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Abstract—Quality analysis and prediction have been of great significance to ensure 

consistent and high product quality for chemical engineering processes. However, previous 

methods have rarely analyzed the cumulative quality effect which is of typical nature for batch 

processes. That is, with time development, the process variation will determine the final 

product quality in a cumulative manner. Besides, they can not get an early sense of the quality 

nature. In this paper, a quantitative index is defined which can check ahead of time whether the 

product quality result from accumulation or the addition of successive process variations and 

cumulative quality effect will be addressed for quality analysis and prediction of batch 

processes. Several crucial issues will be solved to explore the cumulative quality effect. First, a 

quality-relevant sequential phase partition method is proposed to separate multiple phases from 

batch processes by using fast search and find of density peaks clustering (FSFDP) algorithm. 

Second, after phase partition, a phase-wise cumulative quality analysis method is proposed 

based on subspace decomposition which can explore the non-repetitive quality-relevant 

information (NRQRI) from the process variation at each time within each phase. NRQRI refers 
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to the quality-relevant process variations at each time that are orthogonal to those of previous 

time and thus represents complementary quality information which is the key index to 

cumulatively explain quality variations time-wise. Third, process-wise cumulative quality 

analysis is conducted where a critical phase selection strategy is developed to identify 

critical-to-cumulative-quality phases and quality predictions from critical phases are integrated 

to exclude influences of uncritical phases. By the two-level cumulative quality analysis (i.e., 

phase-wise and process-wise), it is feasible to judge whether the quality has the cumulative 

effect in advance and thus proper quality prediction model can be developed by identifying 

critical-to-cumulative-quality phases. The feasibility and performance of the proposed 

algorithm are illustrated by a typical chemical engineering process, injection molding. 

Index—cumulative quality analysis, subspace decomposition, critical phase selection, batch 

processes. 

1. Introduction 

Batch processes have experienced rapid development and become an important 

manufacturing mode of producing high-value-added products through process repetition in 

chemical engineering industry[1]. With the nature of quickly responding to changing market 

demand and customer requirement, batch processes have been widely applied in specialty 

chemical, biomedical, semiconductor, etc[2]. Caused by process disturbances and batch to 

batch variations, low reproducibility brings a great challenge to ensure the consistency of 

product quality. Besides, for many batch processes, measurements of product quality are in 

general not available until the end of a batch. Thus, online quality prediction technology is 

indispensable to guarantee high product quality and improve process efficiency for batch 

processes. 

Benefiting from the development of data acquisition and storage technologies, data-driven 

multivariate statistical methods[3-9] have attracted increasing attention. Only using process 
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data, multivariate statistical methods have been widely used to develop prediction models, 

including partial least squares (PLS)[7], canonical correlation analysis (CCA)[8], etc. These 

methods overcome the disadvantages of the first principle models, which are time-consuming 

and require in-depth process knowledge. As an extension of PLS algorithm, multi-way partial 

least squares (MPLS)[9] was proposed for batch processes and it was commonly regarded as a 

milestone in quality prediction. In MPLS, three-dimensional process data matrix is unfolded 

batch-wise, which keeps the dimension of batch direction unchanged, and then a prediction 

model is developed by performing PLS between the batch-wise unfolded process data and 

corresponding quality data. However, there are two obvious drawbacks in MPLS as pointed out 

in previous work[10-12]. On the one hand, the entire batch-wise unfolded process data are 

employed for process modeling so that the prediction accuracy heavily relies on the estimation 

of unavailable future data for the online purpose. On the other hand, it neglects the multiphase 

characteristics of batch processes, which brings the difficulty for process understanding and 

may lead to inaccurate prediction. Sequentially, a series of improvements[13-15] have been 

developed. In order to avoid estimating future data, Randolf et al.[13] suggested the separation 

of time-slice loading and weight coefficients from batch-wise unfolding based model for 

online prediction. Aiming at the same problem, Chiu et al.[14] proposed a method by 

performing elastic net on the batch-wise unfolded process data and quality data. The values of 

calculated coefficients are used to evaluate the importance of sampling times and process 

variables. However, batch processes, in general, operate in a sequence of physical phases and 

each phase may have its specific characteristic[15]. It is noticed that process variable 

correlations, as well as the influences on quality, keep similar within a phase while may have a 

significant difference between different phases. However, the above mentioned methods[13, 

14] treat entire batch as a single subject without exploring the changes of process 

characteristics over different phases. 
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As an important feature of batch processes, the multiphase characteristic has attracted 

increasing attention[16-26]. A class of phase partition methods[16-21] based on expert 

knowledge or process analysis were proposed, such as indicator variable method[16], 

multiblock modeling technique[17] etc. In order to overcome the dependence on process 

knowledge and partition the phases automatically, data-driven phase partition algorithms have 

been paid special attention[22-30]. Lu et al.[22] put forward the sub-PCA algorithm by 

clustering those sampling points that have similar variable correlations into one phase. 

Sequentially, sub-PLS[23] was proposed for online quality prediction. Considering the 

between-phase transition patterns, the soft-transition multiple PCA method[24] and an angle 

based phase partition method[25] were proposed. For these methods, variable correlations or 

process correlations are clustered by k-means algorithm, which does not take the time 

sequential property into consideration. Therefore, initial phase partition results may be 

discontinuous, which bring heavy burdens of post-processing. Camacho et al.[26] recursively 

divided the batch cycle into phases at the points where the prediction error achieves minimum. 

Yu et al.[27] employed Gaussian mixture model to cluster the sampling times into different 

classes. As pointed by Zhao et al.[24], the influences on monitoring performance should also 

be considered during phase partition as well as changes of variable correlations. Thus, a 

step-wise sequential phase partition algorithm was proposed for fault detection by checking the 

changes of monitoring statistics. A quality-relevant sequential phase partition method (QSSPP) 

was also developed for quality prediction[28]. However, the results of phase partition are 

greatly influenced by a tunable parameter, i.e. relaxing factor. Besides, the phase-based 

prediction model isolates the influences of each time on product quality without considering 

the cumulative quality effect. Influences of process variations on quality are in general 

increased cumulatively with time evolution which is termed as cumulative quality effect. Zhao 

et al.[29] used each phase as the basic analysis object from which the local contributions of 
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different phases are stacked to explore the cumulative quality effect. However, they did not 

evaluate the significance of different phases. In fact, the significance of different phases is not 

necessarily in accord with their operation sequence. Uncritical phases should be removed from 

model development to avoid introducing undesirable disturbances into the model if they have 

no significant influences on product quality. Zhao et al.[30] treated each phase as a single block 

and analyzed their priority for quality interpretation by checking their different contributions to 

qualities. However, both work[29, 30] did not explore how the cumulative effects change 

time-wise within the same phase. Besides, they did not consider the problem of online 

application by using the measurement of the entire phase. 

From the above analysis, the cumulative quality effect has not been well analyzed time-wise 

within each phase and explored for online quality prediction. Besides, several problems are 

noticed. First, phase partition results of QSSPP[28] are subject to a tunable parameter (relaxing 

factor), which directly leads to uncertainty of phase partition. Second, the process variations at 

each time present both similar and dissimilar influences on quality in comparison with previous 

variations. They explore different quality information and should be well decomposed and 

separated from each other for analysis. Third, different phases may contribute differently to 

cumulative quality effects in which only the critical-to-cumulative-quality phases can reliably 

provide cumulative quality information and thus should be separated from those uncritical ones. 

In order to solve the above mentioned problems, a subspace decomposition and critical phase 

selection method is proposed for cumulative quality analysis for multiphase batch processes. 

First, multiple phases are separated from the perspective of quality analysis in which the 

tunable parameter is determined by using the fast search and find of density peaks clustering 

(FSFDP) algorithm[31]. Second, after phase partition, the measurement space at each sampling 

time is decomposed into several parts to explore their different influences on quality. Here, a 

quantitative index, termed non-repetitive quality-relevant information (NRQRI), is defined to 
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explore the quality-relevant data variations at each time that are orthogonal to previous 

variations. This part of variations can explain completely different quality variation in 

comparison with previous process variations, from which the qualities will thus be interpreted 

accumulatively along time direction. Third, a recursive critical phase identification strategy is 

developed from the perspective of cumulative quality analysis which can sort critical phases 

that are of significant cumulative influences on quality and then the final cumulative quality 

prediction is made by integrating the results from critical phases. 

The proposed algorithm has the following advantages: 

(1) It can get sequential quality-relevant phase partition results and properly determine the 

value of tunable parameters to avoid the uncertainty of phase partition results. 

(2) It can judge the type of quality index in advance to determine whether it is of cumulative 

type and properly decompose the data space at each time to probe into the variation that 

contributes to cumulative quality effect. 

(3) It focuses on the critical information for cumulative quality analysis and excludes the 

influences of unimportant phases by identifying critical phases from the whole batch run. 

The remainder of this paper is organized as follows. The details of the proposed method are 

described in Section 2, including quality-relevant sequential phase partition, time-wise 

subspace decomposition and the selection of critical phases for cumulative quality analysis. In 

Section 3, the feasibility and effectiveness of the proposed method are illustrated through a 

typical multiphase batch process, injection molding process. Conclusions are drawn in the last 

section. 

2. Methodology 

2.1 A quality-relevant sequential phase partition method 

Here, QSSPP[28] is used as the basis for quality-relevant phase partition. Besides, the 

undesirable influences of relaxing factor on phase partition in QSSPP method is overcome by 
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employing the fast search and find of density peaks clustering algorithm (FSFDP). In fact, in 

our previous work[32], the adjustment of the relaxing factor has already been studied and the 

concrete steps are given in Appendix for readability. The main difference between this work 

and the previous one is that the process is partitioned from the perspective of quality analysis 

here instead of fault detection. Before introducing the phase partition algorithm, data 

preparation is needed. 

In each batch run, assume that xJ  process variables are measured online at 1,2,k K  

time instances throughout the operation cycle and yJ  quality variables are obtained offline. 

After I  batches, a three-dimensional array of process data  xI J K X  and a 

two-dimensional quality matrix  yI JY  are formed, as shown in Fig. 1. Split the data array 

X  along the time dimension and K  time-slice data matrices  k xI JX  are obtained, where 

subscript k is the index of sampling time. Then, each time-slice data matrix kX  and Y  form 

the time-slice regression data pair  , [1, ]k k KX Y .  ,kX Y  is the basic analysis unit, which 

covers multiple batches observed at each sampling time. Further, time-slice regression model 

refers to a model developed by  ,kX Y  using basic PLS algorithm. The variables at each time 

are then preprocessed to have zero mean and standard deviation and the normalized data are 

still noted as  ,kX Y  for simplicity. 

In the present work, an assumption is that all batches are synchronized, and key features 

occur at the same time. Therefore, observations with the same time stamp are comparable and 

can be used for model development. If the process data are equal length, the proposed method 

can be directly used. On the contrary, several methods for batch trajectory synchronization are 

needed as pretreatments to solve the uneven length problem, such as instrumental variable[33], 

dynamic time warping[34], and multisynchro[35]. Instrumental variable method is suitable 
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when indicator variables that indicate process progress instead of process time are available. If 

such process knowledge is not available, dynamic time warping can be used when the 

beginning and end points of phases in the concerned batches are similar. Multisynchro method 

is suggested when uneven-length problem is complicated in which the key process events may 

occur at the different time of process evolution. Therefore, this method can achieve better 

performance for unequal batch processes with multiphase characteristics. 

The specific phase partition procedure with adjustment of relaxing factor is described as 

below. 

Step 1: Time-slice based PLS modeling 

Perform PLS algorithm on  , [1, ]k k KX Y  and the regression coefficients of each 

time-slice regression model are kし . Evaluate the prediction performance of time-slice 

regression model at time k by the index of root mean square error (RMSE), which is calculated 

as follows, 

 
 2

, , ,
1 1

ˆ

ˆ
y

k k k

JI

k k i j i j
i j

RMSE y y
 



 

Y X e
 (1) 

where , ,ˆk i jy  is the prediction of the jth quality index of the ith batch at time k which is the ith row 

and jth column of ˆ kY , ,i jy  is the real value of the jth quality variable of the ith batch. 

Step 2: Time-segment based PLS modeling 

From the beginning of batch process, add the next time-slice data matrix to the existing ones 

and unfold them variable-wise within the concerned time region, i.e.  , Xv k xIk J , where 

subscript v indicates variable-wise data unfolding. Then, arrange the quality data  k yIk JY  

in the similar way by duplicating the quality matrix  yI JY  to have the same row dimension 

as ,v kX . Perform PLS on  , ,v k kX Y  and obtain the regression coefficient ,v kし . Quality can then 
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be predicted for kX  at each time up to k using the time-segment model (,v kし ). At each time, the 

time-wise RMSE index defined in Eq. (2) is then updated as ,v kRMSE  which can evaluate the 

performance of the time-segment model. 

 
 

, ,
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, , , , ,
1 1
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ˆ
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 (2) 

where , , ,ˆv k i jy  is the prediction value of the jth quality index of the ith batch at time k using 

time-segment model which is the element of ,
ˆ

v kY . 

Step 3: Comparison of prediction error 

Compare kRMSE  with ,v kRMSE  within the concerned time region. If ,v k kRMSE RMSE  

in which g is the relaxing factor reflecting the loss tolerance of prediction accuracy of 

time-segment in comparison with time-slice models, it means that time-segment model has the 

similar prediction performance with time-slice model. Update k as k+1 and repeat Steps 2 and 3. 

Otherwise, if there are three consecutive samples satisfying the relationship 

,v k kRMSE RMSE  from time k, it means the prediction relationship has significantly 

changed. The current time k is denoted as the phase partition time k* from which we can 

initially get a new phase. To avoid the influence of relaxing factor, go to Step 4 to search for the 

optimal value of g. 

Step 4: The updating of relaxing factor 

The tunable parameter (g) has a great influence on the phase partition results. If the value of 

g is large, the time-segment model is allowed to be less accuracy as calculated by 

,v k kRMSE RMSE  and more time-slice data matrixes will be allocated into the same phase. 

On the contrary, if the value of g is small, the process correlations will be separated into more 

different phases. Therefore, its value should be properly determined to avoid the uncertainty. 
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The FSFDP algorithm[31] shown in Appendix is adopted here to determine whether the current 

g can be increased. The initial value of g is set to be one. Regression coefficient kし ( *[1, ]k k ) 

that presents process correlations at each time is employed as the analysis object. The number 

of clusters is determined based on two indices, density and distance where cluster centers are 

recognized as the points that have anomalously large distance and a high local density. More 

than one cluster reveals that different process correlations are presented in the time-segment. If 

there is only one cluster is identified, it reveals that the prediction relationships stay the same 

within the concerned time-segment. Increase the value of relaxing factor by =g g  where the 

parameter ∆ is the step length. Go back to Step 2 and update the phase partition result. Repeat 

the Steps 2 through 4 until the number of clusters is larger than one which means different 

prediction relationships are covered in the current time segment. Thus, the previous value of g 

should be chosen, denoted as g*, and the time-slices before k* are assigned to a phase. 

Step 5. Data updating and recursive implementation 

Remove the first phase and employ the remaining time-slice data as the new input. 

Recursively repeat Steps 2 through 5 to find the remaining phases and the corresponding values 

of g* . 

Based on the proposed phase partition method, multiple phases are separated from the batch 

cycle and the proper value of g is determined for each phase. It is noted that for different phases, 

the relaxing factor may have different values. 

2.2 Subspace decomposition for phase-wise cumulative quality analysis 

Considering different phases may act differently and cumulatively on quality variability, the 

phase-based cumulative analysis can help to improve process understanding and capture how 

these phases contribute to the quality variability. Based on phase partition results, cumulative 

quality analysis is first implemented within each phase to explore different cumulative quality 

effects over different phases. Here, a subspace decomposition algorithm is proposed to explore 
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the process variations of each time-slice data matrix based on the following recognition: (1) the 

process variations at each time present time-varying influences on quality although they have 

similar quality effects; (2) the time-varying quality-relevant variations reveal different 

influences on quality which should be well extracted and used for cumulative quality analysis. 

The non-repetitive quality-relevant information (termed as NRQRI), is extracted at each time 

to explore the time-varying influences on quality. This part of variations can explain different 

quality information in comparison with previous process variations, from which the quality 

will thus be interpreted accumulatively along time direction. This part of information can also 

be used to indicate the quality type. If NRQRI is zero, the quality-relevant process variations 

are quite similar with each other and present similar quality interpretability which do not tell 

any new quality information along time direction. Otherwise, the process variations can 

explain new quality information with time evolution and thus the quality index is cumulative. 

To extract NRQRI, time-slice data matrix ,c kX  is divided into four different subspaces in 

each phase using the proposed subspace decomposition algorithm as shown in Fig. 2, where the 

subscript c indicates the phase number. First, PLS algorithm is performed on each regression 

data pair  , ,c kX Y  to initially extract the quality-relevant variation (,
ˆ

c kX ) from the time-slice 

data space at each time. Second, similar quality-relevant variations (, ,s c kX ) are extracted within 

each phase by data reconstruction, which imposes repetitive influences on quality. Third, the 

time-specific variations ( , ,d c kX ) that reveals dissimilar influences on quality are explored by 

removing the similar variations ( , ,s c kX ) from ,
ˆ

c kX , from which, the final quality-relevant part is 

extracted by post-processing PLS results using CCA algorithm. The specific subspace 

decomposition is described below. 

(1). Extraction of initial quality-relevant variation 

Regress ,c kX  against Y  using PLS algorithm to develop time-slice regression model. 
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where , ( )c k x cJ RR  is the weight matrix to calculate latent variables(LVs) from ,c kX , 

 ,c k cI RT  is the matrix containing the LVs which are extracted from the process variables 

and used to explain qualities at each time, , ( )c k x cJ RP  is the loading matrix for ,c kX , and cR  

is the retained number of latent variables. 

For PLS algorithm, the initial quality-relevant variations ( ,
ˆ

c kX ) are extracted from the 

time-slice data space ( ,c kX ) and the residual matrix is ,c kE . 

(2). Extraction of similar quality-relevant variations 

Similar process variations describe the repetitive prediction information at the current time 

in comparison with the previous process variations before time k which can be extracted from 

the initial quality-relevant part ,
ˆ

c kX . 

Use ,c kT  to explain previous quality prediction , 1
ˆ

c kY  using the ordinary least square (OLS): 
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where *

,c kP  is the regression coefficient that used for calculating previous quality prediction 

that can be explained at the current time. 

*

, 1
ˆ

c kY  represents the quality information that can be explained by process variations at both 

times, k-1 and k, revealing repetitive quality-relevant variations. Then perform PCA on *

, 1
ˆ

c kY  

to get orthogonal scores (* *

, 1 , 1 , ,
ˆ ˆ

c k c k l c k T Y P ) with all principal components with nonzero 
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variance retained. The loading matrix is noted as , ,l c kP , where the subscript l indicates the LV 

decomposition. 

The scores *

, 1
ˆ

c kT  are then used to explain the repetitive part of the initial quality-relevant 

variation ( ,
ˆ

c kX ): 

 
T * T * 1 *
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P T T T X

X T P
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where , ,s c kX  reveals the repetitive information in ,
ˆ

c kX  that exists in previous process variations 

described by , 1
ˆ

c kX , , ,s c kP  is the coefficient used to regress the similar influence between the 

initial quality-relevant prediction process variations and the prediction value *

, 1
ˆ

c kY , and the 

subscript s is used to indicate the similar quality-relevant influence. 

(3). Extraction of dissimilar quality-relevant variations 

Subtracting , ,s c kX  from ,
ˆ

c kX , the remaining part is denoted as , ,n c kX , which does not contain 

any repetitive information in comparison with process variations before k and the subscript n 

stands for the non-repetitive quality-relevant information. Considering that PLS scores may 

cover quality-irrelevant variations since it maximizes the covariance[7], PLS-CCA 

algorithm[8] is employed to extract the final quality-relevant part from , ,n c kX  according to 

Eq.(6). 

 
, , , , , ,

, , , , , ,

n c k n c k n c k

d c k n c k d c k





T X R

T T W
 (6) 

where , ,n c kR  is the weight matrix to calculate LVs from , ,n c kX  by using PLS algorithm, 

, ,d c kT  is the score matrix used to explain the process variations and , ,d c kW  is the weight 

matrix to extract the strict quality-relevant process variations by using CCA algorithm, 

respectively, and the subscript d presents the dissimilar quality-relevant influence. 
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Then , ,d c kT  is used to explain , ,n c kX  by using OLS algorithm. 
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where , ,d c kX  denotes dissimilar quality-relevant variations in comparison with its previous 

time-slice that tell the NRQRI. 

(4). Cumulative quality prediction 

Up to the current time k, the cumulative process matrix is obtained by , , , 1 , ,[ , ]c k p c k d c kC T T  

and CCA algorithm is then used for cumulative quality prediction as follows: 

, , , , ,

T 1 T

, , , , , , , ,

T

, , , , ,

( )

ˆ

p c k c k p c k

p c k p c k p c k p c k

c k p c k p c k
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 (8) 

where , ,p c kW  is the weight matrix used to derive the quality-relevant process information 

( , ,p c kT ) from the cumulative process matrix by using CCA algorithm and subscript p stands for 

prediction, and , ,p c kQ  is the regression coefficient to calculate the final cumulative quality 

prediction ,
ˆ

c kY . It is easy to derive that , ,d c kT  is orthogonal with , , 1p c kT  which thus tells the 

non-repetitive LVs in comparison with previous time. 

The above procedure is implemented at each time until it arrives at the end of the current 

phase. In each phase, to get the cumulative quality prediction, the key points are to derive 

NRQRI and continuously combine it with this part of information at the previous time. In this 

way, only the new quality information will be further explained from k-1 to k. The phase-wise 

cumulative quality prediction is thus obtained at the end of each phase. At the end of each 

phase, the quality-relevant process information (, , cp c KT ) is available to describe the cumulative 

effects on quality of each phase. 
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It is recognized that different phases may have different significances and only some of them 

are critical to cumulative quality prediction. The effects of uncritical phases should be removed 

from model development to avoid undesirable disturbance since they have no significant 

influences on product quality. Index 2,c kR  is employed to evaluate the prediction accuracy at 

each time within each phase, 
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where , ,ˆi c ky  is the prediction of the ith batch in the cth phase at time k, iy  is the real value of the 

i th batch, y  is the mean value over batches and cK  is the total sampling times in phase c. 

2
,c kR  is an index to measure the prediction accuracy at time k and it varies from zero to one. 

Within the normal region, a large value of 2
,c kR  indicates high prediction accuracy. Besides, 

calculate the index 2 2 2
, ,1cc c K cR R R    which presents the changes of prediction accuracy in 

phase c under the cumulative quality analysis, where 2
,1cR  denotes the prediction accuracy at 

the phase beginning and 2, cc KR  denotes the prediction accuracy at the end of the phase. If 

2 0cR  , it means that there are time-varying process variation in Phase c to improve 

prediction value and cumulative quality effect exists in this phase. Otherwise, there are no 

process variations related to cumulative quality effect in phase c. 2
, cc KR  and 2

cR  are combined 

to evaluate the importance of each phase and judge the critical phases. If 2
, cc KR  is large than the 

predefined threshold value and 2 0cR  , this phase is determined to be a 

critical-to-cumulative-quality phase. Otherwise, it is not critical and should be removed from 
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the following cumulative analysis. Here, the threshold value for 2
, cc KR  is defined using the 

F-statistics[23] with different significance factors. 

2.3 Process-wise cumulative quality analysis 

Based on the phase-wise cumulative analysis, critical phases have been identified in which 

, , cp c KT  describes the phase-wise cumulative effects and 2
, cc KR  reveals the cumulative phase 

prediction accuracy for the concerned phase. A strategy that can combine the cumulative 

effects of different critical phases will have to be developed. For the 

critical-to-cumulative-quality phases that have been identified in Subsection 2.2, the following 

cumulative phase fusion strategy is described as below: 

Step (1): The first critical phase is used as the initial analysis unit. Extract the non-repetitive 

quality-relevant information (NRQRI) from the next critical phase using the same subspace 

decomposition algorithm as that in Subsection 2.2 in which the analysis unit is the 

quality-relevant process information (, , cp c KT ) instead of the time-slice used in phase-wise 

cumulative analysis. The quality prediction accuracy is evaluated by 2
fR  for the integrated 

critical phases and the fused quality-relevant process information ( fT ) are extracted using Eq. 

(8) revealing the quality-relevant process information from the cumulative process matrix. 

Step (2): Compare 2
fR  with 2R  index for the concerned two critical phases using the following 

judgment rule: 

Case I: If 2
fR  is larger than both values, it means that the two critical phases can be combined to 

improve quality prediction. The combined phase information should replace the initial analysis 

unit with the fused quality-relevant process information (fT ). 

Case II: If 2
fR  is smaller than 2R  index of the second critical phase but larger than 2R  index of 

the first critical phase, the performance of cumulative quality analysis after phase fusion is not 
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as good as that of the second critical phase. The two phases should not be fused and the second 

critical phase should replace the initial analysis unit. 

Step (3): Update the initial analysis unit and repeat the above two steps until all critical phases 

have been considered. 

The output is the selected critical phases that should be integrated for process-wise 

cumulative analysis to get the final quality prediction. Besides, how to combine these phases 

are also determined in which the subspace decomposition is performed for the selected phases 

using the quality-relevant process information instead of time-slice analysis unit to integrate 

the cumulative effects. 

It is noted that non-critical phases are not used for process-wise cumulative quality analysis 

here. For the processes that are dominated by critical phases, the proposed method can be 

directly used for cumulative quality prediction. However, for other processes, all phases may 

contribute to final product, that is, operation at a succeeding phase may remedy the run and 

final product. Without changing the basic idea, the proposed method can be readily extended to 

such processes by employing all phases for process-wise cumulative quality analysis instead of 

only considering the critical phases. 

2.4 Online cumulative quality prediction 

Online cumulative quality prediction is only made in each critical phase by adopting the 

predefined cumulative quality prediction models. Here, the normalized new sample at the kth 

sampling time of one critical-to-cumulative-quality phase (c) is denoted as , ( 1)c k xJ x . The 

specific steps are given below: 

a) Calculate the initial quality-relevant process variation ,ˆ c kx  

 , , ,

, , c,

ˆ c k c k c k

c k c k k





x t P

t x R
 (10) 
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where c,kR  is the weight matrix to calculate LVs and ,c k
P  is the loading matrix and they are 

given in Eq.(3). Then the scores ,c kt  will be used in Step (b). 

b) Explain the quality prediction , 1
ˆ

c ky  using ,c kt  as follows 

 * * T

, 1 , ,
ˆ

c k c k c k y t P  (11) 

where *

,c kP  is the regression coefficient in Eq.(4). 

c) Reconstruct the similar quality-relevant process variations , ,s c kx  

 * T * T

, , , 1 , , , , , 1 , ,
ˆˆ

s c k c k l c k s c k c k s c k  x y P P t P  (12) 

where , ,l c kP  is the loading matrix used to extract the main variations of *

, 1
ˆ

c ky , , ,s c kP  is the 

coefficient used to regress the similar influence between the initial quality-relevant prediction 

process variations which is given in Eq. (5). 

d) Subtract , ,s c kx  from ,ˆ c kx , the remaining part is denoted as , ,n c kx ; 

e) The non-repetitive quality-relevant information (NRQRI) is calculated below, 

 
, , , , , ,

, , , , . ,

T
, , , , , .

n c k n c k n c k

d c k n c k d c k

d c k d c k d c k







t x R

t t W

x t P

 (13) 

where , ,n c kR  is the weight matrix to calculate LVs from , ,n c kx , , ,n c kT  is the score matrix used to 

explain the process variations using PLS algorithm, and . ,d c kW  is the weight matrix to extract 

the strict quality-relevant process variations using CCA algorithm. These coefficients are given 

in Eqs. (6) and (7). 

f) Update the cumulative matrix as , , , 1 , ,[ , ]c k p c k d c kc t t ; 

g) Online cumulative quality prediction is calculated, 

 
, , , , ,

T

, , , , ,
ˆ

p c k c k p c k

c k p c k p c k





t c W

y t Q
 (14) 
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where , ,p c kW  is the weight matrix used to compress the quality-relevant information into score 

matrix and , ,p c kQ  is the regression coefficient to calculate the final cumulative quality 

prediction ,
ˆ

c ky  that has been given in Eq. (8). 

3. Illustration results 

3.1 Process description 

In this section, the efficiency of the proposed algorithm is illustrated through injection 

molding (IM), which is a typical multiphase batch process. A complete production cycle of IM 

involves the stages of mold-close, filling, packing-holding, plastication, cooling and 

mold-open. Through process repetitions, IM produces various quantities of plastic products 

and it plays a significant role in polymer processing for the manufacturing industry. Before 

production, the IM machine will be pre-heated to provide a high-temperature environment for 

barrel, which transforms raw material into melt state. Mold closes during mold-close stage and 

plastic melt is injected into the mold cavity in filling stage. After the mold is filled with the 

plastic melt, the packing-holding stage is initiated. During this stage, molten flow is prevented 

out of the mold and the additional material is compacted into the mold to make up the 

shrinkage associated with cooling. Sequentially, the molten polymer is conveyed to the front of 

the barrel by screw rotation in plastication stage, which is the initial period of cooling stage, 

during which the material is cooled inside the mold until it is rigid enough to be ejected. Finally, 

the mold is opened and the plastic product is taken out[36]. 

Process data of IM can be online collected from the transducer placed in IM machine and 

mold. Quality indexes, such as part weight, are readily measured offline at the end of each 

batch. A series of studies have been conducted on IM to prove their effectiveness[37] and IM is 

regarded as an ideal object for application and validation of the proposed quality-relevant 

phase division and quality analysis strategy. Therefore, it is convenient to analyze the results 
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using IM because prior process knowledge can be used as aids and the effectiveness of the 

proposed algorithm is easy to be proved. 

In this study, eleven process variables are measured as predictor variables, which are given 

in Table 1. The quality index is part weight, which is offline measured at the end of each batch 

using a high precision electronic balance with a resolution of 0.01g. The material used in the 

experiments is high-density polyethylene (HDPE). In total, eighty-four normal batches are 

carried out for modeling. The batches are of even duration (634 samples in this experiment) 

and the process variables data are  84 11 634 X . Correspondingly, the quality data are 

 84 1Y . Fifty of them are used as training data for phase partition modeling and prediction 

model is developed. The next twenty of them are used as validation data to choose the best 

parameters for prediction model, and the remaining batches are employed as testing data to 

evaluate the prediction accuracy. 

3.2 The Results of Phase Partition 

Fifty batches are used as training data and the modeling data are process data 

 50 11 634 X  and quality data (50 1)Y . By splitting the three-dimensional matrix along 

time direction, 634 time-slice data matrixes are formed. Normalize these time-slice data 

matrixes as well as the quality data and 634 time-slice data regression pairs are prepared. Then 

perform the PLS on each time-slice regression pair and time-slice prediction models are 

developed. The number of LVs at different times is determined by cross-validation to obtain 

the best quality prediction. The number of LVs used for the proposed phase partition at each 

sampling time is unified to be four which appears most. 

In the proposed method, time-slice data regression pair is added variable-wise to form the 

time-segment data regression pair and develop regression models. At each time, the prediction 

errors of time-slice models and time segment models are compared, which are represented by 
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kRMSE  and ,v kRMSE  respectively. The time segments are partitioned at the sampling point k, 

where the relationship ,v k kRMSE RMSE  is consecutively satisfied according to the rule 

given in Step 3 of the Subsection 2.1. However, the partition phase results greatly depend on 

the value of the tunable parameter,  . In the proposed phase partition method, a proper g can 

be determined using the adjustment strategy based on the FSFDP. Here, g is initialized to be 

one for convenience. After initial phase partition, g is adjusted by the step length (∆=0.1) and 

the value of ∆ yields an accurate phase partition results[32]. Finally, the phases are partitioned 

at the critical point where the number of cluster centers changes from one to more with the 

adjustment of the relaxing factor, suggesting that the process correlations change from one to 

more. 

For the adjustment strategy based on the FSFDP, cluster center is identified as the point that 

simultaneously has a large distance and a large density[31]. Using the proposed method, it is 

observed that the number of cluster centers changes from one to two when the value of g 

changes from 1.9 to 2. In Fig. 3(a), two points have large distance in the decision graph for the 

first phase when g is 1.9. However, one of them (marked by red rectangles) has very small 

density values. Thus, only one point (marked by a red ellipse) simultaneously exhibits large 

distance and density values. Therefore, one cluster center is observed using the decision graph. 

If we increase g by 0.1, two points simultaneously exhibit large density and distance values in 

the decision graph of Fig. 3(b). Based on the rule of the phase partition procedure, the proper 

value of g is 1.9 for the first phase. Moreover, the index け is also helpful to determine the cluster 

number, which is defined as the product of distance and density. Cluster centers have the 

largest け values and will be far away from other data points. Comparing the values of け in Figs. 

3(a) and (b), the number of cluster centers changes from one to two, as marked by the red 

ellipse, which also indicates that 1.9 is the proper value of g. After the separation of the first 

phase, the remaining phase can be identified similarly, and the specific phase partition results 
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are presented in Fig. 4. Besides the first phase, the remaining process data are divided into five 

phases. In each phase, there is only one cluster center, which means covering one kind of 

process correlation. From the above analysis, the entire process is automatically partitioned 

into definite phases using the proposed method. 

According to the proposed method, six phases are partitioned and the value of the relaxing 

factor is properly determined, as plotted in Fig. 5(a). In the previous work[32], the transition 

patterns between adjacent phases are analyzed by the index kTr . Index kTr  is defined as k k  , 

where k  is the density of the current sampling time calculated in Eq. (A2), and kh  denotes the 

distance in Eq. (A3). Transition patterns are identified as sampling times located at the phase 

edge and the value of index kTr  is less than a predefined threshold (0.0001 is used here and a 

denary logarithm is adopted to make the values easy to see). In Fig. 5(b), several points around 

the edge of Phases 1, 2 and 3 are lower than the threshold. According to the previous analysis, 

transition patterns are identified if their values of kTr  below the threshold and they locate in the 

edge of each phase. Therefore, quick transition regions exist in IM because only one or two 

transition patterns are observed between adjacent phases, which are not addressed in previous 

research works. 

For comparison, the results of QSSPP algorithm[28] are presented in Fig. 6 where the 

partition results are influenced by the value of relaxing factor which however can not be 

properly determined. When the value of relaxing factor is small, more phases are partitioned. 

On the contrary, a larger value of relaxing factor will lead to fewer phases. Thus, the 

determination of the value of the relaxing factor is an important issue that is directly related to 

the phase partition results. Process knowledge is necessary for QSSPP algorithm to help the 

selection of this parameter when one wants to obtain reasonable results. However, it may be 

impractical for an unfamiliar process. 
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3.3 Cumulative quality analysis results 

Phase-wise cumulative quality analysis is conducted as shown in Fig. 7. The number of 

retained LVs is determined by validation data and the best prediction accuracy is achieved 

when it is four. The prediction accuracy at each time is evaluated by the index 2,c kR  given in Eq. 

(9). Combining the indexes 2
, cc KR  and 2

cR , Phases 1, 2, 3 and 6 are judged to be 

critical-to-cumulative-quality phases. The threshold of 2
, cc KR  is 0.657 when the significant 

factor is 0.1[23]. The values of 
c

2
,c KR  are 0.7676 for Phase 1, 0.9562 for Phase 2, 0.8966 for 

Phase 3, and 0.9377 for Phase 6. The values of 2
cR  for the four phases are calculated as 

0.0876 (Phase 1), 0.1903 (Phase 2), 0.0481 (Phase 3) and 0.2627 (Phase 6), respectively. All 

the values of 2
cR  are larger than zero, revealing that non-repetitive quality-relevant 

information (NRQRI) can be continuously extracted to improve the prediction accuracy and 

the quality index, i.e. part weight, is of cumulative-quality type. It is noted that the values of the 

index 2
,c kR  are larger than one after the 17th sample in Phase 4 and the 75th sample in Phase 5. 

Since the normal region of 2,c kR  is from zero to one, the cumulative-quality prediction results 

become unreliable in Phases 4 and 5. 

The critical phases are then fused using the proposed algorithm as shown in Fig. 8. First, the 

first two critical phases are combined in Fig. 8(a), revealing the cumulative-quality effect of the 

two phases. Using the judgment rule in Subsection 2.3, Phase 1 is excluded from phase 

integration since the prediction accuracy using the combined phase information satisfies the 

rule in Case II described in Subsection 2.3. Phase 2 is used for the following analysis. In Phases 

8(b) and (c), the critical phase fusion is conducted for the remaining critical phases and Phases 

2 and 3 are selected finally and should be fused for process-wise cumulative analysis. 

According to process knowledge, Phases 2 and 3 are in fact the filling stage and the 
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packing-holding stage, respectively. In the real case, high injection pressure and large ejector 

stroke (i.e., large packing pressure) will push more molten flow into the mold cavity and lead to 

heavy part weight. Thus, injection pressure (Variable #8) will give the most significant 

contribution in Phase 2 and ejector stroke (Variable #5) plays the most important role in Phase 

3 which reveals the changes of packing pressure. That is, injection pressure in Phase 2 and 

ejector stroke in Phase 3 determine the quality variability. Reflecting the overall importance of 

each variable on all of the response variables based on principal components, variable 

importance in the projection(VIP)[38] method was employed to check the obtained 

critical-to-cumulative-quality phases. VIP method was initially used to select critical variables 

of which the average values of the squared VIP scores are large one[39]. Sequentially, VIP 

method has been used to identify important phases with MPLS algorithm. Similarly, if the 

values of squared VIP scores within a phase are large one, this phase is regarded as an 

importance phase. Therefore, with four principal components, VIP plots for Variables 5 and 8 

are given by applying MPLS algorithm as shown in Fig. 9. In both Fig. 9 (a) and (b), values of 

squared VIP are large than one in Phases 2 and 3 presenting these two phases are important 

phases. On the contrary, Phases 1, 4, 5 and 6 are unimportant phases because the values of 

squared VIP are small than one in these phases. Thus, the critical-to-cumulative-quality phases 

of the proposed method agree well with the results from VIP method. In practice, filling stage 

(Phase 2) determines the amount of molten materials injected into the mold, which has a direct 

relationship with the part weight. Because of material shrinkage, packing-holding stage (Phase 

3) will pack more molten flow into the mold. Thus, the results of the proposed method also 

meet well the process knowledge, which indicating the Phases 2 and 3 are critical phases. 

Fourteen batches are used as testing data to show the online prediction performance in 

critical phases, including Phases 1, 2, 3 and 6. In Fig. 10, the prediction results of a batch are 

given in different phases. It is easy to see that prediction accuracy in Phase 2 as shown in Fig. 
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10(a) is continuously improved and the last value almost approaches the real value of the part 

weight. However, the variation of the prediction value is large. In Phase 3, as shown in Fig. 

10(b), the variation of prediction is much smaller than that of Phase 2 and the prediction value 

keeps steady in the late period. The similar scenario can be observed for Phases 1 and 6. That is, 

by cumulative quality analysis, the quality prediction accuracy is improved with time 

evolution. 

Besides, the process-wise cumulative analysis results are presented in Fig. 11 where Phases 

2 and 3 that have been identified in Fig. 8 are fused to get the final quality prediction. For 

comparison, MPLS[9] and sub-PLS[19], are also used to get the end-of-batch quality 

prediction. In Fig. 11, the squared prediction errors are plotted for three methods and fourteen 

testing batches. The prediction error is the difference between the prediction value and the real 

value. It is observed that the proposed method yields smaller prediction errors in comparison 

with the other two methods. In contrast, MPLS presents very large errors for some testing 

batches, revealing worse generalization ability. It may result from the fact that it includes all 

phases for modeling which thus introduces some undesirable quality-irrelevant variations. For 

sub-PLS, it presents better accuracy than that of MPLS but worse accuracy than that of the 

proposed algorithm since the critical phases are simply summed with different weights. 

Moreover, the proposed algorithm can help us to further understand the process. Here, 

different process variations are accounted. The first index s,c,kR  is defined as below: 

 
 
 

, , , ,

, ,
ˆ ˆ

T

s c k s c k

s,c,k T

c k c k

trac
R

trac





X X

X X
 (15) 

where ,
ˆ

c kX  and , ,s c kX  is given in Eq. (3) and Eq. (5), respectively; the symbol trac indicates the 

calculation of the trace of a matrix. , ,s c kX  reveals the repetitive information in ,
ˆ

c kX  that is 
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covered in the previous time and thus the index s,c,kR  represents the ratio between the repetitive 

information and the total quality-relevant information at the sampling time k. 

In a similar way, , ,d c kR  is also defined by replacing , ,s c kX  by , ,n c kX , which reveals the 

amount of dissimilar quality-relevant variations in ,ˆ
c kX  in comparison with its previous time. 

That is, it tells the new cumulative quality information. In Fig. 12, the two indexes are 

calculated for Phases 2 and 3. Index s,c,kR  decreases when the process enters into Phase 3 from 

Phase 2 which agrees with the real case. That is, Phase 3 has different influences on quality in 

comparison with Phase 2, revealing less similar information with that of Phase 2. In contrast, 

the index , ,d c kR  stays invariable throughout the two phases, revealing that there are dissimilar 

quality-relevant variations that can be extracted consecutively to further explain the quality 

information. Instead, using PLS algorithm, we can only evaluate the sum of s,c,kR  and , ,d c kR  

which can not reveal whether the process is cumulative and how the cumulative effect change 

with the process evolution for the final quality prediction. 

4. Conclusions 

In this work, a cumulative quality prediction method is proposed for batch processes. It 

provides definite phase division results which overcome the influence of tunable parameter. 

And the phase partition results are sequential within each batch and require no post-processing. 

Based on phase partition results, a mechanism for the analysis of cumulative quality effect is 

proposed. A subspace decomposition algorithm is developed to probe into the non-repetitive 

quality-relevant information from time-slice data matrix for model development. Phases are 

quantitatively classified into two types: the phases that are critical to cumulative quality effect 

and the ones that are not. The final quality prediction is thus conducted by integrating the 

critical phases. The proposed algorithm is illustrated by an important chemical engineering 

process, injection molding. 
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Appendix 

Adjustment of relaxing factor based on the FSFDP 

The number of clusters is identified through the fast search and find of density peaks 

(FSFDP) clustering algorithm[27], which can check how many cluster centers are covered in 

the data obtained for the current g. Revealing the process correlations, the regression 

coefficients *[1, ]k k kし  of time-slice regression data pair can be used as the basic analysis 

unit and the input of the clustering algorithm. The specifics are given below: 

Step 1: Calculation of the distance matrix D 

Input the regression coefficients *[1, ]k k kし , and calculate the Euclidean distance mnd  

between two process correlations *[1, ]m m kし  and *[1, ]n n kし : 

 2 *

1 1

( ( , ) ( , )) , [1, ]
k xR J

mn m n
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where k, m and n are the indexes of sampling times, k* is the terminal time of the current phase, 

Rk is the retained number of scores, and xJ  denotes the number of process variables. The 

distance matrix D is then formed by all of the distances mnd  
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where dmn=dnm. 

Step 2: Calculation of the density kと  

Calculate the density of the kth time-slice regression data pair by 
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where dc is the cutoff distance and it can be determined according to the rules given in the 

FSFDP algorithm. 

Step 3: Calculation of the distance k  

Based on the density value kと , compute the distance (k ) of each time-slice data pair 

according to Eq. (A3). 

: 1,...,
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max( ), max ( )
n k
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k
kn k n

n N

d と と
h

d と と
 



 


 (A3) 

For the point with the highest density, hk is the maximum of dmn. Otherwise, hm is the 

minimal distance from the points that have a higher density. 

Step 4: Cluster center identification 

Arrange the set data *{ , } [1, ]  k k k k  and the number of clusters can be identified in two 

way: 1) decision graph, which plots hm as a function of とm for each point; 2) index m m m   . 

In decision graph, cluster centers are recognized as the points that have anomalously large dm 

and a high local density とm. Ranking the index m m m    in decreasing order, when the value 

of けm becomes anomalously small from a rank order, the number of clusters is identified[33]. 

Step 5: Relaxing factor updating 

If the number of clusters is one, increase the value of relaxing factor by =g g  and output 

the number of cluster center and the new g, where the parameter ∆ is the step length. On the 

contrary, output the number of clusters and the value of g without updating. 
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equal to 1.3 and (e) the sixth phase when g is equal to 2.4 (Cluster centers are marked by red 

ellipses). 

Figure 5 Phase partition results and transition analysis of the proposed method (a) phase 

partition results and (b) transition patterns analysis. 

Figure 6 Phase partition results of QSSPP algorithm with different values of relaxing factor. 

Figure 7 Phase-wise cumulative quality prediction results of each phase using the index 2
,c kR  

Figure 8 Process-wise cumulative-quality effect analysis to determine 

critical-to-cumulative-quality phases for (a) Phases 1 and 2 (b) Phases 2 and 3 (c) Phases 2, 3 

and 6 using the index 2,c kR  (the red dashed line denotes the upper limit of 2
,c kR ). 

Figure 9 Variable importance in the projection plots for (a) Variable 5 and (b) Variable 8 (the 

black line is the criterion to determine the quality-determined phases). 

Figure 10 Analysis of cumulative quality prediction for (a) Phase 2 (b) Phase 3 and (c) Phases 2 

and 3. 

Figure 11 Comparisons of prediction accuracy for different methods and testing batches. 

Figure 12 Different process variations evaluated by indexes , ,s c kR  and , ,d c kR ( s,c,kR  reveals the 

repetitive quality-relevant information and , ,d c kR  reveals the dissimilar quality-relevant 
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Figure 1 Three-way data analysis and time-slice regression data pairs.
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Figure 2 Procedures of decomposing the time-slice data matrix into four subspaces.
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Figure 3 Phase partition results (a) the first phase when g is equal to 1.9 (b) the first phase 
when g is equal to 2.0 (Cluster centers are marked by red ellipses). 
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Figure 4 Phase partition results (a) the second phase when g is equal to 1.2 (b) the third phase 
when g is equal to 1.3 (c) the fourth phase when g is equal to 2.5 (d) the fifth phase when g is 
equal to 1.3 and (e) the sixth phase when g is equal to 2.4 (Cluster centers are marked by red 

ellipses). 
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Figure 5 Phase partition results and transition analysis of the proposed method (a) phase 
partition results and (b) transition patterns analysis. 
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Figure 6 Phase partition results of QSSPP algorithm with different values of the relaxing factor. 
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Figure 7 Phase-wise cumulative quality prediction results of each phase using the index 2
,c kR .
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Figure 8 Process-wise cumulative-quality effect analysis to determine 
critical-to-cumulative-quality phases for (a) Phases 1 and 2 (b) Phases 2 and 3 (c) Phases 2, 3 

and 6 using the index 2,c kR  (the red dashed line denotes the upper limit of 2
,c kR ). 
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Figure 9 Variable importance in the projection plots for (a) Variable 5 and (b) Variable 8 (the 
black line is the criterion to determine the quality-determined phases). 
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Figure 10 Analysis of cumulative quality prediction for (a) Phase 2 (b) Phase 3 and (c) Phases 2 
and 3.
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Figure 11 Comparisons of prediction accuracy for different methods and testing batches. 
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Figure 12 Different process variations evaluated by indexes , ,s c kR  and , ,d c kR ( s,c,kR  reveals the 

repetitive quality-relevant information and , ,d c kR  reveals the dissimilar quality-relevant 

variations). 
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Table 1 Eleven process variables of IM process. 

No. Variable’s descriptions Unit 

1 Valve 1 % 

2 Valve 2 % 

3 Screw stroke mm 

4 Screw velocity mm/sec 

5 Ejector stroke mm 

6 Mold stroke mm 

7 Mold velocity mm/sec 

8 Injection pressure Bar 

9 Barrel temperature zone 3 °C 

10 Barrel temperature zone 2 °C 

11 Barrel temperature zone 1 °C 
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 Sequential quality-relevant phases are obtained and values of tunable parameters are 
properly determined to avoid the uncertainty. 
 The type of quality index is judged in advance to determine whether it is of cumulative type. 
 Subspace at each time is decomposed to probe into the variation that contributes to 
cumulative quality effect. 
 Critical-to-cumulative-quality phases are identified for inter-phase cumulative quality 
analysis. 
 


