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Materials Engineering, The University of Leeds, Woodhouse Lane, Leeds LS2KJT,
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Abstract—Quality analysis and predictiohave been of great significance to ensure

consistent and high product quality for chemical enginegsnogessesHowever, previous
methods have rarely analyzed the cumulative qualityteffbch is of typical nature for batch
processes. That is, with time development, the progasation will determine the final
product quality in a cumulative manner. Besides, they cagetan early sense of the quality
nature In this paper, a quantitative index is defined which cankchbead of time whether the
product quality result from accumulation or the additibswccessive process variations and
cumulative quality effect will be addressed for quality asiglyand prediction of batch
processes. Several crucial issues will be solved to exfiie cumulative quality effect. First, a
guality-relevant sequential phase partition method is pexptusseparate multiple phases from
batch processes by using fast search and find of density pleatering (FSFDP) algorithm.
Second, after phase partition, a phase-wise cumulgtiadity analysis method is proposed
based on subspace decomposition which can explore theepetitive quality-relevant

information (NRQRI) from the process variation at etcle within each phase. NRQRI refers
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to the quality-relevant process variations at each timeate orthogonal to those of previous
time and thus represents complementary quality informattich is the key index to
cumulatively explain quality variations time-wise. Thifghocess-wise cumulative quality
analysis is conducted where a critical phase selediategy is developed to-identify
critical-to-cumulative-quality phases and quality predictions fronicadiphases are integrated
to exclude influences of uncritical phases. By the level cumulative quality analysis (i.e.,
phase-wise and process-wise), it is feasible to judge whtbequality has the cumulative
effect in advance and thus proper quality prediction modelbe developed by identifying
critical-to-cumulative-quality phases. The feasibility and - performantethe proposed
algorithm are illustrated by a typical chemical engineeprugess, injection molding.

I ndex—cumulative quality analysis, subspace decomposition, diiticese selection, batch
proceses
1. Introduction

Batch processes have  experienced rapid development andnédeao important
manufacturing modef producing high-value-added products through process repetition in
chemical engineering industry[\Vith the nature of quickly responding to changing market
demand and customer requiremepditch processes have been widely applied in specialty
chemical biomedica)] semiconductqretc[2]. Caused by process disturbances and batch to
batch variations, low reproducibility brings a great chajemo ensure the consistency of
product quality. Besidegor many batch processes, measurements of product qualiiy a
general not available until the end of a bafthus online quality prediction technology is
indispensable to guarantee high product quality and improve preffagsncy for batch
processes.

Benefiting from the development of data acquisition andage technologies, tedriven

multivariate statistical methods[3-9] have attractedeasing attention. Only using process
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data, multivariate statistical methods have been widesd to develop prediction models,
including partial least squares (PLS)[7], canonical correlatioalysis (CCA)[8], etc. These
methods overcome the disadvantages of the first pienanodels, which are time-consuming
and require in-depth process knowledgeaA extension of PLS algorithmulti-way partial
least squares (MPLS)[9] was proposed for batch procesdaswas commonly regarded as a
milestonein quality prediction. In MPLS, three-dimensional process aaatrixis unfolded
batch-wise, which keeps the dimension of batch direatiechanged, and then a prediction
model is developed by performing PLS between the batchum&sded process data and
corresponding quality data. However, there are two obviawlziicks in MPLS as pointed out
in previous work[10-12]. On the one hand, the entire batch-wigolded process data are
employed for process modeling so that the prediction acgureavily relies on the estimation
of unavailable future data for the online purpose. On the btm&, it neglects the multiphase
characteristics of batch processes, which brings fifieudly for process understanding and
may lead to inaccurate prediction. Sequentially, a sefi@mprovements[13-15] have been
developedin order to avoid estimatg future data, Randolf etl.[13] suggested the separation
of time-slice loading and weight coefficients from dbatvise unfolding based moldéor
online prediction. Aiming at the same problem, Chiua€fl4] proposed a methodyb
performing elastic net on the batch-wise unfolded prodatssand quality data.h€ values of
calculated coefficients are used to evaluate the imp@&tahsampling times and process
variables. However, batch processes, in general, ogerateequence of physical phases and
each phase may have its specific characteristic[15]s Ihoticed that process variable
correlations, as well as the influences on quality, lst@gar within a phase while may haae
significant difference between different phaddewever, the above mentioned methods[13,
14] treat entire batch as a single subject without ekmothe changes of process

characteristics over different phases.



As an important feature of batch proeesghe multiphase characteristic has attracted
increasing attention[16-26]A class of phase partition methods[16-21] based on expert
knowledge or process analysis were proposed, such as indizatable method[16],
multiblock modeling technique[17] etc. In order to overcome diependence on process
knowledge and partition the phases automatically, data-drivesepsartition algorithms have
been paid special attention[22-30]. Lu et al.[22] put forward shie-PCA algorithm by
clustering those sampling points that have similar varigoleelations into one phase
Sequentially, sub-PLS[23] was proposed for online quality predict@onsidering the
between-phase transition patterns, the soft-transitioltiple PCA method[24] and an angle
based phase partition method[25] were proposed. For theteds, variable correlations or
process correlations are clustered by k-means algorithnghwdoes not take the time
sequential property into consideration. Therefore, iniphbhse partition results may be
discontinuous, which bring heavy burdens of post-processemacho et al.[d6recursively
divided the batch cycle into phases at the points wherprddiction error achieves minimum.
Yu et al.[27 employed Gaussian mixture model to cluster the sampimestinto different
classes. As pointed by Zhaoa{24], the influences on monitoring performance should also
be considered during phase partition as well as changeariable correlations. Thus
step-wise sequential phase partition algorithm was progosélilt detection by checking the
change®f monitoring statistics. A quality-relevant sequentidgdpartition method (QSSPP)
was also developed for quality prediction[28]. However, #®ults of phase partition are
greatly influenced by a tunable parameter, i.e. relaxingpfa&esides, the phase-based
prediction model isolates the influences of each tim@roduct quality without considering
the cumulative quality effect. Influences of process vana on quality are in general
increased cumulatively with time evolution which is tedas cumulative quality effect. Zhao

et al.[29] used each phase as the basic analysis objeciMnarh the local contributions of
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different phases are stacked to explore the cumulativetyjedfiect. However, they did not
evaluate the significance of different phases. In taetsignificance of different phases is not
necessarilyn accord with their operation sequence. Uncritical phalsesld be removed from
model development to avoid introducing undesirable distudsaimto the modef they have
no significant influences on product quality. Zhao et al.[B8]ted each phase as a single block
and analyzed their priority for quality interpretation bgcking their different contributions to
gualities. However, both work[29, 30] did not explore how thendative effects change
time-wise within the same phase. Besides, they did oosider the problem of online
application by using the measurement of the entire phase

From the above analysis, the cumulative quality ethastnot been well analyzed time-wise
within each phase and explored for online quality predictdesides, several problems are
noticed. First, phase partition results of QSSPP[283abgect tcatunable parameter (relaxing
factor), which directly leads to uncertainty of phaseiti@ant Second, the process variations at
each time present both similar.and dissimilar influenceguality in comparison with previous
variations. They explore different quality informationdashould be well decomposed and
separated from each other for analysis. Third, diffepdatses may contribute differently to
cumulative quality effects in which only the critidalcumulative-quality phases can reliably
provide cumulative quality information and thus should berséga from those uncritical ones.
In order to solve the above mentioned problems, a subdeaoenposition and critical phase
selection method is proposed for cumulative quality arsafgs multiphase batch processes
First, multiple phases are separated from the perspecfiquality analysis in which the
tunable parameter is determined by using the fast searclndnof tlensity peaks clustering
(FSFDP) algorithm[31]. Second, after phase partition, tresorement space at each sampling
time is decomposed into several parts to explore thdardift influences on quality. Here, a

guantitative index, termed non-repetitive quality-relevafdrmation (NRQRI), is defined to
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explore the quality-relevant data variations at eacte tthat are orthogonal to previous
variations. This part of variations can explain conglletdifferent quality variation in
comparison with previous process variations, from whiehgthalities will thus be interpreted
accumulatively along time direction. Third, a recursivgoal phase identification strategy is
developed from the perspective of cumulative quality aralgich can sort critical phases
that are of significant cumulative influences on gyadihd then the final‘cumulative quality
prediction is made by integrating the results fromaaltphases.

The proposed algorithm has the following advantages:

() It can get sequential quality-relevant phase partitionltseand propdy determine the
value of tunable parameters to avoid the uncdstahphase partition results.

(2) It can judge the type of quality index in advance to determimether it is of cumulative
type and properly decompose the data space at each tipreld® into the variation that
contributes to cumulative quality effect.

(3) It focuseson the critical information for cumulative quality dyss and excludes the
influences of unimportant phases by identifying critical pedsom the whole batch run.

The remainder of this paper is organized as follows. The dethil®e proposed method are
described in Section 2, including quality-relevant sequemtiase partition time-wise
subspace decomposition and the selection of critical pHaseumulative quality analysim
Section 3, lhe feasibility and effectiveness of the proposed methodllastrated through a
typical multiphase batch process, injection molding ec€onclusions are drawn in the last
section.

2. M ethodology
2.1 A quality-relevant sequential phase partition method
Here, QSSPP[28] is used as the basis for quality-relgvaase partition. Besideshe

undesirable influences of relaxing factor on phase pariti@dSSPP method is overcome by
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employing the fast search and find of density peaks clugtatgorithm (FSFDR)In fact, in
our previous work[32], the adjustment of the relaxing fabtsralready been studied and the
concrete steps are given in Appendix for readabilitye main difference between this work
and the previous one is that the process is partitionedtfie perspective of quality analysis
here instead of fault detection. Before introducing piese partition algorithm, data
preparation is needed.

In each batch run, assume tligtprocess variables are measured onlink-at, 2,..K

time instances throughout the operation cycle apdjuality variables are obtained offline
After | batches, a three-dimensional array of process da(axJXx K) and a
two-dimensional quality matrixf (1xJ, ) are formed, as shown in Fig. 1. Split the data array

X along the time dimension artd time-slice data matriceX, (I xJ, ) are obtainedwhere
subscript k is the index of sampling tinhen, each time-slice data matix, andY form

the time-slice regression data pg¥,,Y } k €[1,K]. {X,,Y} is the basic analysis unit, which
covers multiple batches observed at each sampling Eoméher, ime-slice regression model
refers to a model developed l{))(k,Y} using basic PLS algorithm. The variables at each time
are then preprocessed to have zero mean and standard dewvidtite aormalized data are
still noted as{X,,Y} for simplicity.

In the present work, an assumption is that all bat@re synchronized, and key features
occur at the same time. Therefore, observations wetlsdime time stamp are comparable and
can be used for model development. If the process datkqgaal length, the proposed method
can be directly used. On the contrary, several metlwdsatch trajectory synchronization are

needed as pretreatments to solve the uneven lengthiprcdaleh as instrumental variable[33],

dynamic time warpin@4], and multisynchro[35]instrumental variable method is suitable
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when indicator variables that indicate process progmessad of process time are available. If
such process knowledge is not available, dynamic time warpam be used when the
beginning and end points of phases in the concerneddsaach similar. Multisynchro method
is suggested when uneven-length problem is complicatetdiochwhe key process events may
occur at the different time of process evolutidinerefore, this method can-achieve better
performance for unequal batch processes with multiphesacteristics.

The specific phase partition procedure with adjustment lakirgy factor is described as
below.

Step 1 Time-slice based PLS modeling
Perform PLS algorithm ofX,,Y} ke[, K] and the regression coefficients of each
time-slice regression model a® . Evaluate the prediction performance of timeeslic

regression model at time k by the indgxoot mean square error (RMSE), which is calculated

as follows,

5 : (1)
RMSE =23 (%, = ¥y)

|
i=1 j=1

where ¥, is the prediction of thé"jquality indexof the {" batch at time k which is th¥ fow

and [*column ofY,, y;, is the real value of th& jguality variable of the'i batch.

Step 2: Time-segment based PLS modeling

From the beginning of batch process, add the next tirne-déita matrix to the existing ones

and unfold them variable-wise within the concerned tinwdore i.e. X, (lkxJ,), where
subscript v indicates variable-wise data unfolding. Therange the quality dat‘ak(lkay)
in the similar way by duplicating the quality matﬁk(l ny) to have the same row dimension

as X, . Perform PLS or{XV,k,Yk} and obtain the regression coefficidt . Quality can then
8



be predicted foiX, at each time up to k using the time-segment madig) (At each time, the
time-wise RMSE index defined in Eq. (2) is then upda&sMSE,, which can evaluate the
performance of the time-segment model.

Y, =X,0,,

L Jy 2 )
RMSE, =lel( Wi = Y, )

where ¥, ; is the prediction value of théhjquality indexof the th batch at time k using

time-segment model which is the elementgf .

Step 3 Comparison of prediction error

CompareRMSE, with RMSE, , within the concerned time region. RMSE, , <« RMSE

in which o is the relaxing factor reflecting the loss toleranceprddiction accuracy of
time-segment in comparison with time-slice models,eains that time-segment model has the
similar prediction performance with time-slice model. Updaas k+1 and repeatept 2 and 3.
Otherwise, fi there are three consecutive samples satisfying the reldtjons

RMSE,, >a RMSE from time k it means the prediction relationship has significantly

changed. The current time k is denoted as the phaséigmatime k from which we can
initially get a new phase. To avoid the influence of relgxactor, go to Step 4 to search for the
optimal value ofx.

Step 4 The updating of relaxing factor

The tunable parametet)(has a great influence on the phase partition restitte value of
a is large, the time-segment model is allowed to be lssuracy as calculated by
RMSE,, > 2 RMSE, and more time-slice data magswill be allocated into the same phase
On the contrary, if the value afis small, the process correlations will be separatedniore
different phases. Therefore, its value should be prppetermined to avoid the uncertainty.

9



The FSFDP algorithm[33shown in Appendix is adopted here to determine whethewutnent
o can be increased. The initial valuexdé set to be one. Regression coefficientk €[1,k ])

that presents process correlations at each timapsoged as the analysis object. The number
of clusters is determined based on two indices, densityligtahce where cluster centers are
recognized as the points that have anomalously large distanaca high local density. More
than one cluster reveals that different process ctinetaare presented in the time-segment. If
there is only one cluster is identified, it reveals thatprediction relationshgstay the same
within the concerned time-segment. Increasevéhee of relaxing factor byxz=a + A where the
parameter A is the step length. Go back to Step 2 and update the phasiepagsult. Repeat
the Steps 2 through 4 until the number of clusiedarger than one which means different
prediction relationships are covered in the current seggnentThus, the previous value af
should be chosedenoted as ', and the time-slices before &re assignetb a phase.

Step 5 Data updating and recursive implementation

Remove the first phase and employ the remaining tinte-gliata as the new input.
Recursively repeat Steps 2 through 5 to find the remaining phasgehe corresponding values
ofa .

Based on the proposed phase partition method, multipkeplzae separated from the batch
cycle and the proper value @fs determined for each phase. It is noted that foemifft phases,
the relaxing factor may have different values.

2.2 Subspace decomposition for phase-wise cumulative quality analysis

Considering different phases may act differently and catimely on quality variability, the
phase-based cumulative analysis can help to improve proedgssstanding and capture how
these phases contribute to the quality variability. Basguhase partition results, cumulative
qguality analysis is first implemented within each phasexggore different cumulative quality

effects over different phases. Here, a subspace decoimpa@dgorithm is proposed to explore
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the process variations of each time-slice data maased on the following recognition: (1) the
process variations at each time present time-varyihgeinées on quality although they have
similar quality effects; (2) the time-varying quality-relevavariations reveal different
influences on quality which should be well extracted and togectlimulative quality analysis.
The non-repetitive quality-relevant information (ternadNRQR), is extracted at each time
to explore the time-varying influences on quality. This pasasfations can explain different
guality information in comparison with previous processat®ns, from which the quality
will thus be interpreted accumulatively along time dittiThis part of information can also
be used to indicate the quality type. If NRQRI is zero,qinity-relevant process variations
are quite similar with each other and present similar queidterpretability which do not tell
any new quality information along time direction. Otheeyithe process variations can
explain new quality information with time evolution andgththe quality index is cumulative.

To extract NRQRI, time-slice data matrk , is divided into four different subspaces in

each phase using the proposed subspace decomposition algsshiown in Fig. 2, where the

subscript ¢ indicates the phase number. ARES algorithm is performedn eachregression

data pair{XC’k,Y} to initially extract the quality-relevant variatiorf((,k) from the time-slice

data space at.each tingecond, similar quality-relevant variations (. ) are extracted within

each phase by data reconstruction, which imposes repétifivences on quality. Third, the

time-specific variations X, . ) that reveals dissimilar influences on quality are exgldsy

removing the similar variations¥; . ) from )A(C,k, from which, the final quality-relevant part is

extracted by post-processing PLS results using CCA digaritThe specific subspace
decompstion is described below.
(1). Extraction of initial quality-relevant variation

RegressX ., againstY using PLS algorithm to develop time-slice regression model.

11



Tc,k = Xc,kR c,k
Pc,k = (Tc,kTTc, k)_ch, kTX ¢ k
kc,k = Tc,kpc,kT

. 3
Xc,k = xc,k + Ec,k

where R, (J,x R) is the weight matrix to calculate latent variables¢)Mrom X, ,
T.«(1 xR,) is the matrix containing the LVs which are extracted fithwn process variables
and used to explain qualities at each tifRg,(J, x R) is the loading matrix foX_,, andR,
is the retained number of latent variables.

For PLS algorithmthe initial quality-relevant variations)A(C‘k) are extracted from the
time-slice data spaceX(,) and the residual matrix & .

(2). Extraction of similar quality-relevant variations
Similar process variations describe the repetitive ptiedi information at the current time

in comparison with the previous process variations befo k which can be extracted from

the initial quality-relevant parf(cvk.

Use T, to explain previous quality predictioi

c

. Using the ording least square (OLS):

P(:kT = (Tc kTTc,k)ich kT?c k-1

o T e e e T (4)
Y T P

(:,k—lz ekl ok
whereP., is the regression coefficient that used for calcujapirevious quality prediction
that can be explained at the current time.

A

Y, .. represents the quality information that can be empthby process variations at both
times k-1 and k, revealing repetitive quality-relevant variatiofiisen perform PCA or’?;kfl

to get orthogonal scoresf'gkflz\?;kfﬂc‘k) with all principal components with nonzero

12



variance retainedl'he loading matrix is noted d3_, , where the subscript | indicates the

ck?

decomposition.

The scores'IA';kfl are then used to explain the repetitive part of the lirguiality-relevant
variation (X, ,):

P. .= (T*, 7TT*c,1e1)4 T*c,lelx .k (5)

where X, , reveals the repetitive information ﬁ(lcvk that exists in previous process variations

described by)A(cykfl, P... is the coefficient used to regress the similar influebetsveen the

,C.k

*

c,k-11

initial quality-relevant prediction process variationslahe prediction valug/ and the

subscript s is used to indicate the similar quality-releirghtence.

(3). Extraction of dissimilar quality-relevant variatson

SubtractingX. ., from >A(C’k, the remaining part is denoted ¥s_, , which does not contain

s,c k
any repetitive information in comparison with processatmms before k and the subscript n
stands for the non-repetitive quality-relevant informatiConsidering that PLS scores may
cover quality-irrelevant variations since it maximizese tlcovariance[7], PLS-CCA

algorithm[8] is employed to extract the final quality-relev@art fromX__. according to

n,c,k

Eq.(6).

Tn,c,k = X n,c, kR nck (6)

Td,c,k =T Wd,ck

n,c k

whereR . is the weight matrix to calculate LVs froX, ., by using PLS algorithm

n,c,k

T, .« is the score matrix used to explain the process vangat@andW, ., is the weight

matrix to extract the strict quality-relevant proceasations by using CCA algorithm

respectively, and the subscript d presents the dissimilaryualitvant influence.
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ThenT, . is used to explairX, ., by using OLS algorithm.

n,c,k

dck (Tdck dc:k) l-I-dck
Xeex=Tae P

d,c k dc:k

(7)

where X, ., denotes dissimilar quality-relevant variations in comparigith its previous

time-slice that tell the NRQRI.
(4). Cumulative quality prediction

Up to the current time, ikthe cumulative process matrix is obtained@y, =[T ., 1 T4

and CCA algorithm is then used for cumulative quality mtéah as follows:

T =Co W .
pck (Tpck pc,k) 1quk (8)
Ac,k = p,c,kQ p,c,k
where W, is the weight matrix used to derive the quality-relevawic@ss information
(T,..) fromthe cumulative process matrix by using CCA algorigmd subscript p stands for

prediction, andQ, . is the regression coefficient to calculate the finahalative quality

prediction \?C,k- It is easy to derive thak, ., is orthogonal withT , , which thus tells the

non-repetitiveLV s in comparison with previous time.

The above procedure is implemented at each time uatitites at the end of the current
phase. In each phase, to get the cumulative quality predidtie key points are to derive
NRQRI and continuously combiriewith this part of informatiomt the previous time. In this
way, only the new quality information will be further expled from k-1 to k. The phase-wise
cumulative quality prediction is thus obtained at the ehdach phase. At the end of each

phase, the quality-relevant process informatidp, (. ) is available to describe the cumulative

effects on quality of each phase.
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It is recognized that different phases may have diffesignificances and only some of them
are critical to cumulative quality predictiofhe effects of uncritical phases should be removed

from model development to avoid undesirable disturbance shye have no significant

influences on product quality. IndeRzyk is employed to evaluate the prediction accuracy at

each time within each phase,

D (Shen—Y)

Ry =2—— ke[l K] 9)
(v, -y)

i=1

where ¥, ., is the prediction of thd"ibatch in the '€ phase at time, ky. is the real value of the
i" batch, y is the mean value over batches dqdis the total sampling times in phase c.

F{k is an index to measure the prediction accuracy atKierel it varies from zero to one.
Within the normal region, a large value Bik indicates high predian accuracy. Besides,
calculate the index\R’ = F{Kc — I{l which presents the changes of prediction accuracy in
phase ¢ under the cumulative quality analysis, Wtﬁégedenotes the prediction accuracy at
the phase beginning an@ch denotes the prediction accuracy at the end of the pliase.

AR’ >0, it means that there are time-varying process vaniaiio Phase ¢ to improve
prediction value and cumulative quality effect existghis phase. Otherwise, there are no

process variations related to cumulative quality effect iIS@IGaF{fKC and AR? are combined
to evaluate the importance of each phase and judge tibalgrhases. HF{KC is large than the

predefined threshold value and\R*>0 , this phase is determined to be a

critical-to-cumulative-quality phase. Otherwise, it is not criteatl should be removed from
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the following cumulative analysis. Here, the threshcdue forFﬁKC is defined using the

F-statistics[23] with different significance factors.
2.3 Process-wise cumulative quality analysis

Based on the phase-wise cumulative analysis, crpplcases have been identified in which
T,.« describes the phase-wise cumulative effects Bhd reveals the cumulative phase
prediction accuracy for the concerned phase. A strafegfycan combine the cumulative
effects of different critical phases will have to beeveloped. For the
critical-to-cumulative-quality phases that have been identifiedilvs&ction 2.2, the following
cumulative phase fusion strategy is described as below:
Step (1): The first critical phase is used as théalmtnalysis unit. Extract the non-repetitive
guality-relevant information (NRQRI) from the next criligsdhase using the same subspace
decomposition algorithm as that in Subsection 2.2 in whigh dhalysis unit is the

quality-relevant process informationf( . ) instead of the time-slice used in phase-wise
cumulative analysis. The quality prediction accuracyvisliumted byR? for the integrated

critical phases and the fused quality-relevant procéssmation (T, ) are extracted using Eq.

(8) revealing the quality-relevant process information ftbencumulative process matrix.

Step (2): Compard?’ with R* index for the concerned two critical phases usindatewing

judgment rule:

Case |: IfR? is larger than both values, it means that the twiwarphases can be combined to
improve quality prediction. The combined phase informatimul replace the initial analysis
unit with the fused quality-relevant process informatidn)(

Case II: If R? is smaller tharR? index of the second critical phase but larger tRarindex of
the first critical phase, the performance of cumulagjuality analysis after phase fusion is not
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as good as that of the second critical phase. The tvgeplshould not be fused and the second
critical phase should replace the initial analysis unit.

Step (3): Update the initial analysis unit and repeat theeatwo steps until all critical phases
have been considered.

The output is the selected critical phases that shouldntegrated for process-wise
cumulative analysis to get the final quality predictionsiBes, how to combine these phases
are also determined in which the subspace decompostmerfiormed for the selected phases
using the quality-relevant process information insteadnoé-slice analysis unit to integrate
the cumulative effects.

It is noted that non-critical phases are not used farga®wise cumulative quality analysis
here For the processes that are dominated by critical ph#segroposed method can be
directly used for cumulative quality predictiddowever, for other processes, all phases may
contribute to final product, that is, operation at a succeguliage may remedy the run and
final product. Without changing the basic idea, the proposéaoaean be readily extended to
such processes by employing all phases for process-wisdativeguality analysis instead of
only considering the critical phases.

2.4 Online cumulative quality prediction

Online cumulative quality prediction is only made in eachcali phase by adopting the

predefined cumulative quality prediction models. Here, tvenalized new sample at th& k

sampling time of one criticab-cumulative-quality phase (c) is denotedxas(J, x1). The

specific steps are given below:

a) Calculate the initial quality-relevant process variatiQn

(10)
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whereR_, is the weight matrix to calculate LVs ai," is the loading matxiand they are
given in Eq.(3. Then the scoret, , will be used in Step (b).

b) Explain the quality predictiory , , usingt,, as follows

c, k-1

Verr =tePec (11)

c,k’ ck

where P., is the regression coefficient in Eq.(4).

c) Reconstruct the similar quality-relevant process vanatiq

Xs,c,k:y* P P . :fk P \ (12)

c k1 lck sck

where P is the

lck

is the loading matrix used to extract the main vammetiofy P

ck-17 s,c k
coefficient used to regress the similar influence betweemitiee quality-relevant prediction
process variations whidh given in Eq. (5).

d) Subtractx, ., from X_,, the remaining part is denoted gs ,;

s,c k
e) The non-repetitive quality-relevant information (NRQRIt#culated below,

thox =X R

n n,ck * nck

td,c,k:tn,c,de.Qk (13)

_ T
Xd,c,k _td,c, de,ck

where R ;. is the weight matrix to calculate LVs frory ., T, ., is the score matrix used to
explain the process variations using PLS algorithm, Ad  is the weight matrix to extract

the strict quality-relevant process variations using C@Ardhm. These coefficients are given
in Egs. (6) and ()7
f) Update the cumulative matrix &, =[t ., 1 t4.d;

g) Online cumulative quality prediction is calculated,

tp,c,k = Cc,kWp,c,k

\ (14)
yc,k = t p,c,kQ p,QkT
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where W__, is the weight matrix used to compress the qualityweeleinformation into score

p.c,k

matrix andQ_ ., is the regression coefficient to calculate the finamulative quality

,ck

predictiony_, that has been given in E().

3. lllustration results
3.1Process description

In this section, the efficiency of the proposed algoritismllustrated through injection
molding (IM), which is a typical multiphase batch pregeA complete production cycle of IM
involves the stages of mold-close, filling, packing-hadgdimplastication cooling and
mold-open. Through process repetitions, IM produces vadqoastities of plastic products
and it plays a significant role in polymer processing ff@ manufacturing industry. Before
production, thdM machine will be pre-heated to provide a high-temperature envirgriare
barrel, which transforms raw material into melt stiteld closes during mold-close stage and
plastic meltis injected into the mold cavity in filling stage. After the ohad filled with the
plastic melt, the packing-holding stage is ing@tDuring this stage, niieenflow is prevented
out of the mold and the additional material is comphdteo the mold to make up the
shrinkage associated with cooling. Sequentially, the mplémer is conveyed to the front of
the barrel by screw rotatian plastication stage, which is the initial period of coglstage
during which the material is cooled inside the mold unisl iigid enough to be ejected. Finally,
the mold is opened and the plastic product is taken out[36].

Process data dM can be online collected from the transducer placed imidhine and
mold. Quality indexes, such as part weight, are readilysured offline at the end of each
batch. A series of studies have been conducted on INbt@ pineir effectiveness[37] ahid is
regarded as an ideal object for application and validatfotined proposed quality-relevant

phase division and quality analysis strategy. Therefor® convenient to analyze the results
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using IM because prior process knowledge can be usedsasaraldthe effectiveness of the
proposed algorithm isay to be proved.

In this study, eleven process variables are measure@distpr variakes, which are given
in Table 1. The quality index is part weight, which is offimeasured at the end of each batch
using a high precision electronic balance with a resiudf 0.01g The material used in the
experimentss high-density polyethylene (HDPE). In total, eighty-four nakrbatches are

carried out for modelingThe batches are of even duration (634 samples in thisiexqe)

and the process variables data Xr84x 11x 634. Correspondingly, the quality data are

Y (84x 1). Fifty of them are used as training data for‘phase partitiodeling and prediction

model is developed. The next twenty of them are usedlastan data to choose the best
parameters for prediction model, and the remaining batahe employed as testing data to
evaluate the prediction accuracy.

3.2 The Results of Phase Partition

Fifty batches are used as training data and the modeling atataprocess data
X(50>< 11x 631) and quality datay (50x 1). By splitting the three-dimensional matrix along

time direction, 634 time-slice data matsxare formed. Normalize these time-slice data
matrixesas well as the quality data and 634 time-slice data regrgssicnare prepared. Then
perform the PLS on each timeediregression pair and time-slice prediction models are
developed The number of LVs at different timés determined by cross-validation to obtain
the best quality prediction. The numberlafs used for the proposed phase partition at each
sampling time is unified to be four which appears most.

In the proposed method, time-slice data regression paunded variable-wise to forthe
time-segment data regression pair and develop regressmelsAt each time, the prediction

errors of time-slice models and time segment models@rpared, which are represented by
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RMSE, and RMSE,, respectivelyThe time segments are partitioned at the sampling ppint k
where the relationshilRMSE,, > o RMSE, is consecutively satisfied according to the rule

given in Step 3 of the Subsection 2Hdbwever, the partition phase results greatly depend on
the value of the tunable parameter, In the proposed phase partition method, a prapzmn

be determined using the adjustment strategy based ors#@H: Hereg is initialized to be

one for convenience. After initial phase partitians adjusted by thetep length (A=0.1) and

the value ofA yields an accurate phase partition results[32]. Findiy phases are partitioned

at the critical point where the number of cluster asnthanges from one to more with the
adjustment of the relaxing fact@uggesting that the process correlations change from one to
more.

For the adjustment strategy based on the FSEDBter center is identifieglsthe point that
simultaneously has a large distance and a large dengityJ8ihg the proposed method, it is
observed that the number of cluster centers changes dine to two when the value of
changes from 1.9 to 2. In Fig. 3(a), two points have ldigiance in the decision graph for the
first phase whem is 1.9. However, one of them (marked by red rectandtes very small
density values. Thus, only one point (markedalned ellipse) simultaneously exhibits large
distance and density valudherefore, one cluster center is observed using theidegraph
If weincreasex by 0.1, two points simultaneously exhibit large densitydisthnce values in
the decision graph of Fig. 3(b). Based on the rule opttase partition procedure, the proper
value ofa is 1.9 for the first phas&loreover, the indexis also helpfuto determine the cluster
number, which is defined as the product of distance and ge3iister centers have the
largesty values and will be far away from other data points. Comgahia values of in Figs.
3(a) and (b), the number of cluster centers changes dme to two, as marked by the red
ellipse, which also indicates that 1.9 is the proper vafue After the separation of the first

phase, the remaining phase can be identified similaniy,the specific phase partition results
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are presented in Fig. 4. Besides the first phase, treamgng process data are divided into five
phases. In each phase, there is only one clusterrceviieh means covering one kind of
process correlation. From the above analysis, theegntocess is automatically partitioned
into definite phases using the proposed method.

According to the proposed method, six phases are paettiamd the value of the relaxing
factor is properly determined, as plotted in Fig. 5(a) hingrevious work[32], the transition

patterns between adjacent phases are analyzed by theTipdéndex Tr, is defined asp, /5, ,
where p, is the density of the current sampling time calculatdeinA2), and 6, denotes the

distance in Eqg. (A3). Transition patterns are identifegamplingimes located at the phase

edge and the value of ind@x, is less than a predefined threshold (0.0001 is used hera@ and

denary logarithm is adopted to make the values easy tdis€&). 5(b), several points around
the edge of Plsas 1, 2 and 3 are lower than the threshélttording to the previous analysis,

transition patterns are identified if their valueslof below the threshold and they locate in the

edge of each phase. Therefore, quick transitegions exist in IM because only one or two
transition patterns are observed between adjacentghalsieh are not addressed in previous
research works.

For comparison, the results of QSSPP algorithm[28]paesented in Fig. 6 where the
partition results are influenced by the value of relaxingoiawhich however can not be
properly determined. When the value of relaxing factemall, more phases are partitioned
On the contrarya larger value of relaxing factor will lead to fewphases. Thus, the
determination of the value of the relaxing factor israportant issue thas directly relatedo
the phase partition results. Process knowledge is segefor QSSPP algorithm to help the
selection of this parameter when one wants to obtain mebkoresults. Howeveit, may be

impractical for an unfamiliar process.

22



3.3 Cumulative quality analysis results
Phase-wise cumulative quality analysis is conducted as shoWwiy. 7. The number of

retained LVs is determined by validation data and the bedicpm accuracy is achieved

when it is four. The prediction accuracy at each tinevaduated by the indeR{k givenin EQ.

(9). Combining the indexe®?, and AR?, Phases 1, 2, 3 and 6 are judged to be
critical-to-cumulative-quality phases. The threshold Fljt< is 0.657 when the significant
factor is 0.1[23] The values oiRiKc are 0.7676 for Phase 1, 0.9562 for Phase 2, 0.8966 for

Phase 3, and 0.9377 for Phase 6. The valuesRbffor the four phases are calculated as
0.0876 (Phase 1), 0.1903 (Phase 2), 0.0481 (Phase 3) and 0.2626]Preseectively. All
the values ofAR’ are larger than zero, revealing that non-repetitive tyuadievant

information (NRQRI)canbe continuously extracted to improve the prediction accuaady

the quality index, i.e. part weight, is of cumulative-qyahipe. It is noted that the values of the

index F{k are larger than one after the"gample in Phase 4 and thé"Z&mple in Phase 5.

Since the normal region dﬁk is from zero to one, the cumulative-quality predictiesuls

become unreliable in Phases 4 and 5.

The critical phases are then fused using the proposedtlag@s shown in Fig. 8. First, the
first two critical phases are combined in Fig. 8(a)eeding the cumulative-quality effect of the
two phases. Using the judgment rule in Subsection 2.3, Phaseexcluded from phase
integration since the prediction accuracy using the combinesephformation satisfies the
rule in Case Il described in Subsection 2.3. Phasaszis for the following analysis. In Phases
8(b) and (c), the critical phase fusion is conductedhferemaining critical phases and Phases
2 and 3 are selected finally and should be fused for predesscumulative analysis.

According to process knowledge, Phases 2 and 3 are intHacfiling stage and the
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packing-holding stage, respectively. In the real cagg injection pressure and large ejector
stroke (i.e., large packing pressure) will push more mdlb@ninto the mold cavity and lead to
heavy part weight. Thus, injection pressure (Variable #8) vi#e ghe most significant
contribution in Phase 2 and ejector stroke (Variable #5) playsdst important role in Phase
3 which reveals the changes of packing pressure. That istiamegressure in Phase 2 and
ejector stroke in Phase 3 determine the quality variabilitfle&eng the overall importance of
each variable on all of the response variables basegrianipal components, variable
importance in the projection(VIP)[38] method was employed cteeck the obtained
critical-to-cumulative-quality phase¥IP method was initially used to select critical variables
of which the average values of the squared VIP scoresrge one[39]. Sequentially, VIP
method has been used to identify important phases with MRjositam. Similarly, if the
values of squared VIP scores within‘a phase are largetloeephase is regarded as an
importance phase. Therefowith four principal components, VIP plots for Variables 8 &n
are given by applying MPLS algorithm as shown in Fig. 9. thlbdg. 9 (a) and (b), values of
squared WP arelarge than one in Phases 2 and 3 presenting these twcs @rasenportant
phases. On the contrary, Phases 1, 4, 5 and 6 are uninigahteses because the values of
squared VIP are small than one in these phdsess, the criticato-cumulative-quality phases
of the proposed method agree well with the results #WdiPnmethod. In practice, filling stage
(Phase 2) determines the amount of molten materjelst@d into the mold, which has a direct
relationship with the part weight. Because of materighkhge, packing-holding stage (Phase
3) will pack more molten flow into the mold. Thus, the resof the proposed method also
meet well the process knowledge, which indicating thes&ha and 3 are critical phases.
Fourteen batches are used as testing data to show the prdietion performance in
critical phases, including Phases 1, 2, 3 and 6. In Figh&@rediction results of a batch are

given in different phase# is easy to see that prediction accuracy in Phasesh@wn in Fig.
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10(a) is continuously improved and the last value almosbapf@sthe real value of the part
weight. However, the variation of the prediction vaisidarge. In Phase 3, as shown in Fig.
10(b), the variation of prediction is much smaller ttizat of Phase 2 and the prediction value
keeps steady in the late periddhe similar scenario can be observed for Phases 1 dih&6s,
by cumulative quality analysis, the quality prediction accyrg improved with time
evolution.

Besides, the process-wise cumulative analysis reandtpresented in Fig. 11 where Phases
2 and 3 that have been identified in Fig. 8 are fused to gdirthl quality prediction. For
comparison, MPLS[9] and sub-PLS[19], are also used to getetldof-batch quality
prediction. In Fig. 11, the squared prediction errors kttgal for three methods and fourteen
testing batches. The prediction error is the diffeedvetween the prediction value and the real
value. It is observed that the proposed method yields esnmkdiction errors in comparison
with the other two methods. In_contrast, MPLS preseaty large errors for some testing
batches, revealing worse generalization ability. It mayltdrom the fact that it includes all
phases for modeling which thus introduces some undesiralig/qualevant variations. For
sub-PLS, it presents better accuracy than that of MRLS~orse accuracy than that of the
proposed algorithm since the critical phases are singpilyreed with different weights.

Moreover, the proposed algorithm can help us to further uaakekrghe process. Here,
different process variations are accounted. Theifidex R ., is definedasbelow:

~ Strac(X, . X..\)
e Ztrac()A(cvaf(cyk)

(15)

where )A(C,k and X__, is given in Eq. (3) and Eq. (5), respectively; the syniaal indicates the

calculation of the trace of a matriX__, reveals the repetitive information hﬂﬁc,k that is

s,c, k
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covered in the previous time and thus the in&ex, represents the ratio between the repetitive

information and the total quality-relevant informationreg sampling time k.

In a similar way,R, _, is also defined by replacing, . by X which reveals the

s,c k n,ck ?

amount of dissimilar quality-relevant variations)?(qk in comparison with its previous time.

That is, it tells the new cumulative quality informatidn. Fig. 12, the two indexes are

calculated for Phases 2 and 3. Ind&x, decreases when the process enters into Phase 3 from

Phase 2 which agrees with the real case. That is, BH@se different influences on quality in
comparison with Phase 2, revealing less similar infolonatith that of Phase 2. In contrast,

the indexR, ., stays invariable throughout the two phases, revealingttbe aire dissimilar

guality-relevant variations that can be extracted aoriseely to further explain the quality

information Instead, using PLS algorithm, we can only evaluate theduR)_, and R, _,

which can not reveal whether the process is cumulatisiehaw the cumulative effect change
with the process evolution for the final quality prediotio
4. Conclusions

In this work, a cumulative quality prediction method ispgmsed for batch prosses It
provides definite phase division results which overcomarttigence of tunable parameter.
And the phase partition results are sequential within eatcin land require no post-processing.
Based on phase partition results, a mechanism faarthlysis of cumulative quality effeist
proposed. A subspace decomposition algorithm is developedtie piiw the non-repetitive
guality-relevant information from time-slice data matiox model development. Phases are
guantitatively classified into two types: the phases tietatical to cumulative quality effect
and the ones that are not. The final quality predictionus ttonducted by integrating the
critical phases. The proposed algorithm is illustrdigcan important chemical engineering
process, injection molding.
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Appendix

Adjustment of relaxing factor based on the FSFDP

The number of clusters is identified through the fastcbeand find of density peaks
(FSFDP) clustering algorithm[27], which can check how manytelusenters are covered in
the data obtained for the curreat Revealing the process correlations, the regression
coefficients®, k e[1,k’] of time-slice regression data pair can be used as the dzalysis
unit and the input of the clustering algorithm. The spec#resgiven below:

Step 1 Calculation of the distance matiix

Input the regression coefficient k [L k'], and calculate the Euclidean distarte

between two process correlatiobs me[1, k'] and@, ne[1,K ]:

J

R
dmn:\/ZZ(em(r’ j)_en(r!j))z m,nE[l,k*]
r=1 j=1 (A1)

<

where km andn are the indexes of sampling timesjsthe terminal time of the current phase,

R« is the retained number of scores, ahddenotes the number of process variables. The

distance matriD is then formed by all of the distancds,

dll d12 d:k*
|G e o da
e O o e

where ¢n=dnm.
Step 2 Calculation of the density,

Calculate the density of the kth time-slice regresdita pair by

K
pk — ze_(dkm/dc) (A2)

m=1
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where dis the cutoff distance and it can be determined accordiribet rules given in the

FSFDP algorithm.

Step 3 Calculation of the distancé,
Based on the density valyg, compute the distances() of each time-slice data pair

according to Eq. (A3).

5k _ N:p,>py n=l,..., (A3)

For the point with the highest density, is the maximum of g,. Otherwise,onm is the
minimal distance from the points that have a higheritdens
Step 4 Cluster center identification

Arrange the set dafio,, 5} k41, k] and the number of clusters can be identified in two

way: 1) decision graph, which pladg as a function ofn for each point; 2) index_ = p 0, .

In decision graph, cluster centers are recognized gmihts that have anomalously large d

and a high local densipm. Ranking the index, = p, 6., in decreasing order, when the value

of ymbecomes anomalously small from a rank order, the nuailmusters is identified[33].
Step 5 Relaxing factor updating
If the number of clusters is one, increase the vafuelaxing factor byon=a + A and output
the number of cluster center and the newhere the parameter A is the step length. On the

contrary, output the number of clusters and the valuevathout updating.
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List of Figure Captions

Figure 1 Three-way data analysis amdeislice regression data pairs.

Figure 2 Procedures of decomposing the time-slice data nawifour subspaces.

Figure 3 Phase partition results (a) the first phdsaw is equal to 1.9 (b) the first phase when

a is equal to 2.0 (Cluster centers are marked by red ellipses).

Figure 4 Phase partition results (a) the second phase when a is equal to 1.2 (b) the third phase
when a is equal to 1.3 (¢) the fourth phase when a is equal to 2.5 (d) the fifth phase when a is
equal to 1.3 and (e) the sixth phase when a is equal to 2.4 (Cluster centers are marked by red
ellipses).

Figure 5 Phase partition results and transition anatysthe proposed method (a) phase
partition results and (b) transition patterns analysis.

Figure 6 Phase partition results of QSSPP algorithm witérednt values of relaxing factor.
Figure 7 Phase-wise cumulative quality prediction resflssach phase using the indé{f{k
Figure 8  Process-wise _cumulative-quality  effect analysis tdetermine
critical-to-cumulative-quality phases for (a) Phases 1 and 2 (l9eBffaand 3 (c) Phases 2, 3
and 6 using the indeRfk (the red dashed line denotes the upper IimR@f).

Figure 9 Variable importance in the projection plots &r\(ariable 5 and (b) Variable 8 (the
black line is the criterion to determine the quality-deterchipleases).

Figure 10 Analysis of cumulative quality prediction for (eae 2 (b) Phase 3 and (c) Phases 2

and 3.

Figure 11 Comparisons of prediction accuracy for differeethods and testing batches.

Figure 12 Different process variations evaluated by indées and R, ., (R ., reveals the
repetitive quality-relevant information an®, ., reveals the dissimilar quality-relevant

variationg.
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Table 1 Eleven process variabt#dM process.

No. Variable’s descriptions Unit
1 Valve 1 %
2 Valve 2 %
3 Screw stroke mm
4 Screw velocity mm/sec
5 Ejector stroke mm
6 Mold stroke mm
7 Mold velocity mm/sec
8 Injection pressure Bar
9 Barrel temperature zone °C
10 Barrel temperature zone °C
11 Barrel temperature zone °C
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® Sequential quality-relevant phases are obtained and valuésnable parameters are
properly determined to avoid the uncertainty.

® The type of quality index is judged in advance to determinehghdtis of cumulative type.

® Subspace at each time is decomposed to probe into tretiarthat contributes to

cumulative quality effect.
® Critical-to-cumulative-quality phases are identified for inter-phasenulative quality

analysis.
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