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Abstract. In this study we develop a method to estimate the
spatially averaged rainfall intensity together with associated
level of uncertainty using geostatistical upscaling. Rainfall
data collected from a cluster of eight paired rain gauges in
a 400 m× 200 m urban catchment are used in combination
with spatial stochastic simulation to obtain optimal predic-
tions of the spatially averaged rainfall intensity at any point
in time within the urban catchment. The uncertainty in the
prediction of catchment average rainfall intensity is obtained
for multiple combinations of intensity ranges and temporal
averaging intervals. The two main challenges addressed in
this study are scarcity of rainfall measurement locations and
non-normality of rainfall data, both of which need to be con-
sidered when adopting a geostatistical approach. Scarcity of
measurement points is dealt with by pooling sample vari-
ograms of repeated rainfall measurements with similar char-
acteristics. Normality of rainfall data is achieved through the
use of normal score transformation. Geostatistical models in
the form of variograms are derived for transformed rainfall
intensity. Next spatial stochastic simulation which is robust
to nonlinear data transformation is applied to produce real-
isations of rainfall fields. These realisations in transformed
space are first back-transformed and next spatially aggre-
gated to derive a random sample of the spatially averaged
rainfall intensity. Results show that the prediction uncertainty
comes mainly from two sources: spatial variability of rainfall
and measurement error. At smaller temporal averaging inter-
vals both these effects are high, resulting in a relatively high
uncertainty in prediction. With longer temporal averaging in-
tervals the uncertainty becomes lower due to stronger spatial
correlation of rainfall data and relatively smaller measure-
ment error. Results also show that the measurement error in-

creases with decreasing rainfall intensity resulting in a higher
uncertainty at lower intensities. Results from this study can
be used for uncertainty analyses of hydrologic and hydrody-
namic modelling of similar-sized urban catchments as it pro-
vides information on uncertainty associated with rainfall es-
timation, which is arguably the most important input in these
models. This will help to better interpret model results and
avoid false calibration and force-fitting of model parameters.

1 Introduction

Being the process driving runoff, rainfall is arguably the
most important input parameter in any hydrological mod-
elling study. But it is a challenging task to accurately mea-
sure rainfall due to its highly variable nature over time and
space, especially in small urban catchments. Despite recent
advances in radar technologies rain gauge measurements are
still considered to be the most accurate way of measur-
ing rainfall, especially at short temporal averaging intervals
(< 1 h), which are of most interest in urban hydrology studies
(Ochoa-Rodriguez et al., 2015). However, many commonly
used urban hydrological models (e.g. SWMM, HBV) are
lump catchment models (LCMs) where time series of areal
average rainfall intensity (AARI) are needed as model input.
Therefore, point observations of rainfall need to be scaled
up using spatial aggregation in order to be fed in to a LCM.
There are a number of interpolation methods available for
spatial aggregation and used in the various LCMs to scale up
point rainfall data. The simplest method is to take the arith-
metic average (Chow, 1964) of the point observations within
the catchment. But this method does not account for the spa-
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tial correlation structure of the rainfall and the spatial organ-
isation of the rain gauge locations. Another commonly used
method in hydrological modelling is the nearest neighbour
interpolation (Chow, 1964; Nalder and Wein, 1998) which
leads to Thiessen polygons. In this method the nearest ob-
servation is given a weight of one and other observations
are given zero weights during interpolation, thereby ignoring
spatial variability of rainfall to a certain extent. There are also
other methods, with varying complexity levels, including in-
verse distance weighting (Dirks et al., 1998), polynomial in-
terpolation (Tabios III and Salas, 1985) and moving window
regression (Lloyd, 2005). The predictive performance of the
above methods are found to be case dependent and no single
method has been shown to be optimal for all catchments and
rainfall conditions (Ly et al., 2013). One common drawback
with all the above methods is that they do not provide any in-
formation on the uncertainty of the predictions of AARI as all
the methods are deterministic. The uncertainty in prediction
of AARI mainly comes from two sources; uncertainty due to
measurement errors and uncertainty associated with spatial
variability of rainfall. The characteristics of measurement er-
rors can vary depending on the rain gauge type. For example,
errors associated with commonly used tipping bucket rain
gauges range from errors due to wind, wetting, evaporation,
and splashing (Fankhauser, 1998; Sevruk and Hamon, 1984)
to errors due to its sampling mechanism (Habib et al., 2001).
In addition to measurement errors and since rainfall can vary
over space significantly, any spatial aggregation method for
scaling up the point rainfall measurements incorporates more
uncertainty (Villarini et al., 2008). The magnitude of the un-
certainty depends on many factors including rain gauge den-
sity and location, rainfall variability, catchment size, topog-
raphy, and the spatial interpolation technique used. Quantifi-
cation of the level of uncertainty is essential for robust in-
terpretation of hydrological model outputs. For instance, the
absence of information on uncertainty can lead to force fit-
ting of hydrological model parameters to compensate for the
uncertainty in rainfall input data (Schuurmans and Bierkens,
2007).

Geostatistical methods such as kriging present a solution
to this problem by providing a measure of prediction er-
ror. In addition to this capability, these statistical methods
also take into account the spatial dependence structure of
the measured rainfall data (Ly et al., 2013; Mair and Fares,
2011). Although these features make geostatistical methods
more attractive than deterministic methods, they are rarely
used in LCMs due to their inherent complexity and heavy
data requirements. Since they are statistical methods encom-
passing multiple parameters the amount of spatial data re-
quired for model inference is higher compared to determin-
istic methods. In addition the underlying assumption of geo-
statistical approaches typically requires data to be normally
distributed (Isaaks and Srivastava, 1989). In general, catch-
ments, especially those at small urban scales, do not contain
as many measurement locations as required by geostatisti-

cal methods. Furthermore, rainfall intensity data are almost
never normally distributed, especially at smaller averaging
intervals (< 1 h) (Glasbey and Nevison, 1997). Despite these
challenges geostatistical methods can provide information on
uncertainty associated with predicted AARI. This capabil-
ity can be utilised in uncertainty propagation analysis in hy-
drological models. In literature, geostatistical methods have
been used to analyse the spatial correlation structure of rain-
fall at various spatial scales (Berne et al., 2004; Ciach and
Krajewski, 2006; Emmanuel et al., 2012; Jaffrain and Berne,
2012), however its application to support uncertainty analy-
ses of upscaling rainfall data has not been explored.

In this paper we present a geostatistical approach to derive
AARI and the level of uncertainty associated with it from
observations obtained from multiple “paired” rain gauges lo-
cated in a small urban catchment. The proposed approach
presents solutions to the above-described challenges of geo-
statistical methods. First, it uses pooling of sample vari-
ograms of rainfall measurements at different times but with
similar characteristics to increase the number of paired ob-
servations used to fit variogram models. Second, a data trans-
formation method is employed to transform the rainfall data
to obtain a normally distributed data set. The level of uncer-
tainty in the prediction of AARI is then quantified for differ-
ent combinations of temporal averaging intervals and inten-
sity ranges for the studied urban catchment. We focused on
a small urban catchment with a spatial extent of less than a
kilometre given the findings of recent research on the high
significance of unmeasured spatial rainfall variability at such
spatial scales, especially for urban hydrological and hydro-
dynamic modelling applications (Gires et al., 2012, 2014;
Ochoa-Rodriguez et al., 2015).

2 Data collection

2.1 Location and rain gauge network design

The study area is located in Bradford, a city in West York-
shire, England. Bradford has a maritime climate, with an av-
erage yearly rainfall of 873 mm recorded from 1981–2010
(MetOffice UK, 2016). The rain gauge network, used in this
study was located at the premises of Bradford University
(Fig. 1) and rainfall data were collected from paired tipping
bucket rain gauges placed at eight locations covering an area
of 400 m× 200 m. Data used in this study were collected
from April to August 2012 and from April to August 2013.
These stations were located on selected roofs of the uni-
versity buildings, thereby providing controlled, secure and
obstruction-free measurement locations. Each station con-
sists of two tipping bucket type rain gauges mounted 1 m
apart. On each roof the paired gauges were placed such that
the height of the nearest obstruction is less than two times the
distance between the gauges and the obstruction. The rim of
each rain gauge was set up around 0.5 m above the surround-
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Figure 1. Left: aerial view of rain gauge network covering an area of 400 m× 200 m at Bradford University, UK. Right: a photograph of
paired rain gauges at station 6.

Figure 2. Histogram with class interval width of 100 m showing
frequency distribution of inter-station distances (m).

ing ground level following UK standard practice (MetOf-
fice UK, 2016). An example of the measurement setup (sta-
tion 6) is also shown in Fig. 1. A histogram of the inter-
station distances of the rain gauge network is presented in
Fig. 2. Lag distances covered in this network are distributed
between 21 m (stations 4–5) and 399 m (stations 1–3).

All rain gauges are ARG100 tipping bucket type with an
orifice diameter of 254 mm and a resolution of 0.2 mm. Dy-
namic calibration was carried out for each individual gauge
before deployment and visual checks were carried out every
4–5 weeks during the measurement period to ensure that the
instruments were free of dirt and debris. Data loggers were
reset every 4–5 weeks during data collection to avoid any
significant time drift. Measurements (number of tips) were
taken every minute and recorded on TinyTag data loggers
mounted in each rain gauge.

Quality control procedures were performed prior to sta-
tistical analysis, taking advantage of the paired gauge setup
to detect gross measurement errors. The paired gauge de-
sign provides efficient quality control of the rain gauge data
records as it helps to identify the instances when one of the

gauges fails, and to clearly identify periods of missing or
incorrect data (Ciach and Krajewski, 2006). During the dy-
namic calibration of all rain gauges in the laboratory before
deployment, it was identified that the highest and lowest val-
ues of the calibration factors for the tipping bucket size are
0.196 and 0.204 mm. The gauges were recalibrated in the lab-
oratory after the first period of measurement and it was found
that the largest change in calibration factor for any gauge was
a maximum of 4 % of the original calibration factor. There-
fore a maximum difference of 4 % in volume per tip was as-
sumed to be caused by inherent instrument error. It was there-
fore decided that this is the maximum acceptable difference
between any pair of gauges. Sets of cumulative rainfall data
corresponding to specific events from the paired gauges were
checked against each other and if the (absolute) difference in
cumulative rainfall was greater than 4 %, that complete set
was identified as unreliable and removed from further analy-
sis.

2.2 Characteristics of the data

The total average network rainfall depth for the summer sea-
sons of 2012 and 2013 are 538 and 207 mm, respectively.
Figure 3 shows time series of daily rainfall averaged over
the network for 2012 and 2013. There is a significant differ-
ence in cumulative rainfall between 2012 and 2013. This is
because 2012 was the wettest year recorded in 100 years in
the UK (MetOffice UK, 2016) and 558 mm of rainfall dur-
ing 2012 summer was unusually high. An average rainfall of
only 360 mm was recorded during April to September over
the 1981–2010 period at the nearest operational rain gauge
station at Bingley, which is around 8 km from the study site
with a similar ground elevation (MetOffice UK, 2016).
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Figure 3. Time series of network average daily rainfall in the two
seasons of 2012 and 2013 with vertical dashed lines indicating the
events presented in Table 1.

The data set for 2012 and 2013 contains 13 events yield-
ing more than 10 mm network average rainfall depth each
and lasting for more than 20 min. A summary of these events
is presented in Table 1. Note that this event separation is only
used for the presentation of results in Sect. 4.2. Hence it
does not leave out any data from the development and cal-
ibration of the geostatistical model as presented in Sect. 3.
Table 1 shows that the total event duration ranges from 1.5
to 11.4 h while the event network average rainfall intensity
varies from 1.79 to 7.96 mm h−1. Table 1 also includes sum-
mary statistics of peaks of events (temporal averaging inter-
val of 5 min) for the eight stations within the network. Al-
though the spatial extent of the area is only 400 m× 200 m,
it is clear that there is a considerable difference in rainfall in-
tensity measurements indicated by the standard deviation and
range of peaks observed in the individual events. The maxi-
mum standard deviation between peaks of individual events
is 9.27 mm h−1 for event 8, which is around 12.5 % of the
mean network peak intensity of 74.4 mm h−1. This variation
provides evidence of the potential importance of analysing
uncertainty in the estimation of AARI even in such a small
urban catchment.

3 Methodology

Figure 4 summarises the procedure of geostatistical upscal-
ing of the rainfall data adapted in this study in a step-by-step
instruction followed by the detail descriptions of each step.
This complete procedure was repeated for temporal averag-
ing intervals of 2, 5, 15, and 30 min in order to investigate
the effect of temporal aggregation on the prediction of AARI.

The entire 10 months of collected data were used for the de-
velopment and calibration of the geostatistical model.

3.1 Step 1: pooling of sample variograms

The rain gauge network contains eight measurement loca-
tions. These eight measurement locations give 28 spatial
pairs at a given time instant which yields too few spatial
lags than would normally be used in geostatistical modelling.
For example, Webster and Oliver (2007) recommend around
100 measurement points to calibrate a geostatistical model.
The procedure adapted in this study increases the number of
pairs by pooling sample variograms for time instants with
similar rainfall characteristics. With n measurement loca-
tions and measurements taken at t time instants, the pool-
ing over t time instants creates t × 1/2× n× (n− 1) spatial
pairs. Although this procedure increases the number of spa-
tial pairs by a factor t , the spatial separation distances for
which information is available will be limited to the original
configuration of the n measurement locations.

The underlying assumption of this pooling procedure is
that the spatial variability over the pooled time instants is the
same. Therefore it is important to pool sample variograms
of rainfall measurements with similar rainfall characteristics.
Since the spatial rainfall variability is often intensity depen-
dent (Ciach and Krajewski, 2006), the characteristics of a
less intense rainfall event may not be the same as that of
a high-intensity rainfall event. Hence to make the assump-
tion of consistency of spatial variability, the range of rain-
fall intensity over the pooled time instants should be reason-
ably small. On the other hand, one should also make sure
that there are enough time instants within a pooled subset
to meet the data requirement to calibrate the geostatistical
model. Based on the above two criteria, three rainfall in-
tensity classes were selected. The maximum threshold value
was limited to 10 mm h−1 to have enough time instants for
the highest range (i.e. > 10 mm h−1) in order to produce sta-
ble variograms even at 30 min temporal averaging interval.
It was then decided to divide the 0–10 mm h−1 class to two
equal subclasses (i.e. < 5 and 5–10 mm h−1). This resulted
in three subclasses, which is a reasonable number given the
size of the data set and computational demand. The number
of time instants (t) within each rainfall intensity class is pre-
sented for three temporal averaging intervals in Fig. 5. The
natural characteristic of rainfall data results in the dominance
of lower intensity rainfall (0.1–5.0 mm h−1) over the record-
ing period. In addition, the number of time instants t obvi-
ously reduces with increasing temporal averaging intervals
due to the aggregation process. As a consequence there are
only seven time instants for the intensity range > 10 mm h−1

at the 30 min temporal averaging interval. This limits the
maximum temporal averaging interval to 30 min for our anal-
yses. For a catchment of this size (400 m× 200 m) it is very
unlikely to have a response time of more than 30 min. Hence,
from a hydrological point of view consideration of temporal
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Table 1. Summary of events which yielded more than 10 mm rainfall and lasted for more than 20 min with summary statistics of event peaks
(derived at 5 min temporal averaging interval) from all stations.

Event Date Network Network Network Summary statistics of
ID average average average peaks between different

duration intensity rainfall stations (mm h−1)

(h) (mm h−1) (mm) Mean SD Max Min

1 18/04/2012 6.33 2.20 13.9 5.10 0.550 6.02 4.74
2 25/04/2012 6.42 2.55 16.3 7.05 0.751 8.32 5.92
3 09/05/2012 8.92 1.79 16.0 5.10 0.537 5.97 4.74
4 14/06/2012 6.83 1.99 13.6 5.25 0.636 6.04 4.74
5 22/06/2012 11.4 2.39 27.3 12.7 1.72 15.4 9.67
6 06/07/2012 4.42 5.31 23.4 38.5 4.52 42.9 30.5
7 06/07/2012 3.25 3.23 10.5 7.20 0.679 8.46 5.93
8 07/07/2012 1.50 7.84 11.8 74.4 9.27 86.5 61.9
9 19/07/2012 3.08 3.35 10.3 12.7 2.01 14.5 9.74
10 15/08/2012 2.00 7.96 15.9 43.0 3.69 47.8 37.5
11 14/05/2013 7.92 2.14 17.0 8.08 1.20 9.55 6.09
12 23/07/2013 1.75 6.51 11.4 37.7 2.09 42.6 35.7
13 27/07/2013 8.17 4.34 35.5 26.6 1.23 27.5 23.8

averaging intervals longer than 30 min would not be sensi-
ble. Note that although there are only seven time instants, the
pooling procedure will produce 196 (= 7× 28) points to cal-
culate and calibrate the geostatistical model for that intensity
class.

3.2 Step 2: standardisation of rainfall intensities

Having chosen the rainfall intensity classes to create pooled
time instants, there can still be inconsistency in spatial vari-
ability between time instants within a class and therefore as-
suming a single geostatistical model for the whole subset
may not be realistic. To reduce this effect to a certain extent,
all observations within an intensity class were standardised
using the mean and standard deviation of each time instant
as follows:

r̃ix =
rix −mi

SDi
, (1)

where i = 1 . . . t , x = 1 . . . n; r̃ix is standardised rainfall in-
tensity at a time instant i and location x; rix is rainfall inten-
sity at time instant i and location x; and mi , SDi are mean
and standard deviation of rainfall intensities at time instant i,
respectively. Further steps were carried out on the standard-
ised rainfall intensity.

3.3 Step 3: normal transformation of data

The upper part of Fig. 6 shows the distribution of standard-
ised rainfall intensity for a temporal averaging interval of
5 min derived using Eq. (1). From the figure it is clear that
the data are not normally distributed. Distributions for other
temporal averaging intervals (i.e. 2, 15, and 30 min) show a
similar behaviour. But the geostatistical upscaling method to

be used is based on the normal distribution. This requires the
rainfall data to be normally distributed prior to the calibration
of the geostatistical model. The normal score transformation
(NST, also known as normal quantile transformation; Van der
Waerden, 1952) is a widely used method to transform a vari-
able distribution to the Gaussian distribution. It has widely
been applied in many hydrological applications (Bogner et
al., 2012; Montanari and Brath, 2004; Todini, 2008; Weerts et
al., 2011). The concept of NST is to match the p quantile of
the data distribution with the p quantile of the standard nor-
mal distribution. Consider a standardised rainfall intensity r̃
with cumulative distribution FR̃ (̃r) . It is transformed to a
rN value with a Gaussian cumulative distribution FRN (rN )
as follows:

rN = F
−1
RN

(
FR̃ (̃r)

)
. (2)

Detailed description of NST including the steps involved can
be found in Bogner et al. (2012), Van der Waerden (1952)
and Weerts et al. (2011). The lower part of Fig. 6 shows the
transformed standardised intensity for the temporal averag-
ing interval of 5 min.

3.4 Step 4: calibration of geostatistical model

A geostatistical model of (normalised) rainfall intensity rN
(derived from Sect. 3.3) at any location x can be written as

rN (x)= p(x)+ ε (x), (3)

where p(x) is the trend (explanatory part) and ε(x) is
the stochastic residual (unexplanatory part). Considering the
availability of data, small catchment size, and scope of this
study, it was assumed that the trend is constant and does not
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Figure 4. Step-by-step procedure developed in this study to predict AARI and associated level of uncertainty. Boxes highlighted in dots
indicate the steps to resolve the problem of scarcity in measurement locations, grey boxes show the steps introduced to address non-normality
of rainfall data.

depend on explanatory variables (e.g. topography of the area,
wind direction). The stochastic term ε is spatially correlated
and characterised by a variogram model. A variogram model
typically consists of three parameters; nugget, sill, and range
(Isaaks and Srivastava, 1989). The nugget is the value of the
semi-variance at near-zero distance. It is often greater than
zero because of random measurement error and micro-scale
spatial variation. The range is the distance beyond which the
data are no longer spatially correlated. The sill is the maxi-

mum variogram value and equal to the variance of the vari-
able of interest (Isaaks and Srivastava, 1989)
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Figure 5. Number of time instants for each temporal averaging in-
terval and rainfall intensity class combination.

3.5 Step 5: spatial stochastic simulation

The assumption of a constant trend makes that the spatial
interpolation can be solved using an ordinary kriging system
(Isaaks and Srivastava, 1989):

n∑
y=1

wyγxy −µ= γxz ∀x = 1, . . .,n (4)

n∑
x=1

wx = 1, (5)

where wx , x = 1, . . .,n are ordinary kriging weights, γxy is
the semivariance between rainfall intensities at locations x
and y, γxz is the semivariance between rainfall intensities at
location y and prediction location z, and µ is a Lagrange pa-
rameter. Once the ordinary kriging weights are calculated us-
ing Eqs. (4) and (5), point rainfall intensities can be predicted
using point kriging at any given point by taking the weighted
average of the observed rainfall intensities, using the wx as
weights. In this case we need a change of support from point
to block as our intention is to predict the average rainfall in-
tensity over the catchment. This is usually done by predict-
ing at all points inside the catchment and integrating these
over the catchment. This procedure is known as block krig-
ing (Isaaks and Srivastava, 1989), which also has provisions
for calculating the prediction error variance of the catchment
average. But the procedure of NST as explained in Sect. 3.3
also involves back-transformation of kriging predictions to
the original domain at the end (step 6). Since this transfor-
mation is typically non-linear, the back-transform of the spa-
tial average of the transformed variable that is obtained from
block kriging is not the same as the spatial average of the
back-transformed variable; we need the latter and not the for-
mer. In principle, we could predict at all points within the
block, back-transform all and next calculate the spatial aver-
age, but standard block kriging software implementations do
not support this and neither is it possible to compute the asso-
ciated prediction error variance. Hence block kriging cannot

be applied. The alternative used in this study is to apply a
computationally more demanding spatial stochastic simula-
tion approach, which involves generation of a larger num-
ber of realisations and spatial averaging of these realisations.
Unlike kriging, spatial stochastic simulation does not aim to
minimise the prediction error variance but focuses on the re-
production of the statistics such as the histogram and var-
iogram model (Goovaerts, 2000). The output from spatial
stochastic simulation is a set of alternative rainfall realisa-
tions (“possible realities”). The mean of a large set of reali-
sations approximates the kriging prediction, while their stan-
dard deviation approximates the kriging standard deviation.
We used the sequential Gaussian simulation algorithm which
involves the following steps (Goovaerts, 2000):

i. Define a prediction grid (a 25 m× 25 m regular grid in
this case).

ii. Visit a randomly selected grid cell that has not been vis-
ited before and predict the transformed rainfall intensity
at the grid cell centre using ordinary kriging; this yields
a kriging prediction and a kriging standard deviation.

iii. Use a pseudo-random number generator to sample from
a normal distribution mean equal to the kriging predic-
tion and standard deviation equal to the kriging standard
deviation and assign this value to the grid cell centre.

iv. Add the simulated value to the conditioning data set;
in other words treat the simulated value as if it were
another observation.

v. Go back to step (ii) and repeat the procedure until there
are no more unvisited grid cells left.

The five steps above produce a single realisation. This must
be repeated as many times as the number of realisations re-
quired (500 in this study). It must also be repeated for each
time instant, which explains that the computational burden
can be high. Implementation of these steps with the gstat
package in R (Pebesma, 2004) is straightforward.

The grid size and number of simulations (i.e., the sam-
ple size) were selected considering the spatial resolution of
available measurements and computational demand. It was
observed that neither a finer grid nor more simulations im-
proved the results significantly. Increasing the resolution to
10 m× 10 m only reduces the standard deviation of the pre-
diction by less than 5 % in most cases while making the com-
putational time six times higher (a summary on computation
power is presented as Supplement).

3.6 Steps 6–9: calculation of AARI and associated
uncertainty

Once the realisations have been prepared these are back-
transformed by applying the inverse of Eq. (2) to all grid cells
(step 6). Some values derived from spatial stochastic simula-
tion were outside the transformed data range. Hence during
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Figure 6. Distribution of standardised rainfall intensity for different rainfall intensity classes at a temporal averaging interval of 5 min before
(upper part) and after (lower part) normal score transformation (NST).

back transformation (step 6) of these values linear extrap-
olation was used. These linear models were derived using
a selected number of head and tail portion of normal Q–Q
plot. This is one of the simplest and most commonly used
solutions for NST back-transformation (Bogner et al., 2012;
Weerts et al., 2011). Considering the scope of this study and
the relatively small number of data which had to be extrap-
olated, other extrapolation methods were not explored. After
step 6, the back-transformed realisations are spatially aver-
aged one by one (step 7). This yields as many spatially av-
erages as the number of realisations that had been generated
in step 5. This set of values is a simple random sample from
the probability distribution of the catchment average rainfall.
Thus, the sample mean and standard deviation provide esti-
mates of the mean and standard deviation of the distribution,
respectively (step 8). Finally, by doing the inverse standardi-
sation of the mean and standard deviation of the distribution
to account for step 2, the AARI and associated uncertainty
measure (standard deviation) were derived (step 9).

4 Results and discussion

4.1 Calibration of the geostatistical model of rainfall

As explained in Sect. 3.4, the geostatistical model of trans-
formed rainfall data were calibrated using variograms for
three different intensity ranges. This procedure was repeated
for temporal averaging intervals of 2, 5, 15, and 30 min. Ex-

ponential models were fitted to empirical variograms. The
resulting variograms are presented in Fig. 7.

The variograms illustrate two properties of the collected
rainfall measurements: spatial variability of rainfall and mea-
surement error. One of the main parameters which charac-
terises these properties is the nugget. Theoretically at zero
lag distance the variance should be zero. However, most of
the variograms exhibit a positive nugget effect (generally
presented as nugget-to-sill ratio) at zero lag distance. This
nugget effect can be due to two reasons: random measure-
ment error and microscale spatial variability of rainfall. Un-
fortunately we cannot quantify these causes individually us-
ing the variograms. But there is a consistent pattern of nugget
against both rainfall intensity class and temporal averaging
interval which helps to interpret the variograms.

Considering the behaviour of nugget-to-sill ratio against
rainfall intensity class, it can be observed that the smaller
the intensity the higher the nugget-to-sill ratio, regardless
of temporal averaging interval. For example, at 2 min av-
eraging interval the nugget-to-sill ratio increases from zero
to almost one (nugget variogram) as the rainfall intensity
class changes from > 10 to < 5 mm h−1. The pure nugget vari-
ogram at < 5 mm h−1 means that either there is no spatial cor-
relation at the regarded distance, or the spatial correlation of
the field cannot be detected by the measurements because of
the measurement error. Looking at the behaviour of nugget-
to-sill ratio against temporal averaging interval, Fig. 7 shows
that the smaller the averaging interval the higher the nugget-
to-sill ratio, regardless of rainfall intensity class. For exam-
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Figure 7. Calculated variograms for each intensity class within each temporal averaging interval.

ple, for rainfall intensity class 5.0–10.0 mm h−1 the nugget-
to-sill ratio decreases from almost one to zero as the temporal
averaging interval increases from 2 to 30 min. Overall these
observations show that the combined effect of random mea-
surement error and microscale special variability of rainfall
characterised by nugget-to-sill ratio decreases with increas-
ing (a) rainfall intensity class and (b) averaging interval.

Regarding the behaviour of the nugget-to-sill ratio against
averaging interval, it is expected that with the averaging in-
terval the (microscale) spatial correlation of rainfall would
increase, which partly explains the observed pattern. The
increase in spatial correlation of rainfall intensity with in-
creasing temporal averaging interval agrees with other simi-
lar studies (e.g. Ciach and Krajewski, 2006; Fiener and Auer-
swald, 2009; Krajewski et al., 2003; Peleg et al., 2013; Vil-
larini et al., 2008). For example, Krajewski et al. (2003) ob-
served in their study on analysis of spatial correlation struc-
ture of small-scale rainfall in central Oklahoma a similar be-
haviour using correlogram functions for different temporal
averaging intervals. But commenting on the decreasing trend
of the nugget-to-sill ratio against intensity class, it cannot be
attributed to improvement in microscale spatial correlation
as it is neither natural nor proven. In fact, in Fig. 7 the be-
haviour of spatial correlation against rainfall intensity class
does not show a distinctive trend except at the origin, i.e. the
nugget effect. The absence of any consistent trend of spatial
variability against intensity class was also observed in Ciach
and Krajewski (2006). Meanwhile this decreasing trend of
nugget-to-sill ratio against rainfall intensity corresponds well
with measurement errors of tipping bucket type rain gauges
caused by its sampling mechanism (hereafter referred to as
TB error). This is due to the rain gauges’ inability to cap-
ture small temporal variability of the rainfall time series. The

behaviour of TB error against rainfall intensity as seen from
Fig. 7 complements results from previous studies (Habib et
al., 2001; Villarini et al., 2008). These studies also show
that the TB error decreases with temporal averaging interval.
Habib et al. (2001) found similar behaviour of TB error with
increasing intensity (0–100 mm h−1) and also with increas-
ing averaging interval (1, 5, and 15 min). Although the bucket
size used in their study (0.254 mm) is slightly different from
our rain gauge bucket size of 0.2 mm, the characteristic of the
TB error against rainfall intensity for different averaging in-
terval is consistent in both cases. In summary, the behaviour
of nugget-to-sill ratio of the variograms against temporal av-
eraging interval can be explained by the combined effect of
microscale spatial variability of rainfall and TB error, while
the behaviour of nugget-to-sill ratio against intensity range
can mainly be attributed to the latter.

In addition to the nugget-to-sill ratio, another parameter
that characterises the variograms is the range, i.e. the dis-
tance up to which there is spatial correlation. At lower tempo-
ral averaging intervals (≤ 5 min) the variograms for all rain-
fall intensity classes reach the variogram range very quickly
(< 100 m). But at averaging intervals ≥ 15 min, the range has
not been reached even at a maximum separation distance,
showing the improvement in spatial correlation. High spatial
variability of rainfall at shorter temporal averaging interval
(≤ 5 min) is an important observation in the context of ur-
ban drainage runoff modelling, as the time step used in such
models is generally around 2 min for small catchments.

The fact that the data set covers only 10 months of data
from 2 years with varying climatology is something that
needs to be acknowledged. However, for previous studies
using such a dense network the duration of data collection
is similar (e.g. 15 months – Ciach and Krajewski, 2006;
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16 months – Jaffrain and Berne, 2012). These time peri-
ods are reflection of the practical and funding issues to
maintain such dense networks operating accurately for ex-
tended periods. The characteristics of our data are compara-
ble with Ciach and Krajewski (2006) and Fiener and Auer-
swald (2009) as these studies also used rainfall data from
warm months to investigate the spatial correlation structure.
Despite the fact that the data cover only 10 months all de-
rived variogram models are stable and reliable. Webster and
Oliver (2007) suggested around 100 samples to reliably es-
timate a variogram model. Even in the case of 30 min tem-
poral averaging interval and > 10 mm h−1 (where we had the
fewest number of observations) we had a total of 196 spa-
tial lags to calculate the variogram. Furthermore, we demon-
strated that all derived variogram models are stable and reli-
able by examining sub-sets of the data. We randomly selected
80 % of the data from each intensity class and reproduced the
variograms to compare them with the variograms presented
in Fig. 7. We had to limit the subclass percentage to 80 %
to give enough time instants to reproduce variograms for all
subclasses. We repeated this procedure a few times. Compar-
ing these variograms with Fig. 7 shows that these variograms
are very similar. One set of the variograms computed from
80 % of the data are presented in the Supplement. This anal-
ysis supports our claim that the variograms shown in Fig. 7
are stable and an adequate representation of the rainfall spa-
tial variation for each intensity class and temporal averaging
interval.

One of the assumptions we made during the pooling pro-
cedure is that the spatial variability is reasonably consistent
within a pooled intensity class. We acknowledge that with
narrower intervals the assumption of consistency in spatial
variability would be more realistic. But with the available
data we had to find a compromise with the number of time
instants. We believe that using three intensity subclasses is
a reasonable compromise. Further we also introduced step 2
(Sect. 3.2) which standardises the rainfall for each time in-
stant within a subset. Although variograms are derived only
for the whole subset, step 2 (before geostatistical upscal-
ing) and step 9 (after geostatistical upscaling) ensure that the
probabilistic model is adjusted for each time instant sepa-
rately. Effectively, we assume the same correlogram for time
instants of the same subclass, not the same variogram. Al-
though this does not justify the assumption of similar spa-
tial correlation structure within the pooled classes, it at least
relaxes the assumption of the same variogram within sub-
classes. To compare the behaviour of variogram models for a
narrower intensity interval, we produced variograms for nar-
rower intensity classes ranging from 0 to 14 mm h−1 for the
5 min averaging interval. The highest intensity class is lim-
ited to ≥ 12 to < 14 mm h−1 as for further narrower ranges
(i.e ≥ 14 to < 16 mm h−1 and so on) there are not enough
sample points to produce a meaningful variogram. Narrower
intensity classes means that the assumption of similar spatial
variability within a pooled subset is more realistic. Compar-

Figure 8. Calculated variograms for a narrower range of intensity
at 5 min averaging interval.

ing Figs. 7 and 8, we conclude that the variograms shown
in Fig. 7 are accurate representations of the average spatial
variability conditions for corresponding intensity classes.

4.2 Geostatistical upscaling of rainfall data

Having calculated all variograms, the next step is to apply
spatial stochastic simulation for the time instants of interest
followed by steps 6 to 9 in Fig. 4 to calculate the AARI to-
gether with associated uncertainty. This procedure was car-
ried out for all events presented in Table 1. The following
sections present and discuss the predicted AARI and associ-
ated uncertainty levels derived from step 9.

4.2.1 Prediction error vs. AARI

The scatter plot in Fig. 9 shows the coefficient of variation of
the prediction error (CV; see Eq. 6) plotted against predicted
AARI at 5 min averaging interval for all time instants of all
events presented in Table 1:

CV=
AARI prediction error standard deviation

Predicted AARI
× 100%. (6)

The uncertainty level in the prediction of AARI represented
by the CV is due to the combined effect of both spatial vari-
ability of rainfall and TB error in the rainfall data. It can be
seen here that there is a clear trend of decreasing CV with in-
creasing AARI. The CV values are as high as 80 % when the
AARI is smaller than 1 mm h−1 and they get reduced to less
than 10 % when AARI is larger than 10 mm h1. In a previous
study by Pedersen et al. (2010) using rainfall measurements
from similar tipping bucket type rain gauges, they also found
that the uncertainty in prediction of mean rainfall depth de-
creases with increasing mean rainfall depth, but due to the
limited information in their results they could not analyse
this observation in detail. But here it is clear that this observa-
tion corresponds well with what we already observed in var-
iograms in Fig. 7. These variograms show higher nugget-to-
sill ratio at lower intensity due to high TB error consequently
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Figure 9. AARI prediction error CV (%) values against predicted
AARI for averaging interval of 5 min.

causing higher uncertainty in the prediction of AARI. At in-
tensity class 0–5 mm h−1 the nugget-to-sill ratio was almost
one (nugget variogram) and as a result the derived CV values
are significantly higher than other two intensity classes. It is
interesting to note that, in the range of 1–10 mm h−1, there
are few points that are separated from the larger cluster with
almost zero CV. It shows a consistent rainfall measurement
over the area at these time instants, which results in a very
small CV in the predicted AARI.

The above discussion is based on results from 5 min tem-
poral averaging interval. The following section discusses the
effect of temporal averaging interval on prediction error. Fur-
ther, although CV in Fig. 9 gets as high as 80 %, the corre-
sponding AARI is less than 1 mm h−1, thus the prediction
error has a very less significance in urban hydrology. Hence
we also analysed the prediction error associated with rainfall
events’ peaks in the last section.

4.2.2 Prediction error vs. temporal averaging interval

Having analysed the behaviour of the prediction error CV
against predicted AARI, this section presents the effect of
temporal averaging interval on the prediction error of AARI.
Figure 10 shows the kriging predictions with 95 % predic-
tion intervals derived from the prediction standard deviation
for temporal averaging intervals of 2, 5, 15, and 30 min for
event 11. Event 11 has average conditions in terms of event
duration and peak intensity. Prediction errors of other events
against the temporal averaging interval follow the same pat-
tern of behaviour.

While short time intervals are of greater interest in urban
hydrology, they also lead to large uncertainties. Figure 10
shows the smaller the temporal averaging interval, the larger
the prediction interval and the larger the level of uncertainty.
This is due to the combined effect of higher spatial variability
and larger TB error at lower temporal averaging interval as
seen from Fig. 7. When the averaging interval is larger than
15 min the prediction interval width becomes negligible. But
temporal scales of interest in urban hydrology of a similar-

sized catchment can be as low as 2 min where there is still
considerable uncertainty. The 95 % prediction interval shows
around ±13 % of error in rainfall intensity corresponding to
a prediction of peak rainfall of 47 mm h−1 at 2 min averaging
interval. While temporal aggregation decreases uncertainty,
it obviously leads to a significant reduction of the predicted
peaks of AARI. For example, the peak of event 11 gets re-
duced to around 20 mm h−1 from around 50 mm h−1 when
averaging interval increases from 2 to 30 min. Hence a care-
ful trade-off between temporal resolution and accuracy in
rainfall prediction is needed to decide the most appropriate
time step for averaging point rainfall data for urban hydro-
logic applications.

The decreasing trend of uncertainty in the prediction of
AARI with increasing temporal averaging interval agrees
with a previous study by Villarini et al. (2008). Although the
spatial extent of their study is much larger (360 km2), their
results also show that the spatial sampling uncertainties tend
to decrease with increasing temporal averaging interval due
to improvement in measurement accuracy and improved spa-
tial correlation.

4.2.3 Prediction error vs. peak rainfall intensity

In addition to rainfall event durations, rainfall event peaks
are also of significant interest in urban hydrology as most
of the hydraulic structures in urban drainage systems are de-
signed based on peak discharge which is often derived from
peak rainfall. Hence it is important to consider the uncer-
tainty in prediction of peaks of AARI. Figure 11 presents
predicted peaks of AARI for all 13 events presented in Ta-
ble 1, together with labels indicating corresponding CV (%)
values. The peak intensities range from 6 to 92 mm h−1 at
2 min averaging interval and this range narrows down to 3–
21 mm h−1 at averaging interval of 30 min as a result of tem-
poral aggregation. As expected, temporal aggregation from
2 to 30 min also results in the reduction of CV. The highest
CV at 2 min averaging intervals is 13 % for event 4 and re-
duces to 1.7 % at 30 min averaging interval. But it can also
be noted that events 5, 6, 8, and 11 show their highest CV at
5 min averaging interval and not at 2 min averaging interval.
Tracking back these events, they indeed show more spatial
variation over 5 min period compared to 2 min period around
the peak.

As discussed in Sect. 4.2.1, CV decreases with increasing
predicted rainfall peaks and this effect is dominant when the
averaging interval is at the lowest, i.e. 2 min. This is when
the TB error is at its highest. When the temporal averag-
ing interval is 30 min where the TB error is at its lowest, the
difference between CV for lower (< 10 mm h−1) and higher
(> 10 mm h−1) intensity becomes smaller. At 30 min averag-
ing interval the mean CV below and above 10 mm h−1 are 1.7
and 1.2 % respectively, but they increase to 6.6 and 3.5 % at
2 min averaging interval. The maximum CV at 2 min averag-
ing interval are 13 and 6.8 % for lower (< 10 mm h−1) and
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Figure 10. Predictions of AARI (indicated by points) together with 95 % prediction intervals (indicated by grey ribbon) for rainfall event 11
for different averaging intervals.

Figure 11. Predictions of event peaks of AARI (indicated by points) together with labels indicating corresponding CV (%) values.

higher (> 10 mm h−1) rainfall intensity respectively. Even
though these values are significantly less than what we ob-
served from Fig. 9 when the rainfall intensity is less than
1 mm h−1, they are still high considering the required ac-
curacy defined in standard guidelines of urban hydrological
modelling practice. For example, the current urban drainage
verification guideline (WaPUG, 2012) in the UK defines a
maximum allowable deviation of 25 to−15 % in peak runoff
demanding more accurate prediction of rainfall which is the

main driver of the runoff process in urban areas. A 13 %
uncertainty in rainfall will result in a similar level of un-
certainty in runoff prediction for a completely impervious
surface according to the well-established rational formula
(Viessman Jr. and Lewis, 1995) which is still widely used
for estimating design discharge in small urban catchments.
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5 Conclusions

Geostatistical methods have been used to analyse the spatial
correlation structure of rainfall at various spatial scales, but
its application to estimate the level of uncertainty in rainfall
upscaling has not been fully explored mainly due to its in-
herent complexity and demanding data requirements. In this
study we presented a method to overcome these challenges
and predict AARI together with associated uncertainty using
geostatistical upscaling. We used a spatial stochastic simula-
tion approach to address the combination of change of sup-
port (from point to catchment) and non-normality of rain-
fall observations for prediction of AARI and the associated
uncertainty. We addressed the issue of scarcity in measure-
ment points by using repetitive rainfall measurements (pool-
ing) to increase the number of spatial samples used for var-
iogram estimation. The methods were illustrated with rain-
fall data collected from a cluster of eight paired rain gauges
in a 400 m× 200 m urban catchment in Bradford, UK. The
spatial lag ranges from 21 to 399 m. As far we are aware
these are the smallest lag ranges in which spatial variability
in rainfall is examined in an urban area using point rainfall
measurements. We defined intensity classes and derived dif-
ferent geostatistical models (variograms) for each intensity
class separately. We also used different temporal averaging
intervals, ranging from 2 to 30 min, which are of interest in
urban hydrology. To the best of our knowledge this is the
first such attempt to assign geostatistical models for a com-
bination of intensity class and temporal averaging interval.
Finally, we quantified the level of uncertainty in the predic-
tion of AARI for these different combinations of temporal
averaging intervals and rainfall intensity ranges.

A summary of the significant findings is listed below:

– Several studies (e.g. Berne et al., 2004; Gebremichael
and Krajewski, 2004; Krajewski et al., 2003) used
a single geostatistical model in the form of vari-
ogram/correlogram for the entire range of rainfall in-
tensity. The current study shows that for small time and
space scales the use of a single geostatistical model
based on a single variogram is not appropriate and a dis-
tinction between rainfall intensity classes and length of
temporal averaging intervals should be made.

– The level of uncertainty in the prediction of AARI us-
ing point measurement data essentially comes from two
sources: spatial variability of the rainfall and measure-
ment error. The significance and characteristics of the
measurement error observed here mainly corresponds
to sampling related error of tipping bucket type rain
gauges (TB error) and may vary for other types of rain
gauges.

– TB error decreases with increasing rainfall intensity. As
a result of that, the prediction error decreases with in-
creasing AARI. At 5 min averaging interval the CV val-

ues are as high as 80 % when the AARI is smaller than
1 mm h−1 and they get reduced to less than 10 % when
AARI is larger than 10 mm h−1.

– At smaller temporal averaging intervals, the effect of
both spatial variability and TB error is high, resulting
in higher uncertainty levels in the prediction of AARI.
With increasing temporal averaging interval the uncer-
tainty becomes smaller as the spatial correlation in-
creases and the TB error reduces. At 2 min temporal
averaging interval the average CV in the prediction of
peak AARI is 6.6 % and the maximum CV is 13 % and
they are reduced to 1.5 and 3.6 % respectively at 30 min
averaging interval.

– TB error at averaging intervals of less than 5 min, espe-
cially at low-intensity rainfall measurements, is as sig-
nificant as spatial variability. Hence proper attention to
TB error should be given in any application of these
measurements, especially in urban hydrology, where av-
eraging intervals are often as small as 2 min.

Although the spatial stochastic simulation method used in
this study needs more computational power (a summary on
computation power is presented in the Supplement) than
block kriging, it is a robust approach and allows data trans-
formation during spatial interpolation and aggregation. Such
data transformation is important because rainfall data are
not normally distributed for small temporal averaging inter-
vals. The pooling procedure used in this study helps pro-
vide a solution to meet the data requirements for geosta-
tistical methods as it extends the available information for
variogram estimation. Commenting on the minimum num-
ber of measurement points needed to employ this method is
difficult, because like any other geostatistical interpolation
method, the efficiency of this method also heavily depends on
reliable estimation of the geostatistical model (variogram).
Hence, it basically comes down to the question of whether
or not a given measurement network can produce a meaning-
ful variogram. As mentioned, Webster and Oliver (2007) ad-
vised that around 100 measurement points are needed to ade-
quately estimate a geostatistical model. But there is no single
universal rule to define the minimum number of bins and the
number of samples for each bin to produce a reliable vari-
ogram. Further, since pooling sample variograms of repeated
measurements would produce a multiplication of spatial lags,
the size of the available data set would also play a role in de-
ciding the minimum number of measurement points.

An urban catchment of this size needs rainfall data at
a temporal and spatial resolution which is higher than the
resolution of most commonly available radar data (1000 m,
5 min). In addition the level of uncertainty in radar measure-
ments would be much higher than that of point measure-
ments, especially at a small averaging interval (< 5 min, Seo
and Krajewski, 2010; Villarini et al., 2008), which are of-
ten of interest in urban hydrology. Hence, experimental rain
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gauge data similar to the ones used in this study are crucial
for similar studies focused on small urban catchments.

Results from this study can be used for uncertainty anal-
yses of hydrologic and hydrodynamic modelling of similar-
sized urban catchments in similar climates as it provides in-
formation on uncertainty associated with rainfall estimation
which is arguably the most important input in these models.
This information will help to differentiate input uncertainty
from total uncertainty thereby helping to understand other
sources of uncertainty due to model parameter and model
structure. This estimate of the relative importance of uncer-
tainty sources can help to avoid false calibration and force
fitting of model parameters (Vrugt et al., 2008). This study
can also help to judge optimal temporal averaging interval
for rainfall estimation of hydrologic and hydrodynamic mod-
elling especially for small urban catchments.

6 Data availability

The rainfall intensity data used in this study are freely avail-
able at https://doi.org/10.5281/zenodo.291372.

The Supplement related to this article is available online
at doi:10.5194/hess-21-1077-2017-supplement.
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