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Introduction

EvoMachina is a novel natural computation algorithm, inspired by recent un-
derstandings of the processes of genome reorganisation in bacteria and viruses.
It has been developed as part of the EU FP7 project EvoEvo, taking inspiration
from its biological experiments, and developed to support Living Technology

applications.
This abstract outlines the conceptual model underlying EvoMachina, its im-
plementation, and a reference application.

The conceptual model

The basics concepts of EvoMachina are Structures (Machines, Templates, Repos-

itories), Domains, and Spaces (individuals and Sites) [1], see figure 1.

— Structure. A structure is a sequence of objects of a particular type, that

stores information, and may additionally have behaviour.

e Machine. A machine is an active structure; different machines perform
the various operations in the system, such as mutation, replication, ex-
pression, and domain-specific activities. It is the analogue of the protein
in a cell. Machines may degrade, and so need continual replenishment.

e Template. Machines are described by Templates. Translator machines
build a specific machine from its template description. A template is the

analogue of mRNA in cells.

o Repository. Templates are stored in a Repository. Transcriber ma-
chines extract individual templates from the repository. Kloner machines
build mutated repositories on replication. Any information incorporated
in associated machines can therefore evolve. The repository is the ana-

logue of a DNA chromosome in cells.

— Domain. A domain captures the ‘physics’ of a particular collection of struc-
tures. There may be multiple domains, in particular, domains related to

evolution, and domains related to problem-specific features.
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Fig. 1. Conceptual model of EvoMachina: see text for details.

— Space.

e Individual. An individual is a space that contains a collection of Struc-
tures, comprising various machines, templates, and repositories. Its be-
haviour is given by the activity of its various machines. It is the analogue
of a cell. Individuals may contain other individuals, analogues of cells
with compartments.

e Site. A site is a space that can contain individuals; it is the implemen-
tation of physical location. A site may also contain others sites, allowing
hierarchical spatial structures.

An Individual is a candidate solution. Individuals replicate when some criterion
is met, such as a clock tick and winning a tournament for generational algo-
rithms, or a suitable energy level or machine concentration being reached in
other approaches.

Implementation

The conceptual model outlined above has been translated into a ‘Platform model’
[2, 7], making design decisions suitable for implementation in a concurrent object-
oriented language.

The EvoMachina framework [5] is implemented in Java8, using its concur-
rency management to allow machines and spaces to execute concurrently, and
exploiting lambda expressions for succinct customisation of application-specific
machines and domains.
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Fig. 2. Instantiation of an EvoMachina Individual for the TSP: see text for details.
(Some machines are omitted for clarity.)

Replication uses a specific machine, the Kloner, which copies the repositories
with mutation (including genome reorganisation operations). Relevant machines
are cloned or shared, depending on the particular parameter settings. This repli-
cation, although executed by machines, is not itself an implementation of a
biological process; rather it is a shortcut mechanism [3], allowing the algorithm
to focus on the relevant biological concepts.

The tournaments, or other processes that trigger replication, are mediated
by the sites, through Environment Orientation [6].

Example: Travelling Salesperson Problem (TSP)

A reference implementation of TSP is provided with the EvoMachina framework.
It comprises three domains with the following structures (figure 2):

— TSP Domain
e The domain encodes the cities, the distances between each pair, and the
calculation of fitness in terms of journey length.
e The TSP repository comprises a single template, a particular permuted
list of cities, along with some non-coding items.
e The (hard-coded) TSP Transcriber machine builds a TSP template from
the TSP repository. This template comprises the permuted list of cities
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with the non-coding items removed, which is a direct encoding of the
candidate solution.

e The (hard-coded) application-specific TSP fitness calculator machine is
used by the domain to calculate the fitness (path-length) of a candidate
solution template.

— k-opt Domain

e The k-opt domain encodes details of k-opt mutation operations on T'SP
repository permutations.

e The k-opt repository is a list of integers, comprising the available values
of k for k-opt mutations.

e The (hard-coded) k-opt Transcriber machine builds a k-opt template
from the k-opt repository. The k-opt template is a single integer value.

e The (hard-coded) k-opt Translator machine builds a TSP Kloner ma-
chine from a k-opt template, embedding the specific value of k along
with some hard-coded behaviour.

e The TSP Kloner machine is used in the making of a copy of its individual;
it uses its specific value of k built in by the Translator machine to mutate
the TSP repository, building a new candidate solution.

— k-opt Kloner Domain

e The k-opt kloner domain encodes details of mutation operations on k-opt
repositories.

e The (hard-wired) k-opt kloner machine is used in the making of a copy of
its individual; to copy and mutate the k-opt Repository in a way defined
in the k-opt Kloner Domain, changing the k values available in the new
individual.

An Individual initially comprises a TSP Repository, a k-opt Repository, and
the relevant Transcriber and Translator Machines. These express the particular
Kloners when needed.

The overall Space can either be a single site, containing multiple individuals,
corresponding to a well-mixed system, or it can be an n-D toroidal lattice of
sites, for a spatially varying system, with mobile individuals.

When run on 48 USA State capitals data, the fittest individuals tend to the
shortest pathlength (the optimum value of 33551). See figure 3.

Summary

The relatively complex architecture of EvoMachina incorporates many of the
concepts of modern biological evolutionary knowledge: genome reordering, trans-
lation and transcription expression, evolving mutability, metabolic networks
(through further machines encoded in repositories, or hard-wired, not covered
here), and more. The aim is to develop a system that can evolve its evolvability,
to adapt to online data streams, and support an open-ended reflective evolution-
ary system [4].
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Fig. 3. Results from a typical run of EvoMachina on the 48 US state capitals T'SP: see
text for details. Each dot represents the birth of an individual; the colour represents
the k-value of the parent used to create this individual: darker colours represent lower
k values. (top) fitness plotted against time of birth; (bottom) k-value of parent plotted
against time of birth.
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