
This is a repository copy of Stochastic modeling, analysis and verification of mission-
critical systems and processes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/113459/

Version: Accepted Version

Book Section:

Gerasimou, Simos, Mason, George Rupert, Paterson, Colin Alexander orcid.org/0000-
0002-6678-3752 et al. (4 more authors) (2015) Stochastic modeling, analysis and
verification of mission-critical systems and processes. In: 4th IMA Conference on
Mathematics in Defence. .

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Stochastic modeling, analysis and verification
of mission-critical software and business processes

By Simos Gerasimou1, George Mason1, Colin Paterson1, Alec Banks2,
Radu Calinescu1, Daniel Kudenko1 and Stephen Rowe2

1Department of Computer Science, University of York, UK
2Defence Science and Technology Laboratory, Ministry of Defence, UK

Abstract

Software and business processes used in mission-critical defence applications are often characterised by
stochastic behaviour. The causes for this behaviour range from unanticipated environmental changes and built-
in random delays to component and communication protocol unreliability. This paper overviews the use of a
stochastic modelling and analysis technique called quantitative verification to establish whether mission-critical
software and business processes meet their reliability, performance and other quality-of-service requirements.

1. Introduction

Modern military systems are intrinsically complex and sophisticated, typically comprising multiple components
with heterogeneous architectures that must operate seamlessly to achieve their goals. Many systems within
this domain are mission-critical and must comply with strict dependability, performance and other Quality-of-
Service (QoS) requirements. Typical military missions include deployment of unmanned military vehicles for
surveillance and battle-space characterisation, and management of underwater, sea and aerial vehicles through
a ship’s operations room (e.g. a Type 45 operations room). Failing to ensure the system compliance with its
QoS requirements could lead to catastrophic consequences, including severe environmental damage, significant
financial loss, or loss of human life.
The development of new military systems is typically guided by strict procedures aiming to assure that the

operation of these systems conforms to international safety and security standards. For instance, assurance
cases are used to provide (Defence Standard 00-56, 2007):

“a structured argument, supported by a body of evidence, that provides a compelling, comprehensible
and valid case that a system is safe for a given application in a given environment”.

Despite the strict procedures followed during the entire life cycle of software systems, stochastic behaviour is
an inherent characteristic of these systems. In autonomous systems, for instance, components may be prone
to failure, and communication protocols used for message transmission may be unreliable. Likewise, the pro-
cesses executed within socio-technical systems are well defined, yet operator behaviour may depart from that
prescribed due to oversimplification in the modelling phase and unanticipated environmental factors.
In this paper, we describe how a mathematically based technique called quantitative verification can be used

to obtain QoS assurance evidence for these types of software and business processes. Quantitative verification
(Kwiatkowska, 2007) is a technique for modelling and analysing systems that exhibit stochastic behaviour.
In particular, it is used to analyse QoS attributes such as correctness, reliability, response time, energy con-
sumption and resource utilisation. The application of the technique involves constructing finite state-transition
models of the analysed system. The states of these models correspond to system configurations that are relevant
for the analysed QoS attributes, and the transitions are associated with the possible changes between these
configurations. The transitions are annotated with probabilities or transition rates, allowing the specification
of discrete-time Markov chains and Markov decision processes, or continuous-time Markov chains, respectively.
Quantitative verification uses these models to establish QoS properties of the system specified formally in
temporal logic extended with probabilities and costs/rewards. Examples of such properties include the proba-
bility that a fault occurs within a specified time period, the expected response time of a service under a given
workload, and the expected energy usage of the sensing system of an unmanned vehicle.
Quantitative verification is traditionally used in off-line settings (Norman and Parker, 2014). In these settings,

the technique can evaluate the performance-cost trade-offs of alternative system designs or establish if existing
systems comply with their QoS requirements. A runtime variant of quantitative verification has been recently
proposed by Calinescu et al. (2012). This variant supports the continual analysis of autonomous critical systems,
to identify and recover from requirement violations or, in some cases, to predict and prevent such violations.

IMA Conference on Mathematics in Defence 2015

Stochastic Modelling, Analysis & Verification of Mission-Critical Software and Business Processes 2

In describing the application of quantitative verification and its runtime variant in the defence domain,
we focus on two prevalent types of military systems. First, we cover autonomous systems, which are capable
of modifying their behaviour in response to changes in operational context, environment and requirements.
Second, we look at socio-technical systems, in which human operators execute decision making processes.
We use realistic examples to illustrate how quantitative verification can support the modeling, analysis and
verification of key aspects of mission-critical systems and processes. We also explain how the technique can be
used to estimate system performance, suggest improvements and find weaknesses of such systems. Finally, we
describe how runtime quantitative verification can drive dependable adaptation in autonomous systems.

2. Preliminaries

The use of stochastic state transition models allows for the verification properties specified in formal logics.
Markovian models have been described as “the simplest mathematical models for random phenomena evolving
in time” (Norris, 1998).

2.1. Discrete Time Markov Chains (DTMCs)

A Discrete Time Markov Chain (DTMC) describes a state transition system in which future states of the
system are dependent only on the current state and the system is hence considered memoryless. Transitions
between states are labelled with probabilities that reflect the stochastic nature of the process. A DTMC can
be described formally as a tuple (Baier et al., 2008):

M = (S,P , s0, AP, L) (2.1)

where
• S is a countable, nonempty set of states
• P :S×S→ [0, 1] is the transition probability function such that for all states s such that

∑

s′∈S P (s, s′) = 1
• s0 is the initial state and
• AP is a set of atomic propositions and L : S → 2AP is a labelling function.

The memoryless nature of the system is defined such that

Prob{Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, ..., X0 = s0} = Prob{Xn+1 = sn|Xn = sn} (2.2)

where X0, X1, ..., Xn are successive observations of the system at time steps 0, 1, ..., n for all n and possible
states sn. A path π over M is a possibly infinite sequence of states S such that for any adjacent states s and
s′ on π, P (s, s′) > 0.

2.2. Markov Decision Processes (MDPs)

Markov Decision Processes extend DTMCs in the sense that they model probabilistic systems that also exhibit
nondeterministic behaviour. MDPs model systems in which time progresses in discrete time steps and in any
state a nondeterministic choice between probability distributions made.

Formally, an MDP is defined over a set of atomic propositions AP as a tuple

M = (S, s0, Act, Steps,AP,L) (2.3)

where the DTMC is extended such that:
• Act is a set of actions
• Steps : S × Act → Dist(S) is a (partial) probabilistic transition function with Dist(S) denoting the set

of all probability distributions over the set S.
In contrast to a DTMC, where the successor state is determined in accordance with the distribution proba-

bility over state s, i.e., P (s, s′) for s ∈ S, in an MDP a nondeterministic decision is taken based on |Steps(s)|
probability distributions. The evolution of an MDP from state s requires that initially an action a is selected
nondeterministically from the set of enabled actions A(s) and thereafter, the transition to the next state is
chosen randomly, according to the probability distribution Steps(s, a).

2.3. Continuous Time Markov Chains (CTMCs)

Time in the discrete Markov chain is abstract and transitions between states may be considered to occur at
discrete moments in time. These may be clock ticks of a hardware system or an arbitrary unit of time decided
by the modeller. The Continuous Time Markov Chain provides a representation for continuous time models.
The CTMC retains the memoryless property of the DTMC (2.2) such that for all states (sn) and for any
sequence t0, t1, ..., tn, tn+1 where t0 < t1 < ... < tn < tn+1,

Prob{X(tn+1)=sn+1|X(tn)=sn, X(tn−1)=sn−1, ..., X(t0)=s0} = Prob{X(tn+1=sn+1|X(tn)=sn} (2.4)

IMA Conference on Mathematics in Defence 2015

PRELIMINARIES 3

A CTMC over an atomic proposition set AP is defined as a tuple

M = (S,Q, s0, AP, L) (2.5)

where P has been replaced by Q, the transition rate matrix.
The element qij represents the rate at which the system transitions from state i to state j. The diagonal

entry qii is then calculated such that the row sum is zero (Norris, 1998).
Transitions between two states, i and j can happen if rij > 0 and the probability of a transition within

t time units is (1 − erijt). The exponential distribution is used as it is the only continuous distribution that
exhibits the memoryless property and fits well the observed behaviour of many systems.
An exponential distribution has a cumulative distribution function as given in (2.6). The parameter λ indi-

cates the number of arrivals expected within a time unit. The inter-arrival time is therefore given by λ−1.

f(x) =

{

1− e−λx x ≥ 0,
0 otherwise.

(2.6)

2.4. Probabilistic Temporal Logics

Temporal Logics provide a formal language for specifying and reasoning about the behaviour of the model over
time. It extends propositional logics with temporal operators and allows system properties to be checked by a
model checker.

2.4.1. Probabilistic Computation Tree Logic (PCTL)

To verify a DTMC or MDP model the PCTL language (Hansson and Jonsson, 1994) may used to express
properties precisely using the syntax

φ ::= true | a | φ1 ∧ φ2 | ¬φ | P ⊲⊳p(ϕ) (2.7)

where a ∈ AP , ϕ is a path formula, p ∈ [0, 1] and ⊲⊳ ∈ {<,>,≤,≥}. PCTL path formulae are formed as

ϕ ::= X φ | φ1Uφ2 | φ1U
≤nφ2 (2.8)

where n ∈ N. PCTL is enhanced with a satisfaction relation ⊢ over the states S and the paths PathsM(s),s ∈
S. Thus s ⊢ φ means “φ is statisfied in state s”.

2.4.2. Continuous Stochastic Logic

Continuous Stochastic Logics (Aziz, 1996) is a language for specifying the properties of CTMCs and allows
for the verification of transient and steady state properties. The state formulae of CSL are defined as

φ ::= true | a | φ ∧ φ | ¬φ | S⊲⊳p(φ) | P⊲⊳p(ϕ) (2.9)

and the associated path formulae is

ϕ ::= Xφ | φ1Uφ2 | φ1U
Iφ2 (2.10)

Of particular note are the time bounded until operator U I , I ⊆ R≥0 and the steady state operator S.

2.5. Extending Models with Rewards

Markov models can be annotated with reward/cost structures, in order to increase the range of properties
expressible in formal logics. A reward structure for a Markov model M is a pair of functions (ρ, ι) where:
• ρ :→ R≥0 is the state reward function.
• ι : S × S → R≥0 is the transition reward function

The probabilistic temporal logics are augmented with a reward operator R to enable the analysis and verification
of reward-related properties (Andova et al. 2004).

2.6. Quantitative Verification

The analysis carried out to establish if one of the stochastic state transition models described in the previous
sections satisfies a quantitative property specified in probabilistic temporal logic is called quantitative ver-
ification (Kwiatkowska, 2007). Quantitative verification is typically performed automatically by tools called
probabilistic model checkers. Widely used probabilistic model checkers include PRISM (Kwiatkowska et al.,
2011) and MRMC (Katoen et al., 2011).

IMA Conference on Mathematics in Defence 2015

Stochastic Modelling, Analysis & Verification of Mission-Critical Software and Business Processes 4

non-functional
requirements

family of system
models for

different scenarios

reconfiguration
plan

selected
model

system & environment
parameters defining
the current scenario

model

selection
monitor system

& its environment UUV

quantitative
verification

quantitative
verification

results

verification result
analysis & new

config. selection

Figure 1. Runtime quantitative verification used to implement the control loop of a self-adaptive system

3. Applications

In this section we illustrate the use of quantitative verification using two prevalent types of military systems,
i.e., autonomous and socio-technical systems. We also present how combining the technique with reinforcement
learning can produce assurance evidence regarding the safety of the selected policy.

3.1. Self-Adaptive Systems

Calinescu et al. (2012) advocate the use of quantitative verification at runtime as a way to extend the application
of the technique to self-adaptive systems. Originally introduced in (Calinescu and Kwiatkowska, 2009), (Epifani
et al., 2009) and further refined in (Calinescu et al., 2011), (Filieri et al., 2011), this approach involves integrating
quantitative verification into the closed control loop of self-adaptive systems.
As shown in Fig. 1, the approach requires the continual monitoring of the self-adaptive system and its

environment, to identify relevant changes and to quantify them using fast on-line learning techniques. These
observations are used to continually update a stochastic model of the system, starting from an initial model
provided by the system developers. Probabilistic model checking performed at runtime is then used to re-
verify the compliance of these updated models with QoS requirements related to the system response time,
reliability, cost, etc. If QoS requirement violations are identified or (when the functionality associated with
the unsatisfied requirement has not been exercised) predicted, the results of the analysis support the synthesis
of a reconfiguration plan. Executing this plan ensures that the self-adaptive system will continue to satisfy
its QoS requirements despite the changes identified during monitoring. The approach has been applied in
areas including service-based systems, cloud infrastructure management, embedded and robotic systems and
dynamic power management (Epifani et al., 2009), (Calinescu et al., 2011), (Calinescu et al., 2014), (Calinescu
and Kwiatkowska, 2009), (Johnson et al., 2013), (Calinescu et al., 2015), (Gerasimou et al., 2014).
We illustrate the use of quantitative verification at runtime using an example based on an unmanned underwa-

ter vehicle (UUV) equipped with n≥1 sensors that can measure the same attribute of the marine environment
(e.g., current, salinity or thermocline). Suppose that the i-th sensor takes measurements with a variable rate
ri and consumes energy ei for each measurement. Every measurement is followed by operations that prepare
the sensor for the next measurement, and these operations are carried out with a rate rprepi . The probability pi
that a measurement is accurate depends on the configurable UUV speed sp ∈ [0, 5m/s]: pi = 1 − αisp, where
αi ∈ (0, 0.15) is a sensor-specific accuracy factor. Finally, the sensor can be switched on and off in order to save
energy (xi = 1 when the sensor is operational and xi = 0 when the sensor is switched off). However, switching
the sensor on or off consumes an amount of energy eoni or eoffi , respectively.

Fig. 2a shows the CTMC model of sensor i-th, adapted from (Gerasimou et al., 2014). From the initial state
s0, the model transitions to state s1 if the sensor is switched on, or to state s4 if the sensor is switched off,
with rates roni and roffi , respectively. The CTMC models a session during which the sensor is either operational
or switched off, so a switched-off sensor remains in state s4 indefinitely. In contrast, an operational sensor
takes measurements with rate ri and therefore leaves state s1 with this rate. The next state is either s3, if the
measurement was accurate (with probability pi), or s3 otherwise. Irrespective of whether the measurement was
successful or not, the model transitions back to state s1 with the rate rprepi associated with the operations that
prepare the next measurement. The CTMC transitions associated with sensor operations that consume energy
are annotated with the energy used by these operations (shown in red/non-shaded squares in Fig. 2a). Similarly,
the transition that corresponds to a successful (i.e., accurate) measurement is annotated with a reward of 1

IMA Conference on Mathematics in Defence 2015

APPLICATIONS 5

(a) CTMC model of i-th UUV sensor

(c) Verification results for requirement R1

1 2 3 4 5

200

400

600

800

1000

1200

1 2 3 4 5

0

200

400

600

800

(d) Verification results for requirement R2

(e) Verification results for utility of valid configurations

(b) PRISM code for the sensor CTMC model

E
x
p
e
c
te

d
 a

c
c
u

ra
te

m
e
a
s
u
re

m
e
n
ts

 p
e
r

1
0

0
m

speed [m/s]

E
x
p
e
c
te

d
 e

n
e
rg

y

u
s
a
g
e
 p

e
r

1
0

0
m

u
ti

li
ty

speed [m/s]

speed [m/s]

Key: x1=0, x2=1x1=1, x2=0 x1=1, x2=1

1 1.5 2 2.5 3 3.5

2

2.5

3

3.5

4

Figure 2. Modelling and quantitative verification of UUV sensor properties

(shown as a green/shaded square in Fig. 2a). The representation of the sensor CTMC model in the high-level
modelling language of the probabilistic model checker PRISM (Kwiatkowska et al., 2011) is shown in Fig. 2b.
Suppose that the UUV system must comply with the following QoS requirements:
R1 (Performance) : “At least 300 accurate measurements must be taken per 100m travelled by the UUV.”
R2 (Energy use) : “At most 400 Joules must be used by the sensors per 100m travelled by the UUV.”
R3 (Utility) : “Subject to R1 and R2 being met, the UUV must use a configuration that maximises

utility(x1, x2, . . . , xn, sp) = w1sp + w2/E , where E is the energy used by the sensors per 100m travelled
by the UUV, and weights w1, w2>0 express the desired trade-off between mission completion time and battery
usage.
These requirements are formally specified in CSL as follows:
R1 (Performance) : R“accurate”

≥300 [C≤100/sp],

R2 (Energy use) : R“energy”
≤400 [C≤100/sp],

R3 (Utility) : find argmax utility(x1, . . . , xn, sp) such that R1 ∧ R2

IMA Conference on Mathematics in Defence 2015

Stochastic Modelling, Analysis & Verification of Mission-Critical Software and Business Processes 6

Figure 3. Model refinement and continual verification approach

The UUV is required to adapt to changes in the sensor measurement rates r1, r2, . . . , rn and to sensor failures
by dynamically adjusting its speed sp and the set of active sensors such that the three requirements are met.

Fig. 2c,d depict the quantitative verification results obtained for a UUV with n = 2 sensors with current
measurement rates r1 = 5s−1 and r2 = 9s−1. These results represent the expected number of accurate measure-
ments and the expected energy consumption for each 100m travelled, respectively, as a function of the UUV
speed. The shaded areas from Fig. 2c,d correspond to parameter values (i.e., sensor configurations) that violate
requirements R1 and R2, respectively. These configurations are discarded and the utility of the remaining valid
configurations is computed, as depicted in Fig 2e; these results were obtained using w1 = 1 and w2 = 200. The
configuration maximising the system utility, circled in Fig. 2c–e, is used to reconfigure the UUV system.

3.2. Operational Processes

Traditionally, the modelling of operational processes relies on knowledge of the organisation to describe workflow
models that specify the order in which tasks should to be performed. These models are typically oversimpli-
fied (van der Aalst, 2010) and hence discrepancies exist between the theoretical model and the actual workflow
enacted. To more accurately represent the actual process, workflow mining (van der Aalst, 2003) may be used
to extract data from system logs to infer models that may provide insight into the underlying operation of
business processes. Where operational processes are instrumented through data logging, Markov models may
be inferred using incremental model construction. In this way, states are added to the model as they are en-
countered and transition probabilities are approximated by the frequencies of the transitions observed (Ghezzi
et al, 2014).

This modelling allows for formal verification of business processes, with surveys of the state of the art by
Morimoto (2008) and subsequently by Groefsema and Bucur (2013). These surveys show how business processes
have been verified for a range of functional properties including soundness and consistency. Work by Mendt
et al. (2011) extended the verification of business process models to include probabilistic model checking,
and presented results showing how variability and uncertainty in the process model may used to verify non-
functional properties (i.e. quality loss) of the system. Whilst verification of the functional and non functional
properties of operational processes has been demonstrated in the literature, work to identify adaptive models
at run time for such systems remains a research challenge (Redlich et al, 2014).
Our approach is depicted in Figure 3. An abstract workflow model and log data are used as inputs to a

model refinement engine. By extracting timing information from the observations it is possible to refine the
assumed model and hence produce more accurate verification results.

In the remainder of this section we describe our preliminary experiments aimed at understanding the effects of
variation on the verification of operational workflow requirements. To this end, we carried out an experiment in
which two web services(WS 1 and WS 2), known to exhibit time-variant execution rates r1 and r2, respectively,
were invoked at one-minute time intervals over a 24-hour period, and their response times were recorded. The
web services considered are provided by the national Rail Enquires server and return arrival and departure
information for trains in the UK.

The simple continuous-time Markov chain (CTMC) from Figure 4 models the workflow that uses the two web
services. The workflow starts with the invocation of WS 1 (state s1 in the CTMC) followed by the invocation
of WS 2 (state s2). Service WS 2 returns the expected result and the workflow terminates with probability 0.9;
however, with probability 0.1, WS 2 needs to be invoked again due to an erroneous result.

IMA Conference on Mathematics in Defence 2015

APPLICATIONS 7

s0 s1 s2

0.9r2

0.1r2

r1

1.0

{success}{invoke1} {invoke2}

Figure 4. CTMC of a simple two-service workflow

200 400 600 800 1000

0
2
0

4
0

6
0

Web Service 1

Sample index

R
es
p
o
n
se

ti
m
e
(m

s)

actual
estimate

200 400 600 800 1000

0
2
0

4
0

6
0

8
0

1
0
0

Web Service 2

Sample index

R
es
p
o
n
se

ti
m
e
(m

s)

actual
estimate

200 400 600 800 1000

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

System verification

Sample index

V
er
ifi
ca
ti
o
n
R
es
u
lt

a b c

Figure 5. Estimation of web service response rates (a, b); and verification results for refined model (c)

A requirement is specified that a request must be completed within 0.25 seconds for 95% of the cases. This
requirement may be defined in CSL and verified using the probabilistic model checker PRISM such that

P=0.95 [F<=0.25 success] (3.1)

The mean response time of WS 1 is observed to be 42.79ms and WS 2 is 43.45ms, so the associated rates are
r1 ≃ 23.37s−1 and r2 ≃ 23.01s−1. Using the PRISM probabilistic model checker the CTMC system model is
verified and the requirement is met such that 96.1% of requests are completed within 0.25 seconds.
Examining the log data for each of the Web Service response times indicates that the response times are

subject to periodic variability. In order to account for this variation a simple moving average can be calculated
using the most recent n observations. As n increases a smoother approximation is obtained at the cost of
responsiveness in the estimator, hence choosing N is non trivial.
Setting n = 20 produces response time estimates as shown Fig. 5a,b. At each observation point a PRISM

model is then constructed by the refinement engine with estimated transition rates and the property re-verified
at that instant. By plotting the probability of completion against time it can be seen that the probability of
successfully completing the call within 0.25 seconds varies from a minimum of 78.8% to a maximum of 99.8%.
The continual verification results are shown in Figure 5c, where the shaded area corresponds to violations of
the requirement (3.1).
It is evident from this that, whilst the single point estimate would lead us to believe that the system is

performing adequately, the system fails to meet the requirement specified for a significant amount of time.
Static models are therefore unlikely to be adequate for human centric processes in which variability in timing
and structure is not itself static.

3.3. Assured Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique where a sequential decision making problem
is modelled as an (initially unknown) MDP. An autonomous agent navigates through the MDP-modelled
environment, and can choose from the set of actions available in its current state. Problem objectives are
represented as numerical rewards in the environment and it is the intention of the agent to discover these rewards
and therefore a set of behaviours to reach them. The agent discovers rewards through random exploration of
the environment states, and remembers the actions it used to get to the reward by associating values based
on the reward to the states it traversed to get it, a technique referred to as exploitation. The objective of the
agent is to learn a policy, i.e. a set of rules for behaviour, that specifies the best action to perform in each
state of the environment in order to yield the maximum possible reward from the model. This is known as an
optimal policy (Wiering and Otterlo, 2012).
A significant body of research has been undertaken to improve the rate at which an optimal policy is found

IMA Conference on Mathematics in Defence 2015

Stochastic Modelling, Analysis & Verification of Mission-Critical Software and Business Processes 8

(Hagen and Kröse, 2003), (Strens, 2000), (Dulac-Arnold et al., 2012), (Stanley and Miikkulainen, 2002). In
contrast, there has been minimal work done into ensuring that the learned policy is safe, such that the agent
will behave in a manner that is not dangerous to itself or to others. This limitation has prevented RL from being
utilized in the safety-critical class of systems where dangerous behaviour can potentially result in catastrophic
consequences.
To address this limitation, we are actively working on an approach for assured reinforcement learning that

uses quantitative verification to ensure that the policy learnt by an RL agent satisfies a given set of probabilistic
safety properties. Our approach takes as input this set of properties expressed as PCTL formulae and specifying
safety bounds such as “The probability that the agent enters a failure state must be no greater than 0.02.”. Along
with these properties a high-level representation of the problem MDP is required in the form of an abstract
MDP (AMDP). Note that whereas the original MDP is typically millions or billions of states in size, the
AMDP has just a few hundred or thousand (Marthi, 2007). This reduction makes the quantitative verification
of AMDP policies feasible.
Accordingly, we plan to use the search-based software engineering techniques from our related work in (Gerasi-

mou et al., 2015) to find AMDP policies that satisfy the required safety properties. The “safe” AMDP policies
obtained in this way can then be converted into policy-based reward shaping rules for the RL agent (Sutton
and Barto, 1998). This is done by giving the agent a positive reward every time it follows the actions of the
selected safe AMDP policy and a negative one otherwise. Our early investigation into how close the achieved
RL safety level is to that of the selected safe AMDP policy has yielded encouraging preliminary results.

4. Conclusion

We presented the use of stochastic modelling, analysis and verification to establish key reliability, performance
and other quality-of-service properties of mission-critical software and business processes. To this end, we fo-
cused on the quantitative verification of Markov chains and Markov decision processes that model the behaviour
of these systems that is relevant for the analysed properties. Three application areas were covered in the paper.
First, we described the successful application of quantitative verification at runtime within the control loop
of self-adaptive software systems. Second, we presenting our ongoing work that uses the technique for the
modelling and analyses of operational processes. Finally, we summarised our preliminary work from the area of
assured reinforcement learning. Improving the efficiency and capabilities of stochastic modelling, analysis and
verification is currently the object of significant effort from the research community. As such, we envisage that
many more applications of these techniques will become feasible in the coming years.

Acknowledgments

This paper presents research sponsored by the UK MOD. The information contained in it should not be
interpreted as representing the views of the UK MOD, nor should it be assumed that it reflects any current or
future UK MOD policy.

REFERENCES

Andova, S., Hermanns, H. & Katoen, J. 2004. Discrete-time rewards model-checked Formal Modeling and Analysis of
Timed Systems, pages 88–104. Springer.

Aziz, A., Sanwal, K., Singhal, V., & Brayton, R. 1996. Verifying continuous time Markov chains Computer Aided
Verification, pages 269–276. Springer.

Baier, C. & Katoen, J.P. 2008. Principles of model checking. MIT press.
Calinescu R. & Kwiatkowska M. 2009. Using quantitative analysis to implement autonomic it systems. International

Conference on Software Engineering, pages 100–110.
Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., & Tamburrelli, G. 2011. Dynamic QoS management and

optimization in service-based systems. Transactions on Software Engineering, 37(3):387–409.
Calinescu, R., Ghezzi, C., Kwiatkowska, M., & Mirandola, R. 2012. Self-adaptive software needs quantitative verification

at runtime. Communications of the ACM, 55(9):69–77.
Calinescu, R., Rafiq, Y., Johnson, K., & Bakir, M.E. 2014. Adaptive model learning for continual verification of non-

functional properties. International Conference on Performance Engineering, pages 87–98.
Calinescu, R., Gerasimou, S., & Banks., A. 2015. Self-adaptive software with decentralised control loops. International

Conference on Fundamental Approaches to Software Engineering, pages 235–251.
Gerasimou, G., Tamburrelli, G., & Calinescu, R. 2015. Search-Based Synthesis of Probabilistic Models for Quality-of-

Service Software Engineering. 30th IEEE/ACM International Conference on Automated Software Engineering, to
appear.

Dulac-Arnold, G., Denoyer, L., Preux, P., & Gallinari, P. 2012. Fast reinforcement learning with large action sets using

IMA Conference on Mathematics in Defence 2015

CONCLUSION 9

error-correcting output codes for MDP factorization. European conference on Machine Learning and Knowledge
Discovery in Databases, pages 180–194. Springer.

Epifani, I., Ghezzi, C., Mirandola, R., & Tamburrelli, G. 2009. Model evolution by run-time parameter adaptation.
International Conference on Software Engineering, pages 111–121.

Filieri, A., Ghezzi, C., & Tamburrelli, G. 2011. Run-time efficient probabilistic model checking. International Conference
on Software Engineering, pages 341–350.

Gerasimou, S., Calinescu, R., & Banks, A. 2014. Efficient runtime quantitative verification using caching, lookahead, and
nearly-optimal reconfiguration. International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pages 115–124.

Ghezzi, C., Pezzè, M., Sama, M., & Tamburrelli, G. 2014. Mining behaviour models from user-intensive web applications.
International Conference on Software Engineering, pages 277–287.

Groefsema, H. & Bucur, D. 2013. A survey of formal business process verification: from soundness to variability.
International Symposium on Business Modeling and Software Design.

Hagen, S. & Kröse. B. 2003. Neural Q-Learning. Neural Computing & Applications, 12(2):81–88.
Hansson, H. & Jonsson, B. 1994. A logic for reasoning about time and reliability. Formal aspects of computing,

6(5):512–535.
Johnson, K., Calinescu, R. & Kikuchi, S. 2013. An incremental verification framework for component-based software

systems. International Symposium on Component-based Software Engineering, pages 33–42.
Katoen, J.P., Zapreev, I. S., Hahn, E. M., Hermanns, H. & Jansen, D. N. 2011. The ins and outs of the probabilistic

model checker MRMC. Performance Evaluation, 68(2):90 – 104.
Kwiatkowska, M. 2007. Quantitative verification: models, techniques and tools. Joint meeting of the European Software

Engineering Conference and the Symposium on the Foundations of Software Engineering, pages 449–458.
Kwiatkowska, M., Norman, G. & Parker, D. 2007. Stochastic model checking. International Conference on Formal

Methods for Performance Evaluation, pages 220–270.
Kwiatkowska, M., Norman, G. & Parker, D. 2011. Prism 4.0: verification of probabilistic real-time systems. International

Conference on Computer Aided Verification, pages 585–591.
Marthi, B. 2007. Automatic shaping and decomposition of reward functions. International Conference on Machine

Learning, pages 601–608..
Mendt, T., Sinz, C. & Tveretina, O. 2011. Probabilistic model checking of constraints in a supply chain business process.

Business Information Systems, pages 1–12. Springer.
Morimoto, S. 2008. A survey of formal verification for business process modelling. Computational Science, pages

514–522. Springer.
Norman, G. & Parker, D. 2014. Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Perfor-

mance. Knowledge Transfer Report, London Mathematical Society and the Smith Institute for Industrial Mathe-
matics and System Engineering.

Norris, J. R. 1998. Markov chains. Cambridge University Press.
Redlich, D., Blair, G., Rashid, A., Molka, T., & Gilani, W. 2014. Research challenges for business process models at

run-time. Models@run.time, pages 208–236. Springer.
Stanley, K. O. & Miikkulainen, R. 2002. Efficient reinforcement learning through evolving neural network topologies.

Genetic and Evolutionary Computation Conference, pages 569–577.
Strens, M. 2000. A Bayesian framework for reinforcement learning. International Conference on Machine Learning,

pages 943–950.
Sutton, R. S., & Barto, A. G. 1998. Reinforcement Learning: An Introduction. Adaptive Computation and Machine

Learning. MIT Press.
UK Ministry of Defence. 2007. Defence Standard 00-56, Issue 4: Safety Management Requirements for Defence Systems.
van der Aalst, W. M., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G. and Weijters, A. J. 2003. Workflow

mining: A survey of issues and approaches. Data & knowledge engineering, 47(2):237–267.
van der Aalst, W. M. 2010. Business process simulation revisited. Enterprise and Organizational Modeling and Simu-

lation, pages 1–14.
Wiering, M., & Otterlo, M. 2012. Reinforcement learning and Markov decision processes. Reinforcement Learning:

State-of-the-art, volume 12, pages 3–42. Springer.

IMA Conference on Mathematics in Defence 2015

