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Tracking with Sparse and Correlated Measurements

via a Shrinkage-based Particle Filter
Aroland Kiring, Naveed Salman, Chao Liu, Iñaki Esnaola, and Lyudmila Mihaylova

Abstract—This paper presents a shrinkage-based particle filter
method for tracking a mobile user in wireless networks. The
proposed method estimates the shadowing noise covariance
matrix using the shrinkage technique. The particle filter is
designed with the estimated covariance matrix to improve the
tracking performance. The shrinkage-based particle filter can
be applied in a number of applications for navigation, tracking
and localization when the available sensor measurements are
correlated and sparse. The performance of the shrinkage-based
particle filter is compared with the posterior Cramer-Rao lower
bound, which is also derived in the paper. The advantages
of the proposed shrinkage-based particle filter approach are
demonstrated via simulation and experimental results.

Index Terms—wireless sensor networks, tracking problems,
received signal strength measurements, particle filter, covariance
matrix, shrinkage estimation.

I. INTRODUCTION

TRACKING mobile user using the received signal strength

(RSS) measurements is one of the many applications

of wireless networks. The accuracy of tracking algorithms is

affected by the quality of the received signal, the size of the

obstructions encountered, and sudden changes in the speed of

the mobile users. Various methods of target tracking based on

the signal strength have been developed to address challenges

such as improving the tracking accuracy [1], [2], [3] and saving

the energy consumption of the deployed sensor nodes [4].

Techniques for tracking mobile users in wireless systems are

divided into two groups: methods in which point coordinates

are estimated using global positioning system (GPS) devices

[5] and methods in which the coordinate and motion are

estimated using an underlying mobility model with filtering

algorithms [6].

GPS devices operate effectively in outdoor environments.

However, when operates in indoor environments, or in areas

where there is an obstructed line of sight to GPS satellites, e.g.,

in hills, high buildings, and dense forests, the GPS may not

be able to establish a connection with the satellites. Sensors

equipped with GPS capabilities require the installation of extra

hardware making it costly to deploy. Assisted GPS (AGPS)

devices [7] offer a better solution in situations where GPS

devices have poor signal reception by establishing a commu-

nication with the satellite via cellular networks. Coordinates

estimated using AGPS devices are faster but less accurate

when compared to GPS devices.

A. Kiring, N. Salman, C. Liu, I. Esnaola, and L. Mihaylova are with
the University of Sheffield, Department of Automatic Control and Systems
Engineering, Mappin Street, S1 3JD United Kingdom (email: {amkiring1,
n.salman, cliu47, esnaola, l.s.mihaylova}@sheffield.ac.uk).

Alternatively, mobility models with filtering algorithms can

also be applied to estimate both the user coordinate and the

motion. Various mobility models have been developed such

as random walk based models [8], Gauss-Markov models,

and Singer-type models [9], [10]. In [10], a dynamic mo-

bility model that captures a wide range of vehicle maneu-

vering patterns is presented and employed for tracking in

tactical weapons systems. Liu et al. [11] use this mobility

model to estimate the trajectory of mobile users in wireless

asynchronous transfer mode (ATM) networks by applying a

modified Kalman filter (KF). However, the tracking accuracy

is poor when there is a rapid change in the user acceleration.

The KF is the optimal estimator, in the minimum mean

square error sense, for linear systems with observations cor-

rupted by a Gaussian noise. However, when the KF is applied

to a non-linear system, the estimator faces difficulties. Zaidi

et al. [12] develop an extended Kalman filter (EKF), which

operates by first linearizing the state and/or measurement

model before applying the standard KF. Unfortunately, the

EKF produces unreliable estimates when the non-linearities in

the system model and/or in the measurement model are severe.

In this case, measurement-conversion techniques are used to

solve the non-linear equations and improve the performance

of the filter [13].

Filtering methods based on the random sampling can also be

applied in mobility tracking scenarios, such as the Ensemble

Kalman filter (EnKF) and the Unscented Kalman filter (UKF).

The EnKF performs a random sampling of the probability

density function to represent the initial state estimate [14]. In

contrast, the UKF relies on a deterministic choice of sampling

points, called sigma points [15], [16]. The aforementioned

methods assume that the process noise and the measurement

noise are Gaussian distributed.

The Particle filter (PF) [17] is often used in non-linear and

non-Gaussian filtering problems. The PF treats the random

samples as particles, each with a corresponding weight. The

PF updates the weights when a new measurement is received

before it approximates the state of the mobile user. In [18],

[19], the performance of the PF is studied and the influences

of the number of generated particles and the resampling

methods on its accuracy are analyzed. In [20], a mobility

model combined with a PF is developed for mobile tracking

in cellular networks.

The accuracy of the mobile user tracking method depends

on the quality of the received signal. In ad hoc networks,

connections between the user and the sensors are sponta-

neously established when the user is within the communication

range. The mobility of sensors and user changes the network
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topology and results in a disruption of the communication.

This limits the number of measurements that are available. The

measurements from the nearby sensor nodes are often assumed

to be spatially correlated. However, consecutive measurements

also exhibit temporal correlation. For that reason, the tracking

can be improved by exploiting the spatio-temporal correlation

between the measurements. The shadowing noise covariance

matrix depends on the distance between the sensor nodes and

the mobile users. As a result, the movement of the mobile

users induces changes on the covariance matrix.

To overcome these problems, we propose a shrinkage-

based PF (ShPF) method for approximating the state of a

mobile user using the sparse and correlated measurements.

In particular, we adapt the Singer mobility model and the PF

algorithm developed in [20] to the scenario of network with

sparse and correlated measurements. The shrinkage technique

is employed to overcome the limitation faced by the sample

estimator. Then, the tracking accuracy of the ShPF is compared

with the PF to validate the performance of the developed

filter. The performance of the ShPF is demonstrated via

simulation and experimental results. The posterior Cramer-Rao

lower bound (PCRLB) is also derived and calculated for the

simulated data.

The key contributions of this paper are: (i) the RSS based

tracking framework is developed for correlated and sparse

wireless sensor measurements; (ii) the framework employs a

joint shrinkage technique and a PF algorithm for the estimation

of the state of the mobile user; (iii) the ShPF performance is

assessed over simulated data and real Wi-Fi data.

The rest of the paper is organized as follows. The problem

formulation, user mobility model, sensor measurement model

and measurement correlation model are given in Section II.

Section III reviews the shrinkage method. Section IV reviews

the PCRLB. The proposed ShPF method is presented in

Section V. Results and analyses of both simulated and real Wi-

Fi data are given in Section VI. Finally, Section VII presents

the conclusions.

II. TRACKING SYSTEM MODEL

A. Problem Formulation

Consider a two-dimensional (2-D) network consisting of ns

sensors that are uniformly distributed with known coordinates

(xi , yi ), i ∈ {1, . . . ,ns }. These coordinates can be obtained

using GPS devices, or by installing sensors at known points.

The sensors measure the RSS of a mobile user, and all the

measurements are collected and processed at a central unit to

estimate the trajectory of the mobile user.

Notations: In the following, we denote vectors by lowercase

boldface letters, matrices by uppercase boldcase letters, (·)T

is the transpose operator, E[·] is the expectation operator, I

denotes the identity matrix, [A]i j refers to the element at the

i-th row and j-th column of matrix A, N (µ,σ2) represents

a Gaussian distribution with mean µ and variance σ2, ‖ · ‖2
F

is the Frobenius norm, | · | is the matrix determinant, L(·) is

the likelihood function, R is the set of real numbers, Rm×n is

the vector space of all m-by-n real matrices, and Ĉov(·) is the

covariance operator.

B. User Mobility Model

Let the state vector of a mobile user at time k be given by

xk = [xk , ẋk , ẍk , yk , ẏk , ÿk ]T , (1)

where (xk , yk ) represents the user coordinates, ( ẋk , ẏk ) repre-

sents the user velocity, and ( ẍk , ÿk ) represents the user accel-

eration, respectively. A Singer-type mobility model describes

the evolution of the mobile user state (and also the speed and

acceleration) with respect to time. The Singer model [11], [17]

yields

xk+1 = A(T,α)xk + Bu (T )uk+1 + Bw (T )wk+1, (2)

where T is the discretization period, α = 1/τ is the re-

ciprocal of the maneuvering time constant τ, and uk+1 =

[ux,k+1, uy,k+1]T is the command process that changes the ac-

celeration. Following [17], [21], parameters ux,k+1 and uy,k+1

are modeled as a Markov chain and take values from a set of

acceleration levels Mx and My , where Mx and My are the

set of all possible acceleration levels in the x and y directions,

respectively. Consequently, uk+1 takes values from the set

M =Mx ×My = {m1, . . . ,mM }, with transition probabilities

π i j = P(uk+1 = m j |uk = mi ) and initial probabilities

distribution µi,0 = P{m = mi } for modes mi ∈ M such that

µi,0 ≥ 0 and
∑M

i=1 µi,0 = 1. The matrix A(T,α) ∈ R
6×6 is a

state transition matrix, Bu (T ) ∈ R6×2 is the command matrix

and Bw (T ) ∈ R
6×2 is the noise coefficient matrix. These are

given by (3), (4), and (5), respectively

A(T,α) =

[
Ã 03×3

03×3 Ã

]
, Ã =



1 T T2/2

0 1 T

0 0 α


, (3)

Bu (T ) =

[
B̃u 03×1

03×1 B̃u

]
, B̃u =



T2/2

T

0


, (4)

Bw (T ) =

[
B̃w 03×1

03×1 B̃w

]
, B̃w =



T2/2

T

1


, (5)

and wk+1 = [wx,k+1,wy,k+1]T is a multivariate Gaussian

random variable, with zero mean and covariance matrix Q =

E[wk+1wT
k+1

] = σ2
wI where σw is the standard deviation of

the process noise.

C. Measurement Model

The measurement-based coordinate estimation can be re-

lated to RSS through the radio propagation path loss model

[22]

zi = z0
+ 10βlog10(di ) + vi , (6)

where z0 is the signal power loss in dB at 1 m distance and zi

is the signal power loss at distance di , where i refers to the i-th

sensor node. The parameter β is the path loss exponent which

is typically β ∈ [4,8]. Finally, vi ∼ N (0, (σi )2) is a zero mean

Gaussian random variable representing the shadowing noise

where σi is the standard deviation of the shadowing noise

at the i-th sensor node. The parameter z0 can be calculated

during system calibration and zi = Pt − Pr can be determined

at the receiver node by measuring the received signal power
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Pr when the power of the transmitted signal Pt is known

[23]. To enable accurate tracking, a minimum of three sensor

measurements is needed. The measurement model in (6) can

be written in vector form as

zk = h(xk ) + vk , (7)

where zk ∈ R
ns represents the measurements at ns sensor

nodes at time instant k, i.e., zk = [z1
k
, z2

k
, . . . , z

ns

k
]T and

the elements of the vector h(xk ) are given by h(xi
k

) =

z0
k
+10βlog10(di

k
) for i = 1,2, . . . ,ns . The vector vk represents

the shadowing noise, with covariance matrix Rk = E[vkvT
k

],

and is assumed to be correlated in space and time.

D. Correlated Data Model for Measurements Generation

The measurements described by (7) are assumed to be

corrupted by additive noise correlated in both space and time.

In practice, this correlation is unknown but in the simulations

presented in Section VI, the spatial and temporal correlations

of the measurements are produced by the Gudmundson model

[23].

1) Spatial Dependence: The spatial correlation coefficient

between the measurements at the i-th and the j-th sensor

nodes, at time instant k, is given by

ρ
i, j

k
= exp

(

−
d
i, j

k

Dc

)

, (8)

where d
i, j

k
is the relative distance between the two sensors

and Dc is the decorrelation distance [24]. Thus, the covariance

between the measurements at the two sensors is given by

C
i, j

k
= ρ

i, j

k
σi
kσ

j

k
, (9)

where σi
k

and σ
j

k
are the standard deviations of the shadowing

noise at the i-th and the j-th sensor nodes, respectively.

2) Temporal Dependence: The temporal correlation be-

tween the RSS measured at time instants k and l by the i-th

sensor, is given by

ρ̃ik,l = exp

(

−
di
k,l

Dc

)

, (10)

where di
k,l

is the distance traveled by the mobile user from

the time instant k, to the time instant l, which is given

by di
k,l
=

√

(xi
l
− xi

k
)2
+ (yi

l
− y

i
k

)2 where (xi
l
, yi

l
) are the

user coordinates at time instant l and (xi
k
, yi

k
) are the user

coordinates at time instant k. Thus, the covariance between

the RSS, measured at time instants k and l by the i-th sensor,

is given by

C̃i
k,l = ρ̃

i
k,l σ̃

i
k σ̃

i
l , (11)

where σ̃i
k

and σ̃i
l

are the standard deviations of the shadowing

noise at the time instant k and l, respectively.

3) Spatio-Temporal Dependence: A set of sensor measure-

ments is collected from ns sensors at different time instants.

The measurements taken at time instant k are temporally

correlated with the measurements taken at all previous time

instants, l for l ∈ {1, . . . ,L} given by

Z = [zTk , . . . ,z
T
l ]T , (12)

and the resulting block covariance matrix is given by

C =



Ck,k . . .Ck,l

...
. . .
...

Cl,k . . .Cl,l


, (13)

where the diagonal elements of the block covariance matrix

are of the form

Ck,k =



(σ1
k

)2 ρ
1,2

k
σ1
k
σ2
k
· · · ρ

1,ns

k
σ1
k
σ

ns

k

ρ
2,1

k
σ2
k
σ1
k

(σ2
k

)2 · · · ρ
2,ns

k
σ2
k
σ

ns

k
...

...
. . .

...

ρ
ns,1

k
σ

ns

k
σ1
k
ρ
ns,2

k
σ

ns

k
σ2
k
· · · (σ

ns

k
)2



, (14)

and the off-diagonal elements of the block covariance matrix

are of the form

Ck,l =



ρ̃1
k,l
σ̃1
k
σ̃1
l

0 · · · 0

0 ρ̃2
k,l
σ̃2
k
σ̃2
l
· · · 0

...
...

. . .
...

0 0 · · · ρ̃
ns

k,l
σ̃

ns

k
σ̃

ns

l



. (15)

The size of the observed measurement vector (12) depends

on all the measurements from the previous time instants. As

the number of acquired measurements increases, the size of

the covariance matrix grows exponentially. Thus, to limit the

dimensionality of the resulting covariance matrix, a restriction

on the number of previous measurements is imposed through

a sliding window time.

III. SHRINKAGE METHOD

A. Covariance Matrix of the Shadowing Noise

In practical scenarios, the covariance matrix of the shad-

owing noise is unknown. Therefore, the covariance matrix is

estimated from the available sensor measurements. A common

approach to estimate the covariance matrix is by using a sam-

ple covariance estimator. Given the set of RSS measurements

{zp ∈ R
ns }, for p = 1, . . . ,P where P is the number of

observations, the sample covariance matrix estimate is given

by

Ĉ =
1

P − 1

P
∑

p=1

(zp − z̄)(zp − z̄)T , (16)

where z̄ = 1
P

∑P
p=1 zp is the sample mean. The estimated

sample covariance matrix in (16) is unbiased and provides

accurate estimates when P ≫ ns . When P ≤ ns , the sample

covariance matrix estimate is ill-conditioned, non-invertible,

and introduces a large estimation error. This limitation can be

overcome by using the shrinkage technique.
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B. Shrinkage Estimation of the Covariance Matrix

The term shrinkage relates to the notion that an original

estimate is improved through “shrinking to” the value supplied

by “additional information”. A shrinkage covariance matrix

estimate (improved estimate of the sample covariance matrix)

is given by [25],

Ŝ = λT + (1 − λ)Ĉ , (17)

where the “additional information” introduced here is the

target matrix, T. The shrinkage intensity, λ ∈ [0,1] controls

the extent to which the improved estimate Ŝ shrinks from the

original estimate Ĉ to the target matrix T. Note that if λ = 1,

the shrinkage estimate is equivalent to the target matrix and

the sample covariance estimate is given no weight. On the

other hand, if λ = 0, no shrinkage takes place and the sample

covariance estimate dominates.

Here two questions arise. Firstly, how should the shrinkage

target matrix T be selected? Secondly, what value should be

given to the shrinkage intensity λ? Schafer and Strimmer

propose six target matrices and approaches to compute cor-

responding optimal shrinkage intensities in [26]. According

to [24], the selection of target matrix T should be driven by

the data. Thus in the case of the shadowing noise covariance

estimation for path loss measurements, two types of target

matrices are selected. The first target matrix is the diagonal,

unit variance shrinkage target matrix given by

T1 = I , (18)

with optimal shrinkage intensity determined by

λ̂T1
=

∑

i j V̂ar
( [

Ĉ
]
i j

)

∑

i, j

[
Ĉ
]2

i j
+

∑

i

( [
Ĉ
]
ii
− 1
)2
. (19)

The second target matrix is the constant correlation shrinkage

target covariance matrix given by

[
T2

]
i j
=



[
Ĉ
]
ii
, for i = j

ρ̄
√ [

Ĉ
]
ii

[
Ĉ
]
j j
, for i , j

, (20)

with optimal shrinkage intensity determined by

λ̂T2
=

∑

i, j V̂ar
( [

Ĉ
]
i j

)

− ρ̄ f i j

∑

i, j

( [
Ĉ
]
i j
− ρ̄
√ [

Ĉ
]
ii

[
Ĉ
]
j j

)2
, (21)

where ρ̄ is the average correlation of the off-diagonal elements

in the sample covariance matrix estimate computed as

ρ̄ =
1

ns (ns − 1)

ns
∑

i=1

ns
∑

j,i

[
Ĉ
]
i j[

Ĉ
]
ii

[
Ĉ
]
j j

, (22)

and the parameter f i j is given by

f i j =
1

2

{

√

√

√

√

√

[
Ĉ
]
j j[

Ĉ
]
ii

Ĉov
( [

Ĉ
]
ii
,
[
Ĉ
]
i j

)

+

√

√

√

√

√

[
Ĉ
]
ii[

Ĉ
]
j j

Ĉov
( [

Ĉ
]
j j
,
[
Ĉ
]
i j

)

}

. (23)

The shrinkage intensity is optimal when the value minimizes

the risk function in (60). The expressions of T1, λ̂T1
, T2, and

λ̂T2
are derived in the appendix.

IV. THE POSTERIOR CRAMER-RAO LOWER BOUND

The PCRLB provides a lower bound on the mean square

error obtained with any non-linear filter and is equivalent to

the inverse of the posterior Fisher information matrix (PFIM)

[27]. The implementation of the PCRLB requires knowledge

of the true state. However, an EKF and UKF based method

[28] can be applied to compute the PCRLB formulation in

[29] using the mean and the covariance of the online state

estimates.

A. The Extended Kalman Filter

The state vector xk at time k is estimated based on the

ns received sensor measurements, zk = [z1
k
, z2

k
, . . . , z

ns

k
]T .

Consider the state model given in (2) and the measurement

model in (7) where the parameters Qk and Rk represent the

process noise covariance matrix and the measurement noise

covariance matrix, respectively. The non-linear function h(xk )

in (7) relates the state to the measurements. By using the EKF

method, the estimate of the state x̂k and the state covariance

Pk at time k are calculated recursively as follows [30], [31].

The predicted state vector x̂k |k−1 and the predicted covari-

ance matrix Pk |k−1 are given respectively by

x̂k |k−1 = Fk x̂k−1 |k−1 + Buuk , (24)

Pk |k−1 = FkPk−1 |k−1FT
k + BuQkBT

u , (25)

where Fk represents the state transition matrix, Bu denotes the

command matrix, and uk is the command process. Then, the

posterior state vector x̂k |k and the posterior covariance matrix

Pk |k are computed using

x̂k |k = x̂k |k−1 +Kk (zk − ẑk |k−1), (26)

Pk |k = Pk |k−1 −KkSkKT
k , (27)

where

Sk = HkPk |k−1HT
k + Rk , (28)

Kk = Pk |k−1HT
k S−1

k . (29)

The difference between the measurement zk and the predicted

measurement ẑk |k−1 is called innovation process and the

process improves the prior state estimate. The Kalman gain

Kk is the correction factor and Sk represents the uncertainty of

the predicted output. The parameter Hk represents the Jacobian

matrix of the expected measurements h(xk ) of a mobile user

from all sensors. The components of the Jacobian matrix are
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obtained by taking the derivative of h(xk ) with respect to the

coordinates xk and yk and this matrix has the form

Hk =

10β

ln10



x̂−x1

( x̂−x1)2
+(ŷ−y1)2 0 0

ŷ−y1

( x̂−x1)2
+(ŷ−y1)2 0 0

...
...
...

...
...
...

x̂−xns

( x̂−xns )2
+(ŷ−yns )2 0 0

ŷ−yns

( x̂−xns )2
+(ŷ−yns )2 0 0



.

(30)

B. Recursive Computation of Filtering Information Matrix

Let x̂k be an unbiased estimate of the state vector xk , based

on a set of sensor measurements that are collected up to time

k, i.e., Zk = {z1, . . . ,zk }. The error covariance matrix of x̂k is

lower bounded by

Pk = E[(xk − x̂k )(xk − x̂k )T ] ≥ J−1
k , (31)

where Jk ∈ R
ns×ns is the Fisher information matrix (FIM).

The FIM is given by

Jk = E[[∇Xk
log p(Xk,Zk)][∇Xk

log p(Xk,Zk)]T ], (32)

or equivalently as

Jk = −E[∇Xk
[∇Xk

log p(Xk,Zk)]T ], (33)

where ∇Xk
is the first-order partial derivative operator with

respect to Xk . The joint probability distribution of Xk =

{x0,x1, . . . ,xk } and Zk = {z1, . . . ,zk } computed as [28]

p(Xk ,Zk ) = p(x0)

k
∏

i=1

p(zi |xi )

k
∏

j=1

p(x j |x j−1) (34)

is determined by the prior density function p(x0) of the target

initial state x0 and the conditional density functions p(zi |xi )

and p(x j |x j−1), respectively. Tichavsky et al. [29] propose a

method of computing the FIM recursively as

Jk+1 = D22
k − D21

k (Jk + D11
k )−1D12

k , (35)

where the terms in (35) are defined as

D11
k = −E[∇xk [∇xk log p(xk+1 |xk)]T], (36)

D21
k = −E[∇xk [∇xk+1

log p(xk+1 |xk)]T], (37)

D12
k = −E[∇xk+1

[∇xk log p(xk+1 |xk)]T] = [D21
k ]T, (38)

D22
k = −E[∇xk+1

[∇xk+1
log p(xk+1 |xk)]T]

− E[∇xk+1
[∇xk+1

log p(zk+1 |xk+1)]T], (39)

and the state and measurement density functions satisfy the

following:

∇xk log p(xk+1 |xk) = [∇xk fTk (xk )] Q−1
k [xk+1 − fk (xk )],

(40)

∇xk log p(zk+1 |xk+1) = [∇xk+1
hT
k+1(xk )] R−1

k+1 [zk+1 − hk+1(xk+1)],

(41)

where Qk and Rk+1 are the process noise covariance matrix

and the measurement noise covariance matrix, respectively.

By assuming that the covariance matrices are invertible, the

matrices defined in (36) − (39) are simplified as follows

D11
k = E[[∇xk log p(xk+1 |xk)][∇xk

log p(xk+1 |xk)]T],

= E[[∇xk fTk (xk )] Q−1
k [∇xk fTk (xk )]T ],

= E[FT
k Q−1

k Fk ], (42)

D12
k = −E[FT

k ]Q−1
k , (43)

D21
k = Q−1

k − E[Fk ], (44)

D22
k = Q−1

k + E[[∇xk hT
k (xk )] R−1

k+1 [∇xk hT
k (xk )]T ],

= Q−1
k + E[HT

k+1R−1
k+1Hk+1], (45)

where Fk represents the state transition matrix and Hk+1 is

the Jacobian matrix evaluated at xk+1.

C. The PCRLB for a Deterministic Trajectory

For models (2) and (7), obtaining a closed-form solution

to the FIM is non-trivial. Therefore, we consider the case

in which the trajectory of the mobile user is generated in a

deterministic way. Hence, the process noise is zero and the

expectation operator in (42) − (45) can be dropped out. The

recursive equation in (35) can be rewritten as

Jk+1 = Q−1
k +HT

k+1R−1
k+1Hk+1−Q−1

k Fk

(

Jk+FT
k Q−1

k Fk

)−1
FT
k Q−1

k .

(46)

By applying the matrix inversion lemma, it yields

Jk+1 =

(

Qk + FkJ−1
k FT

k

)−1
+HT

k+1R−1
k+1Hk+1 . (47)

Since Qk = 0, (47) becomes

Jk+1 =

[
F−1
k

]T
JkF−1

k +HT
k+1R−1

k+1Hk+1 . (48)

After comparing (48) with the EKF covariance matrix com-

puted in (27), by replacing Jk by P−1
k

and by applying the

matrix inversion lemma, the following expression is obtained:

P−1
k+1 =

(

FkPkFk

)−1
+HT

k+1R−1
k+1Hk+1 . (49)

In (49), matrices Fk and Hk+1 are evaluated at the true state

of the state vector but in the EKF equations, the matrices are

evaluated at their estimated state vector.

V. PARTICLE FILTERING WITH SHRINKAGE FOR DEALING

WITH CORRELATED MEASUREMENTS

The PF estimates the state of the mobile user xk recursively

from the conditional probability density function p(xk |Z1:k )

and a set of sensor measurements, Z1:k = {z1, . . . ,zk } up to

time k via the Chapman-Kolmogorov equation and Bayes’ rule

given by

p(xk |Z1:k−1) =

∫
p(xk |xk−1)p(xk−1 |Z1:k−1)dxk−1, (50)

p(xk |Z1:k ) =
p(zk |xk )p(xk |Z1:k−1)

p(zk |Z1:k−1)
, (51)

where p(zk |xk ) is the likelihood function and p(zk |Z1:k−1)

is the normalizing constant. Solving the integral in (50) is

intractable in general and hence, it is approximated with the

sequential important sampling PF [32].
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The posterior density function is approximated by a set

of particles {x̂
(i)

k
, i = 1, . . . ,Np } with its associated weights

{W
(i)

k
, i = 1, . . . ,Np } where Np is the total number of

particles, given by

p̂(xk |Z1:k ) =

Np
∑

i=1

Ŵ
(i)

k
δ(xk − x

(i)

k
), (52)

where δ(·) is the Dirac delta measure and

W
(i)

k
∝ W

(i)

k−1
L(zk |x̂

(i)

k
), (53)

is the weight of the i-th particle and is normalized such that

Ŵ
(i)

k
=

W
(i)

k
∑Np

i=1
W

(i)

k

. (54)

The PF works based on three stages: the prediction stage,

the measurement stage and the resampling stage. During the

prediction stage, each particle transition state is propagated

according to the user mobility model. In the measurement

stage, the weight of each particle is evaluated using the

likelihood function. Finally, the resampling stage replaces

one set of particles and their weights with another set. The

resampling step is essential to avoid particle degeneracy [18]

and in this paper, the residual resampling algorithm [19], [33],

is applied.

A. Likelihood Function of the Shrinkage Particle Filter

The likelihood function of the ShPF in (53) is given by

L
(

zk |x̂
(i)

k

)

=

(

(2π)ns |Sk |
)− 1

2
exp
(

−
1

2
(z − ẑ)S−1

k (z − ẑ)T
)

,

(55)

where z and ẑ represent the actual and the predicted RSS

measurements respectively, ns is the number of sensors, and

Sk ∈ R
ns×ns is the shadowing noise covariance matrix at time

instant k. The covariance matrix in the likelihood function is

estimated by the shrinkage estimator in (17) and is expected

to improve the tracking performance of the PF with respect

to the tracking accuracy. By defining the size of the sliding

window time, denoted as twindow , the computation of the

likelihood in (55) involves a modified covariance matrix of

size ns (twindow + 1) × ns (twindow + 1) [34].

B. A Particle Filter with Shrinkage Algorithm

The ShPF is developed based on the PF model presented in

[20]. Algorithm 1 describes the proposed ShPF.

Algorithm 1 Shrinkage-based PF

(1) Initialization

for k = 0 and i = 1, . . . ,Np do

Samples from initial estimate x̂
(i)

0
∼ p(x̂0).

Assign initial important weights W
(i)

0
= 1/Np .

end for

for k = 1, . . . ,endtime do

(2) Shrinkage Covariance Estimator

Estimate the shadowing noise covariance matrix using the

shrinkage estimator Ŝ = λT + (1 − λ)Ĉ.

for i = 1, . . . ,Np do

(3) Prediction Step

Propagate the samples x̂
(i)

k
= A(T,α)x̂

(i)

k−1
+ Bu (T )u

(i)

k

+ Bw (T )w
(i)

k
with noise realizations w

(i)

k
∼ N (0,Q).

(4) Measurement Update

Compute the weights W
(i)

k
∝ W

(i)

k−1
L(zk |x̂

(i)

k
).

The likelihood function is calculated using

L
(

zk |x̂
(i)

k

)

=

(

(2π)ns |Ŝk |
)− 1

2
exp
(

− 1
2

(z − ẑ)Ŝ
−1

k (z − ẑ)T
)

.

end for

Normalize the weights Ŵ
(i)

k
= W

(i)

k
/

Np
∑

i=1

W
(i)

k
, i = 1, . . . ,Np .

(5) Output Estimate

The estimated state is x̂k =
∑Np

i=1
Ŵ

(i)

k
x̂

(i)

k
, i = 1, . . . ,Np .

(6) Resampling Step

Set the threshold sample size Nthresh = Np/10.

Calculate the effective sample size Ne f f = 1/
∑Np

i=1
(Ŵ

(i)

k
)2.

Resampling if Ne f f < Nthresh then

Multiply/suppress particles with high/low importance

weights in order to obtain Np new random particles

approximately distributed according to the posterior

state distribution. The residual resampling algorithm is

applied [19], [33].

end if

end for

VI. PERFORMANCE EVALUATION

The tracking accuracy of the proposed ShPF is compared

with the PF without the shrinkage over simulated data and

real Wi-Fi data. The root mean square error (RMSE) is used

as the performance metric for assessing the accuracy of the

state estimates. The coordinate RMSE is given by

RMSE =

√

√

√

1

N

N
∑

i=1

( x̂i
k
− xi

k
)2
+ ( ŷi

k
− y

i
k

)2 (56)

where { x̂k , ŷk } is the estimated trajectory and {xk , yk } is the

actual trajectory, collected up to time k, and N is the number

of simulation runs.

A. Simulation Results

The simulated network area contains nine sensor nodes

(ns = 9) with a coverage radius of 5 meters, as shown in

Figure 1. In order to maintain coverage and reduce the tracking

error, all sensor nodes are able to move towards the mobile

user but do not cross their designated grid. The speed of the

sensor nodes varies within the specified range of (0.05−0.15)

ms−1. The mobile user can move to any part of the network

with varying speed and acceleration. The simulated trajectory

of the mobile user is generated deterministically according

to (2) and, with this trajectory, the sensor measurements

are randomly generated according to (7) with different noise

realizations for each simulation run. The command processes
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Fig. 1: Coordinate of the sensor nodes, actual trajectory of the

mobile user, and estimated trajectories by the ShPF from a

single realization.

TABLE I: Simulation Parameters for Tracking of a Mobile

User

Discretisation time step T 0.5 s

Minimum speed of a mobile user Vmin 0.3 ms−1

Maximum speed of a mobile user Vmax 5.4 ms−1

Reciprocal maneuver time constant α 0.6

Number of Particles Np 500

Standard deviations of the noise σ i
k
, σ

j

k
in (9) [0 − 4] dB

Standard deviations of the noise σ̃ i
k
, σ̃ i

l
in (11) [0 − 4] dB

Path loss exponent β 3

Decorrelation distance Dc 40 m

ux,k+1 and uy,k+1 in the filters is assumed to be a Markov

chain, taking values between the following acceleration levels

Mx = {0.0, 0.5, 0.0}, (57)

My = {0.0, 0.0, 0.8}, (58)

in units of ms−2. Initial mode probabilities are µ1,0 = 0.8

and µi,0 = 0.1 for i = 2,3. The transition probability matrix
∏

has the following diagonal elements ([
∏

]ii = 0.5, for

i = 1,2,3) and the off-diagonal elements are ([
∏

]i j = 0.25,

for i, j = 1,2,3). The sum of elements in each row of the

matrix is equal to one. The sensor measurements are assumed

to be correlated according to (13) with twindow = 1 is used.

The number of simulation runs is 100 and an average of the

RMSE is calculated. The ShPF takes 1.37 seconds to complete

a single run in the simulation. The performance validation is

carried out by means of a desktop computer with an Intel

core 3.3 GHz processor, 4 GB RAM, and 465 GB hardrive.

The simulation parameters of the ShPF and the respective

Singer model are given in Table I. Figure 1 presents the actual

and estimated trajectories of the mobile user over a single

simulation run. The true initial state of the simulated trajectory

is set to x0 = [1.3, 0.02, 0, 2.5, 0.02, 0]T .

Figure 2 shows the RMSE comparison of the PF and ShPF

algorithms. The PF operates with shadowing noise covariance

matrix C = I and the ShPF operates with shadowing noise
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Fig. 2: Coordinate RMSE comparison of the PF and ShPF

using the simulated RSS measurements.
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Fig. 3: Coordinate RMSE comparison of the PF and ShPF

for different values of shadowing variance used in the RSS

measurements.

covariance matrix given by (18) with C = Ŝ(T1) and by (20)

with C = Ŝ(T2), respectively. Let C0 be the true shadowing

noise covariance matrix, Ŝ(T1) is the estimated shrinkage

covariance matrix based on the target matrix T1, and Ŝ(T2) is

the estimated shrinkage covariance matrix based on the target

matrix T2. It is shown that for all number of observations, the

ShPF has a smaller RMSE when compared to the PF. This

is because the elements of the shadowing noise covariance

matrix C, employed in the ShPF is estimated by capturing

the correlation that present between the measurements while

the PF does not. The tracking accuracy improves significantly

especially when the ShPF deals with a small number of

observations, i.e. P < 8. For a larger number of observations,

(P > 8) there is no obvious difference in the RMSE of

the coordinate estimate between the ShPF and the PF. The

ShPF with the target matrix T1 achieves a lower RMSE value

compared to that with the target matrix T2, especially when it

operates with a limited number of observations (P ≤ 5). This
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Number of observations [P]
3 4 5 6 7 8

P
o

s
it
io

n
 R

M
S

E
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3
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Fig. 5: Coordinate RMSE of the ShPF with Np =

100, 300, 500 and 1000 particles.

is because when the target matrix T1 is employed in (17), the

shrinkage covariance matrix estimate Ŝ, shrinks with equally

weighted terms toward both T1 and Ĉ. However, when the

target matrix T2 is employed in (17), the shrinkage covariance

matrix estimate Ŝ, shrinks more towards T2 and less towards

Ĉ. The optimal shrinkage intensity in (19) is calculated by

taking all elements of Ĉ. On the other hand, the optimal

shrinkage intensity in (21) is calculated by taking only the

off-diagonal elements of Ĉ.

In Figure 3, the RMSEs of the coordinate estimate between

the PF and the ShPF are compared using different values

of shadowing variance in the RSS measurements. Note that

when the value of the shadowing variance increases, the

tracking accuracy decreases for all the approaches. However,

the proposed ShPF gives a better estimate than the PF without

the shrinkage in tracking the mobile user. The ShPF with the

target matrix T1, has a lower tracking error when compared

to that with the target matrix T2.

Figure 4 shows the RMSE of the coordinate estimate for
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ShPF (C = Ŝ(T1)) with ρ̄ = 0.3
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Fig. 6: Coordinate RMSE of the ShPF with the correlation

between the RSS measurements is 0.3, 0.5 and 0.9.
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Fig. 7: Coordinate RMSE comparison of the ShPF with

window sizes twindow = 1 and twindow = 10.

a different number of sensor nodes for all the approaches.

The RMSE of the coordinate estimation improves when the

number of sensor nodes increases as a result of having more

data available in the estimation process. The ShPF with the

target matrix T1 has a slightly smaller coordinate RMSE when

compared to the case with the target matrix T2.

The trade-off between the accuracy and the number of

particles used in the ShPF is presented in Figure 5. On

average, when the ShPF operates with Np = 100 particles, the

accuracy of tracking is reduced by almost 45% when compared

with the ShPF with Np = 500 particles for small number of

observations (P = 3). When the ShPF operates with 1000

particles, the tracking accuracy increases but at the expense of

increasing the computation time.

The effect of the correlation between the RSS measurements

in terms of coordinate RMSE is observed in Figure 6. The

spatial correlation in (8) and the temporal correlation in (10)

are set to 0.3, 0.5 and 0.9, respectively. For the highest

correlation value between measurements, the ShPF displays
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the lowest RMSE for the coordinate estimates of the mobile

user. However, when the correlation between the measure-

ments is weak, the tracking accuracy of the ShPF is also re-

duced. The correlation between the measurements contributes

to the optimal shrinkage intensity calculated in (19) for the

ShPF with the target matrix T1.

In Figure 7, the ShPF with twindow = 10 gives a better

tracking performance than the ShPF with twindow = 1.

In the simulation, the measurements are generated every

0.01 seconds. Thus, every second approximately one hundred

measurements are acquired. When twindow = 1, only ten

measurements are held per second, while for twindow = 10,

the number of measurements increases to one hundred. As

a result, the estimation of the temporal correlation by the

filtering algorithm is improved by using more history of the

past target positions. However, this increases the computation

time of the tracking algorithm due to the increased complexity

in evaluating the likelihood function by using the inversion of

large covariance matrix. The ShPF with twindow = 10 takes

5.97 seconds to complete a single run. Meanwhile, the ShPF

with twindow = 1 only takes 2.33 seconds to complete. Thus,

the sliding window time needs to be chosen in a way that

the size of the measurements vector is not large. The size

of the sliding window time also depends on the environment.

In urban environments the correlation coefficient varies more

than in suburban and rural environments. To preserve the

statistical structure in noisy scenarios a sliding window is used

to encompass several measurements. The size of the sliding

window imposes a trade-off between the tracking accuracy and

the computational complexity of the tracking algorithm.

Finally, Figure 8 shows a comparison of the coordinate

RMSE of the PF, ShPF, and PCRLB. The coordinate RMSE

of the PF and the ShPF are measured using (56). Meanwhile,

the PCRLB is calculated using

RMSEPCRLB =

√

(Pk (1,1) + Pk (4,4)), (59)

where Pk is the covariance matrix of the EKF with the

Jacobian evaluated at the estimated state vector x̂k at time
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Fig. 9: Experimental setup.

instant k. It is shown that the ShPF provides a smaller RMSE

than the PF without the shrinkage most of the time. This is

because the proposed ShPF method operates with a better

estimates of the shadowing noise covariance matrix in its

operation than the PF, which does not consider the correlation

between the measurements. On the other hand, the PCRLB

sets a lower bound on the estimated covariance and provides

a useful benchmark against the tracking performance of the

standard PF and the ShPF. For that reason, the standard PF is

considered as the baseline method in this case.

B. Experimental Results

The performance of the ShPF has been investigated in a

Wi-Fi network, with real Wi-Fi signal strengths collected from

the D floor of the Amy Johnson Building, at the University

of Sheffield, United Kingdom. For this experiment, a user

carries a mobile smartphone moving from one end of the

corridor to the other end. There are three Wi-Fi access points

available in the floor where the user moves. A Xiaomi mobile

smartphone running an Android 4.4.2 operating system is

installed with the Sensor Fusion App and it is used as a

receiver to collect the transmitted Wi-Fi signals from all three

access points. The App is developed by Linköping University

and can be downloaded for free on Google Play [35]. Figure

9 presents the coordinates of the Wi-Fi access points and the

true trajectory of a mobile user that are superimposed on the

layout of the building floor. The size of the building floor area

is 414.74 square meters with the black diamonds representing

the coordinates of the Wi-Fi access points. A total of ten point

coordinates have been identified in the user trajectory for data

collection, denoted by blue circles, and each point coordinate

is separated by 2 meters. As the user moves, the Wi-Fi signals

are collected with their corresponding measurement noise at

each point coordinate in the trajectory. The PF and ShPF

algorithms estimate the coordinate of the mobile user using

the collected Wi-Fi signal strengths. The RMSE is again used

as a performance metric to compare the ShPF and the PF

methods.

Figure 10 plots the transmitted Wi-Fi measurements from

three Wi-Fi access points located in three different rooms:

room D02, D06, and D08 of the building. These signals are

received at ten different point coordinates in the trajectory. At

each point coordinate, there are a maximum of P = 8 observa-

tions available to be processed by the tracking algorithms with

their mean values indicated by the plotted lines. The variations

in the observations are due to the multipath fading effects. The

Wi-Fi signal strength increases when the receiver approaches
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Fig. 10: The recorded Wi-Fi measurements from the testbed

taken at Room D02, D06, and D08 of the Amy Johnson

Building.

the transmitter (Wi-Fi access points) and the signal strength

decreases when the distance between the transmitter and

receiver increases.

Figure 11 compares the RMSE of the coordinate estimates

that are achieved by the PF and ShPF at all point coordinates

in the user trajectory. The PF is operates with the identity

covariance matrix by assuming the filter does not know the

correlation between the measurements. On the other hand, the

ShPF operates with the shrinkage covariance matrix to ex-

ploit the correlation between the measurements. Both tracking

methods are assumed to know the starting coordinate of the

mobile user in the trajectory. The filtering algorithms have to

infer the next coordinate of the mobile user using the prior

information and the Wi-Fi measurements. The path loss expo-

nent is set to β = 3 and the signal power loss at 1 m distance

is z0
= −36 dBm. In indoor environments, the path loss

exponent is affected by the layout of the building floor such as

the location of walls, doors, chairs and even the construction

materials in the building. It shows that the ShPF outperforms

the tracking performance of the PF without the shrinkage for

most of the coordinate estimates. For some coordinates, the

ShPF tracking accuracy increases by 26% when compared

with the PF without the shrinkage. However, for some point

coordinates, the improvement is not significant because the

correlation between the Wi-Fi measurements is less than 0.6.

The ShPF works best when the Wi-Fi measurements are highly

correlated. Finally, it cannot be ruled out that part of the error

in tracking is also caused by the uncertainty in determining

the exact coordinate of the Wi-Fi access points in the building.

VII. CONCLUSIONS

This paper presents a new approach to target tracking in a

wireless sensor network by combining the particle filter and

the shrinkage estimation technique. The shrinkage technique

is shown to improve the estimate of the shadowing noise

covariance matrix. The shadowing noise covariance matrix is

used in a particle filter for recursive updates of the likelihood.
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Fig. 11: Coordinate RMSE comparison of the PF and ShPF

using the Wi-Fi measurements.

The proposed shrinkage-based particle filter works effectively

with correlated and limited measurements. In dense wireless

sensor networks, the measurements obtained by sensors are

spatio-temporally correlated. Exploiting this spatio-temporal

correlation improves the performance of target detection and

tracking. However, the high dimension of the covariance

matrix may lead to challenges from computational point of

view. Simulation and experimental results have shown that

the proposed method improves the tracking accuracy when

compared to the commonly used particle filter methods. The

posterior Cramer Rao lower bound is also calculated for

simulated data to compare it with the root mean square error

of the shrinkage-based particle filter method.
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APPENDIX

Consider the problem of estimating the true covariance

matrix C by and an estimator Ŝ, where λ minimizes the risk

function

R(λ) = E‖Ŝ − C‖2F . (60)

This implies that

R(λ) =

P
∑

p=1

Var(Ŝp ) + [E(Ŝp ) − Cp]2 (61)

=

P
∑

p=1

Var(λTp + (1 − λ)Ĉp ) + [E(λTp + (1 − λ)Ĉp ) − Cp]2

(62)

=

P
∑

p=1

λ2Var(Tp ) + (1 − λ)2Var(Ĉp ) + 2λ(1 − λ)
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× Cov(Ĉp ,Tp ) + [λE(Tp − Ĉp ) + Bias(Ĉ)]2 .

(63)

Taking the derivative with respect to λ and setting equal to

zero yields

R′(λ) =

P
∑

p=1

2λVar(Tp ) + 2(1 − λ)Var(Ĉp ) + 2(1 − 2λ)

× Cov(Ĉp ,Tp ) + 2[E(Tp − Ĉp )][λE(Tp − Ĉp ) + Bias(Ĉ)] ,
(64)

which leads the optimal shrinkage intensity given by

λ̂ =

∑P
p=1 Var(Ĉp ) − Cov(Tp ,Ĉp ) − Bias(Ĉp )E(Tp − Ĉp )

∑P
p=1 E[(Tp − Ĉp )2]

.

(65)

If Ĉ is an unbiased estimator of C, then the optimal shrinkage

intensity becomes

λ̂ =

∑P
p=1 Var(Ĉp ) − Cov(Tp ,Ĉp )
∑P

p=1 E[(Tp − Ĉp )2]
, (66)

and if V̂ar(Ĉp ) and Ĉov(Tp ,Ĉp ) are unbiased estimators

of Var(Ĉp ) and Cov(Tp ,Ĉp ), then the optimal shrinkage

intensity is given by

λ̂ =

∑P
p=1 V̂ar(Ĉp ) − Ĉov(Tp ,Ĉp )
∑P

p=1 E[(Tp − Ĉp )2]
. (67)

To obtain the expressions of V̂ar(Ĉ) and Ĉov(T,Ĉ), we defined

the following: For P observations of sensor measurements

zi , the sample mean is given by z̄i = P−1∑P
p=1 zi p for

p = 1, . . . ,P. Let

vi j p = (zi p − z̄i )(z j p − z̄ j ), (68)

i, j = 1, . . . ,ns and p = 1, . . . ,P be random variables with a

sample mean given by v̄i j = P−1∑P
p=1 vi j p . Then, the sample

covariance matrix estimate is given by

[
Ĉ
]
i j
=

1

P − 1

P
∑

p=1

(zi p − z̄)(z j p − z̄) . (69)

The unbiased variance of individual elements of Ĉ is given by

[36]

V̂ar
[
Ĉ
]
i j
=

P2

(P − 1)2
V̂ar(v̄i j ) (70)

=

P2

(P − 1)2

[
1

P
V̂ar(vi j )

]
(71)

=

P2

(P − 1)2

[
1

P

[
1

P − 1

P
∑

p=1

(vi j p − v̄i j )
2
] ]

(72)

=

P

(P − 1)3

P
∑

p=1

(vi j p − v̄i j )
2 . (73)

Let vkl be another random variable where the sample mean of

the variable is v̄kl , and the covariance elements are obtained

as [36]

Ĉov
( [

Ĉ
]
i j
,
[
Ĉ
]
kl

)

=

P

(P − 1)3

P
∑

p=1

(vi j p − v̄i j )(vkl p − v̄kl ) .

(74)

To determine λ̂ in (67) requires an expression for

Ĉov(Tp ,Ĉp ). Consider
[
T
]
i j
= ρ̄

√ [
Ĉ
]
ii

[
Ĉ
]
j j

, for i , j

and let
[
C̄
]
ii
,
[
C̄
]
j j

and
[
C̄
]
i j

be the point estimates respec-

tively of
[
C
]
ii
,
[
C
]
j j

and
[
C
]
i j

, respectively. Then,
[
T
]
i j

is

expanded via Taylor series which results in

[
T
]
i j
= ρ̄

√ [
C̄
]
ii

[
C̄
]
j j
+

ρ̄

2

√

√

√

√

√

[
C̄
]
j j[

C̄
]
ii

( [
C
]
ii
−
[
C̄
]
ii

)

+

ρ̄

2

√

√

√

√

√

[
C̄
]
ii[

C̄
]
j j

( [
C
]
j j
−
[
C̄
]
j j

)

, (75)

where ρ̄ is the average correlation of all the correlation values

in the sample and is obtained using (22) for
[
C̄
]
ii
,
[
C̄
]
j j

and[
C̄
]
i j

. Based on the definition of the covariance matrix, this

implies that

Ĉov
( [

T
]
i j
,
[
Ĉ
]
i j

)

= E

[( [
T
]
i j
−E

[ [
T
]
i j

] ) ( [
C
]
i j
−E

[ [
C
]
i j

] )]
,

(76)

and using (75) and (76) yields

Ĉov
( [

T
]
i j
,
[
Ĉ
]
i j

)

=

ρ̄

2

{

√

√

√

√

√

[
C̄
]
j j[

C̄
]
ii

Ĉov
( [

Ĉ
]
ii
,
[
Ĉ
]
i j

)

+

√

√

√

√

√

[
C̄
]
ii[

C̄
]
j j

Ĉov
( [

Ĉ
]
j j
,
[
Ĉ
]
i j

)

}

. (77)

Finally, using (68) and (74) the covariance elements are

expressed as

Ĉov
( [

Ĉ
]
ii
,
[
Ĉ
]
i j

)

=

P

(P − 1)3

P
∑

p=1

[
(zi p − z̄i )

2 − v̄ii
]

[
(zi p − z̄i )(z j p − z̄ j ) − v̄i j

]
, (78)

and similarly

Ĉov
( [

Ĉ
]
j j
,
[
Ĉ
]
i j

)

=

P

(P − 1)3

P
∑

p=1

[
(z j p − z̄ j )

2 − v̄ j j
]

[
(zi p − z̄i )(z j p − z̄ j ) − v̄i j

]
. (79)

which completes the derivation.
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Iñaki Esnaola received the M.S degree in Electrical
Engineering from University of Navarra, Spain in
2006 and a Ph.D. in Electrical Engineering from
University of Delaware, Newark, DE in 2011. He is
currently a Lecturer in the Department of Automatic
Control and Systems Engineering of The University
of Sheffield, and a Visiting Research Collaborator in
the Department of Electrical Engineering of Prince-
ton University, Princeton, NJ. In 2010-2011 he was
a Research Intern with Bell Laboratories, Alcatel-
Lucent, Holmdel, NJ, and in 2011-2013 he was a a

Postdoctoral Research Associate at Princeton University, Princeton, NJ. His
research interests include information theory and communication theory with
an emphasis on the application to electricity grid problems.

Lyudmila Mihaylova (M’98, SM’2008) is Professor
of Signal Processing and Control at the Department
of Automatic Control and Systems Engineering at
the University of Sheffield, United Kingdom. Her
research is in the areas of machine learning and au-
tonomous systems with various applications such as
navigation, surveillance and sensor network systems.
She has given a number of talks and tutorials, includ-
ing the plenary talks for the CEIT-2016 (Tunisia),
IEEE Sensor Data Fusion 2015 (Germany), invited
talks University of California, Los Angeles, IPAMI

Traffic Workshop 2015 (USA) and the IET ICWMMN 2013 in Beijing
(China). Dr. Mihaylova is an Associate Editor of the IEEE Transactions
on Aerospace and Electronic Systems and of the Elsevier Signal Processing
Journal. She was elected in March 2016 as a president of the International
Society of Information Fusion (ISIF). She is on the board of Directors of ISIF
and a Senior IEEE member. She was the general co-chair IET Data Fusion &
Target Tracking 2014 and 2012 Conferences, Program co-chair for the 19th
International Conference on Information Fusion, Heidelberg, Germany, 2016,
academic chair of Fusion 2010 conference.


