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ABSTRACT

Background Novel epidemiology models are required to link correlated variables over time, especially haemoglobin A1c (HbA1c) and body mass

index (BMI) for diabetes prevention policy analysis. This article develops an epidemiology model to correlate metabolic risk factor trajectories.

Method BMI, fasting plasma glucose, 2-h glucose, HbA1c, systolic blood pressure, total cholesterol and high density lipoprotein (HDL)

cholesterol were analysed over 16 years from 8150 participants of the Whitehall II prospective cohort study. Latent growth curve modelling was

employed to simultaneously estimate trajectories for multiple metabolic risk factors allowing for variation between individuals. A simulation

model compared simulated outcomes with the observed data.

Results The model identified that the change in BMI was associated with changes in glycaemia, total cholesterol and systolic blood pressure. The

statistical analysis quantified associations among the longitudinal risk factor trajectories. Growth in latent glycaemia was positively correlated with

systolic blood pressure and negatively correlated with HDL cholesterol. The goodness-of-fit analysis indicates reasonable fit to the data.

Conclusions This is the first statistical model that estimates trajectories of metabolic risk factors simultaneously for diabetes to predict joint

correlated risk factor trajectories. This can inform comparisons of the effectiveness and cost-effectiveness of preventive interventions, which aim

to modify metabolic risk factors.

Keywords diabetes, epidemiology

Introduction

There is growing interest in identifying effective and cost-
effective interventions to prevent type 2 diabetes. There is evi-
dence that public health interventions within the community
are effective in improving healthy behaviours and reducing
body mass index (BMI).1 – 3 In order to evaluate the cost-
effectiveness of interventions, it is informative to describe
progression to type 2 diabetes diagnosis in a simulation
model. Therefore, it is useful to predict the longitudinal trajec-
tory of glycaemia conditional on risk factors associated with
diagnosis.

Previous policy analysis models have estimated progression
to diabetes conditional on a single risk factor such as impaired
glucose tolerance or BMI.4,5 It has been noted that other

simulation models have simulated progression to diabetes in-
dependently of changes in other metabolic risk factors.6

Incorporating correlation between these factors is important
in order to compare preventive interventions for three
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reasons. Firstly, multiple risk factors are used to identify indi-
viduals at high risk of diabetes. Secondly, interventions will
affect multiple risk factors simultaneously. Thirdly, the rela-
tionship between these risk factors will affect the risk of other
related conditions, such as cardiovascular disease.

Diabetes diagnosis is complicated because three tests can
be used to assess an individual’s glycaemic status. Thresholds
for fasting and 2-h glucose and haemoglobin A1c (HbA1c)
have been set for the diagnosis of type 2 diabetes.7 However,
diabetes diagnosis and diabetes risk status may differ accord-
ing to which test is used.8,9 A new predictive model for gly-
caemia trajectories should aim to describe the associations
among glycaemic measures.

Previous analyses have estimated longitudinal trajectories
for metabolic risk factors. Analyses of the Whitehall II cohort
have investigated trajectories for metabolic risk factors in par-
ticipants that progressed to diabetes diagnosis according to
different diagnostic tests, and those remaining free from dia-
betes.10 The Baltimore Longitudinal Study of Aging has
investigated the trajectory of the metabolic syndrome.11 In
contrast, we aimed to develop a predictive model to describe
trajectories for multiple risk factors within a single statistical
analysis that captures interdependencies. Furthermore, in con-
trast with previous models, risk factors would be measured
on a continuous scale, rather than dichotomized (e.g. hyper-
tension and no-hypertension), to use all of the measurement
information.

The aims of this study were to describe correlations and
associations between changes in risk factors over time and
predict the natural history of metabolic risk factors in a non-
diabetic population.

Methods

Study data

Whitehall II is a longitudinal cohort study of UK civil ser-
vants. Phase 1 recruited 10 308 participants who worked in
London and were aged 35–55 years between 1985 and 1988.
The cohort was followed up in eight subsequent phases
roughly 2.5 years apart. A questionnaire was administered in
all phases, and every second phase included a clinical examin-
ation. In summary, 8815 attended Phase 3, 7870 attended
Phase 5, 6967 attended Phase 7 and 6761 attended Phase 9.
Participation details and baseline characteristics are provided
in Supplementary data. The Whitehall II study was reviewed
and approved by the University College London Ethics
Committee (85/0938), and written informed consent was
obtained at each phase. The study was conducted according
to the principles of the Helsinki Declaration. Details of the
cohort are described elsewhere.12

In Phases 3, 5, 7 and 9, observations were extracted from
standard 2-h 75-g oral glucose tolerance tests (OGTTs), an-
thropometric measurements, blood pressure and total and high
density lipoprotein (HDL) cholesterol. In Phases 7 and 9,
HbA1c tests were available. Data on the participant’s age, sex,
ethnicity, smoking status at baseline, family history of diabetes
and family history of cardiovascular disease were included in
the study data set. Measures of socio-economic status were
included in the analysis plan but were excluded because ex-
ploratory analysis indicated that socio-economic patterns
observed from this historical cohort were not representative
of forecasted patterns.

The OGTT was first taken in the Phase 3 clinical examin-
ation, so this was used as the baseline for our analysis.13 The
study data set included all clinic visits attended up to Phase
9. We excluded 1075 (10.4%) participants who were lost to
follow-up before Phase 3, 408 (4.0%) participants who did not
contribute any clinical data in Phases 3, 5, 7 or 9, 136 (1.3%)
participants with prevalent diabetes before Phase 3 and 439
(4.2%) participants with a history of cardiovascular disease or
reported seeing a doctor for heart trouble. This left a final
sample of 8150 participants (79.1% of the original sample).

At each study phase, criteria had been specified for blood
glucose, blood pressure and cholesterol to alert the partici-
pant’s general practitioner to elevated test results. It was,
therefore, necessary to censor observations at this point
where participation in the study may have altered the partici-
pant’s metabolic risk factor trajectory.

Latent growth curve modelling

The growth trajectory models for the metabolic risk factor
were estimated under the statistical framework of latent
growth curve modelling (LGCM).14 LGCM is an approach to
using longitudinal data to estimate shape and rate of change
over time. LGCM was chosen because it can allow modelling
of both correlations within observations over time and vari-
ability between subjects, and enables the elegant modelling of
change in multiple outcome variables. In LGCM, the baseline
levels and the rates of change in the outcome(s) for each
person are modelled as latent random variables, noisy ‘indica-
tors’, which are measured at each time point. For example,
if the hypothesized growth model is linear, the underlying
latent variables we would seek to estimate are intercept and
slope, respectively. The mean of the intercept describes the
population-average baseline level and the mean of the slope
the population-average rate of change. Additional slope factors
can be added to the model for polynomial models. The indi-
cators themselves can either be observed variables, or, if the
construct can be measured by multiple tests, such as blood
glucose levels, can be modelled as latent variables measured
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by a further set of observed ‘indicators’ in what is known as a
second order, or curve of factors, LGCM.15 Once a basic
LGCM is developed for each outcome, with means and var-
iances estimated for intercept and slope factors, we can then
extend the model. For example, we can explain between-
subject variance in intercept and slope factors by adding time
variant and invariant covariates, or where multiple LGCMs
exist, by regressing the intercept and factors underlying one
LGCM upon those of another LGCM.

Conceptual model

We developed a conceptual model to describe the growth pat-
terns for BMI, glycaemia, systolic blood pressure and total
and HDL cholesterol over time with clinical experts. The con-
ceptual model is illustrated in Fig. 1. The model assumed that
BMI and glycaemia were quadratic to allow the rate of change
to increase or decrease over time observed in other stu-
dies.10,16 The rate of BMI changes has been found to decrease
in older age16 and glycaemia to increase prior to diagnosis.10

Glycaemia is described as a latent variable measured by
fasting plasma glucose (FPG), and 2-h glucose in Phases 3
and 5 and FPG, 2-h glucose and HbA1c in Phases 7 and 9. It
was hypothesized that change in systolic blood pressure total
and HDL cholesterol was assumed to change linearly with
time in line with observations from other studies.10,17

The conceptual model assumed that BMI intercept and
linear slope growth factors were associated with the growth
factors for glycaemia, systolic blood pressure, total cholesterol
and HDL cholesterol. The BMI quadratic term describes the
rate of deceleration in BMI growth due to ageing and was
assumed to be unaffected by lifestyle factors that link BMI to
other growth factors. The growth factors for glycaemia, sys-
tolic blood pressure and cholesterol were assumed correlated.
Behavioural risk factors such as smoking, diet and physical ac-
tivity were not included in the conceptual model to focus the
conceptual model on reliable, externally valid outcomes that
will be used in future cost-effectiveness models. Currently, the
joint impact of behaviours and their impact on metabolic risk
factors are not well understood and would add substantial
complexity to the model.18

Statistical analysis

The growth factors for the metabolic risk factors were
assumed to vary between individuals to allow unobservable
random effects to describe heterogeneity in the population.
Correlation between the residual variance for growth factors
for systolic blood pressure, glycaemia, total cholesterol and
HDL cholesterol described correlation in their trajectories.

The LGCM for each metabolic risk factor was evaluated
for goodness of fit separately before all were incorporated

into the joint model along with the hypothesized covariates.
We evaluated goodness of fit using the standardised root
mean square residual (SRMR) cut-off criteria 0.08 and com-
parative fit index (CFI) cut-off criteria 0.95.19 The analyses
were conducted using MPlusv7.11 software using full infor-
mation maximum likelihood estimation. This will produce
asymptotically unbiased estimates of means and standard
errors assuming data are missing at random. We allowed the
probability that a response is missing to depend arbitrarily on
observed values of the response at other times, but not add-
itionally on the unobserved response itself.20 We used sensi-
tivity analyses to evaluate how robust the analyses were when
missing observations were either excluded or imputed and
found that the results did not change substantially.

A mathematical description of the model is presented in
Supplementary data.

Simulation study

A simulation model was developed to predict individual par-
ticipant trajectories for the baseline characteristics of the
Whitehall II participants from the parameters generated in
the statistical analysis. We generated 100 sets of longitudinal
trajectories of BMI, FPG, 2-h glucose, HbA1c, systolic blood
pressure, total and HDL cholesterol conditional on the
Whitehall II participant age, gender, ethnicity, smoking status
and family history at 0, 6, 11 and 16 years of follow-up. The
simulated observations at each phase of data were compared
with the observed mean, variance and correlation. In add-
ition, we plotted observations against age to assess whether
the simulation reproduced age trends in the data. Finally,
baseline characteristics and simulated metabolic data were
used to generate risk scores for cardiovascular disease21 and
diabetes22 at each time point using the observed and simu-
lated data. These risk scores combine data from multiple
metabolic risk factors to estimate the probability of long-term
events.

Results

The full list of parameters estimated from the statistical ana-
lysis is presented in Supplementary data, Tables S1–S3.
Table 1A summarizes key model parameters describing the
relationship between BMI and the other metabolic growth
factors. The analysis identified that baseline BMI had a statis-
tically significant effect on the baseline observations and
growth rates for glycaemia, systolic blood pressure and total
and HDL cholesterol. BMI growth rate had a statistically sig-
nificant effect on growth rates for glycaemia, systolic blood
pressure and total cholesterol. The effect of growth rate
of BMI on the growth rate of HDL could not be identified.
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Fig. 1 Path diagram for conceptual model.
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The results suggest that high BMI is associated with negative
baseline values for the other risk factors. Increasing BMI over
time is associated with higher growth rate for glycaemia, sys-
tolic blood pressure and total cholesterol. However, high
baseline BMI had a negative effect on the growth rate of the
other metabolic risk factors.

The growth models of factors describe latent glycaemia,
measured by FPG, 2-h glucose and HbA1c. HbA1c, FPG and
2-h glucose can be estimated at any time point according to a
fixed population mean, plus a fixed linear association with
latent glycaemia. The analysis identified differences in associa-
tions between FPG, 2-h glucose, HbA1c and individual charac-
teristics (Table 1B). All measures were positively associated
with age at phase of data, with 2-h glucose demonstrating the
largest increase at older age. Males were found to report higher
FPG tests, but lower 2-h glucose and HbA1c tests. Non-white
ethnicity was not associated with FPG, but was associated with
higher 2-h glucose and HBA1c observations. A family history
of diabetes predicted higher scores for all glycaemic tests.

The goodness-of-fit statistics indicated a reasonable fit for
a complex model. The SRMR test was in the region of the

recommended threshold at 0.063 and the CFI slightly lower
than the recommended threshold at 0.91. These fit statistics
indicate that the model is a reasonable description of the data.

The simulation study produced similar data to the original
study data set. Average metabolic observations plotted against
age are illustrated in Fig. 2. The simulated mean values were
well within the 95% confidence intervals of the observed data
for 2-h glucose, FPG, systolic blood pressure and total and
HDL cholesterol. The simulation slightly underestimates BMI
at older ages. The simulation does not reflect the steep trajec-
tory for HbA1c by age observed in the data. However, it
should be noted that these observations are based on less
data than for the other metabolic risk factors. The lack of fit
indicates that there may be problems simulating HbA1c tra-
jectories with age and potentially indicates some structural
inadequacy within the model. It is worth noting that the
problem does not impact on the estimation of 2-h glucose,
FPG or the correlations between these observations. Further
validation is needed against an external data set to evaluate
the reliability of HbA1c prediction. Illustrations of the distri-
bution of simulated output compared with the data are

Table 1 Estimated parameters for relationship between BMI growth factors and other metabolic growth factors

Dependent variable Independent variable Mean coefficient Standard error P-value

(A) BMI growth factor associations with other metabolic risk growth factors

BMI intercept Glycaemia intercept 0.2620 0.024 ,0.001

SBP intercept 0.1080 0.006 ,0.001

Total cholesterol intercept 0.4459 0.049 ,0.001

HDL cholesterol intercept 20.3514 0.015 ,0.001

Glycaemia slope 0.0821 0.024 0.001

SBP slope 20.0396 0.006 ,0.001

Total cholesterol slope 20.4808 0.035 ,0.001

HDL cholesterol slope 20.0400 0.010 ,0.001

BMI slope Glycaemia slope 0.1984 0.073 0.007

SBP slope 0.2325 0.019 ,0.001

Total cholesterol slope 0.9802 0.108 ,0.001

(B) Covariate adjustments for FPG, 2-h glucose and HbA1c observations

Age FPG 0.0031 0.001 0.022

2-h Glucose 0.0716 0.003 ,0.001

HbA1c 0.0101 0.001 ,0.001

Sex (male ¼ 1) FPG 0.2129 0.021 ,0.001

2-h Glucose 20.1411 0.058 0.014

HbA1c 20.0457 0.001 ,0.001

Ethnicity (non-white ¼ 1) FPG 0.0100 0.037 0.786

2-h Glucose 0.3047 0.100 0.002

HbA1c 0.1854 0.030 ,0.001

Family history of diabetes (family history ¼ 1) FPG 0.1168 0.025 ,0.001

2-h Glucose 0.3496 0.068 ,0.001

HbA1c 0.0563 0.020 0.004
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Fig. 2 Observed and predicted expected metabolic risk scores by age.
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illustrated in Supplementary data. The analysis suggests that
the simulation predicts variability between individuals.

The second stage of the simulation aimed to assess correl-
ation between metabolic risk factors. The correlation statistics
at each phase of data for the study data set and simulated data
are reported in the Supplementary data. The simulated corre-
lations closely matched to the observed data. Table 2 reports
the estimated Framingham risk score and diabetes risk scores
at each phase of data for the observed and simulated data.
The mean and standard deviations for the Framingham risk
scores matched the observed data. The observed diabetes risk
score increased in the first three phases of data and decreased
in Phase 9, whereas the simulated risk score increased across
all four phases. However, the means and standard deviations
were similar. The average correlation statistics for participant
simulated risk scores demonstrated positive association with
the observed data and stronger association for cardiovascular
risk than diabetes risk (Table 2).

Discussion

Main findings of this study

We have developed a statistical model to describe longitudinal
trajectories in metabolic risk factors. By estimating growth
trajectories simultaneously, it is possible to estimate dynamic
associations between BMI and other risk factors, capture cor-
relation between growth factors and heterogeneity in indivi-
duals’ metabolic risks. The model can be used to extrapolate
lifestyle changes and type 2 diabetes prevention strategies by
predicting long-term changes in metabolic risk. The longitu-
dinal trajectories for metabolic risk factors could be combined
with epidemiology risk models for long-term health events,
such as cardiovascular disease, cancer and mortality.23,24

Long-term cost savings and health benefits associated with
reductions in these health events could be calculated by simu-
lating changes to the longitudinal profile of metabolic risk
factors. This would enable evaluation of alternative public
health policies by estimating health and cost benefits.

What is already known on this topic?

We have identified that growth in BMI is associated with
increases in other metabolic risk factors over time, supporting
previous findings that total fat and abdominal fat are asso-
ciated with hyperglycaemia, hypertension and dyslipidae-
mia.25 – 27 The analysis identified that increases in BMI are
associated with worsening in other metabolic risk factors,
whereas the baseline BMI was weakly associated with increases
in glycaemia and negatively associated with increases in systol-
ic blood pressure and total cholesterol. A similar finding was
observed when comparing baseline metabolic risk factors
with those developed by diabetes diagnosis.28 High BMI at
baseline is most likely associated with negative growth in sys-
tolic blood pressure and cholesterol due to an increased likeli-
hood of high starting values for these measures initiating
positive lifestyle changes.

What this study adds

This study describes the first application of LGCM to meta-
bolic risk factors in a good-quality longitudinal cohort to gen-
erate a natural history model for policy analysis simulations.
This method enabled the simultaneous analysis of multiple
growth trajectories in a single statistical analysis. The correl-
ation between the longitudinal trajectories in this analysis was
extremely important to accurately predict participants’ future
cardiovascular and diabetes risk, conditional on multiple

Table 2 Observed and predicted Framingham risk score and diabetes risk score at each study phase for 100 simulations runs

Observed Framingham risk score (SD) Simulated Framingham risk score (SD) Difference Mean correlation for participant

observations and predicted values

Phase 3 9.2% (6.6) 9.0% (4.5) 20.18 0.761

Phase 5 11.2% (7.4) 11.4% (7.4) 0.19 0.717

Phase 7 13.3% (8.5) 12.7% (7.9) 20.65 0.685

Phase 9 14.0% (8.4) 14.7% (8.9) 0.64 0.579

Observed diabetes score (SD) Simulated diabetes score (SD) Difference Mean correlation for participant

observations and predicted values

Phase 3 19.4% (20.9) 18.4% (18.7) 20.98 0.344

Phase 5 19.4% (20.4) 22.4% (21.5) 2.96 0.310

Phase 7 25.9% (26.2) 24.0% (23.5) 21.93 0.319

Phase 9 22.5% (22.7) 27.6% (26.6) 5.14 0.300

SD, standard deviation.
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metabolic risk factors. If the growth trajectories were assumed
to be independent, the simulation would be more likely to
under- or over-estimate these risks for an individual. This ana-
lysis was designed for use in a simulation to compare diabetes
prevention interventions to allow policymakers to choose
which interventions to fund. It was, therefore, important to
consider the impact of modifying BMI trajectories on the lon-
gitudinal changes in glycaemia, systolic blood pressure and
cholesterol to estimate reductions in the risk of diabetes and
cardiovascular disease.

Limitations

The data set, the choice of statistical framework and the soft-
ware all imposed structural constraints on the statistical ana-
lysis. There is some variation in the time between clinical
assessments for individuals within the data set, whereas
assumed discrete time intervals in the model. We investigated
alternative model specifications to allow for individually
varying times of observation and to group observations by
5-year age ranges. However, these methods raised additional
challenges; the model would not converge and the pairwise
proportions of some variables present were zero in each case,
respectively.

HbA1c was not available from the clinical assessments at
Phases 3 and 5, which may explain why the fit to the data was
worse for HbA1c. This results in an unbalanced measurement
model for latent glycaemia between the early and later phases
of observation. We attempted to approximate the missing
observations using latent variables drawing on correlations
with HbA1c observations from Phases 7 and 9. However,
there was insufficient data to implement this analysis. Although
the inclusion of HbA1c may cause some problems in the ana-
lysis, we believe the benefits for future simulation modelling
justify its inclusion. HbA1c is an established diagnosis method
for type 2 diabetes according to international and UK guide-
lines,2,29 is used for monitoring disease management and is a
risk factor for diabetes complications.30 Our statistical analysis
allows estimation of HbA1c from latent glycaemia, so that it is
correlated with other blood glucose tests and also relates the
test result to age and other participant characteristics. In the
absence of a longitudinal cohort with all three glycaemic tests
measured at regular intervals, this statistical analysis provides a
best estimate of HbA1c conditional on multiple risk factors.

The simulation demonstrates that the analysis can fairly
well reproduce the observed data from the Whitehall II study.
However, the metabolic trajectories are not necessarily repre-
sentative of the general population within the UK and other
international settings. The Whitehall II data set is known to
under-represent women and ethnic minorities in the UK.12

The longitudinal trajectories can be applied to alternative

baseline characteristics to generate a more representative
sample. Future research will aim to assess the external validity
of the model in predicting the longitudinal trajectories from
baseline.

Supplementary data

Supplementary data are available at PUBMED online.

Acknowledgements

This article presents independent research funded by the
National Institute for Health Research School for Public
Health Research (NIHR SPHR). The views expressed are
those of the author(s) and not necessarily those of the NHS,
the NIHR SPHR or the Department of Health. We are grate-
ful to the participants of the stakeholder workshops whose
comments were instrumental in the design of the analysis.

Funding

This work was supported by the National Institute for Health
Research School for Public Health Research (NIHR SPHR).

References

1 PH35: Preventing Type 2 Diabetes: Population and Community-level
Interventions. National Institute for Health and Care Excellence,
2011. NICE public health guidance 35. http://www.nice.org.uk/
guidance/ph35 (25 October 2015, date last accessed).

2 PH38 Preventing Type 2 Diabetes—Risk Identification and
Interventions for Individuals at High Risk: Guidance. National
Institute for Health and Care Excellence, 2012. NICE public health
guidance 38. http://guidance.nice.org.uk/PH38/Guidance/pdf/English
(25 October 2015, date last accessed).

3 Tabak AG, Herder C, Rathmann W et al. Prediabetes: a high-risk state
for diabetes development. Lancet 2012;379(9833):2279–90.

4 Galani C, Schneider H, Rutten FF et al. Modelling the lifetime costs
and health effects of lifestyle intervention in the prevention and treat-
ment of obesity in Switzerland. Int J Public Health 2007;52(6):372–82.

5 Gillies CL, Lambert PC, Abrams KR et al. Different strategies for
screening and prevention of type 2 diabetes in adults: cost effective-
ness analysis. BMJ 2008;336(7654):1180–5.

6 Watson P, Preston L, Squires H et al. Modelling the economics of type
2 diabetes mellitus prevention: a literature review of methods. Appl
Health Econ Health Policy 2014;12(3):239–53.

7 World Health Organisation. Definition and Diagnosis of Diabetes
Mellitus and Intermediate Hyperglycaemia. World Health Organisation,
2006. http://whqlibdoc.who.int/publications/2006/9241594934_eng.
pdf (25 October 2015, date last accessed).

8 Kernohan AF, Perry CG, Small M. Clinical impact of the new criteria
for the diagnosis of diabetes mellitus. Clin Chem Lab Med 2003;41(9):
1239–45.

JOURNAL OF PUBLIC HEALTH686

http://jpubhealth.oxfordjournals.org/lookup/suppl/doi:10.1093/pubmed/fdv160/-/DC1
http://www.nice.org.uk/guidance/ph35
http://www.nice.org.uk/guidance/ph35
http://www.nice.org.uk/guidance/ph35
http://guidance.nice.org.uk/PH38/Guidance/pdf/English
http://guidance.nice.org.uk/PH38/Guidance/pdf/English
http://guidance.nice.org.uk/PH38/Guidance/pdf/English
http://whqlibdoc.who.int/publications/2006/9241594934_eng.pdf
http://whqlibdoc.who.int/publications/2006/9241594934_eng.pdf
http://whqlibdoc.who.int/publications/2006/9241594934_eng.pdf
http://whqlibdoc.who.int/publications/2006/9241594934_eng.pdf


9 Heianza Y, Hara S, Arase Y et al. HbA1c 5.7–6.4% and impaired
fasting plasma glucose for diagnosis of prediabetes and risk of pro-
gression to diabetes in Japan (TOPICS 3): a longitudinal cohort
study. Lancet 2011;378(9786):147–55.

10 Faerch K, Witte D, Tabak AG et al. Trajectories of cardiometabolic
risk factors before diagnosis of three subtypes of type 2 diabetes: a
post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet
Diab Endocrinol 2013;1(1):43–51.

11 Scuteri A, Morrell CH, Najjar SS et al. Longitudinal paths to the meta-
bolic syndrome: can the incidence of the metabolic syndrome be pre-
dicted? The Baltimore Longitudinal Study of Aging. J Gerontol A Biol
Sci Med Sci 2009;64(5):590–8.

12 Marmot M, Brunner E. Cohort profile: the Whitehall II study. Int J
Epidemiol 2005;34(2):251–6.

13 Brunner EJ, Marmot MG, Nanchahal K et al. Social inequality in cor-
onary risk: central obesity and the metabolic syndrome. Evidence
from the Whitehall II study. Diabetologia 1997;40(11):1341–9.

14 Duncan T, Duncan S. An Introduction to Latent Variable Growth Curve
Modeling. 2nd edn. MahWah, NJ: Laurence Erlbaum, 2006.

15 Preacher K, Wichman A, MacCallam RC et al. Latent Growth Curve
Modelling. London: Sage Publications, 2008.

16 Arbeev KG, Ukraintseva SV, Akushevich I et al. Age trajectories of
physiological indices in relation to healthy life course. Mech Ageing Dev
2011;132(3):93–102.

17 Wills AK, Lawlor DA, Muniz-Terrera G et al. Population heterogen-
eity in trajectories of midlife blood pressure. Epidemiology 2012;23(2):
203–11.

18 Scarborough P, Harrington RA, Mizdrak A et al. The preventable risk
integrated ModEl and its use to estimate the health impact of public
health policy scenarios. Scientifica (Cairo) 2014;2014:748750.

19 Hu L-T, Bentler P. Cuttoff criteria for fit indexes in covariance struc-
ture analysis: conventional criteria versus new alternatives. Struct
Equation Model 1999;6:1–55.

20 Rubin DB. Inference and missing data. Biometrika 1976;63(3):581–92.

21 D’Agostino RB Sr, Vasan RS, Pencina MJ et al. General cardiovascu-
lar risk profile for use in primary care: the Framingham Heart Study.
Circulation 2008;117(6):743–53.

22 Stern MP, Williams K, Haffner SM. Identification of persons at high
risk for type 2 diabetes mellitus: do we need the oral glucose tolerance
test? Ann Intern Med 2002;136(8):575–81.

23 Clarke PM, Gray AM, Briggs A et al. A model to estimate the lifetime
health outcomes of patients with type 2 diabetes: the United
Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model
(UKPDS no. 68). Diabetologia 2004;47(10):1747–59.

24 Hippisley-Cox J, Coupland C, Vinogradova Y et al. Predicting cardio-
vascular risk in England and Wales: prospective derivation and valid-
ation of QRISK2. BMJ 2008;336(7659):1475–82.

25 Bot M, Spijkerman AM, Twisk JW et al. Weight change over five-year
periods and number of components of the metabolic syndrome in a
Dutch cohort. Eur J Epidemiol 2010;25(2):125–33.

26 Cameron AJ, Boyko EJ, Sicree RA et al. Central obesity as a precursor
to the metabolic syndrome in the AusDiab study and Mauritius.
Obesity (Silver Spring) 2008;16(12):2707–16.

27 Liu R, Brickman WJ, Christoffel KK et al. Association of adiposity tra-
jectories with insulin sensitivity and glycemic deterioration: a longitudinal
study of rural Chinese twin adults. Diabetes Care 2012;35(7):1506–12.

28 Gast GC, Spijkerman AM, Van der AD et al. Five-year changes in bio-
logic risk factors and risk of type 2 diabetes: are attained but not initial
risk factor levels of importance? Am J Epidemiol 2012;176(8):720–5.

29 Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes
Mellitus. World Health Organisation, 2011. http://www.who.int/
diabetes/publications/report-hba1c_2011.pdf (25 October 2015,
date last accessed).

30 Hayes AJ, Leal J, Gray AM et al. UKPDS outcomes model 2: a new
version of a model to simulate lifetime health outcomes of patients
with type 2 diabetes mellitus using data from the 30 year United
Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia
2013;56(9):1925–33.

LONGITUDINAL AND CORRELATED METABOLIC RISK FACTORS 687

http://www.who.int/diabetes/publications/report-hba1c_2011.pdf
http://www.who.int/diabetes/publications/report-hba1c_2011.pdf
http://www.who.int/diabetes/publications/report-hba1c_2011.pdf
http://www.who.int/diabetes/publications/report-hba1c_2011.pdf
http://www.who.int/diabetes/publications/report-hba1c_2011.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


