug A and Drug B are set to zero.  

(iii) Each variation in attribute level is simulated one at a time and only selected variations have been 

reported.  MNL (multinomial logit) MXL (mixed logit); MROL (mixed rank ordered 
logit) 

 

The implications of IIA are clear from the changes in MNL predicted probabilities in 

comparison with those for MXL and MROL. For example, the response to the cost change 

implies a dramatic predicted shift away from Drug B but in the case of MNL the change in 

predicted probabilities is such that relativities between say Drug A and No treatment are 

maintained at the baseline level; (0.501/0.198)=(0.417/0.165)=2.55. In contrast, the 

increase in the predicted share of Drug A is proportionally larger in the case of MXL and 

MROL implying a more realistic substitution pattern.  We note that the above analysis 

differs to the predicted probability analysis presented in Ghijben et al. (2014) where more 

complex policy scenarios are explored, including the introduction of new medications, as 

well as recalibration to market data.     

 

Marginal effects are essentially a simple form of predictive analysis, in which the 

probabilities in a baseline scenario are compared to the probabilities in an alternative 

scenario following a marginal increase in a single attribute of one of the alternatives in the 

model. When viewed this way marginal effects can be calculated using the same tools as 

those used to carry out predictive analyses. Elasticities can be calculated in an analogous 

way, only that in this case we are looking at the percentage change in the probabilities 

resulting from a 1% increase in an alternative attribute.  

 

It is worth bearing in mind that a potential issue with using DCE data for predictive analysis 

is that the data do not embody the market equilibrium. Calibrating the ASCs using market 

data is therefore strongly advisable where such data are available. 
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Welfare analysis 

A key behavioural outcome of interest to economists is individual and aggregate willingness 

to pay and willingness to accept monetary amounts in response to policy changes such as a 

change in single attributes, multiple attributes or the introduction or removal of entire 

options from the choice set.  Indeed, such values are essential in cost benefit analysis. Such 

values can be calculated in post estimation welfare analysis using the compensating 

variation.  In the case of the MNL model the compensating variation can be expressed as:  

 

ܸܥ  (11) ൌ  ଵఓ ቂ݈݊ σ ݁௏ೕబ௃௝ୀଵ െ ݈݊ σ ݁௏ೕభ௃௝ୀଵ ቃ 

 

 

where Vj
0
 and Vj

1
 are the values of the utility function, V, estimated in the choice model for 

each choice option j before and after the quality change, respectively, and J is the number of 

options in the choice set.  The log sum terms in equation (10) weight the utility associated 

with each alternative by the probability of selecting that alternative and as such can be 

interpreted as the expected utility.  The CV therefore calculates the change in expected 

utility before and after the policy change and scales this utility difference by the marginal 

utility of income, ߤ, to provide a monetary and therefore cardinal measure of the change in 

welfare.  Often information on income is unavailable, in which case the coefficient on the 

price attribute (which represents the marginal disutility of price) can be used as the negative 

of the marginal utility of income.  In fact any quantitative numeraire would work ʹ see for 

example Lancsar et al (2011) who use the marginal utility of a QALY as the numeraire. 

Calculation of the CV involves harnessing the coefficients estimated in the choice model 

along with the values of the attributes of interest and can easily be undertaken by hand or 

in standard software packages (e.g. using nlcom in Stata which also produces confidence 

intervals). The interested reader is referred to [58] for further discussion of the theory and 

methods for such calculations. 

 

 

4. Discussion  

 

Choice modelling is a critical component of undertaking a DCE but to date has received less 

attention in terms of guidance than other components.  As we highlight in Section 2, 

researchers face a number of decisions when analysing DCE data and arriving at a final 

model. Some decisions are resolved by the choice problem and design (e.g. binary versus 

multinomial choice, which variables are independently identified in the experimental 

design, whether the choice is labeled therefore allowing for the possibility of alternative 

specific utility functions, or generic, etc.) while others are specification decisions that need 

to be made on a case by case basis (e.g. functional form of specific variables which could be 

linear, quadratic, logarithmic etc., forms of heterogeneity to be explored etc.).  Such 

decisions are not necessarily linear and sequential and instead many are simultaneous and 

interdependent.  

 

There is no single model that we would recommend in all cases with each having a number 

of advantages, and possible disadvantages depending on the research question being 

addressed.  In selecting a modeling approach, we would recommend finding a model that 

ĂĚĚƌĞƐƐĞƐ ƚŚĞ ƌĞƐĞĂƌĐŚĞƌ͛Ɛ ƋƵĞƐƚŝŽŶƐ ŽĨ ŝŶƚĞƌĞƐƚ ĂŶĚ ƉƌŽǀŝĚĞƐ Ă ƌĞĂƐŽŶĂďůĞ device with 
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which to represent the choice at hand.  Ultimately, it is still a model and all models involve 

assumptions.  The question to address is which assumptions are most appropriate (or have 

minimum detriment) to the research questions being explored.  It is important to note that 

the choice of model to be estimated is not only dependent on the research objectives, study 

design etc. but is also constrained by what can be estimated given the data a researcher has 

(including such issues as quantity and quality) and so is based on considerations from both 

Sections 2 and 3.   

 

MNL was for decades the workhorse of choice modeling and we recommend it as a natural 

first model to estimate.  Where to go next after MNL is not always clear and depends on the 

research objectives but a basic first step would be the estimation of a mixed logit model to 

account for the panel structure of the data, providing more reliable standard errors and 

move away from proportional substitution (by relaxing IIA).  It also allows for unobserved 

preference heterogeneity by allowing coefficients to vary randomly across individuals.  

Whether one takes a Frequentist or Bayesian approach to the estimation of mixed logit in 

part comes down to preferences of the researcher but with the use of simulation methods 

the distinction between the two approaches is becoming less pronounced and recent 

evidence suggests little difference in estimates [59].  Focus on mixed logit in the health 

economics literature has often been motivated by interest in unobserved heterogeneity.  To 

our minds, the other two reasons for exploring mixed logit are at least as important.   

 

Having said that, exploration of heterogeneity can be important and has received much 

attention.  If one views the distribution of preference heterogeneity to be discrete rather 

than continuous a latent class model would be appropriate.  By allowing for different 

preference parameters between classes an advantage of latent class modeling is it allows 

heterogeneity to be interpreted in terms of class type and class membership.  Another form 

of heterogeneity gaining attention is scale heterogeneity.  A modification to the MNL leads 

to the heteroscedastic logit which allows for between person differences in scale to be 

modeled as a function of covariates.  Alternatively, interest in unobserved scale 

heterogentiy could lead to the scale heterogeneity model.  G-MNL offers a very flexible 

approach which nests several of the standard models discussed in Section 2 including mixed 

logit, heteroscedastic logit and scale heterogeneity models.  

 

When exploring heterogeneity key decisions to make include which form(s) of 

heterogeneity are most of interest to the researcher ʹ e.g. preferences or scale, unobserved 

or observed; noting that these need not be mutually exclusive.  While both observed and 

unobserved heterogeneity can be important, and indeed can be explored within the same 

model, a distinction between the two is that the latter often improves model fit but is not 

always readily interpretable.  In contrast observed heterogeneity is interpretable in relation 

to known covariates (e.g. age, gender, past experience etc.) thereby potentially generating 

useful implications for policy and practice.  Ultimately, the source(s) of heterogeneity to be 

explored depends on the research questions, the assumptions researchers are prepared to 

make and what is revealed by the data. Whichever model is estimated, it is important to be 

cognizant of the implications of the model (and associated assumptions) chosen for the 

conclusions that can be drawn.   

 

We also provided model and estimation procedures for best-worst and best-best DCEs 
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including rank ordered logit and sequential best worst MNL.  The fact that both models can 

be estimated by expanding the data as described in Section 3 and then applying MNL has a 

particularly advantageous feature that it is straightforward to estimate more sophisticated 

versions of these base models, allowing for non IIA, correlated errors and various forms of 

heterogeneity.  For example, all of the models discussed in Section 2 for estimation with 

first best-data (mixed logit, GMNL etc.) can be estimated simply by running such commands 

on the expanded best-worst or best-best data. Correct data set up is therefore crucial and 

we offer advice on a useful way to check this. 

 

More generally, the advantages and limitations of best-worst data collection have been 

outlined elsewhere.  As Lancsar et al. (2013)[14] note, a key advantage is the generation of 

more data relative to a standard DCE which can prove particularly useful when sample size 

constraints exist (due to budget considerations or when the population from which the 

sample is being drawn is itself small) or even when sample size is not a constraint, it can 

prove an efficient way to generate a given quantity of data or simply provide more data. The 

additional data can also prove particularly useful for the estimation of models for single 

individuals [31, 35].  

 

We presented several standard software options in Section 3. An advantage of Stata and 

Nlogit beyond estimation is that they provide comprehensive data management.  In 

contrast Biogeme requires external data management but is very flexible in estimation; it is 

also free. Which a researcher selects will in part depend on personal preferences, 

particularly if they have already invested time and resources in a particular software 

package.  We also offered advice on data set up and best practice in terms of estimation, 

including issues such as choice of starting values, number of draws in estimation etc.  

 

When it comes to interpretation of results, the parameter estimates from choice models are 

typically not of intrinsic interest and indeed parameters often cannot meaningfully be 

compared due to the different scales on which they are measured, some of which may be 

quantitative (e.g. time, cost, risk, etc.) while others may be qualitative (provider type, 

location etc.) [33].  It is therefore surprising that many researchers stop after generating 

attribute coefficients without undertaking post estimation, particularly given post 

estimation is not difficult to carry out and provides useful insights. We strongly encourage 

researchers to harness model parameters in post estimation analysis to both improve 

interpretation and to produce measures that are relevant to policy and practice.  At a 

minimum we suggest the calculation of marginal rates of substitution, but depending on the 

goals of the research additional analysis could include predicted uptake or demand, 

elasticities and welfare analysis.   

 

As with all methods, validity is crucial.  Internal validity has received considerable attention 

in the health economics literature, including checking signs of estimated parameters accord 

with a priori expectations and the testing of axioms of consumer theory (e.g. [60, 61])  

Lancsar and Louviere (2006) [62] caution against deleting data on the basis of such tests. 

Lancsar and Swait (2014) [9] provide a new and more comprehensive conceptualization of 

external validity which advocates that its investigation should be broader than the 

comparison of final outcomes and predictive performance and indeed encompasses process 

validity.  They suggest innovative ways in which the broader definition can be pursued in 
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practice starting from the initial conception and design of a DCE through to model and post 

estimation. Most relevant to the modeling stage of DCE research is the possible extension of 

the basic random utility choice modeling framework in an attempt to more closely replicate 

reality, for example to account for decision rule selection and choice set formation 

(discussed further below). 

 

We did not set out to be exhaustive in our coverage of either choice models or software, 

instead focusing on standard models that can be estimated in standard commonly used 

software.  There are of course interesting extensions to these core models that warrant 

attention for particular research questions, often requiring bespoke coding and estimation.  

One interesting stream of choice modeling is to account for different underlying decision 

rules and processing strategies.  Two examples of this are choice set formation, championed 

by Swait and colleagues in the general choice modeling literature (e.g. [20]) and starting to 

be used in health (e.g. [63]) and attribute non-attendance (e.g. [64-66]), where the latter 

can also arise from the broader issue of excessive cognitive burden [67]. Another useful 

stream of choice modeling is data fusion.  We discussed the need to calibrate ASCs for 

market data where such data are available, particularly for welfare and forecasting analysis.  

A natural extension is more complete data fusion where stated preference data collected in 

a DCE can be combined with revealed preference data either from observed choices[68, 69] 

or indeed from linking or embedding experiments in other data collection (cross sectional, 

panel, experimental, RCT) more generally to harness the advantages of the various data 

sources [70]. There are of course other interesting choice modeling extensions and we refer 

the interested reader to the Handbook of Choice modeling [71] for a recent survey of 

cutting edge choice models and estimation issues on the research frontier.   

 

5. Conclusion 

 

As the use of DCEs and DCE results by researchers, policy makers and practitioners in the 

health sector continues to increase, so too will the importance placed on the theory and 

methods underpinning the approach in general and the analysis and interpretation of the 

generated choice data in particular. As this guide has highlighted, choice of modeling 

approach depends on a number of factors (research questions, study design and constraints 

such as quality/quantity of data) and decisions regarding analysis of choice data are often 

simultaneous and interdependent. When faced with such decisions we hope the theoretical 

and practical content of this paper proves useful not only to researchers within but also 

beyond health economics.   

 

Data Availability Statement 

The data and estimation code used in this paper are available in supplementary material.  

Appendix 1 ĐŽŶƚĂŝŶƐ ƚŚĞ ĚĂƚĂ ŝŶ ͚ůŽŶŐ ĨŽƌŵ͕͛ AƉƉĞŶĚŝǆ Ϯ ĐŽŶƚĂŝŶƐ ƚŚĞ ĚĂƚĂ ŝŶ ͚ǁŝĚĞ ĨŽƌŵ͕͛ 
AƉƉĞŶĚŝǆ ϯ ĐŽŶƚĂŝŶƐ ƚŚĞ ĚĂƚĂ ŝŶ ͚ĞǆƉůŽĚĞĚ ĨŽƌŵ͛ ĂŶĚ AƉƉĞŶĚŝǆ ϰ ĐŽŶƚĂŝŶƐ ƚŚĞ “ƚĂƚĂ͕ Nlogit 

and Biogeme estimation code. 
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