
This is a repository copy of Assured Reinforcement Learning for Safety-Critical 
Applications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/113452/

Version: Accepted Version

Proceedings Paper:
Mason, George Rupert, Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260, 
Kudenko, Daniel orcid.org/0000-0003-3359-3255 et al. (1 more author) (2017) Assured 
Reinforcement Learning for Safety-Critical Applications. In: Doctoral Consortium at the 
10th International Conference on Agents and Artificial Intelligence. SciTePress . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Assured Reinforcement Learning for Safety-Critical Applications

George Mason1, Radu Calinescu1, Daniel Kudenko1, and Alec Banks2

1Department of Computer Science, University of York, Deramore Lane, York, UK
2Defence Science and Technology Laboratory, UK

{grm504, radu.calinescu, daniel.kudenko}@york.ac.uk

1 RESEARCH PROBLEM

Reinforcement learning (RL) is a branch of machine

learning used to solve sequential decision making

problems. This is achieved by using an autonomous

agent to explore an initially unknown problem envi-

ronment in order to learn a set of actions (known as an

optimal policy) to perform in the environment’s states

that will return the maximum possible expected re-

ward from the system (Wiering and Otterlo, 2012).

Despite RL having successes in areas such as

robotics (Kober et al., 2013) and gaming (Szita, 2012)

it has had little appeal in the domain of safety crit-

ical applications since RL has no guarantees that a

learned solution will satisfy safety, legal or regulatory

requirements. This limitation has prevented RL from

being adopted in the domain of safety-critical applica-

tions such as in healthcare, business or legal systems,

where behaviours by the agent can be dangerous to it-

self, other systems or humans. Furthermore, the agent

may learn a set of behaviours that are unpredictable or

unfamiliar to human operators, therefore making the

system difficult to trust even if its operation may ulti-

mately prove correct.

In recent years there has been growing interest in

this limitation with research emerging with the aim

to resolving it (Garcı́a and Fernández, 2015). How-

ever, current approaches are still largely theoretical,

suffer from scalability issues, have difficulty in ex-

pressing non-trivial safety properties, or are unable to

offer firm guarantees that their RL solutions will sat-

isfy specific requirements.

The root of the problem lies in how objectives are

expressed in RL. Objectives are specified through a

reward function that returns a numerical “reward” to

the RL learning agent according to how beneficial an

action it performs in a system state is to achieving its

objectives. Those actions that will cause the agent

to complete an objective will yield rewards that are

greater than those actions that do not. The problem

with this mechanism is that it can be infeasible to

express complex requirements using rewards alone.

Furthermore, it can necessitate introducing more de-

tails into the underlying RL environment, which will

exacerbate the state-space explosion problem that af-

fects RL (Garcı́a and Fernández, 2015) and therefore

will significantly reduce the rate of learning. When

objectives conflict with each other, there is the ad-

ditional issue of how to assign a reward function to

simultaneously reward the agent and punish it. The

nature of RL is to maximize a reward (or minimize

a cost), so traditional RL is inherently unable find a

solution that lies in the middle of these two extremes.

A further problem of this learning approach is that

since the agent is motivated solely through accumu-

lating as much reward as possible it can learn a solu-

tion that, despite being optimal with respect to max-

imizing reward acquisition, may not follow conven-

tional human behaviours. Unfamiliar, “quirky” be-

haviours by the system further reduce its appeal in

scenarios where it is crucial that the system can be

trusted (Lange et al., 2012).

This project aims to address the problem of how

to develop assurances that an RL system will a) find

a solution that can guarantee to satisfy a wide range

of safety requirements, and b) learn solutions can be

trusted to conform to conventional behaviours of do-

main where the system is deployed.

2 OUTLINE OF OBJECTIVES

Research towards safe RL faces two common prob-

lems. Firstly, complex safety properties are often dif-

ficult to express using a reward function. Secondly,

current safe RL approaches do not actually provide

guarantees that the solution they generate will satisfy

the safety requirements, and instead only offer a solu-

tion that is “safer” than the one learned by traditional

RL.

The overarching aim of our project is to address

these limitations by developing a generic approach for

assured reinforcement learning (ARL) that achieves

two key objectives:

1. ARL should support the specification and reali-

sation of a broad range of complex requirements



(1
) p
ro
vid
e High-level problem

model (abstract Markov
decision process)

(2) drive

Quantitative
verification

Selected safe abstract
policy (abstract MDP

policy)

(3) generates

(4) informs

(5) select

Reinforcement
learning

(6) constrains

Safe reinforcement
learning policy

(7) produces

Stage 1: Abstract policy generation

Stage 2: Safe reinforcement learning

AI engineer,
domain expert

Pareto front of safe
abstract policies

Constraints & optimisation
objectives (safety, cost,
reliability, rewards, etc.)

(8) updates

Figure 1: The envisaged approach for assured reinforcement learning.

(including constrains and optimisation objectives

for the RL solution) without impacting the size of

the underlying model.

2. ARL solutions should be guaranteed to sat-

isfy requirements within pre-specified probability

boundaries and execution costs.

The envisaged two-stage operation of our ARL

approach is depicted in Figure 1. In Stage 1, termed

abstract policy generation, we propose the use of an

abstract Markov decision process (AMDP) (Marthi,

2007; Li et al., 2006; Sutton et al., 1999) to model a

high-level representation of the RL problem. Also,

a set of safety constraints and optimisation objec-

tives are specified using probabilistic computation

tree logic (PCTL) (Hansson and Jonsson, 1994), an

expressive temporal logic that allows complex prop-

erties of Markov decision processes to be formu-

lated as concise formulae. Devising the AMDP and

the PCTL-encoded constraints and optimisation crite-

ria for the RL problem requires both domain knowl-

edge and AI expertise. Accordingly, teams compris-

ing both an AI engineer and a domain expert pro-

vide (1) these inputs for the first ARL stage. The

problem AMDP and constraints/optimisation criteria

are then used to drive (2) the search for safe AMDP

policies using quantitative verification (QV), a vari-

ant of model checking for the analysis and verifica-

tion of stochastic models (Kwiatkowska et al., 2007).

By exploring different areas of the AMDP parameter

spaces, QV generates (3) a set of abstract policies for

the AMDP, with the policies that are verified as satis-

fying all the constraints organised into a Pareto front.

This Pareto front captures the safe abstract policies

that are Pareto optimal with respect to the optimisa-

tion criteria, and can therefore be used to inform (4)

the users’ selection (5) of a suitable safe abstract pol-

icy.

In Stage 2 of ARL, termed safe reinforcement

learning, the selected safe abstract policy is translated

into a set of safety rules that constrains (6) the RL

agent’s exploration to low-level states and actions that

map to the high-level states and actions of the AMDP

known to be safe. As a result, the RL agent produces

(7) a safe reinforcement learning policy, i.e. an RL

policy that when followed will have equal safety lev-

els to those verified for the abstract policy, thus meet-

ing the safety requirements.

The two-stage ARL approach described above

makes two important assumptions: i) the AMDP

model will contain all necessary information for ab-

stract safe policies to fully apply to the low-level RL

model, and ii) this information will accurately reflect

the RL model. Should one or both of these assump-

tions not be satisfied, e.g. because the initial knowl-

edge is incomplete or the parameters of the system

change during runtime, then an abstract policy may

not necessarily provide the levels of safety that it was

verified to give. This necessitates a means of be-

ing able to detect inaccuracies in the AMDP model

and to then find an alternate safe abstract policy for

it. We therefore intend to extend the basic ARL

approach to incorporate knowledge revision of the

AMDP (Efthymiadis and Kudenko, 2015; Calinescu

et al., 2011), with the RL agent identifying discrepan-



cies between the safe abstract policy and the explored

environment and updating (8) the AMDP accordingly.

3 STATE OF THE ART

Research into safe RL is scant but has had growing in-

terest in recent years. Existing approaches generally

fall in to one of two categories (Garcı́a and Fernández,

2015). The first looks into modifying how the accu-

mulation of rewards is optimised. The second focuses

on adjusting the strategies employed by the agent to

explore the environment.

3.1 Preliminaries

RL uses a Markov decision process (MDP) as its un-

deryling framework. Formally an MDP is a tuple

(S,A,T,R), where: S is a finite set of states; A is a

finite set of actions; T : S×A×S → [0,1] is a state

transition function such that for any s,s′ ∈ S and any

action a ∈ A that is allowed in state s, T (s,a,s′) gives

the probability of transitioning to state s′ when per-

forming action a in state s; and R : S×A×S → R is

a reward function such that R(s,a,s′) = r is the re-

ward received by the agent when action a performed

in state s leads to state s′ (Wiering and Otterlo, 2012).

Supplemental to this definition are policies, de-

noted π. A policy is a mapping of states of actions

such that for each state s ∈ S there is a corresponding

action a ∈ A. The notion of solving an MDP is to find

a policy that when followed will return the maximum

possible expected reward from the MDP environment,

such a policy is optimal and is denoted π
∗. MDPs can

be solved using dynamic or linear programming, how-

ever, when the transition and/or reward functions are

initially unknown RL is used.

RL uses an autonomous agent to explore the envi-

ronment to learn about its dynamics and whereabouts

of rewards contained within it. This exploration is

initially through the arbitrary selections of actions in

states and over time the agent encounters rewards in

the environment. Knowledge of these rewards is re-

tained in the form of Q-values, a state-action pair

Q(s,a) that specifies the utility of performing action

a in state s. In subsequent learning episodes the agent

can then reuse this information by selecting the ac-

tion in a state which has the highest utility value.

These Q-values are updated each time the agent revis-

its the state according to an update function such as Q-

learning (Watkins and Dayan, 1992). Given sufficient

learning episodes the agent will converge to accurate

(i.e. unchanging) utility values, when this eventuality

is reached the agent has learned an optimal solution.

3.2 Optimisation Strategies

An intuitive approach for safe RL is to give a neg-

ative reward (i.e. a cost) to the agent if it performs

actions which lead to the agent entering states which

are denoted as unsafe. However, this simplistic ap-

proach suffers from several limitations. Firstly, it re-

quires knowing a priori exactly which states of the RL

environment are unsafe which may not be possible.

Secondly, assigning a cost of suitable magnitude is

not always obvious and requires trial and error to de-

termine, especially if safety objectives conflicts with

mission objectives. Finally, often it can be difficult

to define complex safety requirements in the reward

function and may necessitate significantly expanding

the state space of the model to accommodate the prop-

erties.

Therefore, instead of focussing on how to define

rewards for unsafe behaviours, various approaches

have been proposed that consider the criterion for how

the accumulation of rewards is optimised.

Ultimately we desire the agent to accumulate as

much reward as possible for achieving mission objec-

tives, but if the agent’s behaviour means it enter states

where it cannot achieve the objectives then it will not

acquire these rewards. Even though on average the

learned solution may receive the highest reward pos-

sible from the system, the variance of this reward in-

dicates how risky the solution is. I.e., if the agent

regularly receives a low reward for not achieving all

mission objectives then the solution is not one that

is particularly reliable. Therefore, redefining how the

agent optimises its reward accumulation is one avenue

of safe RL approaches.

One method is to optimise a policy so that no ac-

tions are irreversible, i.e. no actions can be done

which the agent cannot recover from and are thus safe.

Such an example is (Moldovan and Abbeel, 2012)

where a set of ergodic policies are identified and the

agent optimises over them. Whilst this approach guar-

antees that a solution will never lead to the agent be-

ing unsafe, the solution is often significantly far from

being optimal. As significant rewards can be gained

often at very low risk of danger, since this risk is not

zero the rewards are not considered.

The worst-case criterion (Heger, 1994) optimises

a solution so that the worst possible outcome when

following it offers the maximum reward from the sys-

tem relative to all other possible solutions’ worst pos-

sible outcomes. This approach ensures that a solution

will guarantee a minimum level of return will always

be achieved, however, solutions typically yield dras-

tically lower returns than an optimal solution would.

Even though the probability of a worst-case scenario



occurring may be very low, this optimisation ap-

proach will disregard potentially large future rewards.

A similar approach is the risk-sensitive criterion

(Mihatsch and Neuneier, 2002) uses a parameter to

specify what amount of variability of return is permis-

sible. This parameter can be tuned so that a solution

is optimised to avoid variability or seek it. Through

this approach a solution can be found that satisfies the

level of risk that the user is comfortable with. How-

ever, as with the worst-case criterion, low variability

can be produce solutions that are far from optimal.

3.3 Exploration Strategies

An alternative to modifying how the agent’s solutions

are optimised is to modify how the agent actually ex-

plores the environment. Traditionally, an RL agent

starts with no knowledge of the environment and must

initially explore it randomly. This can lead to the

agent finding solutions which traverse unsafe states.

To ameliorate this problem, the exploration strategy

of the agent can be influenced so that it has some

knowledge of which states to transition to and which

to avoid.

The Lyapunov design (Perkins and Barto, 2003)

uses control Lyapunov functions to measure the dis-

tance from a safe system state to a failure (unsafe)

state. By constricting the set of actions to only ones

that cause the system to descend on a control Lya-

punov function, i.e. towards a stable equilibrium, safe

RL can achieved. However, finding appropriate Lya-

punov functions is often a difficult task and are be-

spoke for every problem scenario.

Garcı́a and Fernández (Garcı́a and Fernández,

2012) proposed The Policy Improvement through Safe

Reinforcement Learning (PI-SRL) algorithm. This is

a two-stage process where the first stage has a prede-

fined safe baseline policy that is assumed to be subop-

timal and the next stage is to learn. The approach dif-

fers from policy iteration as it uses two new compo-

nents, a risk function to determine the risk of a partic-

ular state and a baseline behaviour which can be used

when in states of risk. However, in areas where there

is no area of risk and only a discrete change from safe

to unsafe states the algorithm can still result in failure.

Another approach is to use a series of demonstra-

tions to aid the agent discover an initial solution (Ar-

gall et al., 2009) for the problem. This initial solution

provide a basis for the agent so that it need not explore

unnecessary or unsafe states. The solution derived

from demonstrations will typically be sub-optimal so

the agent uses it only as guidance and optimises it us-

ing traditional RL techniques. This approach is lim-

ited, though, by the fact that it is not always feasi-

ble to provide a safe demonstration for every possible

scenario. In such an eventuality the agent must rely

on conventional exploration techniques, falling back

to the problem of the agent unknowingly exploring

dangerous states.

4 METHODOLOGY

To achieve our project objectives we have decom-

posed the research work into the following tasks.

1. Review existing literature on safe RL to learn the

current state of research and the limitations of ex-

isting approaches. Specifically, we aimed to iden-

tify limitations of existing RL solutions in order

to determine the trajectory of our research.

2. Form a theoretical method as a potential solution

for the identified limitations.

3. Implement the theoretical method as an actual ap-

plication. This can be done in an interleaving

fashion with task 2.

4. Evaluate the method using at least two qualita-

tively different case studies taken from bench-

mark RL experiments and real-world applications.

Evaluation will focus on how well safety levels

have been assured using our method compared to

traditional RL.

5. Extend the approach to accommodate incorrect

knowledge contained in the initial high-level

problem model. Information that is different in

the RL model can be relayed back to the high-

level model and an updated solution is generated.

6. Further evaluate the full framework for scalability

and generality by expanding existing case studies

and develop new ones.

To implement the RL experiments we will be

using the York Reinforcement Learning Library

(YORLL)1, which supports a wide range of environ-

ments and learning algorithms. To perform QV we

will use the PRISM model checker (Kwiatkowska

et al., 2011), which supports the verification of

reward-extended PCTL properties for MDPs. QV and

PRISM have been successfully used to analyse simi-

lar models of systems ranging from cloud infrastruc-

ture (Calinescu et al., 2012) and service-based sys-

tems (Calinescu et al., 2013) to unmanned vehicles

(Gerasimou et al., 2014), and thus we expect them to

also work well for ARL.

1YORLL is programmed in Java and is developed by
the University of York. It is free to download from
http://www.cs.york.ac.uk/rl/software.php



The evaluation of approach will focus on how

closely the learned RL policy adheres to the safety re-

quirements, relative to a control experiment using tra-

ditional RL. Validating the policies can be done em-

pirically by running the learned safe RL policy and

comparing the outcome to the safety levels of the se-

lected high-level policy. Given the stochastic nature

typical of RL experiments it is necessary running the

safe RL policy numerous times to obtain an average

result (Arcuri and Briand, 2011).

5 EXPECTED OUTCOME

The expected outcome of our project is a general

framework to provide an assured RL solution that will

satisfy a broad range of safety requirements. Our

novel approach will mitigate the existing limitation

in safe RL research that safety cannot be guaranteed

to fulfil specific safety requirements. By using QV to

provably verify the properties of solution constraints

our assured RL framework will guarantee to satisfy

safety requirements.

We intend that the framework can be used across

multiple domains and will support large-scale scenar-

ios. The framework will require a set of requirements

expressed using PCTL as well as a high-level model

of the problem scenario. The end result will be a set

of rules specifying which actions the agent should, or

should not, perform in specific states of the RL model.

The outcome being that the RL agent will learn a so-

lution such that it will behave in a way that is guar-

anteed not to violate safety requirements whilst also

being optimal subject to the contraints.

Our framework will contribute to the ongoing re-

search into safe RL. Specifically, our approach will

mitigate the recurring limitation that safety assur-

ances can not be guaranteed, or when guarantees are

given they are at an undesirably large detriment to op-

timality of the solution.

6 STAGE OF THE RESEARCH

So far, steps (1)–(7) of the approach shown in Figure 1

have been developed and evaluated. Preliminary work

on these steps is summarised in (Mason et al., 2016),

and the formalisation of this part of the approach and

experimental results of its evaluation are presented in

(Mason et al., 2017). Our current work is towards de-

veloping the knowledge-revision algorithm for updat-

ing the AMDP as discussed in Section 2 and shown

by step (8) from Figure 1.

6.1 Completed Work

For our high-level model we use an AMDP, which is

an abstract version of the low-level RL MDP. AMDPs

differ to conventional MDPs by being significantly

smaller in terms of the their state space and action set

(Marthi, 2007). To achieve this, superfluous states of

the MDP are ignored and similar states conflated, only

those states with significant features, such as those

containing rewards, are retained (Li et al., 2006). The

low-level action set can be abstracted so that instead

of requiring a series of individual actions to enter the

next state of interest, high-level options are used in-

stead (Sutton et al., 1999). These options replace the

actions with single transitions between states. The

end AMDP has several orders of magnitude fewer

states than the RL MDP, and therefore can be for-

mally analysed using QV. This allows the rapid ver-

ification of candidate high-level policies against the

PCTL-encoded problem requirements.

An algorithm has been developed to automate the

process of generating and verifying abstract policies

and assembling a Pareto-front of those policies that

were verified as being safe; this algorithm is presented

in (Mason et al., 2017). To generate candidate ab-

stract policies, the algorithm can utilize a range of

search techniques, including as hill climbing, genetic

algorithms, e.g. (Gerasimou et al., 2015), or a simple

random search. As different search techniques can

perform better than others for certain types of prob-

lem scenarios, experiments are planned to identify

suitable techniques for different classes of RL prob-

lems (e.g., planning and navigation).

We have evaluated the method in two qualitatively

different case studies. The first case study is based on

the benchmark RL flag-collection experiment (Dear-

den et al., 1998) which we have extended by intro-

ducing the risk of the agent being captured. Details

of this case study are given below. The second case

study is based on an assisted living system for demen-

tia patients (Boger et al., 2006). In this experiment an

autonomous agent must give voice prompts to a de-

mentia sufferer to instruct them on what task to do

next when undertaking the activity of washing their

hands. The system learns what style of voice prompt

is most appealing to the patient, considering the vol-

ume of the prompt, the gender of the voice and the

explicitness of the instructions. This system must not

overload the patient with prompts as this can become

stressful for them; conversely the agent must mini-

mize the necessity of summoning a carer to intervene

should the patient not progress effectively.

The environment for the guarded flag-collection

case study is shown in Figure 2; the objective in this



S
ta
rt

G
o
a
l

Figure 2: The layout of the guarded flag collection environ-
ment. The areas of risk are illustrated by security cameras
which with a certain probability can detect the agent as it
traverses the doorways.

benchmark RL experiment is to learn a route through

the environment to collect the flags A-F. In our case

study we have augmented the environment with secu-

rity cameras which can detect the agent as it passes

through certain doorways. Detection of the agent re-

sults in its capture and the experiment ending in fail-

ure, regardless of any flags already collected.

Each of the cameras has a different probability of

detecting the agent. Therefore, along with the origi-

nal optimisation objective to maximize the number of

flags collected we also have the conflicting safety ob-

jective of minimizing the probability that the agent is

captured. For our case study we specify the following

constraints:

C1 The agent should reach the ‘goal’ area with pro-

bability at least 0.75.

C2 The agent should cumulate more than two flags

before it reaches the ‘goal’ area.

Furthermore, we aim to maximise:

O1 The probability that the agent reaches the ‘goal’.

O2 The number of collected flags.

After constructing an AMDP for the problem we

used QV to identify a set of abstract policies that sat-

isfy the constraints C1 and C2. From these safe poli-

cies we identified a Pareto front, i.e. a “front” of poli-

cies whose expected reward and probability of reach-

ing ‘goal’ cannot be both bettered by any other safe

policy. These safe policies and their associated Pareto

front are shown in Figure 3.

From this Pareto front three policies were selected

to be used for safe ARL; these are labelled A, B and

C on the Pareto front. These safe policies were trans-

lated into safe RL rules for ARL. The results of the

evaluation of the learned ARL policies are presented

0.8 0.85 0.9

3

3.5

4

4.5

A

B

C

Probability of reaching ‘goal’

E
x

p
ec

te
d

re
w

ar
d

Abstract policy

Pareto-front

Figure 3: Plot of abstract policies that satisfy the safety con-
straints C1 and C2, and the Pareto front of safe policies A,
B and C.

in Table 1 alongside a baseline experiment using tra-

ditional RL, which we carried out in order to establish

the effects of ARL.

In both case studies our approach was successful

at satisfying the safety requirements (Mason et al.,

2017). Furthermore, the learned policy matched the

specific safety results that were verified for the high-

level safe policy. From these results we show that our

approach can achieve the levels of safety that were

required.

6.2 Ongoing Work

Currently, research is progressing with development

on a knowledge-revision algorithm as discussed in

Section 2. An algorithm is being formulated where an

RL agent first attempts ARL using what is presumed

to be a suitable abstract policy. Should the agent dis-

cover that the policy is not viable (e.g. the abstract

policy dictates the RL agent should perform an ac-

tion in a state where the action is not available), then

knowledge of the error is fed back to the AMDP and

a revised model is constructed.

Work is currently focussing on a means of recy-

Table 1: The results for safe abstract policies A, B and C
when used for ARL along with a baseline, traditional RL
experiment for the guarded flag-collection.

Abstract
Policy

Probability of
Reaching ‘goal’

Standard
Error

Expected
Reward

Standard
Error

None 0.72 0.0073 4.01 0.031
A 0.9 0.0012 2.85 0.0029
B 0.81 0.0019 3.62 0.0037
C 0.78 0.0012 4.5 0.0041



cling redundant abstract policies where possible, thus

significantly reducing the verification effort required

to update the Pareto front of safe abstract policies.

Since it is often the case that there are only minor dif-

ferences between the initial, incorrect AMDP model

and the corrected model, we envisage that the abstract

policies for the two models will be similar. Therefore,

it is intuitively not necessary to generate an entirely

different abstract policy. Since it is time consuming

to generate policies as well as to verify them, we aim

to reuse those elements of the initial abstract policy

that still match the abstract model.

To evaluate the algorithm, a series of experiments

will be conducted using extension of the two case

studies described in the previous section. For each

case study we will produce a series of RL environ-

ments where the environment is uniquely different

from that of the initial AMDP. We will then deter-

mine if on average the knowledge revision algorithm

is faster at finding a new safe abstract policy than if

an AI engineer were to manually inspect the initial

RL model, reconstruct the high-level model, and gen-

erate safe abstract policies from scratch.

6.3 Future Work

Future work will involve more in depth analysis of

the framework’s performance. This includes evalu-

ation of how long it takes for a safe solution to be

learned and the processing overheads incurred. Ad-

ditionally, further experiments will be conducted by

expanding the existing case studies to establish how

well the framework will scale, also, new case studies

will be developed for different domains to determine

the range of scenarios which the technique can be ap-

plied to.

ACKNOWLEDGEMENTS

This paper presents research sponsored by the UK

MOD. The information contained in it should not be

interpreted as representing the views of the UK MOD,

nor should it be assumed it reflects any current or fu-

ture UK MOD policy.

REFERENCES

Arcuri, A. and Briand, L. (2011). A practical guide for us-
ing statistical tests to assess randomized algorithms in
software engineering. In 33rd Intl. Conf. Software En-
gineering, pages 1–10.

Argall, B. D., Chernova, S., Veloso, M., et al. (2009). A
survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469–483.

Boger, J., Hoey, J., Poupart, P., et al. (2006). A planning
system based on markov decision processes to guide
people with dementia through activities of daily liv-
ing. IEEE Transactions on Information Technology in
Biomedicine, 10(2):323–333.

Calinescu, R., Johnson, K., and Rafiq, Y. (2011). Using ob-
servation ageing to improve Markovian model learn-
ing in QoS engineering. In 2nd Intl. Conf. Perfor-
mance Engineering (ICPE), pages 505–510.

Calinescu, R., Johnson, K., and Rafiq, Y. (2013). Devel-
oping self-verifying service-based systems. In 28th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 734–737.

Calinescu, R., Kikuchi, S., and Johnson, K. (2012). Com-
positional reverification of probabilistic safety prop-
erties for large-scale complex IT systems. In Large-
Scale Complex IT Systems. Development, Operation
and Management, pages 303–329. Springer.

Dearden, R., Friedman, N., and Russell, S. (1998).
Bayesian Q-learning. In 15th National Conference on
Artificial Intelligence, pages 761–768.

Efthymiadis, K. and Kudenko, D. (2015). Knowledge revi-
sion for reinforcement learning with abstract MDPs.
In 14th Intl. Conf. Autonomous Agents and Multiagent
Systems, pages 763–770.

Garcı́a, J. and Fernández, F. (2012). Safe exploration
of state and action spaces in reinforcement learning.
Journal of Artifical Intelligence Research, 45(1):515–
564.

Garcı́a, J. and Fernández, F. (2015). A comprehensive sur-
vey on safe reinforcement learning. Journal of Ma-
chine Learning Research, 16(1):1437–1480.

Gerasimou, S., Calinescu, R., and Banks, A. (2014). Effi-
cient runtime quantitative verification using caching,
lookahead, and nearly-optimal reconfiguration. In 9th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pages
115–124.

Gerasimou, S., Tamburrelli, G., and Calinescu, R. (2015).
Search-based synthesis of probabilistic models for
quality-of-service software engineering. In 30th
IEEE/ACM Intl. Conf. Automated Software Engineer-
ing, pages 319–330.

Hansson, H. and Jonsson, B. (1994). A logic for reasoning
about time and reliability. Formal Aspects of Comput-
ing, 6(5):512–535.

Heger, M. (1994). Consideration of risk in reinforcement
learning. In 11th Intl. Conf. on Machine Learning,
pages 105–111.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforce-
ment learning in robotics: A survey. International
Journal of Robotics Research, 32(11):12381274.

Kwiatkowska, M., Norman, G., and Parker, D. (2007).
Stochastic model checking. In 7th Intl. Conf. Formal
Methods for Performance Evaluation, volume 4486,
pages 220–270.



Kwiatkowska, M., Norman, G., and Parker, D. (2011).
PRISM 4.0: Verification of probabilistic real-time sys-
tems. In 23rd Intl. Conf. Computer Aided Verification,
volume 6806, pages 585–591.

Lange, D. S., Verbancsics, P., Gutzwiller, R. S., Reeder, J.,
and Sarles, C. (2012). Command and control of teams
of autonomous systems. In Calinescu, R. and Gar-
lan, D., editors, Large-Scale Complex IT Systems. De-
velopment, Operation and Management, pages 81–93.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a
unified theory of state abstraction for MDPs. In 9th In-
ternational Symposium on Artificial Intelligence and
Mathematics, pages 531–539.

Marthi, B. (2007). Automatic shaping and decomposition of
reward functions. In 24th Intl. Conf. Machine learn-
ing, pages 601–608.

Mason, G., Calinescu, R., Kudenko, D., and Banks, A.
(2016). Combining reinforcement learning and quan-
titative verification for agent policy assurance. In 6th
Intl. Workshop on Combinations of Intelligent Meth-
ods and Applications, pages 45–52.

Mason, G., Calinescu, R., Kudenko, D., and Banks, A.
(2017). Assured reinforcement learning with formally
verified abstract policies. In 9th International Confer-
ence on Agents and Artificial Intelligence. To appear.

Mihatsch, O. and Neuneier, R. (2002). Risk-sensitive re-
inforcement learning. Machine Learning, 49(2):267–
290.

Moldovan, T. M. and Abbeel, P. (2012). Safe exploration
in Markov decision processes. In 29th Intl. Conf. Ma-
chine Learning, pages 1711–1718.

Perkins, T. J. and Barto, A. G. (2003). Lyapunov design
for safe reinforcement learning. Journal of Machine
Learning Research, 3(1):803–832.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intel-
ligence, 112(1-2):181–211.

Szita, I. (2012). Reinforcement learning in games. In Rein-
forcement Learning: State-of-the-art, pages 539–577.
Springer.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Ma-
chine Learning, 8(3):279–292.

Wiering, M. and Otterlo, M. (2012). Reinforcement learn-
ing and markov decision processes. In Reinforcement
Learning: State-of-the-art, pages 3–42. Springer.


