
This is a repository copy of Designing Robust Software Systems through Parametric
Markov Chain Synthesis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/113450/

Version: Accepted Version

Proceedings Paper:
Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260, Ceska, Milan, Gerasimou,
Simos et al. (2 more authors) (2017) Designing Robust Software Systems through
Parametric Markov Chain Synthesis. In: IEEE International Conference on Software
Architecture (ICSA 2017). IEEE , pp. 1-10.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Designing Robust Software Systems through

Parametric Markov Chain Synthesis

Radu Calinescu∗, Milan Češka†, Simos Gerasimou∗, Marta Kwiatkowska‡ and Nicola Paoletti§

∗Department of Computer Science, University of York, UK
†Faculty of Information Technology, Brno University of Technology, Czech Republic

‡Department of Computer Science, University of Oxford, UK
§Department of Computer Science, Stony Brook University, USA

Abstract—We present a method for the synthesis of software
system designs that satisfy strict quality requirements, are Pareto-
optimal with respect to a set of quality optimisation criteria, and
are robust to variations in the system parameters. To this end,
we model the design space of the system under development
as a parametric continuous-time Markov chain (pCTMC) with
discrete and continuous parameters that correspond to alterna-
tive system architectures and to the ranges of possible values
for configuration parameters, respectively. Given this pCTMC
and required tolerance levels for the configuration parameters,
our method produces a sensitivity-aware Pareto-optimal set of
designs, which allows the modeller to inspect the ranges of quality
attributes induced by these tolerances, thus enabling the effective
selection of robust designs. Through application to two systems
from different domains, we demonstrate the ability of our method
to synthesise robust designs with a wide spectrum of useful trade-
offs between quality attributes and sensitivity.

Keywords-software performance and reliability engineering;
probabilistic model synthesis; multi-objective optimisation

I. INTRODUCTION

Evaluating the performance, reliability and other quality at-

tributes of alternative designs is essential for the cost-effective

engineering of software [1], [2]. Delaying this evaluation until

integration or system testing can greatly increase engineering

costs, as defects identified late in the development lifecycle

require much more effort to fix [3]. A common method to

avoid this delay uses model-based simulation [4] or formal

verification [5] to predict the quality attributes of alternative

designs. Models that meet the quality requirements of the

system under development are then used as a basis for its

implementation. Models based on queueing networks [6],

probabilistic models [2], [5] and timed automata [7] have been

used for this purpose, together with tools for their simulation

(e.g. Palladio [8]) and verification (e.g. PRISM [9]). Fur-

thermore, recently proposed approaches automate the search

for suitable designs. Probabilistic model repair [10], [11]

automatically modifies the transition probabilities of Markov

models that violate a quality requirement, generating new

models that meet the requirement. Precise parameter synthesis

[12] identifies transition rates that enable continuous Markov

models to satisfy a quality requirement or to optimise a quality

attribute of the modelled system. Finally, probabilistic model

synthesis [13] starts from a design template that captures alter-

native system designs, and uses multiobjective optimisation to

generate the Pareto-optimal set of Markov models associated

with the quality requirements of the system.

However, these promising approaches unrealistically assume

that the parameters of the real system (e.g. service rates) will

accurately match the parameters of the repaired or synthesised

model. This assumption limits the usefulness of existing model

repair and synthesis solutions, as Markov models are typically

nonlinear, so slight differences between the actual and assumed

parameters can lead to major differences between the real and

modelled quality attributes of software systems.

Our paper addresses this major limitation for probabilistic

model synthesis. To this end, introduce a method for the

synthesis of sensitivity-aware Pareto-optimal sets of proba-

bilistic models (i.e., designs) associated with: (a) the quality

requirements of a system; and (b) designer-specified tolerances

(i.e. permissible levels of variation) in the system parameters.

The designs synthesised by our method are continuous-time

Markov chains with transition rates constrained to bounded

intervals that reflect the required tolerances. Accordingly,

the Pareto-front element corresponding to each design is a

bounded region of quality attribute values for the system. This

region is a close over-approximation of all values that the

quality attributes can attain for the considered design.

The shape and size of the quality-attribute regions, along

with the parameter tolerances, provide key information for

sensitivity analysis of the associated Pareto-optimal designs,

and thus, for measuring their robustness. In particular, large-

tolerance designs associated with small quality-attribute re-

gions are robust. Robust designs [14] are of great interest

because they can withstand changes in the system parameters,

do not expose system users to large variations in quality

attributes, and can be built with high-variability components

that are often cheaper to develop or purchase, and may require

less effort to maintain, than low-variability components. Con-

versely, large quality-attribute regions from the Pareto front

correspond to designs that are highly sensitive to parameter

variations, and should typically be avoided.

The main contributions of our paper are threefold. First,

we adapt the concept of tolerance from other branches of

engineering and apply it to software architectures by defin-

ing the parametric Markov chain synthesis problem and the

sensitivity-aware Pareto dominance relation. Second, we in-

troduce an efficient method that combines probabilistic model

synthesis and precise parameter synthesis to automate the

generation of sensitivity-aware Pareto fronts for quality engi-

neering. Finally, we present a tool that implements our method

for designing robust software systems, which we evaluate on

two case studies: a replicated file system used by Google’s

search engine, and a cluster availability management system.

To the best of our knowledge, our work is the first to integrate

design synthesis and sensitivity analysis into a single end-

to-end method – existing research efforts have tackled the

challenges associated with design synthesis (e.g. [13], [15])

and sensitivity analysis (e.g. [16]–[20]) in isolation.

The paper is organised as follows. Sections II and III intro-

duce the background for our work and define the parametric

Markov chain synthesis problem, respectively. We then present

our robust design synthesis method and tool implementation

in Section IV. Finally, we describe the two case studies in

Section V, compare our method to related work in Section VI,

and conclude the paper with a brief summary in Section VII.

II. PRELIMINARIES

Design space modelling. We use a parametric continuous-

time Markov chain (pCTMC) to define the design space of the

software under development. To this end, we extend the origi-

nal pCTMC definition [21], where only real-valued parameters

determining the transition rates of the Markov chain are

considered, and assume that a pCTMC also includes discrete

parameters affecting its state space. Our definition captures

the need for both discrete parameters encoding architectural

structural information (e.g. by selecting between alternative

implementations of a software function) and continuous pa-

rameters encoding configurable aspects of the system (e.g.

network latency or throughput). As such, a candidate system

design corresponds to a fixed discrete parameter valuation and

to continuous parameter values from a (small) region.

Definition 1 (pCTMC). Let K be a finite set of real-valued

parameters such that the domain of each parameter k ∈K is

a closed interval [k⊥, k⊤]⊂R, and D a finite set of discrete

parameters such that the domain of each parameter d ∈ D is

a set T d⊂Z. Let also P=×k∈K
[k⊥, k⊤] and Q=×d∈D

T d

be the continuous and the discrete parameter spaces induced

by K and D, respectively. A pCTMC over K and D is a tuple

C(P,Q) = (DS ,Dinit,DR, L), (1)

where, for any discrete parameter valuation q ∈ Q:

• DS(q) = S is a finite set of states, and Dinit(q) ∈ S is

the initial state;

• DR(q) : S×S → R[K] is a parametric rate matrix, where

R[K] denotes the set of polynomials over the reals with

variables k ∈ K;

• L(q) : S → 2AP is a labelling function mapping each state

s ∈ S to the set L(q)(s) ⊆ AP of atomic propositions that

hold true in s.

A pCTMC C(P,Q) describes the uncountable set of

continuous-time Markov chains (CTMCs) {C(p, q) | p ∈
P ∧ q ∈ Q}, where each C(p, q) = (DS(q),Dinit(q),
R(p, q), L(q)) is the instantiated CTMC with transition matrix

R(p, q) obtained by replacing the real-valued parameters in

DR(q) with their valuation in p.

Definition 2 (Candidate design) A candidate design of the

pCTMC C(P,Q) from (1) is a pCTMC

C(P ′, {q}) = (D′
S ,D

′
init,D

′
R
, L′) (2)

where P ′ =×k∈K
[k′⊥, k′⊤] ⊆ P , q ∈ Q, D′

S(q) = DS(q),
D′

R
(q) = DR(q), D′

init(q) = Dinit(q) and L′(q) = L(q).
The tolerance of the candidate design with respect to the real-

valued parameter k ∈ K is defined as γk = k′⊤−k′⊥

2(k⊤−k⊥)
, in

line with the fact that the design restricts the value domain

for k to the interval
[

k − γk(k
⊤ − k⊥), k + γk(k

⊤ − k⊥)
]

,

k = k′⊥+k′⊤

2 .1 For convenience, we will use the shorthand

notation C(P ′, q) ≡ C(P ′, {q}) in the rest of the paper.

Quality attribute specification. We specify quality at-

tributes over pCTMCs-defined design spaces using continuous

stochastic logic (CSL) extended with reward operators [22].

Our focus is on timed properties of pCTMCs expressed by the

time-bounded fragment of CSL with rewards comprising state

formulae (Φ) and path formulae (φ) with the syntax:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼r[φ] | R∼r[C
≤t]

φ ::= X Φ | Φ U IΦ
, (3)

where a is an atomic proposition evaluated over states,

∼ ∈ {<,≤,≥, >} is a relational operator, r is a probability

(r ∈ [0, 1]) or reward (r ∈ R≥0) threshold, t ∈ R≥0 is a time

bound, and I ⊆ R≥0 is a bounded time interval. The ‘future’

operator, F , and ‘globally’ operator, G, are derived from U in

the standard way2. As briefly discussed in Section IV-A, our

approach can be extended to unbounded CSL.

Traditionally, the semantics of CSL is defined for CTMCs

using a satisfaction relation �. Intuitively, a state s � P∼r[φ] iff

the probability of the set of paths starting in s and satisfying φ
meets ∼r. A path ω = s0t0s1t1 . . . satisfies Φ U I Ψ iff there

exists a time t ∈ I such that (ω@t � Ψ ∧ ∀t′ ∈ [0, t).ω@t′ �
Φ), where ω@t denotes the state in ω at time t. A state s �

R∼r[C
≤t] iff the expected rewards over the path starting in s

and cumulated within t time units satisfies ∼ r, where the rates

with which reward is acquired in each state and the reward

acquired at each transition are defined by a reward structure.

In line with our previous work [12], we introduce a satis-

faction function Λφ : P × Q→ [0, 1] that quantifies how the

satisfaction probability associated with a path CSL formula φ
relates to the parameters of a pCTMC C(P,Q), where, for

any (p, q) ∈ P × Q, Λφ(p, q) is the probability that φ is

satisfied by the set of paths from the initial state Dinit(q)
of the instantiated CTMC C(p, q). The satisfaction function

for reward CSL formulae is defined analogously.

Quality requirements. We assume that the quality require-

ments of a system with design space given by a pCTMC

C(P,Q) are defined in terms of:

1) A finite set of objective functions {fi}i∈I corresponding

to quality attributes of the system and defined in terms

1In other words, the tolerance of parameter k, γk , measures the extent to
which k can be perturbed from its reference (midpoint) value.

2P∼r[F IΦ] = P∼r[true UIΦ] and P∼r[GIΦ] = P∼1−r[F I¬Φ]

of a set of CSL path formulas {φi}i∈I , such that for any

i ∈ I and (p, q) ∈ P ×Q,

fi(C(p, q)) = Λφi
(p, q); (4)

2) A finite set of boolean constraints {cj}j∈J corresponding

to the set of CSL path formulas {ψj}j∈J and thresholds

{∼j rj}j∈J , such that for any j ∈ J and (p, q) ∈ P ×Q,

cj(C(p, q)) ⇔ Λψj
(p, q)∼j rj . (5)

Without loss of generality, we will assume that all objective

functions {fi}i∈I should be minimised.

III. SYNTHESIS OF PARAMETRIC MARKOV CHAINS

Consider a system with design space C(P,Q), quality

requirements given by objective functions {fi}i∈I and

constraints {cj}j∈J , and designer-specified tolerances

{γk}k∈K for the continuous parameters of the system. Also,

let F be the set of feasible designs for the system (i.e., of

candidate designs that meet the tolerances {γk}k∈K and

satisfy the constraints {cj}j∈J):

F =
{

C(P ′, q)
∣

∣ P ′ = Xk∈K

[

k′⊥, k′⊤
]

⊂ P ∧ q ∈ Q ∧

∀k ∈ K.k′⊤−k′⊥ = 2γk(k
⊤−k⊥)∧

∀j ∈ J.∀p ∈ P ′. cj(C(p, q))
}

. (6)

The parametric Markov chain synthesis problem consists of

finding the Pareto-optimal set PS of candidate designs (2)

(i.e. pCTMCs) with tolerances {γk}k∈K that satisfy the

constraints {cj}j∈J and are non-dominated with respect to

the objective functions {fi}i∈I :

PS =
{

C(P ′, q) ∈ F
∣

∣ ∄C(P ′′, q′) ∈ F .

C(P ′′, q′) ≺ C(P ′, q)} , (7)

where the sensitivity-aware dominance relation ‘≺’ between

two candidate designs is defined below.

Definition 3. A sensitivity-aware Pareto dominance relation

over a feasible design set F and a set of minimisation

objective functions {fi}i∈I is a relation ≺⊂ F ×F such that

for any feasible designs d, d′ ∈ F
d ≺ d′ ⇐⇒

(

∀i∈I.fi(d)≤fi(d
′)∧

∃i∈I.(1+ǫi)fi(d)<fi(d
′)
)

∨
(

∀i∈I.fi(d)≤fi(d
′)

∧ ∃i∈I.fi(d)<fi(d
′) ∧ sens(d)≤sens(d′)

)

,

(8)

where the objective functions {fi}i∈I are now intended over

designs C(P ′, q) ∈ F , and are calculated using one of

alternative definitions from Table I; ǫi ≥ 0 are sensitivity-

awareness parameters; and the sensitivity of a feasible design

C(P ′, q) is defined as the volume of its quality-attribute region

over the volume of P ′:

sens(C(P ′, q))=

∏

i∈I

(

f⊤i (C(P ′, q))−f⊥i (C(P ′, q))
)

∏

k∈K 2γk(k⊤ − k⊥)
. (9)

Before discussing the rationale for this definition, we show

that the sensitivity-aware Pareto dominance relation is a strict

order like classical Pareto dominance.

Theorem 1. The sensitivity-aware Pareto dominance relation

is a strict order.

TABLE I: Alternative definitions for objective functions

{fi}i∈I over candidate designs

Type Notation Definition

lower bound f⊥
i (C(P ′, q)) infp∈P′ Λφi

(p, q)
upper bound f⊤

i (C(P ′, q)) supp∈P′ Λφi
(p, q)

mid-range f•
i (C(P

′, q)) (f⊥
i (C(P ′, q))+f⊤

i (C(P ′, q)))/2

Proof. We need to show that relation ≺ from (8) is irreflexive

and transitive. For any d ∈ F , d ≺ d would require that

fi(d) < (1 + ǫi)fi(d) or fi(d) < fi(d) for some i ∈ I ,

which is impossible. Thus, ≺ is irreflexive. To show that ≺ is

transitive, consider three designs d, d′, d′′ ∈ F such that d ≺ d′

and d′ ≺ d′′. According to (8), we have ∀i ∈ I.fi(d) ≤ fi(d
′)

and ∀i ∈ I.fi(d
′) ≤ fi(d

′′), so ∀i ∈ I.fi(d) ≤ fi(d
′′) due

to the transitivity of ≤. Furthermore, at least one half of the

disjunction from definition (8) must hold for each of d′ ≺ d′′

and d′ ≺ d′′. We have three cases. Assume first that the left

half holds for d ≺ d′, i.e. that (1 + ǫi1)fi1(d) < fi1(d
′)

for some i1 ∈ I; as fi1(d
′) ≤ fi1(d

′′), we also have

(1 + ǫi1)fi1(d) < fi1(d
′′), so d ≺ d′′ in this case. Assume

now that left half of disjunction (8) holds for d′ ≺ d′′,
i.e., that (1 + ǫi1)fi1(d

′) < fi1(d
′′) for some i1 ∈ I; as

fi1(d) ≤ fi1(d
′), we again have (1 + ǫi1)fi1(d) < fi1(d

′′)
and d ≺ d′′. Finally, consider that only the right half of

disjunction (8) holds for both d ≺ d′ and d ≺ d′. In this

last case, sens(d) ≤ sens(d′) ≤ sens(d′′) and there is an

i1 ∈ I such that fi1(d) < fi1(d
′) ≤ fi1(d

′′), so also d ≺ d′′,
and therefore ≺ is transitive.

The classical Pareto dominance definition can be obtained

by setting ǫi = 0 for all i ∈ I in definition (8). When ǫi > 0
for some i∈ I , dominance with respect to quality attribute i
holds in our generalised definition in two scenarios:

1) when the quality attribute has a much lower value for the

dominating design, i.e. (1+ǫi)fi(d)<fi(d
′);

2) when in addition to a (slightly) lower quality attribute

value, i.e. fi(d)<fi(d
′), the sensitivity of the dominating

design is no worse than that of the dominated design, i.e.

sens(d) ≤ sens(d′).

These scenarios are better aligned with the needs of designers

than those obtained by using sensitivity as an additional

optimisation criterion, which induces Pareto fronts comprising

many designs with low sensitivity but unsuitably poor quality

attributes. Similarly, each objective function definition from

Table I captures specific needs of real-world systems. Thus,

using the “upper bound” definition (f⊤i) in (8) supports the

synthesis of conservative designs by comparing competing de-

signs based on the worst-case values of their quality attributes.

This is suitable when the worst-case performance, reliability,

etc. must be specified for a system, e.g. in its service-level

agreement. In contrast, the “lower bound” definition from

Table I (f⊥i) can be used when design selection must be based

on the best expected quality values of a system. Finally, the

“mid-range” definition (f•i) may be useful—in conjunction

with the actual sensitivity (9)—to compare and select designs

f2

1

2

4

1 5 8

4.2

8.5

Fig. 1: Quality-attribute regions for designs d1, d2.

based on their reference midpoint quality values.

Importantly, for ǫi > 0 our generalised definition induces

Pareto fronts comprising designs with non-optimal (in the clas-

sical sense) objective function values, but with low sensitivity.

We call such designs sub-optimal robust. Thus, ǫi can be finely

tuned to sacrifice objective function optimality (slightly) for

better robustness. This is illustrated in Fig. 1 for the quality-

attribute regions induced by two potential pCTMC designs

d1, d2 (which we assume associated with identical parameter

tolerances and thus, same parameter space volume V) and two

minimisation objectives f1, f2. In this scenario, using fi = f⊤i
in (8), we have d1 ≺ d2 when ǫ1 = ǫ2 = 0 (classical domi-

nance) because f⊤1 (d1) = 8 < 8.5 = f⊤1 (d2) and f⊤2 (d1) =
4 < 4.2 = f⊤2 (d2), but d1 6≺ d2 when ǫ1 = ǫ2 = 0.1 (so d2
is retained in the sensitivity-aware Pareto-optimal set) because

1.1·f⊤1 (d1) 6< f⊤1 (d2), 1.1·f
⊤
2 (d1) 6< f⊤2 (d2) and sens(d1) 6≤

sens(d2) because sens(d1) = ((8− 1) · (4− 1)) /V and

sens(d2) = ((8.5− 5) · (4.2− 2)) /V .

IV. PARAMETRIC CTMC SYNTHESIS METHOD

Computing the Pareto-optimal design set (7) is typically

unfeasible, as the design space C(P,Q) is infinite due to its

real-valued parameters. Also, every candidate design C(P ′, q)
consists of an infinite set of CTMCs that cannot all be analysed

to establish its quality and sensitivity. To address these chal-

lenges, our pCTMC synthesis method combines search-based

software engineering (SBSE) techniques [23] with techniques

for effective pCTMCs analysis [12], [24], producing a close

approximation of the Pareto-optimal design set.

Algorithm 1 presents the high-level steps of our pCTMC

synthesis method. The approximate Pareto-optimal design set

PS returned by this algorithm starts empty (line 2) and is

assembled iteratively by the while loop in lines 3–12 until a

termination criterion TERMINATE(C(P,Q), PS) is satisfied.

Each iteration of this while loop uses an SBSE metaheuristic

to get a new set of candidate designs (line 4) and then updates

the approximate Pareto-optimal design set PS in the for loop

from lines 5–12. This update involves analysing each candidate

design d = C(P ′, q), to establish its associated objective

function and constraint values in line 6, where we use the

shorthand notation f⊤i,d ≡ f⊤i (C(P ′, q)), f⊥i,d ≡ f⊥i (C(P ′, q))
and cj,d ≡ ∀p ∈ P ′.cj(C(p, q)) for all i ∈ I , j ∈ J . If

the design satisfies all constraints (line 7), the for loop in

lines 9-11 finds out if the new design d is dominated by,

or dominates, any designs already in PS. Existing designs

dominated by d are removed from PS (line 11), and d is

added to the Pareto-optimal design set if it is not dominated

by any existing designs (line 12).

The elements below must be concretised in the synthesis

algorithm, and are described in the next two sections:

Algorithm 1 Parametric Markov chain synthesis

1: function SYNTHESIS(C(P,Q), {fi}i∈I , {cj}j∈J , {γk}k∈K)

2: PS ← ∅
3: while ¬TERMINATE(C(P,Q), PS) do

4: CD← CANDIDATEDESIGNS(C(P,Q), {γk}k∈K ,PS)
5: for all d ∈ CD do
6: ({f⊤

i,d}i∈I , {f
⊥
i,d}i∈I , {cj,d}j∈J)←

ANALYSEDESIGN(d, {fi}i∈I , {cj}j∈J)
7: if

∧
j∈J

cj,d then
8: dominated = false

9: for all d′ ∈ PS do
10: if d′ ≺ d then dominated = true; break
11: if d ≺ d′ then PS = PS \ {d′}

12: if ¬dominated then PS = PS ∪ {d}

13: return PS

1) The ANALYSEDESIGN function for establishing the quality

attributes and constraint compliance of a candidate design;

2) The CANDIDATEDESIGNS SBSE metaheuristic and the

associated TERMINATE criterion.

A. Computing Safe Property Bounds for pCTMCs

To establish the quality attributes and sensitivity of

candidate designs, ANALYSEDESIGN uses precise parameter

synthesis techniques [12] to compute safe enclosures of

the satisfaction probability of CSL formulae over pCTMCs.

Given a pCTMC C(P ′, q) and a CSL path formula φ, these

techniques provide a safe under-approximation Λqmin and a

safe over-approximation Λqmax of the minimal and maximal

probability that C(P ′, q) satisfies φ:

Λqmin ≤ inf
p∈P′

Λφ(p, q) and Λqmax ≥ sup
p∈P′

Λφ(p, q).

This allows us to safely approximate the bounds {f⊥i , f
⊤
i }i∈I

of the objective functions, and the constraints {cj}j∈J . As

shown in [12], the over-approximation quality improves as the

size of P ′ decreases, and thus can be effectively controlled.

The satisfaction function Λφ is typically non-monotonic

(and, for nested properties, non-continuous), so safe bounds

cannot be obtained by simply evaluating Λφ at the extrema

of parameter region P ′. Accordingly, our technique builds

on a parametric backward transient analysis that computes

safe bounds for the parametric transient probabilities in

the discrete-time process derived from the pCTMC. This

discretisation is obtained through standard uniformisation,

and through using the Fox and Glynn algorithm [22] to

derive the required number of discrete steps for a given

time bound. Once the parametric discrete-time process is

obtained, the computation of the bounds reduces to a local

minimisation/maximisation of state probabilities in a time

non-homogenous Markov process. Presenting the technique in

detail is outside the scope of our paper, but the interested

reader can find a complete description in [12].

Our approach can be easily extended to also support time-

unbounded properties by using the method of [25] for param-

eter synthesis of discrete-time Markov models and properties

expressed by time-unbounded formulae of probabilistic com-

putation tree logic.

B. Metaheuristic for Parametric CTMC Synthesis

To ensure that CANDIDATEDESIGNS selects suitable can-

didate designs, Algorithm 1 is implemented as an established

multiobjective optimisation genetic algorithm (MOGA) such

as NSGA-II [26] or MOCell [27]. MOGAs are genetic algo-

rithms specifically tailored for the synthesis of close Pareto-

optimal set approximations that are spread uniformly across

the search space. As with any genetic algorithm [28], possible

solutions—candidate designs in our case—are encoded as

tuples of genes, i.e. values for the problem variables. In

particular, any candidate design C(P ′, q) that satisfies a fixed

set of tolerances {γk}k∈K is uniquely encoded by the gene

tuple (p, q), where p ∈ P is the centre point of the continuous

parameter region P ′.

Given this encoding of candidate designs, the first execution

of CANDIDATEDESIGNS from Algorithm 1 returns a randomly

generated population (i.e. set) of feasible designs (6). This

population is then iteratively evolved by subsequent CANDI-

DATEDESIGNS executions into populations of “fitter” designs

through MOGA selection, crossover and mutation. Selection

chooses the population for the next iteration and a mating

pool of designs for the current iteration by using the objective

functions {fi}i∈I , the sensitivity-aware dominance relation (8)

and the distance in the parameter space P between designs to

evaluate each design. Crossover randomly selects two designs

from the mating pool, and generates a new design by combin-

ing their genes, and mutation yields a new design by randomly

modifying some of the genes of a design from the pool. The

evolution of the design population terminates (i.e. predicate

TERMINATE(C(P,Q), PS) returns true) after a fixed number

of design evaluations or when a predetermined number of

successive iterations generate populations with no significantly

fitter designs. The implementation of the selection, crossover

and mutation operations is specific to each MOGA. Due to

space constraints, we do not provide these details, which

are available in [26] for the NSGA-II MOGA used in our

experimental evaluation from Section V.

Complexity. The time complexity of the synthesis process is

O
(

k ·N · (|I|+ |J |) · t+ k · |I| ·N2
)

, where k is the number

of iterations of the (MOGA) while loop in Algorithm 1; N =
|CD | is the size of the candidate design population; |I|+ |J |
is the overall number of objective functions and constraints;

and t is the time required to analyse a quality attribute of a

candidate design. The term k · N · (|I| + |J |) · t quantifies

the overall complexity of evaluating candidate designs, while

k · |I| ·N2 corresponds to comparing designs and building the

front in lines 7–12 of Algorithm 1. Increasing the total number

of design evaluations (i.e., k ·N) typically improves the Pareto

optimality of the resulting design set, but also slows down the

synthesis process.

The factor t depends on the size of the underlying state

space and on the number of discrete-time steps required to

evaluate the particular quality attributes. As shown in [12], t =
O(tCSL · tpCSL). The factor tCSL = |φ| ·M ·q · tmax is the worst-

case time complexity of time-bounded CSL model checking

[22], where |φ| is the length of the input CSL formula φ, tmax

is the highest time bound occurring in it, M is the number of

non-zero elements in the rate matrix and q is the highest rate in

the matrix. The factor tpCSL is due to the parametric analysis of

the design and depends on the form of polynomials appearing

in the parametric rate matrix D′
R

. Models of software systems

typically include only linear polynomials, for which tpCSL =
O(n), where n is the number of continuous parameters.

C. Implementation

We developed a Java software tool that implements

the pCTMC synthesis method from Algorithm 1. For its

ANALYSEDESIGN function, we used PRISM-PSY [24], a

verification engine that supports precise parameter synthesis

by efficient parametric backward transient analysis. We

realised the functionality of CANDIDATEDESIGNS using the

jMetal [29] Java framework for multi-objective optimisation

with metaheuristics. Our Robust DEsign Synthesis (RODES)

tool operates with pCTMCs expressed in the high-level

modelling language of PRISM [9] extended with the

following constructs (adopted from [13]) for specifying the

parameters k ∈ K and d ∈ D from Definition 1:

evolve double k [min..max]
evolve int d [min..max]
evolve module ComponentName

(10)

N>1 instances of the last construct (with the same component

name) define N alternative architectures for a component,

introducing the index (between 1 and N) of the selected

architecture as an implicit discrete parameter. The open-source

code of RODES, supplementary material on the case studies

and the full experimental results are available on our project

website at http://www-users.cs.york.ac.uk/∼simos/RODES.

V. CASE STUDIES

We evaluated our design synthesis method in two case

studies from different domains, using the RODES tool with the

following NSGA-II configuration: 10000 evaluations, initial

population 20 individuals, and default values for single-point

crossover probability pc = 0.9 and single-point mutation

probability pm=1/ (|K|+ |D|), with |K| + |D| the number

of (continuous and discrete) design-space parameters.

Google File System (GFS). Our first case study considers the

design of GFS, the replicated file system used by Google’s

search engine [30]. GFS partitions files into chunks of equal

size, and stores copies of each chunk on multiple chunk

servers. A master server monitors the locations of these copies

and the chunk servers, replicating the chunks as needed.

During normal operation, GFS stores CMAX copies of each

chunk. However, as servers fail and are repaired, the number

c of copies for a chunk may vary from 0 to CMAX.

Previous work modelled GFS as a CTMC with fixed pa-

rameters and focused on the analysis of its ability to recover

from disturbances (e.g. c<CMAX) or disasters (e.g. master

server down) [31]. In our work, we adapt the CTMC of the

lifecycle of a GFS chunk from [31] by considering several

continuous and discrete parameters that a designer of the

1 ctmc

// Failure rates
2 const double mSoftFail = 0.000475; // master software
3 const double mHardFail = 0.000025; // master hardware
6 const double cSoftFail = 0.475; // chunk server software

7 evolve double cHardFail [0.25..4.0]; // chunk server hardware

// Repair rates
4 const double mSoftRepair = 12; // master software
5 const double mHardRepair = 6; // master hardware
8 const double cSoftRepair = 12; // chunk server software

9 evolve double cHardRepair [0.5..4.0]; // chunk server hardware

10 const int N=100000; // total number of GFS chunks
11 const int M=20; // number of chunk servers

12 evolve int NC [5000..20000]; // max chunks per chunk server
13 const int CMAX=3; // optimal number of chunk copies

14 module GFS Chunk
15 M up : bool init false; // master is up
16 M sdown : bool init false; // master is down with SW problem
17 M hdown : bool init true; // master is down with HW problem
18 Cup : [0..M] init 0; // number of chunk servers up
19 Csdown : [0..M] init 0; // number of chunk servers down (SW problem)
20 Chdown : [0..M] init 20; // number of chunk servers down (HW problem)
21 c : [0..CMAX] init 0; // number of chunk copies available

// Master server failure and repair
22 [] M up→mSoftFail : (M up’=false)&(M sdown’=true);
23 [] M up→mHardFail : (M up’=false)&(M hdown’=true);
24 [] M sdown→mSoftRepair : (M up’=true)&(M sdown’=false);
25 [] M hdown→mHardRepair : (M up’=true)&(M hdown’=false);

// Chunk servers failure and repair
26 [] Cup>0&c>0&Csdown<M→(c/Cup)*cSoftFail :

(Cup’=Cup-1)&(Csdown’=Csdown+1)&(c’=c-1);
27 [] Cup>0&Cup>c&Csdown<M→(1-(c/Cup))*cSoftFail :

(Cup’=Cup-1)&(Csdown’=Csdown+1);
28 [] Cup>0&c>0&Chdown<M→(c/Cup)*cHardFail:

(Cup’=Cup-1)&(Chdown’=Chdown+1)&(c’=c-1);
29 [] Cup>0&Cup>c&Chdown<M→(1-(c/Cup))*cHardFail :

(Cup’=Cup-1)&(Chdown’=Chdown+1);
30 [] Cup<M&Csdown>0→Csdown*cSoftRepair :

(Csdown’=Csdown-1)&(Cup’=Cup+1);
31 [] Cup<M&Chdown>0→cHardRepair :

(Chdown’=Chdown-1)&(Cup’=Cup+1);

32 [] M up&c<CMAX&Cup>c&Cup*NC>=(c+1)*N→((c>0)?20:2):(c’=c+1);

33 endmodule

Fig. 2: pCTMC model of the Google File System

system has to decide. Fig. 2 shows the resulting model,

encoded in the PRISM modelling language extended with the

evolve constructs from Section IV-C. As in [31], we model

separately the software and hardware failures and repairs, for

both the master server (lines 22–25) and the chunk servers

(lines 26–31), and assume that loss of chunk copies due to

chunk server failures leads to further chunk replications, which

is an order of magnitude slower if c = 0 and a backup of the

chunk must be used (line 32).
To evaluate our method, we assume that GFS designers

must select the hardware failure and repair rates cHardFail

and cHardRepair of the chunk servers, and the maximum

number of chunks NC stored on a chunk server within the

ranges indicated in Fig. 2. These parameters reflect the fact

that designers can choose from a range of physical servers,

can select different levels of service offered by a hardware

repair workshop, and can decide a maximum workload for

chunk servers. We consider an initial system state modelling

a severe hardware disaster with all servers down due to

hardware failures and all chunk copies lost, and we formulate

a pCTMC synthesis problem for quality requirements given

by two maximising objective functions and one constraint:

f1: φ1 = ¬SL1 U [10,60] SL1, where SL1 = M up ∧ c > 0

holds in states where service level 1 (master up and at

least one chunk copy available) is provided;

f2: φ2 = C≤60, where a reward of 1 is assigned to the states

with a number of running chunk servers of at least 0.5M

(i.e. half of the total number of chunk servers);

c1: ψ1 = C≤60 with threshold ∼1 r1 ≡ ‘ ≤ 5’, where a

transition reward of 1 is assigned to each chunk replication

transition.

Objective f1 maximises the probability that the system recov-

ers service level 1 in the time interval [10, 60] hours. Objective

f2 maximises the expected time the system stays in (optimal)

states with at least 0.5M chunk servers up in the first 60 hours

of operation. Finally, constraint c1 restricts the number of

expected chunk replications over 60 hours of operations.

Given these objective functions and constraint, and the GFS

pCTMC, we used our RODES tool from Section IV-C to

generate Pareto-optimal design sets for the GFS system, with

tolerances γ ∈ {0.01, 0.02, 0.05} for both continuous param-

eters (cHardFail and cHardRepair) of our pCTMC. Fig. 3

shows the Pareto fronts obtained using the “lower bound” def-

inition from Table I for the objective functions f1 and f2 over

candidate designs, and parameters ǫ1= ǫ2= ǫ∈ {0, 0.05, 0.1}
for the sensitivity-aware Pareto dominance relation (8). These

Pareto fronts provide a wealth of information supporting the

evaluation of the optimality and robustness of alternative GFS

designs. In particular, the Pareto front for ǫ = 0 and γ = 0.01
contains several large (red) boxes that correspond to highly

sensitive designs. For ǫ ∈ {0.05, 0.1} and γ = 0.01, these

poor designs are “replaced” by robust designs – surrounded by

(red) borders – with very similar quality attributes but slightly

suboptimal. The same pattern occurs for γ = 0.02 and (to

a lesser extent because the sensitivity (9) decreases when the

tolerance grows) for γ = 0.05. This ability to identify poor (i.e.

highly sensitive) designs and then alternative robust designs

with similar quality attributes is a key and unique benefit of

our design synthesis method.

We also observe that favouring objective f1 over f2 gener-

ally yields more robust designs (i.e., smaller quality-attribute

regions towards the right end of the Pareto fronts) for all

combinations of ǫ and γ. For fixed ǫ, increasing the parameter

tolerance γ leads, as expected, to larger (more uncertain)

quality-attribute regions and, typically, to an improved robust-

ness (as explained above).

The corresponding synthesised sensitivity-aware Pareto-

optimal designs provide key insights into the GFS dynamics,

as shown in Fig. 4 for several ǫ, γ combinations and fully on

our project website. While for ǫ=0 we obtain only optimal so-

lutions when parameters cHardFail and cHardRepair assume

their extreme values, adding sensitivity leads to additional

designs that are close to the optimum and at the same time are

significantly more robust. These designs appear along an “ideal

diagonal” in the horizontal plane suggesting the presence of an

optimal ratio between cHardFail and cHardRepair: designs

outside this diagonal yield excessively fast or slow recovery

times, and thus are far from the optimal f1 values. Further,

ǫ = 0 ǫ = 0.05 ǫ = 0.1

f 2
:

ti
m

e
at

le
as

t
h

al
f

o
f

th
e

se
rv

er
s

ar
e

u
p

vol = 0.049, sens = 45.204 vol = 0.024, sens = 26.803 vol = 0.032, sens = 23.137

γ
=

0.
0
1

vol = 0.117, sens = 24.375 vol = 0.108, sens = 21.179 vol = 0.098, sens = 17.470

γ
=

0.
0
2

vol = 0.549, sens = 18.570 vol = 0.555, sens = 17.905 vol = 0.566, sens = 17.901

γ
=

0.
05

f1: probability of recovering SL1 within time [10, 60]

Fig. 3: Sensitivity-aware Pareto fronts for the GFS model over objectives f1 (x-axis) and f2 (y-axis). Boxes represent quality-

attribute regions, coloured by sensitivity (red: sensitive, blue: robust). Red-bordered boxes and arrows indicate the sub-optimal

robust designs. For each front, we report mean sensitivity (sens) and mean volume (vol).

ǫ = 0, γ = 0.01 ǫ = 0.1, γ = 0.01 ǫ = 0, γ = 0.05 ǫ = 0.1, γ = 0.05

Fig. 4: Synthesised Pareto-optimal designs for the GFS model and experiments from Fig. 3. Rectangles in x-y plane correspond

to the continuous parameter regions (cHWF: hardware failure rate; cHWR: hardware repair rate) induced by the tolerance γ.

The box heights show the value of the discrete parameter NC. Boxes are coloured by sensitivity.

our method reveals that the maximum number of chunks per

server, NC, has a major influence on the design robustness,

with high NC values leading to highly sensitive designs. These

designs should be avoided in favour of the alternative designs

with low NC values depicted in Fig. 4 (for ǫ > 0).

We analysed the goodness of the Pareto-optimal designs

obtained with our NSGA-II-based RODES against a tool

variant that uses random search (RS). For each tool variant

and combination of ǫ∈{0,0.05,0.10} and γ∈{0.01, 0.02} we

carried out 30 independent runs, in line with standard SBSE

practice [32]. As building the actual Pareto front for large

design spaces is unfeasible, we again followed the standard

practice and combined the sensitivity-aware Pareto fronts

from all 60 RODES and RS runs for each ǫ, γ combination

into a reference Pareto front. We then compared the Pareto

fronts achieved by each variant against this reference front

by using the metrics M1 = wIǫnorm + (1−w)sensnorm and

M2 = wIIGD
norm

+ (1−w)sensnorm , which use a weight

w ∈ [0, 1] to combine normalised versions of the established

(but sensitivity-agnostic) Pareto-front quality metrics Iǫ and

IIGD [32] with the normalised design sensitivity.3 Fig. 5

compares RODES and RS across our ǫ, γ combinations using

metrics M1 and M2 with w = 0.5. The RODES median is

consistently lower than that of RS for all ǫ, γ combinations

with the exception of ǫ = 0, γ = 0.01 (which ignores design

3The unary additive epsilon (Iǫ) gives the minimum additive term by which
the objectives of a particular design from a Pareto front must be altered
to dominate the respective objectives from the reference front. The inverted
generational distance (IIGD) measures the shortest Euclidean distance from
each design in the Pareto front to the closest design in the reference front. The
indicators measure convergence to the reference front and design diversity.

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

ε:
γ:

0

0.01 0.01

0.05

0.01

0.10 0

0.02 0.02

0.05

0.02

0.10 ε:
γ:

0

0.01 0.01

0.05

0.01

0.10 0

0.02 0.02

0.05

0.02

0.10

RODES RS
M

1
:0

.5
I
ε n

o
rm

+
0

.5
s
e
n
s

n
o
rm

M
2
:0

.5
I

IG
D

n
o
rm

+
0

.5
s
e
n
s

n
o
rm

Fig. 5: RODES vs. random search (RS) comparison for com-

binations of γ∈ {0.01, 0.02} and ǫ∈ {0, 0.05, 0.10}, over 30

independent GFS runs. For both metrics – Iǫ indicator and

sensitivity (left) and IIGD indicator and sensitivity (right) –

smaller is better.

sensitivity) for M2. For a given γ, RODES results improve

as ǫ increases, unlike the corresponding RS results. Thus, the

difference between RODES and RS increases with larger ǫ
for both metrics. This shows that RODES drives the search

using sensitivity (9), and thus it can identify more robust

designs. We confirmed these visual inspection findings using

the non-parametric Mann-Whitney test with 95% confidence

level (α=0.05). We obtained statistical significance (p-value

< 0.05) for all ǫ, γ combinations except for ǫ= 0, γ = 0.01,

with p-value in the range [1.71E-06, 0.0026] and [1.086E-10,

0.00061] for M1 and M2, respectively.

Workstation Cluster (WC) For this case study we extend the

CTMC of a cluster availability management system from [33].

This CTMC models a system comprising two sub-clusters,

each with N workstations and a switch that connects the

workstations to a central backbone. For each component,

we consider failure, inspection and repair rates (where

repairs are initiated only after an inspection detects failures),

and we assume that designers must decide these rates for

workstations—i.e., the real-valued parameters wsFail, wsFail

and wsRepair for our pCTMC, respectively. Additionally,

we assume that designers must select the sub-cluster size N ,

and must choose between an expensive repair implementation

(i.e., pCTMC module) with a 100% success probability and

a cheaper repair module with 50% success probability—i.e.,

two discrete parameters for the pCTMC. This model is

illustrated on our project website. For an initial system state

with 5 workstations active in each sub-cluster and switches

and backbone working, we formulate a pCTMC synthesis

problem for quality requirements given by two maximising

objective functions and one constraint:

f1: φ1 = ¬premium U [20, 100] premium where premium

denotes a system service where at least 1.25N workstations

are connected and operating;

f2: φ2 = C≤100 where a reward of 1 is assigned to states with

a number of operating clusters between 1.2N and 1.6N ;

c1: ψ1 = C≤100 with threshold ∼1 r1 ≡ ‘ ≤ 80’, where

transition rewards are associated with repair actions of the

workstations, switches and backbone.

Objective f1 maximises the probability that the system recov-

ers the premium service in the time interval [20, 100] hours, f2
maximises the expected time the system spends in cost-optimal

states during the first 100 hours of operation, and constraint

c1 restricts the cost of repair actions during this time (the

definition of the cost is provided on our project website).

Due to space constraints, we include only the Pareto fronts

obtained for a tolerance level γ = 0.01 for all real-valued

system parameters, and for a sensitivity-awareness parameter

ǫ ∈ {0, 0.05, 0.1} for both objective functions (Fig. 6, top).

These Pareto fronts show again how increasing ǫ yields signif-

icant gains in design robustness, with mean sensitivity values

for ǫ=0.05 and ǫ=0.1 that are 51% and 59% smaller than

the mean sensitivity for ǫ=0, respectively. Visual inspection

confirms that the large quality-attribute regions (corresponding

to high-sensitivity designs) obtained for ǫ=0 are “replaced”

by much smaller quality-attribute regions on the Pareto fronts

obtained for both ǫ>0 values.

With respect to the system dynamics, our sensitivity-aware

synthesis reveals that the most robust solutions correspond to

the objective-function “extrema” from the Pareto front, i.e., to

quality-attribute regions in which either f1 is very high and

f2 is very low, or vice versa. We further observe and validate

(Fig. 6, bottom and Table II) that the values of the parameter

N for the synthesised robust designs are 10 or 15. This shows

an unexpected and interesting relationship between the size

of the cluster and robustness, impossible to derive through

existing analysis methods.

Performance. As the design synthesis is computationally

demanding, the current RODES version analyses multiple

candidate models in parallel using multi-core architectures. In

this way, we are able to partially alleviate the burden related

to the high number of evaluations. Table III shows the design

synthesis run-times for k = 500 and N = 20 (i.e. for kN =
10000 design evaluations), for several variants of our case

studies corresponding to different discrete parameter values

(and thus to different pCTMC sizes). Run-time statistics are

computed over 9 independent experiments each, given by all

combinations of γ ∈{0.01, 0.02, 0.05} and ǫ∈ {0, 0.05, 0.1}.

The synthesis time varies between 6262.22s for the smallest

system instance (GFS, S=5000) and 12295.55s for the largest

instance (WC, N=15). The average synthesis time over all

scenarios is 7123.6s for the GFS case study and 11208.8s for

WC, confirming that performance is affected by the size of the

underlying pCTMC and the number of continuous parameters.

All the experiments of this section were run on a CentOS

Linux 6.5 64bit server with two 2.6GHz Intel Xeon E5-2670

processors and 32GB memory, and reported run-times were

obtained using multi-core parallelisation. In the oncoming

version of the tool we plan to integrate the GPU-accelerated

precise parameter synthesis methods of [24], which would

significantly improve the scalability of the synthesis process

with respect to the size of the candidate designs.

Threats to Validity. Construct validity threats may arise due

to assumptions made when modelling the two systems. To mit-

igate these threats, we used models and quality requirements

based on established case studies from the literature [30], [33].

Internal validity threats may correspond to bias in es-

tablishing cause-effect relationships in our experiments. We

ǫ = 0, γ = 0.01 ǫ = 0.05, γ = 0.01 ǫ = 0.1, γ = 0.01
vol = 0.786, sens = 1.6 × 106 vol = 0.385, sens = 7.9 × 105 vol = 0.322, sens = 6.6 × 105

Fig. 6: Top: sensitivity-aware Pareto fronts for the cluster model over objectives f1 (x-axis) and f2 (y-axis). Bottom: “projection”

of the quality-attribute regions on the f1-N plane corresponding to synthesised sensitivity-aware designs. Colour code, sens

and vol are as in Fig. 3.

TABLE II: Average design sensitivity for two variants of the workstation cluster synthesis problem, given by different ranges

for parameter N . Sensitivity-aware designs (i.e. where ǫ>0) for N ∈ {10..15} have lower sensitivity than for N ∈ {11..14}.

Average sensitivity

γ=0.01, γ=0.01, γ=0.01, γ=0.02, γ=0.02, γ=0.02, γ=0.05, γ=0.05, γ=0.05,

N ǫ=0.00 ǫ=0.05 ǫ=0.10 ǫ=0.00 ǫ=0.05 ǫ=0.10 ǫ=0.00 ǫ=0.05 ǫ=0.10

{10..15} 1.6E6 7.86E5 6.58E5 2.1E5 2.49E5 2.19E5 6.45E4 6.68E4 7.56E4

{11..14} 1.33E6 1.3E6 1.22E6 5.2E5 5.28E5 4.77E5 2E5 1.93E5 1.87E5

TABLE III: Time (mean ± SD) for the synthesis using 10,000

evaluations. Scenario: values of discrete parameters. #states

(#trans.): number of states (transitions) of the underlying

pCTMC. |K|: number of continuous parameters.

System Scenario #states #trans. Time (s)

Google File
System
(|K|=2)

S=5000 1323 7825 6262.22 ± 236.26

S=10000 1893 11843 8943.33 ± 243.05

S=20000 2406 15545 10818.89 ± 539.73

Workstation
Cluster
(|K|=3)

N=9 3440 18656 11080.5 ± 1165.17

N=12 5876 32204 11451.11 ± 1597.93

N=15 8960 49424 12295.55 ± 2535.12

limit them by examining instantiations of the sensitivity-

aware Pareto dominance relation (8) for multiple values of

the sensitivity-awareness ǫi and tolerance level γk. To alleviate

further the risk of biased results due to the MOGAs being stuck

at local optimum and not synthesising a global optimum Pareto

front, we performed multiple independent runs. Although this

scenario never occurred in our experiments, when detected,

it can be solved by re-initialising the sub-population outside

the Pareto front. Finally, we enable replication by making all

experimental results publicly available on the project webpage.

External validity threats might exist if the search for robust

designs for other systems cannot be expressed as a pCTMC

synthesis problem using objective functions (4) and con-

straints (5). We limit these threats by specifying pCTMCs in

an extended variant of the widely used modelling language of

PRISM [9], with objective functions and constraints specified

in the established temporal logic CSL. PRISM parametric

Markov models are increasingly used to model software ar-

chitectures, e.g. in the emerging field of self-adaptive software

[34]–[37]. Another threat might occur if our method generated

a Pareto front that approached the actual Pareto front insuffi-

ciently, producing only low quality designs or designs that did

not satisfy the required quality constraints. We mitigated this

threat by using established Pareto-front performance indices to

confirm the quality of the Pareto fronts from our case studies.

VI. RELATED WORK

In previous work [13], we proposed a purely search-based

engineering approach that uses evolutionary algorithms to syn-

thesise probabilistic models that satisfy multi-objective spec-

ifications. However, the designs generated by this approach

are non-parameteric probabilistic models, and thus cannot

support sensitivity analysis like our new method. Similarly, the

research from [15] employs evolutionary algorithms to search

the configuration space of Palladio Component Models, but

does not consider the sensitivity of the obtained models.

Sensitivity analysis has long been used to assess the impact

that changes in the parameters of the system under develop-

ment have on the system performance, reliability and other

quality attributes, e.g. in [16]–[18]. However, these approaches

work by repeatedly sampling the parameter space of the

system and evaluating the system behaviour for the sampled

values. Accordingly, their results are not guaranteed to capture

the entire range of quality-attribute values for the parameter

region of interest. Our method overcomes this limitation by

generating safe and close over-approximations of the quality-

attribute regions associated with robust designs.

The sensitivity of software operational profiles has been

analysed using the perturbation theory for Markov pro-

cesses [19], to quantify the effect of variations in model transi-

tion probabilities. However, this approach does not synthesise

the solutions, and does not work with the wide range of

continuous and discrete parameters supported by our method.

Finally, research on parameter synthesis for probabilistic

systems from temporal logic specifications focuses on deriving

symbolic expressions for the satisfaction probability of the

specification as a function of the parameters [20], [38], [39]

or on computing safe enclosures of the satisfaction probability

for given intervals of parameter values [12], [25]. In contrast

to this work, our robust design synthesis directly integrates

sensitivity analysis into the automated design process.

VII. CONCLUSION

The analysis of model sensitivity is key for effective design

automation, as it establishes how models are affected by pa-

rameter deviations, accounting for the unavoidable discrepan-

cies between the real systems and their models. We presented

a method for the automated synthesis of Pareto-optimal and

robust software designs, which builds on search-based synthe-

sis and parameter synthesis for parametric Markov chains. We

developed a tool that implements the method and we used it

in two case studies, showing that our synthesised sensitivity-

aware Pareto-optimal design sets support the selection of

robust designs with a wide range of quality-attribute values

and provide insights into the system dynamics.

As future work, we plan to investigate Pareto-dominance

relations defined over intervals; alternative search techniques

(e.g. particle swarm optimisation [40]); and extensions of the

modelling language and the search method to support syntax-

based synthesis [41] of robust designs from partial/incomplete

pCTMC specifications.

REFERENCES

[1] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early
prediction of software component reliability,” in ICSE, 2008, 111–120.

[2] V. S. Sharma and K. S. Trivedi, “Quantifying software performance,
reliability and security: An architecture-based approach,” Journal of

Systems and Software, vol. 80, no. 4, pp. 493 – 509, 2007.

[3] L. O. Damm and L. Lundberg, “Company-wide implementation of
metrics for early software fault detection,” in ICSE, 2007, pp. 560–570.

[4] F. Brosig, P. Meier, S. Becker et al., “Quantitative evaluation of
model-driven performance analysis and simulation of component-based
architectures,” IEEE Trans. Softw. Eng., vol. 41, no. 2, 157–175, 2015.

[5] R. Calinescu, C. Ghezzi, K. Johnson et al., “Formal verification with
confidence intervals to establish quality of service properties of software
systems,” IEEE Trans. Rel., vol. 65, no. 1, pp. 107–125, 2016.

[6] S. Balsamo, V. D. N. Personè, and P. Inverardi, “A review on queueing
network models with finite capacity queues for software architectures
performance prediction,” Performance Evaluation, vol. 51, no. 2, pp.
269–288, 2003.

[7] A. Hessel, K. G. Larsen, M. Mikucionis et al., “Testing real-time systems
using UPPAAL,” in Formal methods and testing, 2008, pp. 77–117.

[8] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” J. Syst. & Softw.,
vol. 82, no. 1, 2009.

[9] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of Probabilistic Real-time Systems,” in CAV’11, 2011, pp. 585–591.

[10] E. Bartocci, R. Grosu, P. Katsaros et al., “Model repair for probabilistic
systems,” in TACAS’11, 2011, pp. 326–340.

[11] T. Chen, E. M. Hahn, T. Han et al., “Model repair for Markov decision
processes,” in TASE’13, 2013, pp. 85–92.

[12] M. Češka, F. Dannenberg, N. Paoletti et al., “Precise parameter synthesis
for stochastic biochemical systems,” Acta Informatica, pp. 1–35, 2016.

[13] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for QoS software engineering,” in ASE, 2015,
pp. 319–330.

[14] M. Phadke, Quality Engineering Using Robust Design. Prentice Hall,
1995.

[15] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Automatically
improve software architecture models for performance, reliability, and
cost using evolutionary algorithms,” in WOSP/SIPEW, 2010, 105–116.

[16] S. S. Gokhale and K. S. Trivedi, “Reliability prediction and sensitivity
analysis based on software architecture,” in ISSRE’03, 2002, pp. 64–75.

[17] J.-H. Lo, C.-Y. Huang, I.-Y. Chen et al., “Reliability assessment and
sensitivity analysis of software reliability growth modeling based on
software module structure,” Journal of Syst. and Software, vol. 76, no. 1,
pp. 3 – 13, 2005.

[18] C.-Y. Huang and M. R. Lyu, “Optimal testing resource allocation,
and sensitivity analysis in software development,” Transactions on

Reliability, vol. 54, no. 4, pp. 592–603, 2005.
[19] S. Kamavaram and K. Goseva-Popstojanova, “Sensitivity of software

usage to changes in the operational profile,” in NASA Soft. Eng.

Workshop, 2003.
[20] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation

via quantitative verification and sensitivity analysis at run time,” IEEE

Trans. Softw. Eng., vol. 42, no. 1, pp. 75–99, 2016.
[21] T. Han, J. Katoen, and A. Mereacre, “Approximate parameter synthesis

for probabilistic time-bounded reachability,” in RTSS, 2008, 173–182.
[22] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic Model Check-

ing,” in SFM’07, 2007, pp. 220–270.
[23] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software

engineering: Trends, techniques and applications,” ACM Comp. Surveys,
vol. 45, no. 1, pp. 11:1–11:61, 2012.

[24] M. Češka, P. Pilař, N. Paoletti, L. Brim, and M. Kwiatkowska, “PRISM-
PSY: Precise GPU-accelerated parameter synthesis for stochastic sys-
tems,” in TACAS’16, 2016, pp. 367–384.

[25] T. Quatmann, C. Dehnert, N. Jansen et al., “Parameter synthesis for
Markov models: Faster than ever,” in ATVA’16, 2016, pp. 50–67.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comp.,
vol. 6, no. 2, pp. 182–197, 2002.

[27] A. J. Nebro, J. J. Durillo, F. Luna et al., “MOCell: A cellular genetic al-
gorithm for multiobjective optimization,” Journal of Intelligent Systems,
vol. 24, no. 7, pp. 726–746, 2009.

[28] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.
[29] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-

objective optimization,” Advances in Engineering Software, vol. 42, pp.
760–771, 2011.

[30] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in SOSP’03, 2003, pp. 29–43.

[31] C. Baier, E. M. Hahn, B. Haverkort et al., “Model checking for
performability,” Mathematical Structures in Comp. Sc., vol. 23, no. 4,
pp. 751–795, 2013.

[32] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca,
“Performance assessment of multiobjective optimizers: an analysis and
review,” IEEE Trans. Evol. Comp., vol. 7, no. 2, pp. 117–132, 2003.

[33] B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “On the use of model
checking techniques for dependability evaluation,” in SRDS’00, 2000.

[34] R. Calinescu and M. Kwiatkowska, “CADS*: Computer-aided develop-
ment of self-* systems,” in FASE, 2009, pp. 421–424.

[35] R. Calinescu, S. Gerasimou, and A. Banks, “Self-adaptive software with
decentralised control loops,” in FASE, 2015, pp. 235–251.

[36] J. C. Moreno, A. Lopes, D. Garlan, and B. Schmerl, “Impact models for
architecture-based self-adaptive systems,” in FACS, 2015, pp. 89–107.

[37] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient runtime quantita-
tive verification using caching, lookahead, and nearly-optimal reconfig-
uration,” in SEAMS, 2014, pp. 115–124.

[38] C. Dehnert, S. Junges, N. Jansen et al., “PROPhESY: A probabilistic
parameter synthesis tool,” in CAV’15, 2015, pp. 214–231.

[39] E. M. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability for
parametric Markov models,” STTT, vol. 13, no. 1, pp. 3–19, 2011.

[40] M. Reyes-Sierra and C. C. Coello, “Multi-objective particle swarm
optimizers: A survey of the state-of-the-art,” International journal of

computational intelligence research, vol. 2, no. 3, pp. 287–308, 2006.
[41] R. Alur, R. Bodik, G. Juniwal et al., “Syntax-guided synthesis,” in

FMCAD’13, 2013, pp. 1–8.

