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ABSTRACT

Context. The flight calibration of the spectral response of charge-coupled device (CCD) instruments below 1.5 keV is difficult in
general because of the lack of strong lines in the on-board calibration sources typically available. This calibration is also a function
of time due to the effects of radiation damage on the CCDs and/or the accumulation of a contamination layer on the filters or CCDs.
Aims. We desire a simple comparison of the absolute effective areas of the current generation of CCD instruments onboard the follow-
ing observatories: Chandra ACIS-S3, XMM-Newton (EPIC-MOS and EPIC-pn), Suzaku XIS, and Swift XRT and a straightforward
comparison of the time-dependent response of these instruments across their respective mission lifetimes.
Methods. We have been using 1E 0102.2-7219, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate and
modify the response models of these instruments. 1E 0102.2-7219 has strong lines of O, Ne, and Mg below 1.5 keV and little or
no Fe emission to complicate the spectrum. The spectrum of 1E 0102.2-7219 has been well-characterized using the RGS gratings
instrument on XMM-Newton and the HETG gratings instrument on Chandra. As part of the activities of the International Astronomical
Consortium for High Energy Calibration (IACHEC), we have developed a standard spectral model for 1E 0102.2-7219 and fit this
model to the spectra extracted from the CCD instruments. The model is empirical in that it includes Gaussians for the identified
lines, an absorption component in the Galaxy, another absorption component in the SMC, and two thermal continuum components
with different temperatures. In our fits, the model is highly constrained in that only the normalizations of the four brightest lines/line
complexes (the O viiHeα triplet, O viii Lyα line, the Ne ixHeα triplet, and the Ne x Lyα line) and an overall normalization are allowed
to vary, while all other components are fixed. We adopted this approach to provide a straightforward comparison of the measured line
fluxes at these four energies. We have examined these measured line fluxes as a function of time for each instrument after applying
the most recent calibrations that account for the time-dependent response of each instrument.
Results. We performed our effective area comparison with representative, early mission data when the radiation damage and con-
tamination layers were at a minimum, except for the XMM-Newton EPIC-pn instrument which is stable in time. We found that the
measured fluxes of the O vii Heα r line, the O viii Lyα line, the Ne ix Heα r line, and the Ne x Lyα line generally agree to within
±10% for all instruments, with 38 of our 48 fitted normalizations within ±10% of the IACHEC model value. We then fit all available
observations of 1E 0102.2-7219 for the CCD instruments close to the on-axis position to characterize the time dependence in the
0.5−1.0 keV band. We present the measured line normalizations as a function of time for each CCD instrument so that the users may
estimate the uncertainty in their measured line fluxes for the epoch of their observations.

Key words. instrumentation: detectors – X-rays: individuals: 1E 0102.2-7219 – ISM: supernova remnants – supernovae: general

1. Introduction

This paper reports the progress of a working group within the In-
ternational Astronomical Consortium for High Energy Calibra-
tion (IACHEC) to develop a calibration standard for X-ray as-
tronomy in the bandpass from 0.3 to 1.5 keV. An introduction to
the IACHEC organization, its objectives and meetings, may be
found at the web page http://web.mit.edu/iachec/. Our
working group was tasked with selecting celestial sources with
line-rich spectra in the 0.3−1.5 keV bandpass which would be
suitable cross-calibration targets for the current generation of

X-ray observatories. The desire for strong lines in this band-
pass stems from the fact that the quantum efficiency and spec-
tral resolution of the current CCD-based instruments is chang-
ing rapidly from 0.3 to 1.5 keV but the on-board calibration
sources currently in use typically have strong lines at only two
energies, 1.5 keV (Al Kα) and 5.9 keV (Mn Kα). The only
option available to the current generation of flight instruments
to calibrate possible time variable responses in this bandpass
is to use celestial sources. The missions which have been
represented in this work are the Chandra X-ray Observatory
(Weisskopf et al. 2000, 2002), the X-ray Multimirror Mission
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(XMM-Newton, Jansen et al. 2001), the ASTRO-E2 Observatory
(Suzaku), and the Swift Gamma-ray Burst Mission (Gehrels et al.
2004). Data from the following instruments have been included
in this analysis: the High-Energy Transmission Grating (HETG,
Canizares et al. 2005) and the Advanced CCD Imaging Spec-
trometer (ACIS, Bautz et al. 1998; Garmire et al. 2003; Garmire
et al. 1992) on Chandra, the Reflection Gratings Spectrome-
ters (RGS, den Herder et al. 2001), the European Photon Imag-
ing Camera (EPIC) Metal-Oxide Semiconductor (EPIC-MOS,
Turner et al. 2001) CCDs and the EPIC p-n junction (EPIC-pn,
Strüder et al. 2001) CCDs on XMM-Newton, the X-ray Imaging
Spectrometer (XIS) on Suzaku, and the X-ray Telescope (XRT,
Burrows et al. 2005; Godet et al. 2007) on Swift.

Ideal calibration targets would need to possess the follow-
ing qualities. The source would need to be constant in time,
to have a simple spectrum defined by a few bright lines with a
minimum of line-blending, and to be extended so that “pileup”
effects in the CCDs are minimized but not so extended that the
off-axis response of the telescope dominates the uncertainties in
the response. Our working group focused on supernova rem-
nants (SNRs) with thermal spectra and without a central source
such as a pulsar, as the class of source which had the greatest
likelihood of satisfying these criteria. We narrowed our list to
the Galactic SNR Cas A, the Large Magellanic Cloud remnant
N132D and the Small Magellanic Cloud remnant 1E 0102.2-
7219 (hereafter E0102). We discarded Cas A since it is rela-
tively young (approximately 350 yr), with significant brightness
fluctuations in the X-ray, radio, and optical over the past three
decades (Patnaude & Fesen 2007, 2009; Patnaude et al. 2011);
it contains a faint (but apparently variable) central source, and
it is relatively large (radius ∼3.5 arcmin). We discarded N132D
because it has a complicated, irregular morphology in X-rays
(Borkowski et al. 2007) and its spectrum shows strong, com-
plex Fe emission (Behar et al. 2001). The spectrum of N132D
is significantly more complicated in the 0.5−1.0 keV bandpass
than the spectrum of E0102. We therefore settled on E0102 as
the most suitable source given its relatively uniform morphol-
ogy, small size (radius ∼0.4 arcmin), and comparatively simple
X-ray spectrum.

We presented preliminary results from this effort in Plucin-
sky et al. (2008) and Plucinsky et al. (2012) using a few ob-
servations with the calibrations available at that time. In this
paper, we present an updated analysis of the representative data
acquired early in the various missions and expand our investi-
gations to include a characterization of the time dependence of
the response of the various CCD instruments. The low energy
responses of some of the instruments (ACIS-S3, EPIC-MOS, &
XIS) included in this analysis have a complicated time depen-
dence due to the time-variable accumulation of a contamination
layer. A primary objective of this paper is to inform the Guest
Observer communities of the respective missions on the current
accuracy of the calibration at these low energies.

2. The SNR 1E 0102.2-7219

The SNR E0102 was discovered by the Einstein Observa-
tory (Seward & Mitchell 1981). It is the brightest SNR in X-rays
in the Small Magellanic Cloud (SMC). E0102 has been exten-
sively imaged by Chandra (Gaetz et al. 2000; Hughes et al.
2000) and XMM-Newton (Sasaki et al. 2001). Figures 1 and 2
show images of E0102 with the relevant spectral extraction
regions for each of the instruments included in this analysis.
E0102 is classified as an “O-rich” SNR based on the optical
spectra acquired soon after the X-ray discovery (Dopita et al.

1981) and confirmed by follow-up observations (Tuohy & Do-
pita 1983). The age is estimated as ∼1000 yr by Hughes et al.
(2000) based on the expansion deduced from comparing Chan-
dra images to ROSAT images, but Finkelstein et al. (2006) es-
timate an age of ∼2050 yr based on twelve filaments observed
during two epochs by the Hubble Space Telescope (HST). Blair
et al. (1989) presented the first UV spectra of E0102 and argued
for a progenitor mass between 15 and 25 M⊙ based on the de-
rived O, Ne, and Mg abundances. Blair et al. (2000) refined this
argument with Wide Field and Planetary Camera 2 and Faint
Object Spectrograh data from HST to suggest that the precursor
was a Wolf-Rayet star of between 25 and 35 M⊙ with a large O
mantle that produced a Type Ib supernova. Sasaki et al. (2006)
compared the UV spectra from the Far Ultraviolet Spectroscopic
Explorer to the CCD spectra from XMM-Newton to conclude that
a single ionization timescale cannot fit the O, Ne, and Mg emis-
sion lines, possibly indicating a highly structured ejecta distribu-
tion in which the O, Ne, and Mg have been shocked at different
times. Vogt & Dopita (2010) argued for an asymmetric, bipolar
structure in the ejecta based on spectroscopy of the [O iii] fila-
ments. The Spitzer Infrared Spectrograph detected strong lines
of O and Ne in the infrared (IR; Rho et al. 2009). In summary,
all available spectral data in the optical, UV, IR, and X-ray bands
indicate significant emission from O, Ne, & Mg with very little
or no emission from Fe or other high Z elements.

The diameter of E0102 is small enough such that a high res-
olution spectrum may be acquired with the HETG on Chandra
and the RGS on XMM-Newton. The HETG spectrum (Flana-
gan et al. 2004) and the RGS spectrum (Rasmussen et al. 2001)
both show strong lines of O, Ne, and Mg with little or no Fe,
consistent with the spectra at other wavelengths. E0102’s spec-
trum is relatively simple compared to a typical SNR spectrum.
Figure 3 displays the RGS spectrum from E0102. The strong,
well-separated lines in the energy range 0.5 to 1.5 keV make
this source a useful calibration target for CCD instruments with
moderate spectral resolution in this bandpass. The source is ex-
tended enough to reduce the effects of photon pileup, which dis-
torts a spectrum. Although some pileup is expected in all the
non-grating instruments when observed in modes with relatively
long frame times. The source is also bright enough to provide a
large number of counts in a relatively short observation. Given
these characteristics, E0102 has become a standard calibration
source that is observed repeatedly by all of the current genera-
tion of X-ray observatories.

3. Spectral modeling and fitting

3.1. Construction of the spectral model

Our objective was to develop a model which would be useful in
calibrating and comparing the response of the CCD instruments;
therefore, the model presented here is of limited value for un-
derstanding E0102 as a SNR. Our approach was to rely upon the
high-resolution spectral data from the RGS and HETG to iden-
tify and characterize the bright lines and the continuum in the
energy range from 0.3−2.0 keV and the moderate-spectral reso-
lution data from the EPIC-MOS and EPIC-pn to characterize the
lines and continuum above 2.0 keV. Since our objective is cal-
ibration, we decided against using any of the available plasma
emission models for several reasons. First, the Chandra re-
sults on E0102 (Flanagan et al. 2004; Gaetz et al. 2000; Hughes
et al. 2000) have shown there are significant spectral variations
within the SNR, implying that the plasma conditions are vary-
ing throughout the remnant. Since the other missions considered
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Chandra ACIS

50.7"

Swift XRT

XMM EPIC MOS XMM EPIC pn

Fig. 1. Images of E0102 from ACIS-S3 (top left), EPIC-MOS (bottom
left), XRT (top right), EPIC-pn (bottom right). The white circles indi-
cate the extraction regions used for the spectral analysis. The fine struc-
ture in E0102 is evident in the Chandra image. Note that the Chandra
extraction region is the smallest.

Suzaku XIS

6’

50.7"

Fig. 2. Suzaku XIS image of E0102. The white circle indicates the
extraction region used for the spectral analysis, a 6 arcmin diameter
circle. The magenta circle indicates the region excluded due to the con-
taminating point source RXJ0103.6-7201, which can also be seen in the
images from the other instruments shown in Fig. 1. The vertical white
line indicates the size of the ACIS-S3 extraction region for comparison.

here have poorer angular resolution than Chandra, the emission
from these regions is mixed so that an unambiguous interpreta-
tion of the fitted parameters of a plasma emission model is diffi-
cult if not impossible. Second, the available parameter space in
the more complex codes is large, making it difficult to converge
on a single best fit which represents the spectrum. We therefore
decided to construct a simple, empirical model based on inter-
stellar absorption components, Gaussians for the line emission,
and continuum components which would be appropriate for our
limited calibration objectives.

We assumed a two component absorption model using the
tbabs (Wilms et al. 2000) model in XSPEC. The first component
was held fixed at 5.36 × 1020 cm−2 to account for absorption in
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Fig. 3. XMM-Newton RGS1/RGS2 spectrum of E0102 from a combina-
tion of 23 observations (top). The bright lines of O and Ne dominate the
flux in this band. Same as top figure except with a logarithmic Y axis to
emphasize the continuum and the weakest lines (bottom). Fe L emission
is absent in this spectrum.

the Galaxy. The second component was allowed to vary in total
column, but with the abundances fixed to the lower abundances
of the SMC (Russell & Bessell 1989; Russell & Dopita 1990,
1992). We modeled the continuum using a modified version of
the APEC plasma emission model (Smith et al. 2001) called the
“No-Line”model. This model excludes all line emission, while
retaining all continuum processes including bremsstrahlung, ra-
diative recombination continua (RRC), and the two-photon con-
tinuum from hydrogenic and helium-like ions (from the strictly
forbidden 2S1/22s → gnd and 1S01s2s → gnd transitions, re-
spectively). Although the bremsstrahlung continuum dominates
the X-ray spectrum in most bands and at most temperatures, the
RRCs can produce observable edges while the two-photon emis-
sion creates “bumps” in specific energy ranges. The No-Line
model assumes collisional equilibrium and so may overestimate
the RRC edges in an ionizing plasma or have the wrong total flux
in some of the two-photon continua. However, the available data
did not justify the use of a more complex model, while the sim-
pler bremsstrahlung-only model showed residuals in the RGS
spectra that were strongly suggestive of RRC edges. The RGS
data were adequately fit by a single continuum component, but
the HETG, EPIC-MOS, and EPIC-pn data showed an excess at
energies above 2.0 keV. We therefore added a second continuum
component to account for this emission.

The lines were modeled as simple Gaussians in XSPEC. The
lines were identified in the RGS and HETG data in a hierarchi-
cal manner, starting with the brightest lines and working down
to the fainter lines. We have used the ATOMDB v2.0.2 (Foster
et al. 2012) database to identify the transitions which produce
the observed lines. The RGS spectrum from 23 observations
totaling 708/680 ks for RGS1/RGS2 is shown in Fig. 3 (top)
with a linear Y axis to emphasize the brightest lines. The spec-
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Table 1. Spectral lines included in the E0102 reference model (v1.9).

Line ID E (keV)a λ (Å)a Flux b Line ID E (keV)a λ (Å)a Flux b

C vi Lyα 0.3675 33.737 175.2 Ne ix Heα i 0.9148 13.553 249.6
Fe xxiv 0.3826 32.405 18.4 Fe xix 0.9172 13.517 0.0
S xiv 0.4075 30.425 11.8 Ne ix Heα r 0.922 13.447 1380.5
N vi Heα f 0.4198 29.534 6.8 Fe xx 0.9668c 12.824 120.5
N vi Heα i 0.4264 29.076 2.0 Ne x Lyα 1.0217 12.135 1378.3
N vi Heα r 0.4307 28.786 10.5 Fe xxiii 1.0564 11.736 24.2
C vi Lyβ 0.4356 28.462 49.5 Ne ix Heβ 1.074 11.544 320.7
C vi Lyγ 0.4594 26.988 27.3 Ne ix Heγ 1.127 11.001 123.1
O vii Heα f 0.561 22.1 1313.2 Fe xxiv 1.168c 10.615 173.5
O vii Heα i 0.5686 21.805 494.4 Ne x Lyβ 1.211 10.238 202.2
O vii Heα r 0.5739 21.603 2744.7 Ne x Lyγ 1.277 9.709 78.5
O viii Lyα 0.6536 18.969 4393.3 Ne x Lyδ 1.308 9.478 37.1
O vii Heβ 0.6656 18.627 500.9 Mg xi Heα f 1.3311 9.314 108.7
O vii Heγ 0.6978 17.767 236.1 Mg xi Heα i 1.3431 9.231 27.5
O vii Heδ 0.7127 17.396 124.9 Mg xi Heα r 1.3522 9.169 231.0
Fe xvii 0.7252 17.096 130.9 ? 1.4317 8.659 8.1
Fe xvii 0.7271 c 17.051 165.9 Mg xii Lyα 1.4721 8.422 110.2
Fe xvii 0.7389 16.779 82.3 Mg xi Heβ 1.579c 7.852 50.6
O viii Lyβ 0.7746 16.006 788.6 Mg xi Heγ 1.659 7.473 16.0
Fe xvii 0.8124 c 15.261 90.5 Mg xii Lyβ 1.745c 7.105 29.7
O viii Lyγ 0.817 15.175 243.1 Si xiii Heα f 1.8395 6.74 13.8
Fe xvii 0.8258 15.013 65.1 Si xiii Heα i 1.8538 6.688 3.4
O viii Lyδ 0.8365 14.821 62.7 Si xiii Heα r 1.865 6.647 34.6
Fe xviii 0.8503 c 14.581 407.3 Si xiv Lyα 2.0052 6.183 11.2
Fe xviii 0.8726 c 14.208 89.6 Si xiii Heβ 2.1818 5.682 4.3
Ne ix Heα f 0.9051 13.698 690.2 S xv Heα f,i,r 2.45 5.06 12.7

Notes. (a) Theoretical rest energies; wavelengths are hc/E. (b) Flux in 10−6 photons cm−2 s−1. (c) This line is broader than the nominal width, see
text.

trum is dominated by the O vii Heα triplet at 560−574 eV, the
O viii Lyα line at 654 eV, the Ne ix Heα triplet at 905−922 eV,
and the Ne x Ly α line at 1022 eV. This figure demonstrates the
lack of strong Fe emission in the spectrum of E0102. The iden-
tification of the lines obviously becomes more difficult as the
lines become weaker. Figure 3 (bottom) shows the same spec-
trum but with a logarithmic Y axis. In this figure, one is able
to see the weaker lines more clearly and also the shape of the
continuum. Lines were added to the spectrum at the known en-
ergies for the dominant elements, C, N, O, Ne, Mg, Si, S, and Fe
and the resulting decrease in the reduced χ2 value was evaluated
to determine if the addition of the line was significant. The list
of lines identified in the RGS and HETG data were checked for
consistency. The identified lines were compared against repre-
sentative spectra from the vpshock model (with lines) to ensure
that no strong lines were missed.

In this manner a list of lines in the 0.3−2.0 keV bandpass
was developed based upon the RGS and HETG data. In addi-
tion, the temperature and normalization were determined for the
low-temperature APEC No-Line continuum component. These
model components were then frozen and the model compared
to the EPIC-pn, EPIC-MOS, and XIS data. Weak lines above
2.0 keV were evident in the EPIC-pn, EPIC-MOS, and XIS data,
as well as what appeared to be an additional continuum compo-
nent above 2.0 keV. Several lines were added above 2.0 kev and
a high-temperature continuum component with kT ∼ 1.7 keV
was added. Once the model components above 2.0 keV had
been determined, the RGS data were re-fit with components
above 2.0 keV frozen to these values and the final values for the

SMC NH and the low-temperature continuum were determined.
In practice, this was an iterative process which required sev-
eral iterations in fitting the RGS and EPIC-MOS/EPIC-pn/XIS
data. Once the absorption and continuum components were de-
termined, the parameters for those components were frozen and
the final parameters for the line emission were determined from
the RGS data. We included 52 lines in the final model and these
lines are described in Table 1. When fitting the RGS data, the
line energies were allowed to vary by up to 1.0 eV from the ex-
pected energy to account for the shifts when an extended source
is observed by the RGS. Shifts of less than 1.0 eV are too small
to be significant when fitting the CCD instrument data. The line
widths were also allowed to vary. In most cases the line widths
are small but non-zero, consistent with the Doppler widths seen
in the RGS (Rasmussen et al. 2001) and HETG (Flanagan et al.
2004) data, σE ≈ 0.003×E; however, in a few cases noted in the
Table, the widths are larger than this value. This is most likely
due to weak, nearby lines which our model has ignored. We do
not have an identification for the line-like feature at 1.4317 keV,
but we note that it is weak.

As noted above, the identification of the lines becomes less
certain as the line fluxes get weaker. Our primary purpose is to
characterize the flux in the bright lines of O and Ne. Any identi-
fication of a line with flux less than 1.0 × 10−4 photons cm−2 s−1

in Table 1 should be considered tentative. The Fe lines in Ta-
ble 1 warrant special discussion. There are nine Fe lines in-
cluded in our model from different ions. We have not verified
the self-consistency of the Fe lines included in this model. As
our objective is calibration and not the characterization of the
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plasma that might produce these Fe lines, the possible lack of
consistency does not affect our analysis. Of particular note is the
Fe xix line at 917 eV with zero flux. We went through several
iterations of the model with this line included and excluded. Un-
fortunately this line is only 2 eV away from the Ne ix Heα i line
at 915 eV and neither the RGS nor the HETG has the resolution
to separate lines this close together. We have decided to attribute
all the flux in this region to the Ne ix Heα i line but have retained
the Fe xix line for future investigations. It is possible that some
of the emission which we have identified as Fe emission is due
to other elements. For our calibration objective this is not impor-
tant because all of the Fe lines are weak and they do not have a
significant effect on the fitted parameters of the bright lines of O
and Ne. We hope that future instruments will have the resolution
and sensitivity to uniquely identify the weak lines in the E0102
spectrum.

3.2. Fitting methodology

The spectral data were fit using the XSPEC software package (Ar-
naud et al. 1999) with the modified Levenberg-Marquardt mini-
mization algorithm and the C statistic (Cash 1979) as the fitting
statistic. We fit the data in the energy range from 0.3−2.0 keV
since that is the energy range in which E0102 dominates over
the background. We adopted the C statistic as the fitting statis-
tic to avoid the well-known bias with the χ2 statistic with a low
number of counts per bin (see Cash 1979; Nousek & Shue 1989)
and the bias that persists even with a relatively large number of
counts per bin (see Humphrey et al. 2009). Given how bright
E0102 is compared to the typical instrumental background, the
low number of counts per bin bias should only affect the lowest
and highest energies in the 0.3−2.0 keV bandpass. The EPIC-
pn spectra were fit with both the C statistic and the χ2 statistic
and the derived parameters were nearly identical. The EPIC-pn
spectra have the largest number of counts and the count rate is
stable in time over the mission. We performed the final fits for
the EPIC-pn with χ2 as the fit statistic. The source extraction re-
gions for each of the CCD instruments are shown in Figs. 1 and
2. The source and background spectra were not binned in order
to preserve the maximal spectral information. Suitable back-
grounds were selected for each instrument nearby E0102 where
there was no obvious enhancement in the local diffuse emission.
If the C statistic is used and the user does not supply an ex-
plicit background model, XSPEC computes a background model
based on the background spectrum provided in place of a user-
provided background model. XSPEC does not subtract the back-
ground spectrum from the source spectrum in this case, rather
the source and background spectra are both modeled. This is re-
ferred to in the XSPEC documentation as the so-called “W statis-
tic”1. Although this approach is suitable for our analysis objec-
tives, it may not be suitable if the source is comparable to or only
slightly brighter than the background. In such a case, it might be
beneficial to specify an explicit background model with its own
free parameters and fit simultaneously with the source spectral
model. Given how bright the O vii Heα triplet, O viii Lyα line,
the Ne ix Heα triplet, and the Ne x Ly α line are compared to
the background, our determination of these line fluxes is rather
insensitive to the background modeling method.

Some of the spectral data sets for the various instruments
showed evidence of gain variations from one observation to an-

1 See
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/

qXSappendixStatistics.html

other. Our analysis method is sensitive to shifts in the gain since
our model spectrum has strong, well-separated lines and the line
energies are frozen in our fitting process. These gain shifts could
be due to a number of factors such as uncertainties in the bias or
offset calculation at the beginning of the observation, drifts in the
gain of the electronics, or variable particle background. Since
our objective is to determine the most accurate normalization for
a line at a known energy, it is important that the line be well-
fitted. We experimented with the gainfit command in XSPEC
for the data sets that showed evidence of a possible gain shift
and determined that the fits to the lines improved significantly
in some cases. One disadvantage of the gainfit approach is
that the value of the effective area is then evaluated at a differ-
ent energy and this introduces a systematic error in the determi-
nation of the line normalization. We determined that for gain
shifts of 5 eV or less, the error introduced in the derived line
normalization is less than 2% which is typically smaller than
our statistical uncertainty on a line normalization from a single
observation. The gain shifts for the EPIC-MOS and EPIC-pn
spectra were small enough that gainfit could be used. The
gain shifts for ACIS-S3, XIS, and XRT could be larger for some
observations, on the order of ±10 eV. Therefore, we adopted the
approach of applying the indicated gain shift to the event data
outside of XSPEC, re-extracting the spectra from the modified
events lists, and then fitting the modified spectrum to determine
the normalization of the line. The ACIS-S3, XIS, & XRT data
had gain shifts applied to their data in this manner.

The number of free parameters needed to be significantly re-
duced before fitting the CCD data in order to reduce the possible
parameter space. In our fits, we have frozen the line energies and
widths, the SMC NH, and the low-temperature APEC No-Line
continuum to the RGS-determined values. The high-temperature
APEC No-Line component was frozen at the values determined
from the EPIC-pn and EPIC-MOS. The fixed absorption and
continuum components are listed in Table 2. Since the CCD in-
struments lack the spectral resolution to resolve lines which are
as close to each other as the ones in the O vii Heα triplet and the
Ne ix Heα triplet, we treated nearby lines from the same ion as a
“line complex” by constraining the ratios of the line normaliza-
tions to be those determined by the RGS and by constraining the
line energies to the known separations. In practice, we would
typically link the normalization and energy of the f and i lines
of the triplet to the r line (except for O vii for which we linked
the other lines to the f line). Since we also usually freeze the
energies of the lines, this means that the three lines in the triplet
would have only one free parameter, the normalization of the
Resonance line. We constructed the model in XSPEC so that it
would be easy to vary the energy of the r line in the triplet (and
hence also the f and i) to examine the gain calibration of a de-
tector at these energies. Our philosophy is to treat nearby lines
as a complex which can adjust together in normalization and en-
ergy. In this paper, we focus on adjusting the normalization of
the line complexes only. Since most of the power in the spectrum
is in the bright line complexes, we froze all the normalizations
of the weaker lines. The only normalizations which we allowed
to vary were the O vii Heα f, O viii Lyα line, the Ne ix Heα r,
and the Ne x Lyα line normalizations. In addition, we found it
useful to introduce a constant scaling factor of the entire model
to account for the fact that the extraction regions for the vari-
ous instruments were not identical. In this manner, we restricted
a model with more than 200 parameters to have only five free
parameters in our fits. The final version of this model in the
XSPEC .xcm file format is available on the IAHCEC web site,
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Table 2. Fixed absorption and continuum components.

Model component Value

Galactic absorption NH = 5.36 × 1020 cm−2

SMC absorption NH = 5.76 × 1020 cm−2

APEC “No-Line” temperature #1 kT = 0.164 keV
APEC “No-Line” normalization #1 3.48 × 10−2 cm−5

APEC “No-Line” temperature #2 kT = 1.736 keV
APEC “No-Line” normalization #2 1.85 × 10−3 cm−5

on the Thermal SNRs Working Group page2. We will refer to
this as the IACHEC standard model for E0102 or the “IACHEC
model.”

4. Observations

E0102 has been routinely observed by Chandra, Suzaku, Swift,
and XMM-Newton, as a calibration target to monitor the response
at energies below 1.5 keV. The IACHEC standard model was
developed using primarily RGS and HETG data as described in
Sect. 3.1. We include a description of the RGS and HETG data
in this section for completeness, but our primary objective is to
improve the calibration of the CCD instruments. Therefore, the
RGS and HETG data were analyzed with the calibration avail-
able at the time the model was finalized. We continue to up-
date the processing and analysis of the CCD instrument data as
new software and calibration files become available. For this
paper, we have selected a subset of these CCD instrument ob-
servations for the comparison of the absolute effective areas.
We have selected data from the timeframe and the instrument
mode for which we are the most confident in the calibration and
used those data in this comparison. We have also analyzed all
available E0102 data from a given instrument in the same mode,
close to on-axis in order to characterize the time dependence of
the response of the individual instruments. We now describe
the data processing and calibration issues for each instrument
individually.

4.1. XMM-Newton RGS

4.1.1. Instruments

XMM-Newton has two essentially identical high-resolution dis-
persive grating spectrometers, RGS1 and RGS2, that share tele-
scope mirrors with the EPIC instruments MOS1 and MOS2 and
operate between 6 and 38 Å or 0.3 and 2.0 keV. The size of its
nine CCD detectors along the Rowland circle define apertures
of about five arcminutes within which E0102 fits comfortably.
Each CCD has an image area of 1024 × 384 pixels, integrated
on the chip into bins of 3 × 3 pixels. The data consist of indi-
vidual events whose wavelengths are determined by the grating
dispersion angles calculated from the spatial positions at which
they were detected. Overlapping orders are separated through
the event energies assigned by the CCDs. The RGS instruments
have suffered the build-up of a contamination layer of carbon in-
cluded automatically in the calibration. The status of the RGS
calibration is summarized in de Vries et al. (2015). Built-in re-
dundancies have ensured complete spectral coverage despite the

2 https://wikis.mit.edu/confluence/display/iachec/

Thermal+SNR

loss early in the mission of one CCD detector each in RGS1 and
RGS2.

4.1.2. Data

E0102 has been a regular XMM-Newton calibration source with
over 30 observations (see Table A.1) made at initially irregular
intervals and a variety of position angles, between 16 April 2000
and 04 November 2011. All of these data have been used in the
analysis reported here using spectra calculated on a fixed wave-
length grid by SAS v11.0.0 separately as normal for RGS1 and
RGS2 and for 1st and 2nd orders. An initial set of 23 observa-
tions before the end of 2007 was combined using the SAS task
rgscombine to give spectra of high statistical weight with ex-
posure times of 708 080 s for RGS1 and 680 290 s for RGS2.
These data were used at an early stage to define the IACHEC
model discussed above.

4.1.3. Processing

As E0102 is an extended source, it required special treatment
with SAS v11.0.0 whose usual procedures are designed for the
analysis of point sources. This simply involved the definition of
a custom rectangular source and background region, taking into
account both the size of the SNR and the cross-dispersion instru-
mental response caused by scattering from the gratings. In cross-
dispersion angle from the SNR center, the source regions were
±0.75′ and the background regions were between ±1.42′ and
±2.58′. An individual measurement was thus encapsulated in
a pair of simultaneous spectra, one combining source and back-
ground, the other the background only.

4.2. Chandra HETG

4.2.1. Instruments

The HETG is one of two transmission gratings on Chandra
which can be inserted into the converging X-ray beam just be-
hind the High Resolution Mirror Assembly (HRMA). When this
is done the resulting HRMA−HETG−ACIS-S configuration is
the high-energy transmission grating spectrometer (HETGS, of-
ten used interchangeably with just HETG). The HETG and its
operation are described as a part of Chandra (Weisskopf et al.
2000, 2002) and in HETG-specific publications (Canizares et al.
2000, 2005).

The HETG consists of two distinct sets of gratings, the
medium-energy gratings (MEGs) and the high-energy-gratings
(HEGs) each of which produces plus − and minus − order dis-
persed spectral images with the dispersion angle nearly propor-
tional to the photon wavelength. The result is that a point source
produces a non-dispersed “zeroth-order” image (the same as if
the HETG were not inserted, though with reduced throughput)
as well as four distinct linear spectra forming the four arms of a
shallow “X” pattern on the ACIS-S readout; see Fig. 1 of both
Canizares et al. (2000) & Canizares et al. (2005).

Hence, an HETG observation yields four first-order spectra,
the MEG ±1 orders and the HEG ±1 orders3. Because the dis-
persed photons are spread out and detected along the ACIS-S,
the calibration of the HETG involves more than a single ACIS

3 There are also higher-valued orders, m = 2, 3,. . . , but their through-
put is much below the first-orders’; the most useful of these are the
MEG ±3 and the HEG ±2 orders each with ∼×0.1 the throughput of the
first orders.
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Fig. 4. Images of the MEG-dispersed E0102 data (top) and a synthesized model (bottom). The ±1 MEG orders from all three epochs have been
combined and displayed in the range from 4.6 Å to 23 Å (left-to-right, 2.7−0.54 keV). The data clearly show bright rings of line emission for
many lines; the very brightest lines just left of center are from Ne x Lyα and Ne ix Heα triplet. The simulated spectral image (bottom) was created
using the IACHEC standard model and does not include any background events. The cross-dispersion range for each image is ±28 arcsec.

CCD: the minus side orders fall on ACIS CCDs S2, S1, and
S0, while the plus side orders are on S3, S4, and S5. Hence
the calibration of all ACIS-S CCDs is important for the HETG
calibration.

When the object observed with the HETG is not a point
source, the dispersed images become something like a convolu-
tion of the spatial and spectral distributions of the source; Dewey
(2002) gives a brief elaboration of these issues. The upshot is
that for the extended-source case the response matrix function
(rmf) of the spectrometer is determined by the spatial charac-
teristics of the source and the position angle of the dispersion
direction on the sky, set by the observation roll angle. These
considerations guide the HETG analyses that follow.

4.2.2. Data

E0102 was observed as part of the HETG GTO program at three
epochs (see Table A.2): in Sept.−Oct. 1999 (obsids 120 and
968, t = 1999.75, exp = 88.2+49.0 ks, roll = 11.7◦), in Decem-
ber of 2002 (obsid 3828, t = 2002.97, exp = 137.7 ks, roll =
114.0+ 180◦), and most recently in February of 2011 (obsid
12147, t = 2001.11, exp = 150.8 ks, roll = 56.5+180◦). The roll
angles of these epochs were deliberately chosen to differ with a
view toward future spectral-tomographic analyses. The HETG
view of E0102 is presented in Flanagan et al. (2004) using the
first epoch observations: the bright ring of E0102 is dispersed
and shows multiple ring-like images due to the prominent emis-
sion lines in the spectrum. The combination of all three epoch’s
MEG data is shown in Fig. 4.

In principle, one can analyze the 2D spectral images directly
(Dewey 2002) to get the most information from the data. This in-
volves doing forward-folding of spatial-spectral models to create
simulated 2D images which are compared with the data (Dewey
& Noble 2009). The lower image of Fig. 4 shows such a sim-
ulated model for the combined MEG data sets based on the ob-
served E0102 zeroth-order events, the IACHEC standard model,
and CIAO-generated ARFs. However, for the limited purpose
of fitting the 5-parameter IACHEC model to the HETG data we
can collapse the data to 1D and use the standard HETG extrac-
tion procedures (next section).

4.2.3. Processing

The first steps in HETG data analysis are the extraction of
1D spectra and the creation of their corresponding ARFs (as
mentioned above the point-source RMFs are not applicable to
E0102.) Because of differences in the pointing of the two first-
epoch observations, they are separately analyzed and so we ex-
tract the four HETG spectra from each of the four obsids avail-
able. The archive-retrieved data were processed using TGCat
ISIS scripts (Huenemoerder et al. 2011); these provide a use-

ful wrapper to execute the CIAO extraction tools. Several cus-
tomizations were specified before executing TGCat’s do-it-all
run_pipe() command:

The extraction center was manually input and chosen to be
at the center of a 43 sky-pixel radius circle that approxi-
mates the outer blastwave location. For the recent-epoch ob-
sid 12 147, this is at RA 01:04:02.11 and Dec −72:01:52.2
(J2000 coordinates). This location is 0.5 sky-pixels east and
seven sky-pixels north of the centroid of the bright blob at the
inner end of the “Q-stroke” feature. This offset from a fea-
ture in the data was used to determine the equivalent center
location in the other obsids.
The cross-dispersion widths of the MEG and HEG spec-
tral extractions were set to cover a range of ±55 sky-pixels
around the dispersion axes.
The order-sorting limits were explicitly set to a large constant
value of ±0.20 4.

Because E0102 covers a large range in the cross-dispersion di-
rection compared with the ±16 pixel dither range, we gener-
ated for each extraction a set of 7 ARFs spaced to cover the
110 pixels of the cross-dispersion range. In making the ARFs
we set osipfile=none because of our large order-sorting lim-
its. Finally, background extractions were made as for the data
but with the extraction centers shifted by 120 pixels in the cross-
dispersion direction.

The fitting of the HETG extractions generally follows the
methodology outlined in Sect. 3.2 with some adjustments be-
cause of the extended nature of E0102, and, secondarily, because
of the use of the ISIS platform (Houck 2002). For each obsid and
grating-order we read in the extracted source and background
spectra (PHA files) and, after binning (below), the background
counts are subtracted bin-by-bin from the source counts. The
corresponding set of ARFs that span E0102’s cross-dispersion
extent are read in, averaged, and assigned to the data. An RMF
that approximates the spatial effects of E0102 is created and
assigned as well, see Fig. 5. Finally the model is defined in
ISIS and its 5 free parameters are fit and their confidence ranges
determined.

The ARFs for the HETG contain two general types of fea-
tures: those that depend on the photon energy, such as mirror
reflectivity, grating efficiency and detector QE, and other effects
that depend on the specific location on the readout array where
the photon is detected, such as bad pixels and chip gaps. For a
point source there is very nearly a one-to-one mapping of pho-
ton energy and location of detection, hence the two terms are
combined in the the SPECRESP values in the overall ARF FITS
file. The latter term is, however, available separately via the

4 For the first epoch, early in the Chandra mission, the ACIS focal
plane temperature was at −110 ◦C. For these obsids we used a somewhat
larger order-sorting range of ±0.25.
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Fig. 5. Fit to the HETG MEG−1 data. Top: the observed MEG−1
data-minus-background counts are shown in black. For reference, the
IACHEC model is multiplied by the ARF and is shown in green; it has
been scaled by 0.1 for clarity. The red curve shows the IACHEC model
when it is further folded through an RMF that approximates the spatial
extension of E0102 (see text). Bottom: the data (black) and model (red)
counts are rebinned to a set of ten coarse bins which are used for the
5-parameter model fits.

FRACEXPO values and this is used to remove the location-specific
contribution from the ARF. The RMF is made in-software using
ISIS’s load_slang_rmf() routine. The resulting RMF approx-
imates the 1D projected shape of E0102 and appropriately in-
cludes the FRACEXPO features.

As shown in Fig. 5, the HETG 1D extracted spectra are
reasonably approximated by the model folded through the
approximate-RMF. However, because the RMF is not com-
pletely accurate, we reduce its influence on the fitting by defin-
ing a coarse binning of ten bins from 0.54 to 2.0 keV (23−6.2 Å).
The boundaries of the bins are chosen to be between the brightest
lines, and the three lowest-energy bins are not used when fitting
an HEG spectrum.

4.3. XMM-Newton EPIC-pn

4.3.1. Instruments

The EPIC-pn instrument is based on a back-illuminated 6 ×
6 cm2 monolithic X-ray CCD array covering the 0.15−12 keV
energy band. Four individual quadrants each having three EPIC-
pn-CCD subunits with a format of 200 × 64 pixels are operated

in parallel covering a ∼13′.6 × 4′.4 rectangular region. Differ-
ent CCD-readout modes are available which allow faster read-
out of restricted CCD areas, with frame times from 73 ms for
the full-frame (FF), 48 ms for large-window (LW), and 6 ms for
the small window (SW) mode, the fastest imaging mode (Strüder
et al. 2001).

4.3.2. Data

XMM-Newton observed E0102 with EPIC-pn in all imaging
readout modes (FF, LW and SW) and all available optical block-
ing filters. To rule out photon pileup effects we only used spec-
tra from SW mode data for our analysis. Between 2001-12-25
and 2015-10-30 (satellite revolution 375 to 2910) E0102 was ob-
served by XMM-Newton with EPIC-pn in small window (SW)
mode 24 times (see Table A.3). Two observations were per-
formed with the thick filter while for 11 (11) observations the
thin (medium) filter was used. One set of observations placed
the source at the nominal boresight position which is close to a
border of the 4.4′ × 4.4′ read-out window of EPIC-pn-CCD 4
meaning only a relatively small extraction radius of 30′′ is pos-
sible. During 14 observations the source was centered in the SW
area which allows an extraction with 75′′ radius. For comparison
we show in Fig. 6 the images binned to 4′′ × 4′′ pixels from ob-
servation 0135720801 (with the SNR centered) and 0412981401
(nominal target position).

4.3.3. Processing

The data were processed with XMM-Newton SAS version
14.0.0 and we extracted spectra using single-pixel events (PAT-
TERN= 0 and FLAG= 0) to obtain the highest spectral resolu-
tion. Response files were generated using rmfgen and arfgen,
assuming a point source for PSF corrections. Due to the extent of
E0102, the standard PSF correction for the lost flux outside the
extraction region introduces systematic errors, leading to differ-
ent fluxes from spectra using different extraction radii. To utilize
the observations with the target placed at the nominal boresight
position, we extracted spectra from the SW-centered observa-
tions with a 30′′ and a 75′′ radius. For the large extraction ra-
dius, PSF losses are negligible and, from a comparison of the
two spectra, an average correction factor of 1.0315 was derived
to account for the PSF losses in the smaller extraction region.

In order to derive reliable line fluxes from the EPIC-pn spec-
tra, the lines must be at their nominal energies as accurately as
possible. Otherwise, the high statistical quality leads to bad fits
and wrong line normalizations. Energy shifts of generally less
than 5 eV in the EPIC-pn spectra of E0102 lead to increases in
χ2 from typical values of 600−700 to 700−800 and changes in
line normalizations by approximately 2%. Only for the highest
required gain shifts of 7−8 eV (Fig. 7) errors in the line normal-
izations reach approximately 5%. Therefore, we created for each
observation a set of event files with the energies of the events
(the PI value) shifted by up to ±9 eV in steps of 1 eV. In or-
der to do so the initial event file was produced with an accu-
racy of 1 eV for the PI values (PI values are stored as integer
numbers with an accuracy of 5 eV by default) using the switch
testenergywidth=yes in epchain. Spectra were then cre-
ated from the 19 event files with the standard 5 eV binning. The
19 spectra from each of the SW mode observations were fit using
the model described in Sect. 3.1 with five free parameters (the
overall normalisation factor and four line normalizations repre-
senting the O vii Heα f, O viii Lyα, Ne ix Heα r and Ne x Lyα).

A35, page 8 of 31

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628824&pdf_id=5


P. P. Plucinsky et al.: X-ray cross-calibration with the SNR 1E 0102.2-7219

0 4 12 28 60 125 253 509 1024 2043 4072 0 4 13 30 64 132 267 536 1079 2153 4292

Fig. 6. XMM-Newton EPIC-pn images of E0102 observed in SW mode. Left: observation 0135720801 with the SNR centered in the SW readout
area; Right: observation 0412981401 with the SNR at the nominal boresight position.
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Fig. 7. Energy shift applied to the EPIC-pn spectra of E0102 as function
of time. Observations with the SNR placed at the center of the readout
window are marked with a square, those at the nominal boresight posi-
tion with a circle and cross.

The best-fit spectrum was then used to obtain the energy adjust-
ment and the line normalizations for each observation. In par-
allel we determined the energy adjustment using the gain fit
command in XSPEC with the standard spectrum, only allowing
the shift as free parameter and fixing the slope to 1.0. A compar-
ison of the required energy adjustments obtained from the two
methods shows no significant differences. Therefore, we pro-
ceeded to use the gain fit in XSPEC because it is simpler to
use.

In Fig. 7 we show the derived energy shift (using gain fit)
for the SW mode observation as function of time. No clear trend
is visible with an average shift of +1.8±1.0 eV (1σ confidence),
which is well within the instrument channel width of 5 eV. How-
ever, a systematic difference between the two sets of observa-
tions (boresight, centered) is revealed. For the observations with
the target placed at boresight (centered) the average shift was
determined to −0.7 ± 0.5 eV (+3.6 ± 1.2 eV). The boresight

position is the best calibrated which is supported by the small
average energy shift. The center location corresponds to differ-
ent RAWX and RAWY coordinates on the CCD. It is closer to
the CCD read out (lower RAWY) and therefore charge transfer
losses are reduced. On the other hand the gain depends on the
read-out column (RAWX). Therefore, it is not clear if uncertain-
ties in the gain or charge transfer calibration or both are respon-
sible for the difference in energy scale of about 4 eV at the two
positions. Similar position-dependent effects were found from
observations of the isolated neutron star RX J1856.5-3754 (Sar-
tore et al. 2012).

The line normalizations of the four line complexes after the
gain fit (multiplied by the overall normalisation and corrected
to the large extraction radius) relative to the model normaliza-
tions are shown in Fig. 8. For each line complex the derived
line normalizations are consistent with being constant in time.
The largest deviations are seen from the fifth observation, one
for which the thick filter was used. On the other hand, dur-
ing revolution 2380 (2012-12-06) three observations were per-
formed with the three different filters yielding consistent results.
The average values (fitting a constant to the normalizations) are
1.014 ± 0.004 (O vii), 0.959±0.003 (O viii), 0.991±0.003 (Ne ix)
and 0.933 ± 0.004 (Ne x). The O viii and Ne x ratios are signifi-
cantly lower by about 5% than the ratios from their correspond-
ing lower ionization lines. A possible error in the calibration
over such relatively narrow energy bands is difficult to under-
stand and needs further investigation.

4.4. XMM-Newton EPIC-MOS

4.4.1. Instruments

XMM-Newton (Jansen et al. 2001) has three X-ray telescopes
each with a European Photon Imaging Camera (EPIC) at the fo-
cal plane. Two of the cameras have seven MOS CCDs (hence-
forth MOS1 and MOS2; Turner et al. 2001) and the third has
twelve pn CCDs (see Sect. 4.3). Apart from the characteris-
tics of the detectors, the telescopes are differentiated by the fact
that the MOS1 and MOS2 telescopes contain the reflection grat-
ing arrays which direct approximately half the X-ray flux into

A35, page 9 of 31

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628824&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628824&pdf_id=7


A&A 597, A35 (2017)

2005 2010 2015

0
.9

0
.9

5
1

1
.0

5

L
in

e 
R

at
io

Year

EPIC pn Small Window Mode

SAS 14.0

Ne XNe IXO VIIIO VII

Fig. 8. Relative line normalizations (compared to the IACHEC model)
derived from the EPIC-pn SW mode spectra of E0102 as function of
time.

the apertures of the reflection grating spectrometers (RGS1 and
RGS2).

4.4.2. Data

E0102 was first observed by XMM-Newton quite early in the
mission in April 2000 (orbit number 0065). The MOS observa-
tions are listed in Table A.4. This first look at the target in orbit
0065 was split into two observations, each approximately 18 ks
in duration and each with a different choice of optical filter. Ob-
servation 0123110201 had the THIN filter and 0123110301 had
the MEDIUM filter. Both filters have a 1600 Å polyimide film
with evaporated layers of Aluminum of 400 Å and 800 Å. The
EPIC-MOS readout was configured to the Large Window (LW)
imaging mode (in the central CCD only the inner 300× 300 pix-
els of the total available 600×600 pixels are read out). LW mode
is the most common imaging mode used in EPIC-MOS observa-
tions of this target as the faster readout (0.9 s compared with
2.6 s in full frame (FF) mode) minimises pileup whilst retaining
enough active area to contain the whole remnant for pointings
up to around two arcminutes from the center of the target. This
is useful for exploring the response of the instrument for off-axis
angles near to the boresight.

4.4.3. Processing

The EPIC-MOS data were first processed into calibrated event
lists with SAS version 12.0.0 and the current calibration files
(CCFs) as of May 2013 and later with SAS version 13.5.0 and
the CCFs as of December 2013. The signficant differences be-
tween the SAS and CCF versions are dealt with in Sect. 5.4.1.

Source spectra were extracted from a circular region of
radius 80′′ centered on the remnant. Background spectra
were taken from source-free regions on the same CCD. The
event selection filter in the nomenclature of the SAS was
(PATTERN==0)&&(#XMMEA_EM). This selects only mono-
pixel events and removes events whose reconstructed energy is
suspect due, for example, to proximity to known bright pixels or
CCD boundaries which can be noisy.

Mono-pixel events are chosen over the complete X-ray pat-
tern library because it minimises the effects of pileup with little

loss of sensitivity over the energy range of interest. The effects
of pileup on the mono-pixel spectrum can be shown to be small.
The mono-pixel pileup fraction, the fraction of events lost to
higher patterns or formed from two (or more) X-rays detected
in the same pixel within a frame (the former is more likely by a
factor of about 8:1), can be estimated from the observed fraction
of diagonal bi-pixel events which arise almost exclusively from
the pileup of two mono-pixel events. By default the SAS splits
these events (nominally pattern classes 26 to 29) back into two
separate mono-pixels although this action can be switched off.
Less than 1.0% of events within the source spectra are diago-
nal bi-pixels which is approximately the same fraction of mono-
pixel events lost to horizontal or vertical bi-pixels (event pattern
classes 1 to 4).

We employ a simple screening algorithm to detect flares in
the background due to soft protons. Light curves of bin size
100 s were created from events with energies greater than 10 keV
within the whole aperture. Good time intervals were formed
where the observed rate was less than 0.4 cts s−1. The cut-off
limit was chosen by manual inspection of the light curves. Typ-
ically after this procedure the observed background is less than
1% of the total count rate below 2.0 keV.

All spectra were extracted with a 5.0 eV bin size. Response
(RMF) files were generated with the SAS task rmfgen in the en-
ergy range of interest with an energy bin size of 1.0 eV. This
is comparable to the accuracy with which line centroids can be
determined for the stronger lines in this source for typical expo-
sures in the EPIC-MOS. Although the source is an extended,
but compact, object, the effective area (ARF) file was calcu-
lated with the SAS task arfgen assuming a point-source function
model with the switch PSFMODEL=ELLBETA.

We justify this over attempting to accurately account for the
extended nature of the object in the generation of the ARF be-
cause to do so is mathematically much more complex and the
end result can be predicted to produce a result which would be
much closer to the point-source approximation than the basic
uncertainties in the calibration. To formally account for the ex-
tended nature of the object would require deconvolving the im-
age with the telescope point-spread function to get the true in-
put spatial distribution relative to the mirror and then estimating
for each point in the image both the encircled energy fraction
(EEF) relative to the applied spectral extraction region and also
the vignetting function. The final ARF would then be a counts
weighted average of the ARF derived at each point.

As the remnant is approximately a ring like structure 25′′ in
radius then the bulk of the input photons have an angular dis-
tance relative to the circular 80′′ extraction region which varies
between 55′′ to 105′′, but has a mean of about 82′′. The EEF for
a point source is approximately 91%, 94% and 96% at 55′′, 80′′

and 105′′ respectively (in the energy range of interest). Hence,
the adoption of a single EEF for an 80′′ radius is estimated to be
approximately within 1% of the value that would be derived if
one adopted the technically more accurate method outlined pre-
viously. Similarly, the calibrated vignetting variation across the
remnant is less than 1% hence our assumption that the represen-
tative value at the center is a justifiable approximation. Over-
all, the accuracy of the calculated ARF is clearly dominated
more by the absolute uncertainty in the calibration of the vi-
gnetting and EEF than the point-source assumption employed
here.

Fitting of the model to the source spectra followed the recipe
described earlier. Table 3 shows the fitting results from each
of the EPIC-MOS observations from Orbit 0065. The Thin
and Medium filter results are consistent within the errors and
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Table 3. XMM-Newton EPIC-MOS fitting results.

MOS1 MOS2

Parametera Thin Medium Thin Medium

Without gain fit

Global 1.063 (0.009) 1.057 (0.011) 1.091 (0.009) 1.059 (0.011)
O vii 1.380 (0.026) 1.428 (0.032) 1.385 (0.026) 1.460 (0.033)
O viii 4.576 (0.068) 4.459 (0.081) 4.487 (0.068) 4.623 (0.085)
Ne ix 1.375 (0.022) 1.369 (0.026) 1.348 (0.022) 1.404 (0.027)
Ne x 1.393 (0.025) 1.371 (0.029) 1.373 (0.025) 1.419 (0.031)
C-stat/d.o.f. 450.5/334 413.9/334 432.3/334 419.6/334

With gain fit

Global 1.060 (0.009) 1.044 (0.011) 1.081 (0.009) 1.059 (0.011)
O vii 1.383 (0.026) 1.410 (0.032) 1.383 (0.027) 1.449 (0.034)
O viii 4.609 (0.069) 4.508 (0.082) 4.536 (0.069) 4.650 (0.086)
Ne ix 1.386 (0.022) 1.378 (0.026) 1.361 (0.022) 1.409 (0.027)
Ne x 1.400 (0.026) 1.383 (0.029) 1.385 (0.025) 1.426 (0.031)
Offset −4.358 −6.293 −6.297 −3.641
Slope 1.0061 1.0059 1.0081 1.0035
C-stat/dof 422.7/332 376.9/332 387.8/332 408.7/332

Notes. (a) Line normalisations for O vii, O viii, Ne ix and Ne x are multiplied by 10−3.

the global results for MOS1 and MOS2 (see Sect. 5.3) are the
weighted averages of results from each filter. Shifts in the cal-
ibration of the event energy scale were investigated using the
gain fit command in XSPEC with an improvement in the fit
statistic arising from shifts of around ∼5 eV at 1.0 keV. This is
typical of the calibration accuracy of the event energy scale in
the EPIC-MOS detectors. The values of the parameter normal-
izations are relatively insensitive to gain shifts of this magni-
tude. This was confirmed by applying a reverse gain shift, using
the values indicated by XSPEC, to the calibrated energies of each
event, then re-extracting and re-fitting the spectra.

EPIC-MOS differs from other instruments in this paper be-
cause we explicitly use the source model described here to con-
strain the redistribution model of our RMF. Within a few years
of launch it was noticed that the redistribution properties of the
central CCD (in both MOS1 and MOS2) in a spatial region cen-
tered around the telescope boresight (within ∼1 arcmin) were
evolving with time. The change was consistent with an evolution
of the strength and shape of the low-energy charge-loss compo-
nent of the redistribution profile. As we do not have a physical
model of this effect accurate enough to describe the changing
RMF, it is calibrated using a method of varying the parameters
of a phenomenological model of the RMF to provide a best fit
solution to a joint simultaneous fit to spectra from our onboard
calibration source and several astrophysical sources, including
E0102, using fixed spectral models (Sembay et al. 2011). In the
case of the astrophysical sources the input spectral models are
derived primarily from the RGS and EPIC-pn. The fitting pro-
cedure allows variation in the global normalisation of each spec-
tral model otherwise all parameters within the model are fixed.
The consequence of this is that the RMF parameters are driven
someway towards a result which gives an energy independent
cross-calibration between the EPIC-MOS and RGS. This in part
explains why the relative line-to-line normalizations are consis-
tent with the RGS although there is a global offset between the
instruments (see Sect. 5.3).

4.5. Chandra ACIS

4.5.1. Instruments

The ACIS is an X-ray imaging-spectrometer consisting of the
ACIS-I and ACIS-S CCD arrays. The imaging capability is un-
precedented with a half-power diameter (HPD) of ∼1′′ at the
on-axis position. We use data from one of the back-illuminated
CCDs (ACIS-S3) in the ACIS-S array in this analysis since the
majority of imaging data have been collected using this CCD
and its response at low energies is significantly higher than the
front-illuminated CCDs in the ACIS-I array. There are also more
observations of E0102 on S3 than on the I array which allows a
better characterization of the time dependence of the response.
The ACIS-S3 chip is sensitive in the 0.2−10 keV band. The chip
has 1024 × 1024 pixels covering a 8′.4 × 8′.4 area. The spectral
resolution is ≈150 eV in the 0.3−2.0 keV bandpass.

4.5.2. Data

The high angular resolution of Chandra compared to the other
observatories is apparent in Fig. 1 as evidenced by the fine struc-
ture apparent in this SNR. The majority of the observations of
E0102 early in the Chandra mission were executed in full-frame
mode with 3.2 s exposures. Unfortunately the bright parts of the
ring are significantly piled-up when ACIS is operated in its full-
frame mode. In 2003, an observation was conducted in subarray
mode that showed the line fluxes were depressed compared to the
observations in full-frame mode. In 2005, the Chandra calibra-
tion team switched to using subarray modes with readout times
of 1.1 s and 0.8 s as the default modes to observe E0102 resulting
in a reduction in the pileup level. There have been 14 subarray
observations of E0102 on the S3 CCD within one arcminute of
the on-axis position, twelve in node 0 and two in node 1 (see Ta-
ble A.2). There are other observations of E0102 on S3 at larger
off-axis angles which we exclude from the current comparison
to the other instruments close to on-axis. We have selected the
two earliest OBSIDs for comparison to the other instruments and
discuss the analysis of all 14 observations in Sect. 5.3.
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4.5.3. Processing

The data were processed with the Chandra X-ray Center (CXC)
analysis SW CIAO v4.7 and the CXC calibration database
CALDB v4.6.8. We followed the standard CIAO data analysis
threads to select good events, reject times of high background,
and extract source and background spectra in PI channels. Back-
ground spectra were extracted from regions off of the remnant
that were specific to each observation since the region of the
sky covered varied from observation to observation due to the
roll angle of the observation. Response matrices were produced
using the standard CIAO tool mkacisrmf with PI channels and
auxiliary response files were produced using mkwarf to account
for the extended nature of E0102. These tools were called as a
Chandra Guest Observer would call them using the CIAO script
specextract.pl.

There are several time-dependent effects which the analy-
sis SW attempts to account for (Plucinsky et al. 2003; Mar-
shall et al. 2004; DePasquale et al. 2004). The most important
of these is the efficiency correction for the contaminant on the
ACIS optical-blocking filter which significantly reduces the ef-
ficiency at energies around the O lines. We chose the earliest
two OBSIDs to compare to the other instruments since the con-
tamination layer was thinnest at that time. The analysis SW also
corrects for the CTI of the BI CCD (S3), including the time-
dependence of the gain. Even with this time-dependent gain cor-
rection, some of the observations exhibited residuals around the
bright lines that appeared to be due to gain issues. We then fit
allowing the gain to vary and noticed that some of the obser-
vations had significant improvements in the fits when the gain
was allowed to adjust. The adjustments were small, about 5 eV
which corresponds to one ADU for S3. We derived a non-linear
gain correction using the energies of the O vii Heα triplet, the
O viii Lyα line, the Ne ix Heα triplet and the Ne x Ly α line, re-
quiring the gain adjustment to go to zero at 1.5 keV. These gain
adjustments were applied to the events lists and spectra were re-
extracted from these events lists. The modified spectra were used
for subsequent fits. This ensures that the line flux is attributed to
the correct energy and the appropriate value of the effective area
is used to determine the line normalization.

4.6. Suzaku XIS

4.6.1. Instruments

The XIS is an X-ray imaging-spectrometer equipped with four
X-ray CCDs sensitive in the 0.2−12 keV band. One CCD
is a back-illuminated (XIS1) device and the others are front-
illuminated (XIS0, 2, and 3) devices. The four CCDs are lo-
cated at the focal plane of four co-aligned X-ray telescopes with
a half-power diameter (HPD) of ∼2′.0. Each XIS sensor has
1024 × 1024 pixels and covers a 17′.8 × 17′.8 field of view. The
XIS instruments, constructed by MIT Lincoln Laboratories, are
very similar in design to the ACIS CCDs aboard Chandra. They
are fully described by Koyama et al. (2007). Due to expected
degradation in the power supply system, Suzaku lost attitude
control in June 2015, and the science mission was declared com-
pleted in August 20155.

The XIS2 device suffered a putative micro-meteorite hit in
November 2006 that rendered two-thirds of its imaging area un-
usable, and it has been turned off since that point. XIS0 also
suffered a micro-meteorite hit in June 2009 that affected one-

5 See http://global.jaxa.jp/press/2015/08/20150826_

suzaku.html

eighth of the device. Since this region is near the edge of the
chip, the device was still used for normal observations until the
cessation of science operations in August 2015. The other two
CCDs continued to operate normally.

Unlike the ACIS devices, the XIS CCDs possess a charge
injection capability whereby a controlled amount of charge can
be introduced via a serial register at the top of the array. This
injected charge acts to fill CCD traps that cause charge trans-
fer inefficiency (CTI), mitigating the effects of on-orbit radia-
tion damage (Ozawa et al. 2009). In practice, the XIS devices
were operated with spaced-row charge injection (SCI) switched
on starting in August 2006. A row of fixed charge is injected
every 54 rows; the injected row is masked out on-board, slightly
reducing the useful detector area. The level of SCI in the FI
chips has been set to about 6 keV for the duration of the mission.
The level in the BI chip was initially set to 2 keV to reduce noise
at soft energies. However, in late 2010 and early 2011 this level
was raised to 6 keV.

4.6.2. Data

The XIS observations in this work include representative
datasets over the course of the mission. E0102 was a stan-
dard calibration source for Suzaku, with 74 separate observa-
tions during the life of the mission, including the very first ob-
servation when the detector doors were opened. We have chosen
eleven observations each taken about one year apart and typi-
cally 20−30 ks in duration. One of these observations was taken
shortly after launch on 17 Dec. 2005, and is the longest single
observation of E0102 with the XIS (94 ks of clean data from
the BI CCD and 50 ks from each of the FI CCDs). However,
these data were taken at a time when the molecular contami-
nation on the optical blocking filters was rapidly accumulating.
Since the calibration at this epoch is uncertain, we have chosen
an earlier, somewhat shorter observation (31 Aug. 2005) to com-
pare to the other instruments. The observations are summarized
in Table A.5. Three of these observations (in 2005 and 2006)
were taken with SCI off, the remainder with SCI on. Observa-
tions starting in 2011 were taken with the XIS1 SCI level set
to 6 keV. Only three observations have been included for XIS2,
which ceased operation in late 2006. Normal, full-window ob-
serving mode was used for all analyzed datasets.

4.6.3. Processing

The data were reprocessed to at least v2.7 of the XIS pipeline.
In particular, the CTI, charge trail, and gain parameters were ap-
plied from v20111018 or later of the makepi CALDB file, which
reduced the gain uncertainty to less than 10 eV for all of the ob-
servations. Further gain correction was performed during the
spectral analysis, in a similar way to Chandra ACIS-S3 and as
described in Sect. 3.2.

During the data processing, we found a large variation in
the Suzaku pointing accuracy, with an average astrometric off-
set of 20 arcsec, but ranging up to 1.5 arcmin. In the worst
case, this is significantly larger than the published astrometric
accuracy of 20 arcsec, although smaller than the PSF of the
Suzaku XRT mirrors (∼2 arcmin HPD). Given this pointing error,
and the presence of a contaminating point source (RXJ0103.6-
7201) projected 2 arcmin from E0102, we corrected the point-
ing by applying a simple offset in RA and Dec to the attitude
data. This offset was calculated from a by-eye comparison of
the Suzaku centroids of E0102 (in the 0.4−2 keV band) and
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RXJ0103.6-7201 (in the 2−7 keV band) to the source locations
in a stacked Chandra ACIS-S3 image. The offset for each XIS
was determined separately and then averaged to produce the atti-
tude offset for a single observation. From the dispersion of these
measurements, we estimate that the rms uncertainty in the cor-
rected astrometry is 5 arcsec, or about 5 unbinned CCD pixels.
We note that this correction is different from the Suzaku XRT
thermal wobble, which is corrected in the pipeline6. In addition,
the satellite was plagued by an attitude control problem between
Dec. 2009 and June 2010, which has not been corrected and ef-
fectively produces a smearing of the PSF7.

Spectra were extracted from a 3 arcmin radius aperture,
which contains 95% of the flux from a point source. We
excluded a 1 arcmin radius region around RXJ0103.6-7201.
Background spectra were extracted from a surrounding an-
nulus encompassing 5.6−7.4 arcmin. The redistribution ma-
trix files (RMFs) were produced with the Suzaku FTOOL xis-
rmfgen (v20110702), using v20111020 of the CALDB RMF
parameters. The ancillary response files (ARFs) were pro-
duced with the Monte Carlo ray-tracing FTOOL xissimarfgen
(v20101105). The ARF includes absorption due to OBF contam-
ination (Koyama et al. 2007), using v20130813 of the CALDB
contamination parameters. To ensure the ARF properly ac-
counted for the partially-resolved extent of the source, a Chan-
dra ACIS-S3 broad-band image of the inner 30 arcsec of E0102
was used as an input source for the ray-tracing.

This X-ray binary RXJ0103.6-7201, projected 2 arcmin from
E0102, shows up clearly in Chandra ACIS-S3 observations, and
it is well-modeled by a power law with spectral index of 0.9 plus
a thermal mekal component with kT = 0.15 keV, with a strong
correlation between the component normalizations (Haberl &
Pietsch 2005). By masking it out in the spectral extraction with
a 1 arcmin radius circle, we reduce its contribution by 50%. In
the region below 3 keV, we expect E0102 thermal emission to
dominate the residual contaminating flux by several orders of
magnitude.

4.7. Swift XRT

4.7.1. Instruments

The Swift X-ray Telescope (XRT) comprises a Wolter-I tele-
scope, originally built for JET-X, which focuses X-rays onto
an e2v CCD22 detector, similar to the type flown on the
XMM-Newton EPIC-MOS instruments (Burrows et al. 2005).
The CCD, which was responsive to ∼0.25−10.0 keV X-rays at
launch, has dimensions of 600×600 pixels, giving a 23.6′ × 23.6′

field of view. The mirror has a HPD of ∼18′′ and can provide
source localization accurate to better than 2′′ (Evans et al. 2009).

Since its launch in 2004 November, Swift’s primary science
goal has been to rapidly respond to gamma-ray bursts (GRBs)
and other targets of opportunity (TOOs). To achieve this, the
XRT was designed to operate autonomously, so that it could
measure GRB light curves and spectra over several orders of
magnitude in flux. In order to mitigate the effects of pileup,
the XRT can automatically switch between different CCD read-
out modes depending on the source brightness. The two most
frequently-used modes are: Windowed Timing (WT) mode,
which provides 1D spatial information and spectroscopy in the
central 7.8 arcmin of the CCD with a time resolution of 1.8 ms,

6 ftp://legacy.gsfc.nasa.gov/suzaku/doc/xrt/

suzakumemo-2007-04.pdf
7 ftp://legacy.gsfc.nasa.gov/suzaku/doc/general/

suzakumemo-2010-04.pdf

and Photon Counting (PC) mode, which allows full 2D imaging-
spectroscopy with a time resolution of 2.5 s (see Hill et al. 2004,
for further details).

The CCD charge transfer inefficiency (CTI) was seen to
increase approximately threefold a year after launch and has
steadily worsened since then. The location and depth of the
deepest charge traps responsible for the CTI in the central
7.8 arcmin of the CCD have been monitored since 2007 Septem-
ber and methods have been put in place to minimize their effect
on the spectral resolution (Pagani et al. 2011). However, even
with such trap corrections, the intrinsic resolution of the CCD
has slowly deteriorated with time.

A description of the XRT CCD initial in-flight calibration
can be found in Godet et al. (2009). However, since this paper,
the XRT spectral calibration has been completely reworked, with
both PC and WT RMFs generated from a newly rewritten CCD
Monte Carlo simulation code (Beardmore et al., in prep.). The
recalibration included a modification to the low energy quantum
efficiency (above the oxygen edge at 0.545 keV), in order to im-
prove the modeling of the E0102 line normalizations compared
with the IACHEC model for the first epoch XRT WT observation
(i.e. 2005; see Sect. 4.7.2).

4.7.2. Data

E0102 is used as a routine calibration source by the Swift-XRT,
with ∼20 ks observations taken every six to twelve months in
both PC and WT mode. The data are used to check the low
energy gain calibration of the CCD, as well as to monitor the
degradation in energy resolution below 1 keV. The observations
are performed under target ID 50050.

As Swift has a flexible observing schedule, often interrupted
by GRBs or TOOs, observations consist of one or more snap-
shots on the target, where each snapshot has a typical exposure
of 1−2 ks, assigned to a unique observation identification num-
ber (ObsID). When observing E0102, it is necessary to accumu-
late data from different ObsIDs for any given epoch to build up
sufficient statistics in the spectra. We chose to divide the data by
year8 which gives ample temporal resolution for monitoring the
CCD spectral response evolution. The observation summary is
shown in Table A.6. The data were taken over 68 ObsIDs in PC
and 61 in WT, with exposures totalling 276.6 ks and 266.4 ks in
each mode, respectively.

We select observations taken in 2005 for comparison with
the other instruments, as these data were taken when the CCD
charge transfer efficiency and spectral resolution were at their
best, and the observations took place before a micrometeoroid
struck the CCD, introducing bad-columns which make the abso-
lute flux calibration more uncertain. We discuss the results from
the following epochs (2006−2013) in Sect. 5.4.4.

4.7.3. Processing

The data were processed with the latest Swift-XRT pipeline soft-
ware (version 4.3) and CALDB release 2014-Jun.-10 was used,
which includes the latest epoch dependent RMFs that track the
ever broadening response kernel of the CCD. We selected grade
0 events for the spectral comparison, as this minimises the effects
of pileup on the PC mode data. Due to its faster readout, the WT
data are free from pileup. A circular region of radius 30 pix-
els (70.7′′) was used for the spectral extraction for both modes,

8 There are two epochs in 2007 corresponding to observations taken
before and after a change made to the CCD substrate voltage.
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though due to the 1D nature of the WT readout this effectively
becomes a box of size 60 × 600 pixels (in detector coordinates)
in this mode. Background spectra were selected from suitably
sized annular regions. The source and background spectra from
each ObsID in a particular epoch were then summed. For WT
mode, the background is ∼10× larger than that in PC mode and
dominates the WT source spectrum above ∼3 keV. (The WT
background spectrum BACKSCAL keyword has to be modified
to ensure the correct 1D proportional sizes of the extraction re-
gions are used, otherwise insufficient background is subtracted
when the spectra are read into XSPEC.)

For PC mode, exposure corrected ancillary response files
(ARFs) were created by taking the Chandra ACIS-S3 image
(which has a superior spatial resolution to the XRT) and convolv-
ing it with the XRT point spread function. Then, by comparing
the exposure corrected convolved counts in the extraction region
to the total number in the image, an ARF correction factor could
be estimated. The ARFs were then corrected for vignetting by
supplying the exposure weighted average source offaxis angle
position to the xrtmkarf task using the offaxis option.

For WT mode, per snapshot ARFs were created assuming
point source corrections can be applied. The convolved Chan-
dra ACIS-S3 image analysis showed that the 70.7′′ extraction
region contains 95% of the SNR encircled energy fraction, which
is consistent at the 1−2% level to that obtained if it is treated as
a point source. However, the latter corrections can become in-
accurate (at the 10% level) when the remnant is situated on the
CCD bad-columns (e.g. for the data taken after 2005). The ancil-
lary response files were then averaged, weighted by the snapshot
exposure time.

The spectral gain calibration was checked for energy scale
offsets in two ways. First, a gain offset fit was performed in
XSPEC when the standard model was applied to the data. In the
second method, the data were reprocessed applying offsets in 1
eV steps (i.e. a tenth the size of the nominal PI channel width)
and the resulting spectra were then fit to find the one which min-
imized the C-statistic. Both methods gave consistent results and
the measured offsets are reported in Table A.6, which shows the
energy scale is good to better than 11 eV for most epochs. The
gain corrected spectra were used in the analysis which follows.

5. Analysis and results

5.1. Time variability

E0102 has an estimated age of 1000−2000 yr based on the ex-
pansion studies of Hughes et al. (2000) and Finkelstein et al.
(2006). It is possible that there might be discernible changes in
the integrated X-ray spectrum of a SNR this young over a time
span of ∼15 yr. In order to place an upper limit on any changes in
the integrated X-ray spectrum, we examined the total count rate
from E0102 with the EPIC-pn instrument in the 0.3−2.0 keV
band. The EPIC-pn instrument has proven to be the most sta-
ble instrument included in our analysis. The total count rate as
measured by the EPIC-pn has varied by less than 1.3% over the
14 yrs of measurements. We conclude that whatever changes
might be occurring in E0102, the effect on the integrated X-ray
spectrum is small.

We also examined the Chandra images over a 7.5 yr time-
frame for differences. The images were exposure-corrected to
account for the time-variable absorption of the contamination
layer on the ACIS filter and difference images were created. We
limited the time span to 7.5 yr to reduce the impact of the un-
certainty in the correction for time-variable contamination layer.

We calculated the percentage difference between the two obser-
vations in narrow bands around the bright emission line com-
plexes of O vii Heα, O viii Lyα, Ne ix Heα, and Ne x Ly α. The
largest differences are on the order of 2% in a 0.5′′ × 0.5′′ pixel.
Some parts of the remnant have apparently brightened while
other parts have dimmed. The total flux change is consistent
with the value measured with the EPIC-pn; however we note
that the ACIS-S3 value has a much larger uncertainty given the
relatively large correction that must be applied for the contam-
ination layer. An analysis of flux changes on arcsecond spatial
scales would require a detailed registration of the Chandra im-
ages and is beyond the scope of this paper. It is possible that
some of the changes we observe in the difference images at the
few percent level are due to a less accurate registration of the
images at the two epochs. For the current analysis, we can con-
clude that the flux in a few arcsecond region might be changing
by as much as 2% over a 7.5 yr timespan, but the effect on the
integrated spectrum is less than 1.3%.

5.2. Spectral fits to the reference data

The details of our spectral fitting methodology are described in
Sect. 3.2. The key points are that we fit in the 0.3−2.0 keV en-
ergy range, we do not subtract background, we do not bin our
spectra, and we use the so-called “W statistic” in XSPEC which
is a modified version of the C statistic as the fit statistic. The one
exception to this is that the χ2 statistic was used for the fits to the
EPIC-pn spectra as described in Sect. 3.2. The spectra for each
of the CCD instruments were first compared to the IACHEC
model without allowing any of the parameters to vary. It was
noticed that a global offset to account for different size extrac-
tion regions would help to reconcile the overall normalization
of the spectra. The spectra were then fit with five free param-
eters: a constant factor multiplying the entire spectrum which
acts as a global normalization, and the O vii Heα f, O viii Lyα,
Ne ix Heα r, and Ne x Lyα line normalizations. After the best
fit had been found by minimizing the C statistic, we froze the
parameters at their best-fit values and computed the χ2 using the
model value as the weight instead of the data. We report these χ2

values for readers who might be more accustomed to using the
χ2 statistic.

Table 4 lists the fit statistics for the various CCD instru-
ments for the representative data sets for each instrument dis-
cussed previously. None of the fits are formally acceptable and
the quality of the fit around the bright lines varies. The spectral
fits with the line normalizations free are displayed in Figs. 9−13
for the ACIS-S3, EPIC-MOS, EPIC-pn, XIS, and XRT data re-
spectively. The fit to the ACIS-S3 data has a reduced χ2 of 2.04
and appears to fit the data reasonably well with the largest resid-
uals below 0.5 keV and above 1.5 keV. There also appears to
be significantly more flux in the model around 0.8 keV than in
the ACIS-S3 data. This could indicate a deficiency in the ACIS
contamination model in this energy range or a problem with the
weaker lines in the IACHEC model. Nevertheless, the bright O
and Ne lines appear to be well-fitted and the line normalizations
well-determined.

The MOS1 data have the lowest reduced χ2 of 1.27 and the
data appear to be well-fitted with some small systematics in the
residuals. The MOS2 data are almost equally well-fitted with
a reduced χ2 of 1.30. The EPIC-MOS has the highest spectral
resolution of any of the CCD instruments in this bandpass as
shown by the details visible in Fig. 10. The bright lines appear
to be well-fitted in the EPIC-MOS spectra. The EPIC-pn data
are fitted with a reduced χ2 of 2.26 with large residuals on the
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Table 4. Fit statistics for data sets included in the comparison.

Instrument d.o.f. C Statistic χ2 Reduced χ2

ACIS-S3 227 444.9 463.3 2.04
MOS1 332 415.1 421.6 1.27
MOS2 332 422.9 431.6 1.30
pn 337 761.2 762.7 2.26
XIS0 461 713.8 683.1 1.48
XIS1 461 864.6 898.2 1.99
XIS2 461 742.7 688.6 1.49
XIS3 461 904.6 835.1 1.81
XRT WT mode 106 178.2 178.0 1.68
XRT PC mode 106 140.9 143.4 1.35
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Fig. 9. Chandra ACIS-S3 spectra from OBSIDs 3545 (black) and 6765
(red) with the best-fitted model and residuals.

low-energy side of the O vii triplet. The peak of the O vii triplet
does not appear to be well-fitted by the IACHEC model. We sus-
pect this is an issue with the spectral redistribution function for
the EPIC-pn at these energies and the effect is under investiga-
tion. The EPIC-pn spectra do have the largest number of counts,
making it somewhat easier to identify issues with the calibration.
Nevertheless, the O viii Lyα line, the Ne ix Heα r line, and the
Ne x Lyα line appear to be well-fitted by the IACHEC model.

The XIS spectral fits are reasonably good ranging from a re-
duced χ2 of 1.48 for XIS0 to 1.99 for XIS1. The residuals in
Fig. 12 around the O lines appear larger than the residuals around
the Ne lines for both the XIS0 and XIS1. Nevertheless, the O viii
Lyα line, the Ne ix Heα r line, and the Ne x Lyα line appear to
be well-fitted by the IACHEC model. The XIS spectral fit is
complicated by the rapidly increasing molecular contamination.
Hence the selection of this early data set when the contamination
layer was still relatively small.

Figure 13 shows the 2005 Swift-XRT reference data and ap-
plied IACHEC model, obtained with the overall constant fac-
tor and line normalizations free to vary in the fit. As expected,
the measured WT line normalizations (shown in Fig. 14) agree
well with the model, as the WT spectrum from this epoch was
used to improve the XRT QE calibration above the O-K edge at
0.545 keV. Prior to the calibration change, the normalizations
showed a strong energy dependence (e.g., see Fig. 3 in Plucin-
sky et al. 2012), indicating that the instrumental O-K edge was
too shallow. The depth of this edge was subsequently increased,

5

10

C
o
u
n
ts

 s
−

1
 k

eV
−

1

10.5 2

0.6

0.8

1

1.2

1.4

R
at

io

Energy (keV)

Fig. 10. Representative fit to XMM-Newton EPIC-MOS data. The spec-
trum shown is the MOS1 thin filter observation from Orbit 0065. The
fit is shown without any gain correction applied.

by thickening the silicon dioxide layer in the model of the CCD
electrode structure, in order to bring the measured normaliza-
tions into better agreement with the IACHEC model. Also, the
CCD spectral resolution had been slightly underestimated in the
RMFs used in the earlier E0102 analysis (see the residuals in
Fig. 8 in Plucinsky et al. 2012) and this was improved during
the XRT response recalibration.

The PC mode line normalizations are lower that the WT ones
by 5−10%. We suspect the origin of this is pileup, as an im-
age of the PC mode data formed of diagonal events (i.e. events
with grades 26−29) clearly show the SNR and these events are
indicative of pileup. We have also performed a detailed simu-
lation of the data using the XRT event simulator described by
Beardmore et al. (in prep.). The simulations, which used the
Chandra ACIS-S3 image to define the spatial distribution and
the IACHEC model to provide the spectral distribution, con-
firmed that the PC mode line normalizations are suppressed by
between 5 and 10%, whereas WT mode is unaffected.

5.3. Comparison of the fit results

The fitted line normalizations for the O vii Heα r line,
the O viii Lyα line, the Ne ixHeα r line, and the Ne x Lyα line are
listed in Table 5. We report the normalizations for the O viiHeα r
line but the normalization of the O vii Heα f line was the free pa-
rameter in the fit. As described in Sect. 3.2, the O vii Heα f and r
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Fig. 11. XMM-Newton EPIC-pn spectrum from OBSID 0412980301.
The second (lower) curve shows the same data but with a linear axis
which has been shifted downwards for clarity. Note the high count rate
and the pattern in the residuals which might indicate an issue with the
spectral redistribution function.

0
5

1
0

C
o
u
n
ts

 s
−

1
 k

eV
−

1

Suzaku/XIS0

Suzaku/XIS1

10.5 20
.5

1
1
.5

R
at

io

Energy (keV)

Fig. 12. Suzaku XIS0 (black) and XIS1 (red) spectra from OBSID
100014010, shown with the best-fit model and residuals.

line normalizations are linked together so there is a constant fac-
tor relating the two values. The first row lists the normalization
in the IACHEC model to facilitate comparison. The results for
the spectral fits to the reference data for each instrument are pre-
sented in groups of three rows. Within a group of three rows for
a given instrument, the first row gives the best-fitted value, the
second row gives the 1.0σ lower and upper confidence limits,
and the third row gives the “scaled” value where the best-fitted
value has been multiplied by the constant factor. The second
and third groups of rows include the results for the RGS1 and
RGS2. The best-fitted values and the scaled values are the same
for the RGS1 since the scale factor is 1.0. This is due to the fact
that the RGS data were a primary input in the development of
the IACHEC model for E0102. The best-fitted values and the
scaled values are different for the RGS2 since the scale factor is
0.96. The different scale factors for RGS1 and RGS2 indicate
that there is a systematic 4% offset between RGS1 and RGS2
effective areas.

Figure 14 presents the data in Table 5 in a graphical manner.
The scaled normalizations for each instrument are compared to
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Fig. 13. Swift-XRT grade 0 spectra from 2005 with the best fit model
and data/model ratio. WT is in black (upper spectrum) and PC in red
(lower spectrum).

the IACHEC values and the average of all instruments is also
plotted. There are several interesting trends visible in this plot.
The MOS1 and MOS2 data appear to be 5−15% higher than the
IACHEC model, with the O line normalizations being 10−15%
higher. The EPIC-pn values have the smallest uncertainties since
they are derived from a joint fit of all of the data, whereas the
other instruments used a small number of observations. The
EPIC-pn data agree with the IACHEC model values to better
than 10% with the Ne x Lyα being the most discrepant at 7%.
The ACIS-S3 data are most discrepant at the O lines but agree
better at the Ne lines. One explanation for the O line normaliza-
tions being lower than the IACHEC values could be that there
is still some residual pileup in the ACIS-S3 data suppressing the
line fluxes at low energies and enhancing the line fluxes at higher
energies. Another possible explanation is that the contamina-
tion model is under-predicting the absorption at the energies of
the O lines at the time of these observations. As shown later in
Sect. 5.4.2, the fluxes of the O lines are in better agreement with
the IACHEC model for later observations. The XIS results agree
to within 10% of the IACHEC model values with the exception
of the O vii Heα r line which can be discrepant by as much as
20% for XIS3. The XRT WT mode agree to within 5% of the
IACHEC model whereas the XRT PC mode data can be more
than 10% discrepant. As mentioned above, the XRT PC mode
data most likely suffer from pileup which reduces the observed
count rate.

Most of the scaled normalizations agree with the IACHEC
model values to within ±10%. Specifically, 38 of the 48
normalizations are within ±10% of the IAHCEC model val-
ues. The scaled normalizations agree to within 10% for the
Ne ix Heα r and Ne x Lyα lines with the exception of the XRT
PC mode data (which are affected by pileup) and the XIS1
for the Ne x Lyα line. The agreement is significantly worse
for the O lines, ±15% for the O viii Lyα line and ±25% for
the O vii Heα r line. The fact that the lowest energy line
produces the worst agreement is indicative of the difficulty in
calibrating the spectral redistribution function and the time-
dependent response of CCDs instruments at an energy as low
as ∼570 eV. The good agreement at higher energies for these
different instruments is indicative of the quality of the cali-
bration provided by the various instrument teams. Therefore,
we conclude that the absolute effective areas of the combined
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Table 5. Fitted values for constant factor and line complex normalizations.

Instrument Constant O vii Heα r O viii Lyα Ne ix Heα r Ne x Lyα
Norm Norm Norm Norm

(10−3 ph cm−2 s−1) (10−3 ph cm−2 s−1) (10−3 ph cm−2 s−1) (10−3 ph cm−2 s−1)

IACHEC
model 2.745 4.393 1.381 1.378
value

RGS1 1.0 2.700 4.404 1.400 1.415
1σ CL [2.652, 2.746] [4.341, 4.466] [1.380, 1.420] [1.378, 1.452]
Scaled 2.700 4.404 1.400 1.415

RGS2 0.96 no data 4.445 1.371 1.409
1σ CL [−] [4.330, 4.561] [1.331, 1.410] [1.350, 1.468]
Scaled − 4.267 1.316 1.353

MOS1 1.054 2.914 4.567 1.383 1.392
1σ CL [2.872, 2.955] [4.514, 4.620] [1.366, 1.400] [1.373, 1.411]
Scaled 3.071 4.814 1.458 1.467

MOS2 1.072 2.943 4.581 1.380 1.401
1σ CL [2.899, 2.987] [4.527, 4.635] [1.363, 1.397] [1.382, 1.420]
Scaled 3.155 4.911 1.479 1.502

pn 0.969 2.875 4.348 1.412 1.327
1σ CL [2.867, 2.883] [4.334, 4.361] [1.408, 1.416] [1.322, 1.332]
Scaled 2.786 4.213 1.368 1.286

ACIS-S3 1.072 2.230 3.803 1.311 1.375
1σ CL [2.176, 2.285] [3.728, 3.879] [1.283, 1.340] [1.342, 1.410]
Scaled 2.391 4.077 1.405 1.474

HETG 1.037 2.736 4.656 1.281 1.325
1σ CL [2.696, 2.778] [4.604, 4.707] [1.272, 1.290] [1.313, 1.337]
Scaled 2.837 4.827 1.328 1.374

XIS0 1.034 2.468 4.128 1.335 1.375
1σ CL [2.385, 2.556] [4.044, 4.213] [1.311, 1.358] [1.349, 1.402]
Scaled 2.552 4.268 1.380 1.422

XIS1 1.141 2.475 4.030 1.316 1.349
1σ CL [2.439, 2.512] [3.981, 4.080] [1.298, 1.335] [1.328, 1.371]
Scaled 2.824 4.598 1.502 1.539

XIS2 1.029 2.596 4.001 1.323 1.379
1σ CL [2.512, 2.679] [3.920, 4.082] [1.300, 1.347] [1.352, 1.405]
Scaled 2.671 4.117 1.361 1.419

XIS3 1.017 2.134 3.659 1.324 1.361
1σ CL [2.057, 2.213] [3.581, 3.738] [1.300, 1.348] [1.334, 1.388]
Scaled 2.170 3.721 1.347 1.384

XRT-PC 0.935 2.700 3.972 1.284 1.303
1σ CL [2.606, 2.792] [3.859, 4.087] [1.247, 1.323] [1.260, 1.346]
Scaled 2.523 3.714 1.201 1.218

XRT-WT 0.971 2.705 4.501 1.346 1.386
1σ CL [2.606, 2.792] [4.390, 4.615] [1.311, 1.382] [1.346, 1.427]
Scaled 2.626 4.371 1.307 1.346

systems of mirrors plus detectors agrees to within ±12% at 0.9
and 1.0 keV for Chandra ACIS-S3, XMM-Newton EPIC-MOS,
XMM-Newton EPIC-pn, Suzaku XIS0, XIS2, & XIS3, and
Swift XRT for these representative E0102 spectra.

5.4. Time dependence of the response

Each of the CCD instruments included in this study has a signif-
icant time dependence in its response except for the EPIC-pn.
As stated in Sect. 5.1, the EPIC-pn has recorded a constant

count rate from E0102 in the 0.3−2.0 keV band to better than
1.3% over the course of the mission. All of the other in-
struments have had a variable response for one of several rea-
sons. Some of the instruments have developed a contamina-
tion layer that produces an additional, time-variable absorp-
tion. Some of the instruments have had significant changes in
their CTI due to radiation damage that produces a time-variable
spectral response. The EPIC-MOS CCDs have experienced a
change in response that appears to be related to the X-ray photon
dose near the aimpoint of the telescope. In the following sec-
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Fig. 14. Comparison of the scaled normalizations for each instrument to the IACHEC model values and the average. There are four or five points
for each instrument which are from left to right, global normalization (purple), O vii Heα r (black), O viii Lyα (red), Ne ix Heα r (green), and
Ne x Lyα (blue). The length of the line indicates the 1.0σ CL for the scaled normalization.

tions we discuss the time-variable response of each instrument
individually.

5.4.1. XMM-Newton EPIC-MOS

A subset of the available EPIC-MOS observations of E0102 (Ta-
ble A.4) was used to investigate potential trends in the effective
area calibration. To minimize variance due to calibration un-
certainties all observations with the same observing mode (LW
mode) were selected and, with the exception of the first obser-
vation, were all positioned around one arcminute or so from the
telescope boresight. The bulk of the observations are therefore
unaffected by the redistribution patch (see Sect. 4.4). The last
two observations were positioned such that the edge of the rem-
nant just crosses the spatial area of the patch as defined within
the calibration. In addition to the analysis procedure outlined in
Sect. 4.4 we were careful to individually examine the spectrum
from every column on the CCDs passing through the remnant.
Large traps which cause sections of a given column to shift in
energy by 10’s of eV are generally detected by the calibration
software and a spatial correction is applied to realign the recon-
structed event energy to the correct scale. The frequency of these
traps increased throughout the mission, however, and it is appar-
ent that the current event energy calibration as used in this paper
does not properly calibrate a few columns which pass through
the remnant in the later observations. These columns were indi-
vidually removed from the analysis and the global normalisation
in the fit has been corrected for the loss of flux due to their ex-
clusion by the same method used for bad pixels and columns
excluded by the filtering process as discussed in Sect. 4.4.

The data were initially processed with SAS12.0.0 and on ex-
amining the data sample it was noticed that there was a signifi-
cant trend in the spectral hardness derived from an examination
of the background subtracted source count rates. In Fig. 15 we
show the spectral hardness ratio defined as the source count rate
in the 0.1 to 0.75 keV band divided by the rate in the 0.98 to
3.0 keV band. The actual energy boundaries used to derive this
ratio have been adjusted for each observation by the gain fit pa-
rameters to ensure that the same portion of the spectrum is used
in each case. The data points have been color coded to reflect the
source position relative to the boresight as the ratio is influenced
by the mirror vignetting function. The ratio is also obviously de-
pendent on the filter used in the observation. Most of the obser-
vations use the thin filter with the exception of two in medium
filter (Orbit 0065 and 2380) and one observation in thick filter
(Orbit 0888). On examining observations with the same filter
there is a clear trend in the MOS2 data which can only plausibly
be explained by the existence of a thin but growing contaminant.

Also show in Fig. 15 is the predicted count ratio derived by
folding the model E0102 spectrum through the instrument re-
sponse modified by a contaminant model as described below.
The model at this time consists of pure Carbon and no other
compounds. The RGS detectors also suffer from a gradual loss
of effective area which is presumed to be due to a carbon or car-
bon plus hydrogen contaminant (no edges are detected within
the RGS energy passband). We assume that the contaminant on
the RGS detectors arises from outgassing of the telescope tube
structure.

As EPIC shares this structure with the RGS it is plausible
that the EPIC-MOS contaminant arises from the same source.
However, the complicated nature of the EPIC-MOS RMF and
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Fig. 15. Observed (0.1−0.75)/(0.98−3.0) keV count rate ratio as a function of the Orbit number. Left panel: MOS1, right panel: MOS2. Data
points are color-coded to reflect the position of the source on the detector relative to the boresight as viewed on the image plane in detector
coordinates: blue (above boresight), orange (to the right), green (below) and red (to the left). All observations are thin filter with the exception
of two medium filter (Orbit 0065 and 2380, squares) and one thick filter (Orbit 0888, diamond). The solid line on each plot is the predicted ratio
derived by folding the standard spectral model through the EPIC-MOS response modified by a contamination model as described in the text.
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Fig. 16. XMM-Newton EPIC-MOS contamination model as optical
depth of C8H8 as a function of time. Data points are derived by finding
the depth of C8H8 which minimises the best-fit parameter when fitting
the standard E0102 model to the observed EPIC-MOS spectra. The
solid curves represent best-fit exponential models. MOS1 is equally
consistent with a fixed value of the contaminant (see text).

uncertainties in its calibration make an unambiguous identifica-
tion of low energy edges, even at oxygen, very difficult. The
pure Carbon model currently adopted for the EPIC-MOS is the
simplest contaminant model which reasonably fits the data.

The contaminant model was derived directly from the E0102
data by finding the contaminant depth which gave the best re-
production of the observed hardness ratio (derived by folding the
E0102 standard model through a response modified by the con-
taminant absorption) for each observation and fitting an expo-

nential time-dependent model to the depth parameters. The mod-
els for MOS1 and MOS2 are shown in Fig. 16. Our methodology
was to initially use the thin filter data only (which comprises the
bulk of the observations) then compare the contamination model
with observations taken with the medium and thick filters.

The evidence for a contaminant on MOS2 is significant but
very marginal for MOS1. There is also evidence for a discon-
tinuity in the evolution of the contamination from around orbit
1200 onwards. Further monitoring of E0102 and analysis of ad-
ditional suitable calibration targets may lead to a refinement of
the contamination model at a later date.

It should be noted that the predicted contaminant depth on
MOS2 (around 0.04 µm) for the latest observation in the sample
was ∼20% of that on the RGS at that epoch. The contaminant is
most likely on the CCD detector plane being the coldest surface
(currently −120◦) on the instrument. The filter wheel assembly
(at ∼−20◦) provides a warm barrier but has gaps through which
molecules from the telescope tube could reach the CCDs. There
is no evidence as yet for a spatial dependence of the contami-
nant at least within the central few arcminutes. The contami-
nant is not expected to be on the filters and in fact, as shown in
Fig. 15 the model provides an equally good representation of the
medium and thick filter ratios. In addition, dedicated calibra-
tion observations taken with the thin, medium, and thick filter
at the same epoch show no evidence for any change in the rela-
tive transmission of the filters since launch. The contamination
model is therefore currently applied as a time-dependent adjust-
ment to the overall EPIC-MOS detector efficiency. Finally, there
is no evidence for contamination on the EPIC-pn, however, un-
like the EPIC-MOS, the EPIC-pn has a cold finger trap above
the detector plane. As the EPIC-MOS contaminant layer is cur-
rently relatively thin there are no immediate plans to bake-off the
contaminant by heating the focal plane.

The model has been shown to improve the cross-calibration
between EPIC-MOS and EPIC-pn at low energies for later epoch
continuum sources and was implemented in the EPIC calibration
from SAS version 13.5.0 onwards. Formally the RMF solution
depends on the assumed effective area for any given standard
calibration target and a new set of self-consistent RMFs were
released in conjunction with the contamination model.
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Fig. 17. Ratio of the normalizations of the O vii Heα r line (black), O viii Lyα line (red), Ne ix Heα r line (green), Ne x Lyα line (blue), and the
global normalization (magenta) compared to the IACHEC model value as a function of time for MOS1 and MOS2 for a sample of observations
from Table A.4. Some observations taken close in time to others are not shown for clarity.

We have analyzed the observations listed in Table A.4
with SAS version 13.5.0 and derived the five parameters from
the standard IACHEC model in each case. These are shown
graphically in Fig. 17 although only regular spaced observations
are shown for clarity. Significant global trends in the data are
now largely absent. There are some common features of the fit-
ted parameters. Most noticeable of course is that both EPIC-
MOS cameras return a higher predicted flux than the IACHEC
standard model by about 10% (0.3 to 2.0 keV) although the
global normalisation parameter is relatively higher in MOS2
than in MOS1 by around ∼3%. In both cameras the Ne ix Heα r
normalisation typically has the lowest relative value compared
with the IACHEC model.

5.4.2. Chandra ACIS

The time dependence of the low energy response of ACIS-S3
is determined primarily by the contamination layer on the fil-
ter in front of the CCDs. There are time dependent changes in
the S3 CCD response to X-rays, but this is a much smaller ef-
fect than the contamination. The model for the absorption due
to the ACIS contamination layer has a time dependence, a spa-
tial dependence, and a spectral dependence. The model has been
revised four times over the course of the mission, most recently
in July 2014 with the release of CALDB 4.6.2. The contami-
nation model is developed based on data from the external cali-
bration source and celestial calibration targets other than E0102.
The E0102 observations are then used to validate the contamina-
tion model as an independent check. The normalizations for the
bright line complexes of the O vii Heα r, the O viii Lyα line, the

Ne ixHeα r, and the Ne x Lyα are determined using the IACHEC
model as described above. If the contamination model is accu-
rate, the line fluxes should be constant in time within the uncer-
tainties. In the past, clear downward trends in the E0102 line
fluxes with time have prompted revisions of the contamination
model.

We have determined the lines fluxes for all of the E0102 ob-
servations listed in Table A.2 using the latest version of the ACIS
contamination model (N0009) released in CALDB 4.6.2 on 9
July 2014 (we used CALDB 4.6.8 for this analysis but the con-
tamination model has not changed since the CALDB 4.6.2 re-
lease). These observations are on the S3 CCD in subarray mode
(to mitigate pileup), near the aimpoint which is in the middle of
the CCD. The line fluxes versus time are displayed in Fig. 18
for the O vii Heα r, the O viii Lyα line, the Ne ix Heα r, and
the Ne x Lyα line. The line fluxes for the O vii Heα r are lower
than the average from 2003−2007, are rather consistent with the
average from 2007 until 2014, and then appear to be increasing
after 2015. The average O vii Heα r normalization is lower than
the IACHEC value by ∼4%. The first two observations were
used for the comparison in Fig. 14 to the line normalizations
for the other instruments. If later observations were used, the
O vii Heα r would be higher by ∼10% and in better agreement
with the IACHEC model. The O viii Lyα normalization does
not show a clear trend in time. The values are mostly consistent
with the average although there appears be scatter on the order
of ±5%, which is larger than the statistical uncertainties. The av-
erage O viii Lyα normalization is lower than the IACHEC value
by ∼7%. The Ne ix Heα r normalization shows a gradual de-
crease in time after 2010 but the effect is only significant at the
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Fig. 18. Ratio of the normalizations of the O vii Heα r, O viii Lyα line, Ne ix Heα r, and Ne x Lyα line compared to the IACHEC model value
as a function of time for ACIS-S3 subarray observations near the aimpoint with the contamination model N0009 in CALDB 4.6.2. The different
symbols indicate data collected in different nodes on the CCD. The solid, black line is the IACHEC value (normalized to 1.0), the dashed, red line
is the average for each line normalization, and the black, dashed lines are ±10% of the IACHEC value.

2σ level. The average Ne ix Heα r normalization is lower than
the IACHEC value by only ∼2%. Finally, the Ne x Ly α line
appears mostly constant in time within the uncertainties. The
average Ne x Ly α normalization is higher than the IACHEC
value by ∼5%. It should be noted that there are a handful of
E0102 observations towards the bottom and top of S3 that show
significantly lower line normalizations than the measurements
presented here in the middle of S3. The contamination layer is
thicker towards the bottom and top of the S3 CCD and it ap-
pears that the current contamination model is under-predicting
this gradient. This effect is under investigation and may be ad-
dressed in a future release of the contamination file.

The E0102 results on S3 indicate that the current contami-
nation model is returning fluxes constant to within ±5% for the
O viii Lyα line, the Ne ix Heα r line, and the Ne x Lyα line and
to within ±10% for the O vii Heα r line. These results hold for
observations near the middle of S3. The fluxes are constant to
this level from the beginning of the Chandra mission until 2016,
with the exception perhaps of the O vii Heα r which exhibits a
possible trend with time. The effective area at the energy of the
O viii Ly α (654 eV) line has decreased by about 80% since the
beginning of the mission. Therefore, the contamination model
must make a large correction as a function of time for these line
fluxes. E0102 will continue to be used to monitor the accuracy
of the ACIS contamination model in the future.

5.4.3. Suzaku XIS

The line normalizations for the Suzaku XIS depend strongly on
the amount of molecular contamination, which began building
up on the optical blocking filters shortly after launch. E0102
is one of three primary calibration sources for measuring the
on-axis contamination build-up and chemical composition, and
since the IACHEC model presented in this work is used in that
analysis, there is an inherent conflict in drawing conclusive com-
parisons between XIS and the other instruments. Nevertheless,
the quality of the contamination model can be explored here.

As can be seen in Fig. 19, except for very early in the mis-
sion, the O vii Heα r line normalization for each XIS is 20−40%
higher than the IACHEC model. The other line normaliza-
tions and overall normalization are generally within 10% of
the IACHEC values, and show no strong trend except early in
the mission, when the normalization increases with line energy
(from O vii to Ne x). This broad-band (0.5−1 keV) energy de-
pendence at early times possibly indicates that the column den-
sity or chemical composition of the contamination is not cor-
rect, as the increasing line normalization with energy mimics the
effects of an underestimated oxygen absorption edge. At later
times, only O vii is discrepant, which could result from an incor-
rectly modeled low-energy redistribution tail becoming apparent
as the X-ray sensitivity decreases.

The quality of the calibration can be seen by comparing
Fig. 19 with Fig. 20, which shows the optical depth and frac-
tional effective area at two energies, 0.65 keV and 1.0 keV. These
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Fig. 19. Ratio of the normalization of the O viiHeα r (black), O viii Lyα
line (red), Ne ix Heα r (green), Ne x Lyα line (blue) and the global nor-
malization (purple) compared to the IACHEC model value as a function
of time for the XIS0, XIS1, XIS2, and XIS3 detectors.

estimates are made by fitting simple Gaussians to the bright
O viii Lyα and Ne x Lyα lines, along with a simple model for
the continuum and other lines, and comparing those line nor-
malizations to the IACHEC values. The dashed lines in the
top panel show the current contamination CALDB for an on-
axis source, produced from multiple calibration sources includ-
ing E0102. Several things are apparent from this figure. First,
the contamination built up very quickly, reaching nearly a maxi-
mum on XIS3 within 6 months. This is about the level that ACIS
reached after several years. Modeling the build-up early is ham-
pered by a lack of calibration observations during this time. Sec-
ond, the measured line normalizations for XIS3 (and to a lesser
extent XIS1) do not match the CALDB well between 2005 and
2008, with a bump-like feature in the CALDB trend that is not
reflected in the data points. These calibration issues will be ad-
dressed in future work.

5.4.4. Swift XRT

Figure 21 shows the temporal behavior of the line normalizations
for the Swift-XRT WT data, with representative spectra (from
2009, 2011, 2013) shown in Fig. 22. The latter, when compared
with Fig. 13, illustrates how the spectral resolution has degraded
with time, even with CCD charge trap corrections applied. The
line normalizations are initially well behaved, but from the sec-
ond half of 2007 show an occasional loss in line flux, particu-
larly in the lowest energy line (i.e. the O vii Heα near 0.57 keV)
in 2007(s6), 2008 and 2009.

Fig. 20. Contamination history of the Suzaku XIS. Top: the optical
depth at two energies as inferred from E0102 observations (points)
compared to v20140825 of the Suzaku contamination CALDB trend
(dashed lines). E0102 is one of the calibration sources used to measure
the on-axis contamination, although differences are seen between the
inferred values and the CALDB, especially early in the mission. Bot-
tom: relative combined effective area of the three working CCDs at two
energies as measured from E0102. This assumes no contamination at
the opening of the XIS doors in July 2005. The dashed lines are from a
linear fit to the data after 2010, and indicate a decrease in the contami-
nant at later times.

This discrepant behavior appears to occur when the main
emitting ring of the remnant (radius 10−18′′) falls on the CCD
bad-column gaps. Gaetz et al. (2000) and Flanagan et al. (2004)
show that the line components have different spatial origins, with
O vii Heα r arising predominantly from the south-east quadrant
of the ring, while Ne x Lyα r is more symmetrically formed in
the ring. Individual snapshots are quite frequently placed with
parts of the remnant on the CCD bad columns. Depending on
the orientation of the remnant with respect to the bad-columns
we can see a suppression of all four line fluxes compared to the
IACHEC model, or sometimes a more preferential loss of the
O vii Heα component. At this point in time, it is not possible to
account for these effects as no method exists to correct for such
spatial-spectral variation when the ARFs are generated.

Other factors could contribute to the normalisation varia-
tions, such as the existence of deep charge traps which remove
events below the onboard threshold, or a response kernel width
which does not quite match the data. While other missions report
time variable low energy contamination, we do not think that
such a problem exists for the Swift-XRT, because observations
of low column density sources show no significant increases in
the inferred column density with time.
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Fig. 21. Ratio of the normalization of the O vii Heα r (black), O viii Lyα line (red), Ne ix Heα r (green), Ne x Lyα line (blue) and the global
normalization (purple) compared to the IACHEC model value as a function of time for the XRT in WT mode.
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Fig. 22. Swift-XRT WT spectra from (top to bottom) 2005 (black), 2009
(red), 2011 (green), 2013 (blue) and their data/model ratios.

6. Discussion

6.1. Comparison with other cross-calibration studies

6.1.1. XMM-Newton internal cross-calibration studies

There have been several studies of the cross-calibration amongst
the instruments on XMM-Newton. Mateos et al. (2009) used
2XMM sources that were bright enough to have sufficient counts
but not bright enough to have significant pileup to compare
the derived fluxes in several energy bands: 0.2−0.5, 0.5−1.0,
1.0−2.0, 2.0−4.5, and 4.5−12.0 kev. The data were processed
with SAS v7.1 and the calibration files available at that time.
Of interest for our study, Mateos et al. (2009) found that
on-axis sources returned a MOS1/MOS2 flux that was 5−7%
higher than the EPIC-pn flux in the 0.5−1.0 keV band. Stuh-
linger et al. (2010) conducted a similar analysis after process-
ing the data with SAS v10.0 and compared the EPIC-MOS and
EPIC-pn fluxes in several narrow bands using 2XMM sources
that were not piled-up. In their 0.54−0.85 keV band, they
found that the MOS1 and EPIC-pn returned nearly identical
fluxes, while the MOS2 returned fluxes that were on average
5% higher than EPIC-pn fluxes. An update of this analysis with
SAS v15.0 shows MOS1/MOS2 returning 4/7% higher fluxes in
the 0.54−0.85 keV band than EPIC-pn; however, the distribution
of values spans the range from 0−12%.

Read et al. (2014) conducted a similar analysis with on-axis
2XMM sources after processing the data with SAS v12.0. They
use the “stacked residuals” method to quantify the derived flux
differences between EPIC-MOS and EPIC-pn on a finer energy
scale. They find that the flux difference between MOS1/MOS2
and EPIC-pn peaks at around 5% at an energy of ∼0.6 keV in
the 0.5−1.0 keV band (with the MOSs returning higher fluxes),
while at other energies in the 0.5−1.0 keV band the difference
is typically a few percent. For the E0102 line fluxes described
in this paper, EPIC-MOS and EPIC-pn differ by 10−15% in the
0.5−1.0 keV bandpass. It should be noted that the RGS effec-
tive area below 0.5 keV was adjusted to agree better with the
EPIC-pn in SAS v10.0. It is not clear why the results are appar-
ently significantly different for 2XMM sources on-axis compared
to E0102 on-axis. E0102 is obviously an extended source but
given that the diameter is only 45′′, it is difficult to understand
how the effective area could be that different at such small off-
axis angles compared to on-axis. The flux in the E0102 spec-
trum is mostly concentrated in the four bright line complexes
that we have fit in this paper, while the 2XMM sources have spec-
tra that more closely resemble a continuum in the 0.5−1.0 keV
band. There are several effects contributing at the ∼1% level,
that might contribute to this discrepancy. For example, there is
still pileup in the EPIC-MOS and EPIC-pn, the use of a point
source PSF is an approximation, the vignetting function is also
approximated, the gain fit effects the line normalizations, and the
point source analysis still does not include 100% of the encir-
cled energy fraction. This apparent discrepancy remains under
investigation.

6.1.2. External cross-calibration studies

There have been several analyses initiated by the IACHEC to
compare the cross-calibration of the effective areas of the cur-
rent generation of X-ray instruments. Tsujimoto et al. (2011)
used the Galactic SNR G21.5-0.9 to compare the effective area
in the 2.0−8.0 keV range for Chandra, XMM-Newton, Swift,
and Suzaku using the calibration products available at the writ-
ing of that paper. G21.5-0.9 has a highly absorbed spectrum
with an NH of ∼3.0 × 1022 cm−2 such that there is little flux be-
low 2.0 keV. Tsujimoto et al. (2011) found that the 2.0−8.0 keV
fluxes generally agreed to within ±10%, with the maximum dis-
crepancy being between ACIS-S3 and EPIC-pn with ACIS-S3
producing a flux ∼16% higher than EPIC-pn. Ishida et al. (2011)
used the BL Lac object PKS 2155-304 to compare the derived
spectral parameters (power-law index and column density) for
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XIS, EPIC-MOS, EPIC-pn, and the Low-Energy Transmission
Grating (LETG) on Chandra used with both ACIS and the High
Resolution Camera (HRC). Since E0102 has not been observed
with the LETG on Chandra, we cannot compare the results of
Ishida et al. (2011) to our results. Although the primary objective
of this study was to compare the consistency of the fitted parame-
ters that determine the shape of the spectrum, Ishida et al. (2011)
did compute fluxes in narrow bands. Since PKS 2155-304 is
variable, both in intensity and spectral shape, the observations
had to be executed simultaneously or as simultaneous as possible
given the scheduling constraints of the observatories. They com-
puted the fluxes in several bands from 0.5 to 10.0 keV, the most
relevant for comparison to our results is the 0.5−1.0 keV band.
There were three simultaneous observations with XMM-Newton
and Suzaku in 2005, 2006, and 2008. The EPIC-pn, EPIC-MOS,
and XIS fluxes agree to within 10% in the 0.5−1.0 keV band, al-
though the order of which instrument produces the highest flux is
not the same for the three epochs. The EPIC-pn produces higher
fluxes than the MOS1 in all three epochs, in disagreement with
the studies based on 2XMM sources. The XIS1 produces the low-
est average flux, while the XIS0 is higher than the XIS1. The
order of which instrument produces the higher flux is opposite
to what we observe with E0102. They observe the EPIC-pn to
produce higher fluxes than the EPIC-MOS and XIS0 to produce
higher fluxes than XIS1. The differences are on the order of
5% so this may be an indication of the systematic uncertainties
that persist in our analyses. Or it might indicate something fun-
damentally different in the calibration of extended sources with
line-dominated spectra compared to point sources with continua
spectra.

There have a been a series of papers motivated by the
IACHEC using clusters of galaxies to compare the calibration
of the current generation of instruments. Nevalainen et al.
(2010) use a sample of relaxed clusters to compare the temper-
atures and fluxes derived by XMM-Newton, Chandra, and Bep-
poSAX. Nevalainen et al. (2010) compute fluxes in a hard band
(2.0−7.0 keV) and a soft band (0.5−2.0 keV). They find that
the ACIS fluxes were on average 11% higher than the EPIC-
pn fluxes in the hard band, similar to the findings of Tsujimoto
et al. (2011) in a similar band. In the soft band, they find that the
ACIS and EPIC-pn fluxes agree on average to within 2%, how-
ever the scatter is large, with outliers at −10% and +14%. It is
not clear what the explanation is for the relatively large scatter
in this cluster sample. Kettula et al. (2013) expanded this study
to include the XISs on Suzaku. They noted discrepancies be-
tween the XIS0, XIS1, and XIS3 in the derived spectral shape
that could be addressed with a modification to the Suzaku con-
tamination model. Later releases of the contamination model
brought the three XISs into better agreement. Schellenberger
et al. (2015) analyzed 63 clusters from the HIFLUGCS sample
(Reiprich & Böhringer 2002) performing a similar analysis as
Nevalainen et al. (2010) using the most recent software and cal-
ibration at the time of writing that paper, CIAO 4.5 and CALDB
4.5.5.1 for Chandra and SAS v12.0.1 and CCF dated 14.12.2012
for XMM-Newton. Schellenberger et al. (2015)’s primary objec-
tive was to characterize any systematic difference in the derived
temperatures of clusters for cosmology, but they did conduct a
stacked residuals analysis similar to Read et al. (2014) to char-
acterize differences in the effective area calibration. They find in
the 0.5−1.0 keV band that ACIS produces 0−10% higher fluxes
than EPIC-pn and MOS1/MOS1 produce 0−5% higher fluxes in
rough agreement with Read et al. (2014).

The studies described above used sources with different
properties (point vs. extended, thermal vs. non-thermal spec-

tra, etc.) and used different versions of the calibration files and
analysis software. Therefore, it is difficult to know if the re-
sults would be more consistent if the same calibration files and
analysis software were used on the same types of sources. Nev-
ertheless, the majority of the studies indicate that ACIS produces
the highest fluxes in the 0.5−1.0 keV band, the EPIC-MOS pro-
duces the second highest fluxes, and the EPIC-pn produces the
lowest fluxes.

6.2. The E0102 cross-calibration results

The cross-calibration results using E0102 presented in Table 5
and Fig. 14 differ from the previous studies in several ways. It
is clearest to discuss the differences line by line or equivalently,
energy by energy. At the energy of the O vii Heα r (∼570 eV),
MOS1/MOS2 produce significantly higher fluxes than EPIC-pn,
and ACIS-S3 produces the lowest fluxes. All XISs produce
fluxes consistent with the IACHEC model value except for XIS3
which is ∼20% lower than the IACHEC value. The XRT WT
mode data are within 5% of the IACHEC value (for the remain-
der of this discussion we will limit the discussion to the XRT WT
mode data since they agree better with the IACHEC model than
the PC mode data). The relative ordering of ACIS-S3, EPIC-pn,
and MOS1/MOS2 is different from what the stacked residuals
method with clusters and 2XMM sources determined. It should
be noted that the E0102 analysis samples the response of the
instruments in a narrower range of energies (essentially a line)
for the CCD instruments while the stacked residuals approach
must necessarily sum over a range of pulse-heights or energies.
The agreement at the energy of O viii Lyα line (∼654 eV) is bet-
ter in terms of the magnitude of the difference. The XIS in-
struments agree better with the IACHEC model value except for
XIS3 which is ∼15% lower than the IACHEC value. The ACIS-
S3 value is in agreement with the EPIC-pn value and both are
only slightly lower than the IACHEC value and the XRT WT
mode data are in excellent agreement with the IACHEC value.
The EPIC-MOS values are ∼15% higher than the EPIC-pn value.
However, the relative order of ACIS-S3, EPIC-pn, and EPIC-
MOS are different again compared to the stacked residuals ap-
proach. At the energy of the Ne ix Heα r (∼922 eV), the agree-
ment is within 10% for all instruments. At the energy of the
Ne x Ly α line (∼1022 eV), the agreement is within 15% for
all instruments. It is somewhat surprising that the MOS1/MOS2
and EPIC-pn disagree by 10−15% at this energy.

The fact that ACIS-S3 and XIS disagree with the IACHEC
model the most at the lowest energy line for which we con-
ducted a comparison could indicate a deficiency in the contam-
ination models for each instrument. ACIS-S3 and the XIS have
the largest correction for a contamination layer of any of the in-
struments. As noted earlier, if later ACIS-S3 observations were
used for this comparison, the O vii Heα r normalization would
be larger than it was for the first two ACIS-S3 observations used
and in better agreement with the IACHEC model. This might
also indicate that there is some residual pileup which is depress-
ing the fluxes of the lowest energy lines in the ACIS-S3 data. The
latest XIS observations indicated that the contamination layer on
Suzaku was getting thinner with time. Both of these facts indi-
cate how challenging it is to develop an accurate contamination
model for all times of a mission.

E0102 is fundamentally different from the point sources and
clusters used in the stacked residuals analyses. First, E0102
has a line-dominated spectrum where the majority of the flux
in the 0.5−1.0 keV band is produced by 4 lines/line complexes.
The response of these instruments is changing rapidly over the
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0.5−1.0 keV band. Therefore, it is possible that the E0102 data
might reveal issues with the calibration as a function of energy
more clearly than a continuum source. Second, E0102 is an ex-
tended source with a diameter of 45′′. The point sources from
the 2XMM analyses sample a different part of the detectors and the
point-spread function of the telescope, although one hopes that
the telescope response changes little over 45′′. There may still
be some residual pileup affecting the 2XMM sources. The clus-
ter analysis samples a much larger region on the detector and
larger off-axis angles than the E0102 analysis. For these reasons,
each of these studies probes different aspects of the instruments’
calibrations.

The time-dependent line normalizations we presented high-
light the challenges in providing an accurate calibration through-
out a mission as the CCD response changes due to radiation dam-
age and the accumulation of a contamination layer. The EPIC-pn
instrument has the most stable response and in this respect has
the simplest job in providing a time-dependent calibration. Both
ACIS-S3 and the XIS have a time-variable contamination layer
that has a complex time dependence. For the XIS, the contami-
nation layer grew at different rates on the different detectors and
appeared to be decreasing at the end of the mission. For ACIS,
the accumulation rate has varied over the mission and the chem-
ical composition has also changed with time. Given how much
the ACIS-S3 and XIS response have changed in the 0.5−1.0 keV
over the mission, it is encouraging that the line normalizations
are as stable as they are with time. The EPIC-MOS response has
changed because of the “patch” effect in the CCDs and the ac-
cumulation of a contamination layer. Fortunately for the EPIC-
MOS, the contamination layer is much thinner than on ACIS or
the XIS and it has been simpler to model. The XRT WT mode
data have exhibited significant evolution with time, with the low-
est energy line normalizations decreasing the most with time.
This behavior might be explained by the placement of E0102 on
bad columns that are increasing with time. The E0102 analy-
sis presented here is the first of these cross-calibration studies to
characterize the time-dependent response of these instruments.
It is our hope that the Guest Observer community for these mis-
sions can use these results to assess the reliability of their results.

7. Conclusions

We have used the line-dominated spectrum of the SNR E0102 to
test the response models of the ACIS-S3, EPIC-MOS, EPIC-pn,
XIS, and XRT CCDs below 1.5 keV. We have fitted the spec-
tra with the same model in which the continuum and absorption
components and the weak lines are held fixed while allowing
only the normalizations of four bright lines/line complexes to
vary. We have compared the fitted line normalizations of the
O vii Heα r line, the O viii Lyα line, the Ne ix Heα r line, and
Ne x Ly α line to examine the consistency of the effective area
models for the various instruments in the energy ranges around
570 eV, 654 eV, 915 eV, and 1022 eV. We find that the instru-
ments are in general agreement with 38 of the 48 scaled nor-
malizations within ±10% of the IACHEC model values. How-
ever, the agreement is better for the higher energy lines than the
low energy lines. We find that the scaled line normalizations
agree with the IACHEC model normalization to within ±9% &
±12% for the Ne ix Heα r and Ne x Lyα line complexes when
all instruments are considered (if we adopt the Swift XRT WT
mode results and exclude the PC mode results). The agreement
is significantly worse for the low energy lines, as the scaled line
normalizations agree with the IACHEC model normalization to
within ±20% and ±15% for the O vii Heα r and O viii Lyα r line

complexes. This difference with energy emphasizes the chal-
lenges presented by the low energy calibration of these CCD
instruments. When only Chandra and XMM-Newton are con-
sidered, we find that the fitted line normalizations agree with
the IACHEC normalization to within ±15%, ±12%, ±8%, and
±9% for O vii Heα r, O viii Lyα, Ne ix Heα r, and Ne x Lyα.
Therefore, the absolute effective areas of Chandra ACIS-S3,
XMM-Newton EPIC-pn, and XMM-Newton-MOS agree to bet-
ter than ±10% at 0.9 and 1.0 keV for the time intervals and data
modes considered in this analysis.

The time dependence of each of the CCD instruments was
presented. All of the CCD instruments have a significant varia-
tion in response with time except for the XMM-Newton EPIC-pn
which measures a flux in the 0.3−2.0 keV band consistent to
1.3% over the course of the mission. The derived normaliza-
tions with time for ACIS-S3, EPIC-MOS, XIS, and XRT for the
O vii Heα r line, the O viii Lyα line, the Ne ix Heα r line, and
Ne x Lyα line can be used to assess the reliability of the effec-
tive area calibration at a given point in time for the respective
mission/instrument.
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Table A.1. XMM-Newton RGS observations of E0102.

Rev ObsID Date Exposure (ks)

0065 0123110201 2000-04-16 22.7
0065 0123110301 2000-04-17 21.7
0247 0135720601 2001-04-14 33.5
0375 0135720801 2001-12-25 35.0
0433 0135720901 2002-04-20 35.7
0447 0135721001 2002-05-18 34.1
0521 0135721101 2002-10-13 27.2
0552 0135721301 2002-12-14 29.0
0616 0135721401 2003-04-20 45.5
0711 0135721501 2003-10-27 30.5
0721 0135721701 2003-11-16 27.4
0803 0135721901 2004-04-28 35.2
0888 0135722401 2004-10-14 31.1
0894 0135722001 2004-10-26 31.9
0900 0135722101 2004-11-06 49.8
0900 0135722201 2004-11-07 31.9
0900 0135722301 2004-11-07 31.9
0981 0135722501 2005-04-17 37.1
1082 0135722601 2005-11-05 30.4
1165 0135722701 2006-04-20 30.5
1265 0412980101 2006-11-05 32.4
1351 0412980201 2007-04-25 36.4
1443 0412980301 2007-10-26 37.1
1531 0412980501 2008-04-19 29.9
1636 0412980701 2008-11-14 28.9
1711 0412980801 2009-04-13 28.9
1807 0412980901 2009-10-21 28.9
1898 0412981001 2010-04-21 30.5
1989 0412981301 2010-10-18 32.0
2081 0412981401 2011-04-20 35.1
2180 0412981501 2011-11-04 30.2

Appendix A: Additional tables
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Table A.2. Chandra ACIS and ACIS/HETG observations of E0102.

OBSID Instrument Date Exposure Countsa Mode
(ks) (0.5−2.0 keV)

120b ACIS-HETG 1999-09-28 87.9 38917 TE, Faint, 3.2 s frametime
968b ACIS-HETG 1999-10-08 48.4 22566 TE, Faint, 3.2 s frametime

3828b ACIS-HETG 2002-12-20 135.9 49599 TE, Faint, 3.2 s frametime
12147 ACIS-HETG 2011-02-11 148.9 44341 TE, Faint, 3.2 s frametime

3545b ACIS-S3 2003-08-08 7.9 57111 TE, 1/4 subarray, 1.1 s frametime, node 1
6765b ACIS-S3 2006-03-19 7.6 51745 TE, 1/4 subarray, 0.8 s frametime, node 0
8365 ACIS-S3 2007-02-11 21.0 138685 TE, 1/4 subarray, 0.8 s frametime, node 0
9694 ACIS-S3 2008-02-07 19.2 124795 TE, 1/4 subarray, 0.8 s frametime, node 0

10654 ACIS-S3 2009-03-01 7.3 45534 TE, 1/4 subarray, 0.8 s frametime, node 0
10655 ACIS-S3 2009-03-01 6.8 43227 TE, 1/8 subarray, 0.4 s frametime, node 0
10656 ACIS-S3 2009-03-06 7.8 48601 TE, 1/4 subarray, 0.8 s frametime, node 1
11957 ACIS-S3 2009-12-30 18.5 112423 TE, 1/4 subarray, 0.8 s frametime, node 0
13093 ACIS-S3 2011-02-01 19.1 108286 TE, 1/4 subarray, 0.8 s frametime, node 0
14258 ACIS-S3 2012-01-12 19.1 102048 TE, 1/4 subarray, 0.8 s frametime, node 0
15467 ACIS-S3 2013-01-28 19.1 92610 TE, 1/4 subarray, 0.8 s frametime, node 0
16589 ACIS-S3 2014-03-27 9.6 40194 TE, 1/4 subarray, 0.8 s frametime, node 0
17380 ACIS-S3 2015-02-28 17.7 65809 TE, 1/4 subarray, 0.8 s frametime, node 0
17688 ACIS-S3 2015-07-17 9.6 33972 TE, 1/4 subarray, 0.8 s frametime, node 0

Notes. (a) Counts for “ACIS-HETG” are the sum of MEG ±1 order events, 0.5−2 keV. (b) Observation included in the comparison of effective
areas discussed in Sect. 5.3.

Table A.3. Summary of XMM-Newton EPIC pn SW mode observations.

Observation Instrument Date Exposure Count ratea Readout, filter,
IDb ID (ks) (counts s−1) position

0135720801 PNS001 2001-12-25 21.5 12.68 ± 2.4e-02 SW, thin, centred
0135721101 PNS001 2002-10-13 7.5 12.69 ± 4.2e-02 SW, thin, centred
0135721301 PNS001 2002-12-14 7.7 12.61 ± 4.1e-02 SW, thin, centred
0135721401 PNU002 2003-04-20 8.6 12.31 ± 3.8e-02 SW, medium, centred
0135722401 PNS001 2004-10-14 21.5 9.09 ± 2.1e-02 SW, thick, centred
0135722601 PNS001 2005-11-05 21.0 12.27 ± 2.4e-02 SW, medium, centred
0135722701 PNS001 2006-04-20 21.0 12.89 ± 2.5e-02 SW, thin
0412980101 PNS001 2006-11-05 22.4 12.19 ± 2.3e-02 SW, medium, centred
0412980201 PNS001 2007-04-25 24.7 12.85 ± 2.3e-02 SW, thin
0412980301 PNS001 2007-10-26 25.7 12.22 ± 2.2e-02 SW, medium, centred
0412980501 PNS001 2008-04-19 20.6 12.75 ± 2.5e-02 SW, thin
0412980701 PNS001 2008-11-14 19.9 12.42 ± 2.5e-02 SW, medium
0412980801 PNS001 2009-04-13 14.1 12.75 ± 3.0e-02 SW, thin
0412980901 PNS001 2009-10-21 20.0 12.34 ± 2.5e-02 SW, medium
0412981001 PNS001 2010-04-21 20.6 12.86 ± 2.5e-02 SW, thin
0412981401 PNS001 2011-04-20 23.1 12.52 ± 2.3e-02 SW, thin
0412981701 PNS001 2012-12-06 10.5 12.52 ± 3.5e-02 SW, thin, centred
0412981701 PNS012 2012-12-06 11.8 12.11 ± 3.2e-02 SW, medium, centred
0412981701 PNS013 2012-12-07 14.7 9.49 ± 2.6e-02 SW, thick, centred
0412982101 PNS001 2013-11-07 22.3 12.60 ± 2.4e-02 SW, thin, centred
0412982201 PNS001 2014-10-20 23.5 12.10 ± 2.3e-02 SW, medium, centred
0412982301 PNS001 2014-10-20 30.4 12.34 ± 2.0e-02 SW, medium
0412982501 PNS001 2015-10-28 23.4 12.28 ± 2.3e-02 SW, medium
0412982401 PNS001 2015-10-30 26.1 12.17 ± 2.2e-02 SW, medium, centred

Notes. (a) Single-pixel events in the 0.3−3.0 keV band. (b) All pn observations were included in the comparison of effective areas discussed in
Sect. 5.3.
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Table A.4. XMM-Newton MOS observations of E0102.

OBSID Instrument Date Exposure Counts Mode
(ks) (0.5−2.0 keV)

0123110201a MOS1 2000-04-16 17.4 60 354 LW, 0.9s frametime, thin filter
0123110201a MOS2 2000-04-16 17.4 60 633 LW, 0.9s frametime, thin filter
0123110301a MOS1 2000-04-17 12.1 40 092 LW, 0.9s frametime, medium filter
0123110301a MOS2 2000-04-17 12.1 40 893 LW, 0.9s frametime, medium filter
0135720601 MOS1 2001-04-14 18.6 65 561 LW, 0.9s frametime, thin filter
0135720601 MOS2 2001-04-14 18.6 62 927 LW, 0.9s frametime, thin filter
0135720801 MOS1 2001-12-25 28.0 102 340 LW, 0.9s frametime, thin filter
0135720801 MOS2 2001-12-25 28.0 99 855 LW, 0.9s frametime, thin filter
0135721301 MOS1 2002-12-14 27.2 93 882 LW, 0.9s frametime, thin filter
0135721301 MOS2 2002-12-14 27.2 93 392 LW, 0.9s frametime, thin filter
0135721501 MOS1 2003-10-27 21.0 76 062 LW, 0.9s frametime, thin filter
0135721501 MOS2 2003-10-27 21.0 70 285 LW, 0.9s frametime, thin filter
0135721901 MOS1 2004-04-28 31.0 106 535 LW, 0.9s frametime, thin filter
0135721901 MOS2 2004-04-28 31.0 104 510 LW, 0.9s frametime, thin filter
0135722401 MOS1 2004-10-14 29.4 84 006 LW, 0.9s frametime, thick filter
0135722401 MOS2 2004-10-14 29.4 80 836 LW, 0.9s frametime, thick filter
0135722501 MOS1 2005-04-17 29.4 98 331 LW, 0.9s frametime, thin filter
0135722501 MOS2 2005-04-17 29.4 97 993 LW, 0.9s frametime, thin filter
0135722601 MOS1 2005-11-05 29.1 98 813 LW, 0.9s frametime, thin filter
0135722601 MOS2 2005-11-05 29.1 96 880 LW, 0.9s frametime, thin filter
0412980101 MOS1 2006-11-05 31.0 102 286 LW, 0.9s frametime, thin filter
0412980101 MOS2 2006-11-05 31.0 99 904 LW, 0.9s frametime, thin filter
0412980301 MOS1 2007-10-26 35.0 119 372 LW, 0.9s frametime, thin filter
0412980301 MOS2 2007-10-26 35.0 111 364 LW, 0.9s frametime, thin filter
0412981401 MOS1 2011-04-20 30.3 84 751 LW, 0.9s frametime, thin filter
0412981401 MOS2 2011-04-20 30.3 100 949 LW, 0.9s frametime, thin filter
0412981701 MOS1 2012-12-06 12.8 39 780 LW, 0.9s frametime, thin filter
0412981701 MOS2 2012-12-06 12.8 43 069 LW, 0.9s frametime, thin filter
0412981701 MOS1 2012-12-06 16.6 47 453 LW, 0.9s frametime, medium filter
0412981701 MOS2 2012-12-06 16.6 53 615 LW, 0.9s frametime, medium filter
0412982101 MOS1 2013-11-07 31.3 95 929 LW, 0.9s frametime, thin filter
0412982101 MOS2 2013-11-07 31.3 98 882 LW, 0.9s frametime, thin filter
0412982201 MOS1 2014-10-20 32.8 104 184 LW, 0.9s frametime, thin filter
0412982201 MOS2 2014-10-20 32.8 103 544 LW, 0.9s frametime, thin filter

Notes. (a) Observation included in the comparison of effective areas discussed in Sect. 5.3.
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Table A.5. Suzaku XIS observations of E0102.

OBSID Instrument Date Exposure Counts Modeb

(ks)a (0.5−2.0 keV)

100014010c XIS0 2005-08-31 22.1 33 078 full window,SCI off
100014010c XIS1 2005-08-31 22.1 71 394 full window,SCI off
100014010c XIS2 2005-08-31 22.1 33 475 full window,SCI off
100014010c XIS3 2005-08-31 22.1 31 569 full window,SCI off
100044010 XIS0 2005-12-17 52.6 70 904 full window,SCI off
100044010 XIS1 2005-12-17 94.4 224 811 full window,SCI off
100044010 XIS2 2005-12-17 52.6 65 054 full window,SCI off
100044010 XIS3 2005-12-17 52.6 58 182 full window,SCI off
101005030 XIS0 2006-06-27 21.0 24 879 full window,SCI off
101005030 XIS1 2006-06-27 18.5 36 029 full window,SCI off
101005030 XIS2 2006-06-27 21.0 21 734 full window,SCI off
101005030 XIS3 2006-06-27 18.5 17 858 full window,SCI off
102002010 XIS0 2007-06-13 24.0 24 632 full window,SCI on
102002010 XIS1 2007-06-13 24.0 40 526 full window,SCI on
102002010 XIS3 2007-06-13 24.0 21 898 full window,SCI on
103001020 XIS0 2008-06-05 17.5 15 843 full window,SCI on
103001020 XIS1 2008-06-05 17.5 28 543 full window,SCI on
103001020 XIS3 2008-06-05 17.5 15 646 full window,SCI on
104006010 XIS0 2009-06-26 17.4 14 915 full window,SCI on
104006010 XIS1 2009-06-26 17.4 27 072 full window,SCI on
104006010 XIS3 2009-06-26 17.4 15 278 full window,SCI on
105004020 XIS0 2010-06-19 15.5 12 629 full window,SCI on
105004020 XIS1 2010-06-19 15.5 24 207 full window,SCI on
105004020 XIS3 2010-06-19 15.5 12 993 full window,SCI on
106002020 XIS0 2011-06-29 27.4 21 361 full window,SCI on
106002020 XIS1 2011-06-29 27.4 44 156 full window,SCI on
106002020 XIS3 2011-06-29 27.4 23 490 full window,SCI on
107002020 XIS0 2012-06-25 29.6 23 722 full window,SCI on
107002020 XIS1 2012-06-25 29.6 45 564 full window,SCI on
107002020 XIS3 2012-06-25 29.6 26 527 full window,SCI on
108002020 XIS0 2013-06-27 33.1 28 615 full window,SCI on
108002020 XIS1 2013-06-27 33.1 56 869 full window,SCI on
108002020 XIS3 2013-06-27 33.1 31 354 full window,SCI on
109001010 XIS0 2014-04-21 29.6 25 982 full window,SCI on
109001010 XIS1 2014-04-21 29.6 48 706 full window,SCI on
109001010 XIS3 2014-04-21 29.6 26 135 full window,SCI on

Notes. (a) Exposure for XIS is for the filtered event data. (b) “SCI” stands for spaced-row charge injection. (c) Observation included in the comparison
of effective areas discussed in Sect. 5.3.
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Table A.6. Swift-XRT observation log.

Start date Stop date Exposure 0.3−1.5 keV rate Offset
(ks) (count s−1) (eV)

PC mode :
2005-02-18a 2005-05-22 24.2 0.87 +2
2006-03-11 2006-05-05 8.5 0.81 0
2007-06-08 2007-06-13 20.8 0.73 +4
2007-09-25 2007-10-02 28.4 0.73 −6
2008-10-01 2008-10-04 20.4 0.80 +8
2009-10-18 2009-11-27 20.8 0.74 −6
2010-03-16 2010-09-11 40.0 0.68 −1
2011-03-19 2011-09-14 35.3 0.64 −3
2012-03-09 2012-09-13 35.1 0.70 −8
2013-03-15 2013-10-19 43.1 0.61 −11
2014-03-13 2014-09-27 49.9 0.73 −11

WT mode :
2005-02-23a 2005-03-01 25.2 1.09 +1
2006-03-11 2006-04-27 7.4 0.91 −2
2007-06-07 2007-06-20 20.7 0.94 +4
2007-09-30 2007-10-01 15.4 0.95 −1
2008-08-24 2008-10-09 17.3 0.87 +13
2009-10-15 2009-10-20 22.1 0.98 +4
2010-03-21 2010-09-25 40.1 0.95 −7
2011-03-18 2011-10-15 41.5 0.90 −1
2012-03-10 2012-08-21 38.2 0.90 +4
2013-03-24 2013-10-24 38.5 0.81 +2
2014-03-15 2014-10-14 46.7 0.91 +2

Notes. The data reported here were taken under target ID number 50050. The reported rates are from grade 0 events and are not corrected for
potential loss of exposure due to the location of the source with respect to the detector bad-columns. (a) Observation included in the comparison of
effective areas discussed in Sect. 5.3.

A35, page 31 of 31


