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Accurate Analysis of Quality Properties of Software

with Observation-Based Markov Chain Refinement

Colin Paterson and Radu Calinescu

Department of Computer Science, University of York, UK

Abstract—We introduce a tool-supported method for the au-
tomated refinement of continuous-time Markov chains (CTMCs)
used to assess quality properties of component-based software.
Existing research focuses on improving the efficiency of CTMC
analysis and on identifying new applications for this analysis. As
such, ensuring that the analysis is accurate by using CTMCs that
closely model the behaviour of the analysed software has received
relatively little attention. Our new method addresses this gap
by refining the high-level CTMC model of a component-based
software system based on observations of the execution times of
its components. Our refinement method reduced analysis errors
by 77–90.3% for a service-based system implemented using six
public web services from three different providers, improving
the accuracy of the analysis and significantly reducing the risk
of invalid software engineering decisions.

I. INTRODUCTION

Software performance and reliability engineering [1] uses

mathematical models to predict performance, reliability and

other quality properties of software [2]. These models include

Petri Nets [3], queuing networks [4] and Markov chains [5],

[6], [7], and may be built manually or extracted automatically

from more general software models such as UML-MARTE [8]

or Palladio [9].

Despite major advances in this research area, it is still very

challenging to ensure that such mathematical models are suf-

ficiently accurate to support the design and verification of real

systems. Our paper addresses this challenge for continuous-

time Markov chains (CTMCs), a type of stochastic state-

transition models used to analyse quality software properties

both at design time [5], [10], [11] and at runtime [12], [13],

[14], [15]. We introduce an observation-based Markov chain

refinement (OMNI) method that significantly improves the ac-

curacy with which quality software properties can be analysed.

OMNI starts from a high-level abstract CTMC whose states

correspond to operations performed by different components

of the analysed system, and uses observed execution times for

the components to refine this CTMC. The high-level CTMC

can be generated (e.g., from annotated UML activity diagrams

as in [10]) or can be provided by the software engineers. The

execution time observations can be obtained by unit testing

components individually before the software system is built

or, for existing systems, from their logs.

OMNI comprises two stages. The first stage makes the

CTMC more realistic through the addition of states and

transitions that model the fact that software components have

non-zero minimum execution times. We use additional states

and transitions corresponding to Erlang distributions [16]

for this purpose. The CTMC is then further refined in the

second OMNI stage by using phase-type distributions [17] to

model the variations in the execution time of the components.

The refined CTMC supports the accurate analysis of a wide

range of quality software properties expressed in continuous

stochastic logic [18], preventing many invalid design decisions

and verification conclusions associated with traditional CTMC

analysis. Moreover, the refined CTMCs can be analysed using

existing probabilistic model checkers such as PRISM [19].

To support the use of OMNI, we describe rigorous tech-

niques for synthesising its Erlang and phase-type distribu-

tions. These distributions model the execution of software

components with far greater accuracy than the exponential

distributions from existing CTMC modelling, which match

only the first moment of the unknown distributions of the

execution time observations. In addition, we provide a tool

that implements the OMNI method, producing refined CTMC

models that can be analysed with the probabilistic model

checker PRISM [19]. Finally, we present a case study that

shows how software engineers can use OMNI to avoid multiple

invalid design decisions suggested by traditional CTMC analy-

sis. To ensure the reproducibility of our results, we provide the

models, code and data from this work on our project webpage

www-users.cs.york.ac.uk/cap/OMNI/.

The remainder of the paper is organised as follows. Sec-

tions II and III introduce the theoretical background for

our work and a running example that we use to motivate

and illustrate the refinement method, respectively. We then

present the OMNI method in Section IV and the tool that

we implemented to automate its use in Section V. Section VI

evaluates the effectiveness of our method through a case study

that uses OMNI to analyse the service-based system from the

running example, and Section VII discusses related work. We

analyse threats to validity in Section VIII, and present our

conclusions and future work directions in Section IX.

II. PRELIMINARIES

Continuous Time Markov Chains—Markov chains are

mathematical models for stochastic processes evolving

in time [20]. A continuous-time stochastic process

{X(t) : t ≥ 0} with countable state space S is a continuous-

time Markov chain (CTMC) if it has the Markov property

Prob{X(tn+1)=sn+1 | X(tn)=sn, X(tn−1)=sn−1, . . . ,

X(t1)=s1} = Prob{X(t′)=s′ | X(t)=s}, (1)



TABLE I: Third-party web services used to develop the travel application

Label Thid-party service URL rate (s−1)

location Bing location service http://dev.virtualearth.net/REST/v1/Locations/ 9.62
arrivals Thales rail arrival board http://www.livedepartureboards.co.uk/ldbws/ 19.88
departures Thales rail departures board http://www.livedepartureboards.co.uk/ldbws/ 19.46
search Bing web search https://api.datamarket.azure.com/Bing/Search/v1/ 1.85
weather WebserviceX.net weather service http://www.webservicex.net/globalweather.asmx?op=GetWeather 1.11
traffic Bing traffic service http://dev.virtualearth.net/REST/v1/Traffic/ 2.51

where s1, . . . , sn−1, sn, sn+1 ∈ S and 0 ≤ t1 ≤ ... ≤ tn−1 ≤
tn ≤ tn+1, n ≥ 1, is any sequence of n + 1 times. For the

work presented in this paper, we use the following CTMC

definition adapted from [21].

Definition 1: A continuous-time Markov chain is a tuple

(S,π,R), (2)

where S is a finite set of states, π : S → [0, 1] is an initial-state

probability vector such that the probability that the CTMC is

initially in state si∈S is given by π(si) and
∑

si∈S π(si)=1,

and R : S×S → R is a transition rate matrix such that, for

any states si ̸= sj from S, R(si, sj) ≥ 0 specifies the rate

with which the CTMC transitions from state si to state sj ,

and R(si, si)=−
∑

sj∈S\{si}
R(si, sj).

We use the notation CTMC(S,π,R) for the CTMC (2). The

probability that this CTMC will transition from state si to

another state within t time units is 1−e
−t·

∑
sk∈S\{si}

R(si,sk),

and the probability that the new state is sj ∈S \ {si} is

pij = R(si, sj) / Σsk∈S\{si}R(si, sk). (3)

Continuous Stochastic Logic—Similar to the probabilistic

model checkers used to analyse CTMCs in software perfor-

mance engineering (e.g., PRISM [19]), OMNI uses continuous

stochastic logic (CSL) extended with rewards to specify the

quality properties analysed over CTMCs [18], [21].

Definition 2: Let AP be a set of atomic propositions,

a∈AP , p∈ [0, 1], I an interval in R and ▷◁ ∈ {≥, >,<,≤}.
Then a state formula Φ and a path formula Ψ in CSL are

defined by the following grammar:

Φ ::= true | a |Φ ∧ Φ | ¬Φ |P▷◁p[Ψ] |S▷◁p[Ψ]
Ψ ::= XΦ |ΦU IΦ

. (4)

CSL formulae are interpreted over a CTMC whose states are

labelled with atomic propositions from AP by a function L :
S → 2AP . Path formulae only occur inside the probabilistic

operator P and steady-state operator S, which define bounds

on the probability of system evolution, e.g., a state s satisfies a

formula P▷◁p[Φ] if the probability of the future evolution of the

system meets the bound ‘▷◁ p’. For a path, the “next” formula

XΦ holds if Φ is satisfied in the next state; the “bounded

until” formula Φ1U
IΦ2 holds if before Φ2 becomes true at

time t ∈ I , Φ1 is satisfied continuously in the interval [0, t).
If I = [0,∞), the formula is termed “unbounded until”. The

notation F IΦ ≡ true U IΦ is used when the first part of an

until formula is true, and s |=Φ and M |=Φ indicate that Φ

s1

s2 s4

s3 s5

s6 s7

p2λ5 (1− p2)λ5

p1λ1

(1− p1)λ1

λ2
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Fig. 1: High-level CTMC model of request handling

is satisfied in state s and for the initial state distribution π

of a CTMC M =(S,π,R), respectively. Probabilistic model

checkers also support formulae in which the bound ‘▷◁ p’ is

replaced with ‘=?’, to indicate that the computation of the

actual bound is required. For a formal definition of the CSL

semantics, see [21].

III. MOTIVATING EXAMPLE

To motivate our work, we consider a travel web application

that needs to use the third-party services from Table I in order

to handle two types of requests:

1. Requests from users who plan to meet and entertain a

visitor arriving by train. These requests are expected to

occur with probability p1.

2. Requests from users looking for a possible destination for

a day trip by train. These requests are expected to occur

with probability 1− p1.

The high-level abstract CTMC from Fig. 1 (derived from an

activity diagram) models the handling of a request by the

application. The initial state s1 corresponds to finding the

location of the train station. For the first request type, this is

followed by finding the train arrival time (state s2), identifying

suitable restaurants in the area (s4), obtaining a traffic report

for the route from the user’s location to the station (s6), and

returning the response to the user (s7). For the second request

type, state s1 is followed by finding a possible destination

(s3), and obtaining a weather forecast for this destination (s5).

With a probability of p2 the weather is unsuitable and a new

destination is selected (back to s3). Once a suitable destination

is selected, the traffic report is obtained (s6) and the response

returned to the user (s7).

The operation execution rates λ1 to λ6 depend on the

components used for these operations, and the engineers want

to decide if the real services from Table I are suitable for

building the application. If they are, the engineers need: (i) to

select appropriate request-handling times to be promised in the
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Fig. 2: Predicted (dashed lines) versus actual (continuous line) values for properties P1–P3

application service-level agreement (SLA); and (ii) to choose

a pricing scheme for the application. Therefore, the engineers

are interested to assess the following quality properties of the

application variant built using these services:

P1 The fraction of user requests handled in under T seconds,

for 0<T ≤4.

P2 The fraction of “day trip” requests handled in under T
seconds, for 0<T ≤4.

P3 The expected profit per request handled, assuming that

1 cent is charged for requests handled within T seconds

and a 2-cent penalty is paid for requests not handled within

3 seconds, for 0 < T ≤ 3.

Service response times are assumed exponentially distributed

in CTMC modelling, so the engineers use observed response

times ti1, . . . , tin for service i (taken from existing logs or

obtained through testing) to estimate the service rate λi as

λi =

(

ti1 + ti2 + · · ·+ tin
n

)−1

. (5)

Finally, they use the CTMC to analyse the CSL-formalised

properties P1–P3:

P1 P=?[F
[0,T ]complete]

P2 P=?[¬arrivals U [0,T ]complete]/(1− p1)
P3 P=?[F

[0,T ]complete]− 2 · P=?[F
(3,∞)complete]

(6)

where 0 < T ≤ 4 for P1 and P2, and 0 < T ≤ 3 for P3. To

replicate this process, we built a prototype version of the

application and used it to handle 270 randomly generated

requests for p1 = 0.3 and p2 = 0.1. We obtained sample

execution times for each service (between 81 for arrivals and

search and 270 for location and traffic), and used (5) to

calculate the estimate service rates in Table I. We then used

the model checker PRISM [19] to analyse the CTMC for

these rates, and thus to predict the values of properties (6). To

assess the accuracy of the predictions, we calculated the actual

values of these properties using detailed timing information

logged by our application. The predictions obtained through

CTMC analysis and the actual property values are compared

in Fig. 2. The errors reported in the figure give the area

difference between the actual and predicted property values:

error =

∫ Tmax

0

|actual(T )− predicted(T )| dT, (7)

where Tmax =4 for properties P1 and P2, and Tmax =3 for

P3. We will later use these errors to measure the accuracy

improvements due to our OMNI model refinement. For now,

recall that the engineers must make decisions based only on the

predicted property values; two such decisions could be:

• Implement the application with the services from Table I,

with an SLA promising that 40% of the requests will be

handled within 1s (property P1), 35% of the “day trip”

requests will be handled also within 1s (property P2), and

charge 1 cent for requests handled within 1s (property P3).

This decision would be wrong, as both promises would be

violated by a wide margin, and the actual profit would be

under a third of the predicted profit (cf. Fig. 2).

• Look for alternative services for the application, because

not even 80% of the requests or “day trip” requests are

handled within 2s, and/or because the profit is below 0.7

cents per request when charging 1 cent for each request

handled within 2s. This decision would also be wrong,

since all the constraints it is based on would actually be

satisfied by the application (Fig. 2).

Clearly, we chose the times and bounds above so as to show

that the current practice of using idealised CTMC models

may lead to blatantly invalid decisions. Using other times

and bounds will yield valid decisions. However, we argue that

engineering decisions must be consistently valid, and not down

to chance.

IV. CTMC REFINEMENT METHOD

Let CTMC(S,π,R) be a high-level CTMC model of a

system such that:

• each state si ∈ S corresponds to operation i of the system

and π(si) is the probability that this is the initial operation;

• for any si ̸= sj from S, R(si, sj) = pijλi, where pij is

the (known or estimated as in [22], [23]) probability (3)

that operation i is followed by operation j, and λi is

calculated as in (5), using n>0 observed execution times

ti1, ti2, . . . , tin of operation i.

This CTMC model makes the typical assumption that opera-

tion execution times are exponentially distributed. However,

this assumption is almost always invalid for two reasons.

First, each software operation i has a minimum execution

time ti > 0 such that its probability of completion within

ti time units is zero. Second, even the “holding times”
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ti1 − ti, ti2 − ti, . . . , tin − ti of an operation i are rarely

exponentially distributed. As we showed in Section III, these

issues can lead to erroneous analyses of the quality properties

of the modelled system.

OMNI overcomes these issues by producing a refined

CTMC whose analysis with existing model checkers sup-

ports the accurate evaluation of quality properties of software

(Fig. 3). This is achieved through the use of phase-type

distributions (PHDs) that accurately model the variations in

execution times for each component. The PHD fitting of

distributions with deterministic delays is known to require

extremely large numbers of states, and such delays are best

fitted by Erlang distributions [24], as we confirm experimen-

tally in Section VI. As such, the OMNI refinement comprises

two stages. In the first stage, the high-level CTMC is refined

to better model the minimum execution times of software

operations. We term this stage delay extraction. In the second

stage, the CTMC is further refined through the use of PHD

fitting. We call this stage holding-time modelling. The two

OMNI stages are described next.

A. Stage I: Delay Extraction

In this OMNI stage, the CTMC is extended with additional

states and transitions that model the minimum execution times

(i.e. delays) of the software operations by means of Erlang

distributions, i.e., sums of several independent exponential

distributions with the same rate [16]. With the notation above,

state si and its mi ≥ 1 outgoing transitions with rates pi1λi,

pi2λi, . . . , pimi
λi are replaced (Fig. 4) with a sequence of

delay-modelling states si1, si2, . . . , siki
that encode an Erlang-

ki distribution with rate λE
i , and a state s′i with outgoing

transitions of rates pi1λ
′
i, pi2λ

′
i, . . . , pimi

λ′
i to the same next

states as si. However, delays are not modelled perfectly by

Erlang distributions: for any error ϵ∈(0, 1), there is a (small)

probability p that the refined CTMC leaves state siki
within

ti(1−ϵ) time units of entering si1. Given specific values for

ϵ and p, the theorem below supports the calculation of the

parameters ki, λ
E
i and λ′

i for our delay extraction.

Theorem 1: Given an error bound ϵ ∈ (0, 1), if the

delay-extraction refinement parameters ki, λ
E
i and λ′

i satisfy

1−

ki−1
∑

l=0

(ki(1− ϵ))
l
e−ki(1−ϵ)

l!
= p, (8)

λE
i =

ki
ti

and λ′
i =

λi

1− λiti
(9)

for some value p ∈ (0, 1) then the following properties hold

for the refined CTMC:

si

pi1λi

pi2λi si1 s′
i

si2 siki

pi1λ
′

i

pi2λ
′

i
λE

i
λE

i
λE

i

Erlang delay model

(a) (b)
pimi

λi pimi
λ′

i

Fig. 4: Modelling operation i in the (a) abstract CTMC and

(b) refined CTMC

(i) The probability that the CTMC leaves state siki
within

ti(1− ϵ) time units from entering state si1 is p;

(ii) The expected time for the CTMC to leave s′i after entering

state si1 is λ−1
i .

Proof: To prove (i), we note that the cumulative dis-

tribution function of an Erlang-k distribution with rate λ is

F (k, λ, x) = 1 −
∑k−1

l=0
(λx)le−λx

l! , so (8) can be rewritten as

F (ki, λ
E
i , ti(1 − ϵ)) = p since ki = λE

i ti according to (9).

Therefore, the probability that the Erlang delay model from

Fig. 4 will transition from entering state si1 to exiting state

siki
within ti(1− ϵ) time units is p. For part (ii), the expected

time for the CTMC to leave state s′i after entering si1 is the

sum of the mean of the Erlang-ki distribution with rate λE
i

and the mean of the exponential distribution with rate λ′
i, i.e.

ki

λE
i

+ 1
λ′
i

= ti +
1
λi
− ti = λi

−1.

Thus, we can calculate the delay model parameters for

operation i as follows:

1. Approximate the minimum execution time for operation i
as ti = minnj=1 tij ;

2. Choose a small error ϵ ∈ (0, 1) and a small probability p
(e.g., ϵ=0.1 and p=0.05), and solve (8) for ki, e.g., by

using a numeric solver and rounding the result up to an

integer value or—since ki only depends on ϵ and p, and

is independent of ti—by using a table of precomputed ki
values as in Table II;

3. Calculate λE
i and λ′

i using (9).

The theorem below gives the format of the refined CTMC after

the delay extraction stage. For convenience, we consider that

the delay extraction procedure was applied to all states of the

initial model CTMC(S,π,R), which involves setting ki = 0
and λ′

i=λi in the Erlang delay model from Fig. 4(b) for states

si ∈ S that do not require delay extraction (e.g. state s7 from

our CTMC in Fig. 1).

Theorem 2: Applying the OMNI delay extraction procedure

to a high-level model CTMC(S,π,R) yields the refined

model CTMC(S′,π′,R′), where:

S′=∪si∈S{si1, si2, . . . , siki
, s′i};

π
′(s′i)=π(si) and π(si1)= · · ·=π(siki

)=0, ∀si ∈ S;

R
′(sik, si,k+1) = R

′(siki
, s′i) = λE

i , 1≤k<ki, ∀si ∈ S;

R
′(s′i, sj1) = pijλ

′
i for all sj ∈ S \ {si}, ∀si ∈ S;

R
′(s′ik, s

′
jl) = 0 for all sj ∈ S \ {si}, 1≤k≤ki, 1≤ l≤kj ;

R
′(s′, s′) = −Σz′∈S′\{s′}R

′(s′, z′), ∀s′ ∈ S′.

Proof: The proof is by construction, cf. Fig. 4.
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where error0 and errorI are calculated as in (7), before and after delay extraction

TABLE II: Precomputed ki values used in the OMNI evalua-

tion from Section VI

error ǫ
prob. p
ki 259

0.2
0.29
10

0.1
0.08
45 100

0.10.2
0.16 0.05

Example 1 Consider again the web application from our

motivating example, and its three quality properties from (6).

We applied the OMNI delay extraction to each state associated

with a service in the CTMC from Fig. 1. We set ϵ=0.1 and

p=0.05, so state si, 1≤ i≤ 6, from the original CTMC was

replaced with an Erlang delay model as in Fig. 4(b), where

ki=259 (cf. Table II) and the values for λE
i and λ′

i are given

in Table III. Accordingly, the refined CTMC had 6×259 more

states and transitions than the original CTMC. Fig. 5 compares

the actual values of properties P1–P3 with the values predicted

through the analysis of the refined CTMC. As anticipated, the

error (7) decreased significantly (by between 49%–70%) for all

three properties, reducing the margin for engineering decision

errors. Nevertheless, there are still time points T where the

actual and predicted property values differ noticeably, e.g., the

predicted P1 and P2 values for T = 1.4s are 0.565 (instead

of an actual value of 0.723) and 0.462 (instead of 0.674),

respectively. The next OMNI stage addresses this difference.

B. Stage II: Holding-Time Modelling

We further refine the CTMC from the first OMNI stage by

using phase-type distributions (PHDs) to model the “holding

times” of the system operations. A PHD [17] is defined

as the distribution of the time to absorption in a CTMC

with one absorbing state, i.e. the time to reach the only

state si ∈ S of a CTMC (2) for which R(si, sj) = 0 for

all sj ∈ S. PHDs support efficient numerical and analytical

evaluation [17] and can approximate arbitrarily close any

continuous distribution with a strictly positive density

in (0,∞) [25]. OMNI exploits these advantages of PHDs

by synthesising a PHD that models the “holding times” sample

samplei = (t′i1= ti1−ti, t
′
i2= ti2−ti, . . . , t

′
in= tin−ti) (10)

for each operation i, and replacing state s′i of the Erlang

delay model from Fig. 4(b) with the CTMC associated

with this PHD. Before describing the OMNI PHD synthesis

algorithm and replacement procedure for state s′i, we need to

introduce several basic concepts about PHDs. First, consider

the transition rate matrix R of a CTMC (S,π,R) with one

absorbing state and N ≥ 1 transient (i.e., non-absorbing)

states called the phases of the PHD. Without loss of generality,

we will assume that the last row of R corresponds to the

absorbing state, i.e.

R =

[

D0 d1

0 0

]

, (11)

where the N×N sub-matrix D0 specifies only transition rates

between transient states, 0 is a 1 × N row vector with zero

elements, and d1 is an N × 1 vector whose elements specify

the transition rates from the transient states to the absorbing

state. The elements from each row of R add up to zero (cf.

Definition 1), so we additionally have D01+d1 = 0, where 1

and 0 are column vectors of N ones and N zeros, respectively.

Thus, d1 = −D01 and the PHD associated with this CTMC

is fully defined by the sub-matrix D0 and the row vector π0

containing the first N elements of the initial probability vector

π (as in most practical applications, we are only interested in

PHDs that are acyclic and that cannot start in the absorbing

state). We use the notation PHD(π0,D0) for this PHD.

The fitting of phase-type distributions to empirical data

received considerable attention [17], [26], with effective PHD

fitting algorithms developed based on techniques such as mo-

ment matching [27], expectation maximisation [28], [29] and

Bayes estimation [30], [31]. Recently, these algorithms have

been used within PHD fitting approaches that: (a) partition

the dataset into segments [29] or clusters [32] of “similar”

data points; (b) employ an established algorithm to fit a PHD

with a simple structure to each data segment or cluster; and

(c) use these simple PHDs as branches of a PHD that fits

the whole dataset. These approaches achieve better trade-offs

between the size, accuracy and complexity of the final PHD

than direct algorithms applied to the entire dataset.

The function HTMODEL from Algorithm 1 performs the

holding-time modelling for state s′i of the CTMC(S′,π′,R′)
model from Theorem 2. HTMODEL applies Reinecke et al.’s

cluster-based PHD fitting approach [32], [33], [34] to the

holding times samplei (10) (lines 2–16), uses this PHD to

derive the parameters of the refined CTMC(S′′,π′′,R′′) (lines

17–20), and returns this CTMC in line 21.

The PHD fitting is carried out by the while loop in lines

5–16, which iteratively assesses the suitability of PHDs ob-

tained when partitioning samplei into c = MinC ,MinC +



TABLE III: Erlang delay model parameters for the states of the CTMC from Fig. 1

si label t
i

(ms) λ
E

i (s−1) λ
′
i (s−1) si label t

i
(ms) λ

E

i (s−1) λ
′
i (s−1)

s1 location 49 5285 18.21 s4 search 209 1239 3.01
s2 arrivals 45 5756 188.81 s5 weather 706 367 5.14
s3 departures 45 5756 156.76 s6 traffic 179 1447 4.57

Algorithm 1 Holding-time modelling with parameters:

– MinC (minimum number of PHD clusters)

– MaxC (maximum number of PHD clusters)

– MaxP (maximum number of cluster phases)

– FittingAlg (basic PHD fitting algorithm)

– MaxSteps (maximum steps without improvement)

1: function HTMODEL(CTMC(S′,π′,R′), s′i, samplei, α)

2: PHD(π0,D0)← null , minErr =∞
3: improvement ← 0, steps ← 0
4: c← MinC

5: while c ≤ MaxC ∧ steps ≤ MaxSteps do

6: phd ← CBFITTING(sample, c,FittingAlg ,MaxP)
7: err ← ∆CDF(sample, phd)
8: if err < minErr then

9: improvement ← improvement+(minErr−err)
10: minErr ← err

11: PHD(π0,D0)← phd

12: if improvement ≥ α then

13: improvement ← 0, steps ← 0
14: else

15: steps ← steps + 1

16: c← c+ 1

17: Ni ← SIZEOF(D0)
18: S′′ ← (S′ \ {s′i}) ∪ {s

′
i1, s

′
i2, . . . , s

′
iNi
}

19: π
′′ =

[

π
′

01×Ni

]

20: R
′′ ←





R
′(S′\{s′i}, S

′\{s′i})
0

λE
i π0

pi1d1 pi2d1 · · · D0





21: return CTMC(S′′,π′′,R′′)

1, . . . ,MaxC clusters. Line 6 obtains a PHD with c branches

(corresponding to partitioning samplei into c clusters) and up

to MaxP phases by using the function CBFITTING, which

implements the cluster-based PHD fitting from [32]. The

FittingAlg argument of CBFITTING specifies the basic PHD

fitting algorithm applied to each cluster as explained above,

and can be any of the standard moment matching, expectation

maximisation or Bayes estimation PHD fitting algorithms. The

quality of the c-branch PHD is established in line 7 by using

the CDF-difference metric [32] to compute the difference err

between samplei and the PHD. The if statement in lines 8–

11 identifies the PHD with the lowest err value so far,

making a record of it in line 10. Any reductions in err (i.e.,

“improvements”) are cumulated in improvement (line 9), and

the while loop terminates early if the iteration counter steps

exceeds MaxSteps before improvement reaches the threshold

α ≥ 0 supplied as an argument to HTMODEL and the steps

counter is reset (line 13).

On exit from the while loop, the elements D0, d1 = −D01

and π0 of the best-fit phase-type distribution PHD(π0,D0)
recorded in line 11 are used to calculate the parameters

S′′, R
′′ and π

′′ of the refined CTMC. These calculations

are shown in lines 17–20, under the simplifying assumption

that R
′ maintains the transition rates for the outgoing and

incoming transitions of states siki
and s′i in the last two

rows and columns, respectively. This assumption is easily

satisfiable by reordering the rows and columns of the matrix,

so that R′ has the structure

R
′ =





R
′(S′\{s′i}, S

′\{s′i})
0

λE
i

λ′
i [ pi1 pi2 · · · ] −λ′

i



← siki

← s′i

(12)

where R
′(S′\{s′i}, S

′\{s′i}) denotes matrix R
′ without the last

row and column. The following result justifies the construction

of the refined CTMC.

Theorem 3: The tuple (S′′,π′′,R′′) synthesised by Algo-

rithm 1 defines a valid CTMC in which the probability that

sj1 is the first state from S′′ ∩ S′ reached after state siki
is

pij , and the mean time of reaching any state in S′′ ∩ S′ from

siki
is given by the mean time to reach the absorbing state of

PHD(π0,D0).
Proof: Since π

′ is the initial probability vector of

CTMC(S′,π′,R′), its elements sum to 1.0 and so do the

elements of π′′, which is therefore a valid probability vector. It

is immediate to show that the rows of R′′ contain non-negative

elements outside the main diagonal and that the elements on

each row add up to zero, so R
′′ is a valid transition rate matrix.

Accordingly, (S′′,π′′,R′′) satisfies Definition 1 and is a valid

CTMC. For the second part of the theorem, assume that the

Ni transient states of the (acyclic) PHD(π0,D0) are reached

with probabilities x1, x2, . . . , xNi
. We have [ x1 x2 · · · xNi

] ·
d1 = 1. In the CTMC returned by Algorithm 1, we note

from R
′′ that the next state after siki

is necessarily one of

s′i1, s
′
i2, . . . , s

′
iNi

, and that the probabilities of reaching these

“PHD-based” states are given by the elements of π0. Thus, the

probabilities of reaching the states s′i1, s
′
i2, . . . , s

′
iNi

from siki

are x1, x2, . . . , xNi
and so the probability of reaching sj1 from

siki
is [ x1 x2 · · · xNi

] pijd1 = pij [ x1 x2 · · · xNi
]d1 =

pij . Finally, since the next state after siki
corresponds to a

transient state of PHD(π0,D0), the mean time to reach any

other state (i.e., a state from si1, si2, . . .) is the same as the

mean time to reach the absorbing state of the PHD.

Example 2 We used our OMNI implementation to perform

Stage II of the refinement on the CTMC from the motivating

example. Algorithm 1 was executed for each of our six

services, with α=0.1 and with the configuration parameters
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Fig. 6: Properties P1–P3 predicted after holding-time modelling (dashed line) vs. actual (continuous line); error0, errorI and

errorII are the prediction errors before OMNI and after each OMNI stage, respectively

MinC = 2, MaxC = 30, MaxP = 300, MaxSteps = 3
and FittingAlg an expectation-maximisation PHD fitting algo-

rithm that produces hyper-Erlang distributions.1 We obtained

a refined CTMC with 1766 states and 1797 transitions, and

Fig. 6 compares the actual values of properties P1–P3 with

the values predicted by the analysis of this CTMC. Both the

visual assessment and the errorII error values associated with

these predictions (which are significantly lower than the error

values error0 before the OMNI refinement and errorI after the

first OMNI stage) show that this CTMC supports the accurate

analysis of the three properties.

V. OMNI REFINEMENT TOOL

We implemented OMNI as a Java tool that accepts a CTMC

model of a software system and an XML configuration file

as input. The CTMC is expressed in the modelling language

of PRISM [19]. The configuration file (i) maps datasets of

observed execution times of the software operations to states

within the CTMC; and (ii) defines all parameters that control

the OMNI refinement. Our tool uses the HyperStar PHD fitting

tool from [33] for the CBFITTING function from Algorithm 1,

and produces the refined CTMCs as a PRISM model. The

OMNI tool is freely available from our project webpage

www-users.cs.york.ac.uk/cap/OMNI.

VI. EVALUATION

We evaluated OMNI experimentally to answer the following

research questions (RQs).

RQ1 (Accuracy): How effective are OMNI models at

predicting quality property values for other system runs

than the one used to collect the datasets used for the

refinement? For any stochastic process, a (sufficiently large)

training dataset should be sufficient to capture the behaviour

of the system. Models based on this dataset should be robust

when evaluated against datasets from other system runs (i.e.,

no overfitting). To assess if OMNI models have this property,

we used three four-hour runs of the application from Sec-

tion III, carried out at different times of day over a period

of two days, to collect three testing datasets of same size to

the training dataset from Section IV. The differences between

actual and predicted values for each additional dataset are

1A hyper-Erlang distribution [35], [17], [29] is a PHD in which the c > 1

branches of the PHD from Algorithm 1 are mutually independent Erlang
distributions.

presented in Fig. 7a. The models used in this analysis are

the initial CTMC from Fig. 1 (labelled “exponential” in the

diagrams) and the refined CTMCs obtained after each OMNI

stage for the training dataset and the OMNI parameters from

Examples 1 and 2. A visual inspection of the results shows that

each OMNI stage significantly improves the accuracy of the

analysis. The reduction in the cumulated prediction error (7)

across the three testing datasets was in the ranges 82.5–88.6%

for property P1, 77–90.3% for P2 and 83.3–89.8% for P3.

To eliminate the risk that these improvements were due to an

advantageous partition of the data into training and testing sets,

we carried out 30 more experiments in which the observations

were randomly partitioned into four new datasets, one used

for training and the others for assessing fitting errors. The

errors from these experiments, summarised as box plots in

Fig. 7b, show that OMNI consistently outperforms traditional

CTMC modelling irrespective of the choice of training data,

confirming the accuracy and robustness of our method.

RQ2 (Refinement Granularity): What is the effect of

varying the refinement granularity on the model accuracy,

size and verification time? We ran experiments to evaluate the

accuracy of the OMNI predictions when varying: (i) the size ki
of the Erlang delay model (cf. Table II); and (ii) the threshold

α from Algorithm 1 (with the other OMNI parameters as in

Examples 1 and 2). The values of ki and α determine the

granularity of the refinement from the two OMNI stages, with

larger ki and smaller α values corresponding to finer-grained

refinement (and larger refined CTMCs). The experimental

results (Table IV) show that when only Stage I of OMNI is

used, increasing ki initially reduces the analysis error for all

properties, with significant improvements even for small ki.
However, increasing ki beyond a certain value (approx. 100
for our system) has little effect on the model accuracy. In

Stage II, the analysis error decreases when smaller α values

are used. However, this decrease is much less significant when

changing from α=0.1 to α=0.05 than when changing from

α=0.2 to α=0.1. Both results show the presence of a point

of “diminishing returns” in continuing the refinement beyond

a certain level of granularity (which is necessarily application

and training dataset dependent). As a further remark, a cou-

pling effect between α and ki is suggested by the results. This

increases the limit at which ki still provides improvements

in model accuracy, with Stage I+II model accuracy showing



(a) (b)
Fig. 7: Prediction error for training & testing datasets from different runs (a), and for 30 random training & testing datasets (b)

TABLE IV: Effects of the OMNI refinement granularity

OMNI stage ki α #CTMC states P1 Error P1 verif. time (s) P2 Error P2 verif. time (s) P3 Error P3 verif. time (s)
Initial CTMC 7 0.325 < 0.1 0.402 < 0.1 0.377 < 0.1

I 10 - 67 0.113 < 0.1 0.15 < 0.1 0.190 < 0.1

I 100 - 607 0.105 0.1 0.121 0.1 0.195 0.1
I 259 - 1561 0.105 1.1 0.119 1.1 0.194 1.2

I+II 10 0.2 122 0.083 0.2 0.122 0.1 0.098 0.3
I+II 100 0.2 662 0.048 0.7 0.064 0.7 0.082 0.9
I+II 259 0.2 1616 0.044 2.8 0.057 2.7 0.079 3.2
I+II 10 0.1 272 0.076 0.6 0.109 0.6 0.086 0.7
I+II 100 0.1 812 0.041 1.4 0.047 1.3 0.066 1.6
I+II 259 0.1 1766 0.037 5.2 0.039 4.9 0.063 5.6
I+II 10 0.05 658 0.073 2.2 0.102 2.2 0.084 2.4
I+II 100 0.05 1198 0.040 4.0 0.042 3.5 0.064 4.1
I+II 259 0.05 2152 0.037 11.9 0.035 11.9 0.060 12.2

improvements as ki is increased from 100 to 259.

Table IV also reports the number of CTMC states at each

level of granularity, and the associated verification times—

comprising the time to build the model and to verify each

property at a single time point using PRISM on a MacBook

Pro with 2.9 GHz Intel i5 processor and 16Gb of memory.

As expected, the model size and verification time increase

rapidly with the refinement granularity, up to over 2000

states and 12s for several models. Importantly, the results

indicate that this increase can be limited by not refining the

model beyond the granularity at which the predicted property

values stabilise, which can be determined e.g. by applying

OMNI iteratively at increasing levels of refinement granularity.

Another positive insight is that when computational resources

are at a premium, small OMNI refined models still provide

considerable accuracy improvements.

The component-based system from our case study is realis-

tic, but relatively simple. Therefore, it is worth noting that the

increase in model size after the OMNI refinement is only linear

in the number of system components. Moreover, as OMNI

uses acyclic PHDs, the number of transitions also increases

only linearly with refinement. As modern model checkers can

analyse CTMCs with 105–106 states [36], we expect OMNI

to scale well to much larger system sizes. We confirmed these

hypotheses (Fig. 8) by running additional OMNI refinement
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Fig. 8: Refined CTMC states, transitions and verification time

for system sizes up to 16 times larger than the web application

experiments for models of systems with 12, 24, 48 and 96

components. These larger models (available on our project

webpage) were obtained by combining 2, 4, 8 and 16 instances

of our six-component high-level CTMC from Fig. 1, and

OMNI was used with observation sets drawn randomly from

those of our six web services, k = 259 and α = 0.1. The

verified property was only P1 from (6) for T = 20s (as P2 and

P3 cannot be meaningfully extrapolated to the larger systems).

RQ3 (Training dataset size): What is the effect of the

training dataset size on the refined model accuracy? We ran

experiments to assess the accuracy of OMNI predictions when

the refined CTMC was derived using subsets comprising only

20%, 40%, 60% and 80% of the elements from our 270-entry

training dataset. For each subset size we used ki = 259 and

α=0.1, and ran 30 experiments with subset elements drawn

randomly from the complete training dataset. As expected, the

results (depicted in Table V) show that the OMNI prediction



TABLE V: Training dataset size effect on prediction accuracy,

shown as average error and standard deviation over 30 runs

Dataset† P1 Error P2 Error P3 Error

100%†† 0.037 sd N/A∗ 0.039 sd N/A∗ 0.063 sd N/A∗

80% 0.054 sd 0.019 0.054 sd 0.015 0.109 sd 0.053
60% 0.063 sd 0.023 0.066 sd 0.024 0.130 sd 0.066
40% 0.065 sd 0.021 0.063 sd 0.020 0.149 sd 0.068
20% 0.074 sd 0.029 0.075 sd 0.028 0.157 sd 0.068

Initial CTMC 0.325 sd N/A∗ 0.402 sd N/A∗ 0.377 sd N/A∗

†Percentage of complete 270-element training dataset ††Single run using
entire data set ∗Single run, so no standard deviation

errors increase as the training dataset becomes smaller (except

for the P2 error for the 40% dataset, which is marginally

smaller than that for the 60% dataset). Importantly, significant

accuracy improvements are achieved even for the 20% dataset,

so OMNI is effective even when relatively small observation

sets can be obtained, e.g. due to time or budget constraints.

RQ4 (Comparison to PHD): How does OMNI compare

to a single-stage PHD fitting approach? As PHDs can fit

any positive continuous distribution, we assessed the benefit

of having a delay extraction stage in OMNI. To this end, we

switched off OMNI’s delay extraction and produced PHD-only

refined CTMCs for α ∈ {0.1, 0.05, 0.01}. Table VI compares

these models to OMNI-refined CMTCs of equivalent size (i.e.

small, medium or large) that we constructed by using α = 0.1,

with enough delay-modelling states to not exceed the PHD-

only model sizes. The experimental results show that for all

three model sizes, the OMNI models yield more accurate

results (with similar or better verification times, and much

smaller refinement times) than the PHD models. This confirms

existing theoretical results which show that PHD fitting of

deterministic delays requires an excessive number of states,

and that an Erlang distribution (as used in the first OMNI

stage) is the best fit for a fixed delay [24].

VII. RELATED WORK

PHD fitting to empirical data is an active research area,

with numerous new fitting algorithms proposed in recent years,

e.g. [27], [30], [29], [31]. OMNI leverages these results, and

applies them to the refinement of CTMCs used in software

engineering. The analysis of non-Markovian processes using

PHDs is considered in [37], where a process algebra is

proposed for use with the probabilistic model checker PRISM.

However, [37] presents only the analysis of a simple system

based on well-known distributions, and does not consider PHD

fitting to real data nor how its results can be exploited in the

scenarios tackled by OMNI.

Delays within a process present particular problems for

PHD fitting, and probabilistic regions of zero density are

considered in [24], where interval distributions are used to

separate discrete and continuous features. Similar work [38]

supports the synthesis of timeouts in fixed-delay CTMCs by

using Markov decision processes. Unlike OMNI, [38], [24] do

not consider essential non-Markovian features of real data such

as multi-modal and long-tail distributions, and thus cannot

handle empirical data that has these common characteristics.

Finally, the cluster-based PHD fitting method from [32]

was used to implement the efficient PHD-fitting tool Hyper-

Star [33]. However, the PHD fitting method and tool from [32],

[33] generate a PHD only for a single dataset. OMNI uses this

method and tool in its second stage, to refine the high-level

CTMC model of a component-based software system.

Non-PHD-based approaches to combining Markov models

with real data range from e.g. using Monte Carlo simulation

to analyse properties of discrete-time Markov chains with

uncertain parameters [39] to using semi-Markov chains to

model holding times governed by general distributions [40].

However, none of these approaches can offer the guarantees

and tool support provided by OMNI thanks to its exploitation

of established CTMC model checking techniques.

VIII. THREATS TO VALIDITY

Construct validity threats may arise due to the assumptions

made when implementing our prototype web application and

collecting the datasets used for the model refinement experi-

ments. To mitigate them, we implemented the web application

using standard Java technologies, and we collected the datasets

from six real web services from three different providers, at

different times of day and on two different days. We also used

different datasets for training and testing, and we analysed

typical performance and cost properties of the application.

Internal validity threats can be due to the stochastic nature

of the analysed component-based system or bias in interpreting

the experimental results. To address these threats, we provided

formal proofs for our method, and reported results from

multiple independent experiments that use different values for

the OMNI parameters, and analyse three system properties at

several levels of refinement granularity.

External validity threats may exist if the stochastic features

of the analysed system are not indicative of the features of

other software systems. To reduce this threat, trace data was

obtained from a range of real web services, such that the char-

acteristics of the distributions used exhibited features which we

would expect to see in a many real-world applications, e.g.,

regions of zero density, multi-modal response times and long

tails. Additionally external threats exists if the refined CTMC

model cannot be verified within the resources of a traditional

computer. The OMNI approach allows for the refinement to be

carried out at different levels of granularity and our evaluation

suggests that significant improvements in prediction accuracy

can be achieved with modest enlargement of the models.

IX. CONCLUSION

We introduced OMNI, an observation-based CTMC refine-

ment method and tool that significantly improve the accuracy

with which quality properties of software systems can be

analysed using CTMC models. We evaluated OMNI using data

obtained from real web services, demonstrating its robustness.

In future work, we will assess the sensitivity of OMNI to the

size of the training datasets, and its effectiveness at estimating

a wider range of execution time distributions for the system

components. In addition, we plan to augment OMNI with



TABLE VI: Comparison of OMNI refinement with PHD-only refinement

Experiment #CTMC Refinement P1 verif. P1 P2 verif. P2 P3 verif. P3
Method “size” α ki states time (m:s) time (s) Error time (s) Error time (s) Error

small 0.1 - 485 1:19 0.7 0.059 0.7 0.064 0.9 0.101
PHD medium 0.05 - 827 1:52 1.4 0.055 1.4 0.058 1.6 0.099
only large 0.01 - 2468 4:07 5.5 0.046 5.4 0.043 6.0 0.097

small 0.1 45 482 0:24 0.8 0.049 0.8 0.058 0.9 0.072
OMNI medium 0.1 100 812 0:24 1.4 0.041 1.3 0.047 1.6 0.066

large 0.1 259 1766 0:24 5.2 0.037 4.9 0.039 5.6 0.063

the ability to intelligently vary the level of refinement across

components, so that fine-grained refinement is only used for

components that need it.
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