
Received: 21 July 2016 Revised: 28 February 2017 Accepted: 1 March 2017
DO
I: 10.1002/eco.1855
R E S E A R CH AR T I C L E
Organic sediment pulses impact rivers across multiple levels of
ecological organization

Katie L. Aspray1 | Joseph Holden1 | Mark E. Ledger2 | Chris P. Mainstone3 |

Lee E. Brown1
1water@leeds, School of Geography,

University of Leeds, Woodhouse Lane, Leeds

LS2 9JT, UK

2School of Geography, Earth and

Environmental Sciences, University of

Birmingham, Edgbaston, Birmingham B15 2TT,

UK

3Natural England, Unex House, Bourges

Boulevard, Peterborough PE1 1NG, UK

Correspondence

Lee E. Brown, water@leeds, School of

Geography, University of Leeds, Woodhouse

Lane, Leeds, LS2 9JT, UK.

Email: l.brown@leeds.ac.uk

Funding information

Natural Environment Research Council, Grant/

Award Number: NE/F/013663/1, NE/

G00224X/1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This is an open access article under the terms of th

the original work is properly cited.

Copyright © 2017 The Authors Ecohydrology Publi

Ecohydrology. 2017;10:e1855.
https://doi.org/10.1002/eco.1855
Abstract
Sedimentation is a pervasive environmental pressure affecting rivers globally. Headwaters

draining catchments rich in organic soils (i.e., peat) are particularly vulnerable to enhanced sedi-

mentation caused by land management and environmental change, yet many of the ecological

consequences of peat deposition are poorly understood. We conducted a before‐after‐control‐

impact experiment in two rivers draining blanket peatland in Northern England to test the effect

of sediment inputs on water quality, macroinvertebrate drift, macroinvertebrate community

structure, and ecosystem metabolism. Sediment addition increased concentrations of dissolved

organic carbon, total oxidised nitrogen and suspended sediment concentration in rivers, and

intensified the total drift of macroinvertebrates particularly at night. By contrast, the abundance

and richness of benthic macroinvertebrates were unaffected, except for declines in Coleoptera

abundance in one river. The gross primary production of both rivers was strongly suppressed

as the benthos was smothered by sediment. Community respiration also declined, albeit by differ-

ent extents in the two rivers. Our experiment revealed that short‐term pulses of organic sediment

in rivers can have broad effects on water quality and biota, from influences on the dispersal of

individual organisms to the modification of ecosystem processes. Organic sediments therefore

warrant further examination, to include longer observation periods and more sites. It is particularly

important to clarify the extent to which impacts extend from peatland streams into larger rivers

downstream. Such studies are necessary to inform global management efforts to restore the

integrity of river ecosystems under a range of water and biodiversity policy mechanisms.
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1 | INTRODUCTION

Sedimentation is a major cause of ecological degradation in freshwater

ecosystems, with artificially enhanced delivery and retention of fine

sediments in rivers and lakes now a significant global problem

(Dudgeon et al., 2006; Larsen & Ormerod, 2010; Piggott, Townsend,

& Matthaei, 2015; Wood & Armitage, 1997). A range of policy mecha-

nisms related to the protection of the water environment and wildlife

require a better understanding of the scale, nature, and mechanisms

of impact so that informed management strategies can be developed
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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and implemented. European legislation provides a major impetus in

the form of the Water Framework Directive and the Habitats and Spe-

cies Directive. At a domestic level, riverine Sites of Special Scientific

Interest add further motivation in the catchments within which they

occur, whereas the UK's biodiversity strategy (Defra, 2011) requires

restoration action for a range of priority habitats and species, including

rivers and many riverine species affected by enhanced sedimentation.

Fine sediment impacts in rivers arise primarily as a result of local

changes to catchment land use, intensification of land management, and

external pressures such as climate change, all of which contribute to
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

cense, which permits use, distribution and reproduction in any medium, provided

wileyonlinelibrary.com/journal/eco 1 of 15

http://orcid.org/0000-0002-1108-4831
http://orcid.org/0000-0002-2420-0088
mailto:l.brown@leeds.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/eco.1855
https://doi.org/10.1002/eco.1855
http://wileyonlinelibrary.com/journal/eco


2 of 15 ASPRAY ET AL.
erosion of soils and enhanced delivery to receiving freshwaters (Jones

et al., 2012a; Wood & Armitage, 1997). Elevated fine sediment inputs

can have profound, deleterious impacts on river ecosystems, via

modification of channel geomorphology, substrate smothering, increased

abrasive suspended loads, water quality, and, consequently, biodiversity

(Kemp, Sear, Collins, Naden, & Jones, 2011; Wood & Armitage, 1997).

Sedimentation has impacts that manifest across multiple levels of biologi-

cal organisation, from individual organisms towhole‐ecosystemprocesses.

Impacts on individuals arise through altered physiology (oxygen concen-

trations) and behaviour (foraging efficiency and locomotion) that may

promote emigration from degraded habitat. Alternatively, mortality and

local extinction of sensitive species (Kemp et al., 2011;Wood & Armitage,

1997) can occur, with the remaining sediment‐tolerant biota becoming

unusually dominant (Larsen&Ormerod, 2010). Suchmarked shifts in com-

munity structure can impair key ecosystem processes for a variety of

groups, including benthic algae and macrophytes (Izagirre, Serra, Guasch,

& Elosegi, 2009; Jones, Duerdoth, Collins, Naden, & Sear, 2014), macroin-

vertebrates (Culp, Wrona, & Davies, 1986; Extence et al., 2013; Larsen,

Pace, & Ormerod, 2010), and fish, especially salmonids (e.g., Greig, Sear,

& Carling, 2005). As well as these direct pressures, sedimentation can ele-

vate concentrations of metals, nutrients, and dissolved organic carbon

(Bilotta & Brazier, 2008; Jones, Collins, Naden, & Sear, 2012b), which

can further stress river ecosystems (Ramchunder, Brown, Holden, &

Langton, 2011). An improved understanding of the interactions and linkages

among sediments, water quality, and biological responses is needed to

disentangle fully themechanistic basis of river ecosystem changes caused

by sedimentation and to improve management of the multiple stressors

underlying ecological degradation (Mainstone, Hall, & Diack, 2016).

Impacts of sedimentation on ecosystem functioning are less well

understood than those on individuals, populations, and communities.

Nevertheless, sedimentation has the potential to profoundly alter

ecosystem processes such as gross primary production (GPP), because

increased turbidity and sediment deposition can smother benthic

biofilms, thereby altering river metabolism (Gücker et al., 2008; Von

Schiller et al., 2008). However, results of previous studies of river ecosys-

tem function response to sedimentation are equivocal (Feoi et al., 2010;

Matthaei,Weller, Kelly, & Townsend, 2006; Nogaro, Datry, &Mermillod‐

Blondi, 2010), and further studies are needed to reconcile observed

differences. Many studies of sediment effects on river ecosystem pro-

cesses have been observational and conducted at the whole‐catchment

scale, where confounding environmental variability can limit the

establishment of causation. Experiments addressing responses of ecosys-

tem processes to sedimentation are still scarce (Feio, Alves, Boavida,

Medeiros, & Graca, 2010; Gessner & Chauvet, 2002), although some

have suggested that sediment deposition can suppress algal production

(Suren & Jowett, 2001) but not detrital decomposition rates (Fairchild,

Boyle, English, & Rabeni, 1987). To complement the many studies under-

taken in experimental mesocosms (e.g., Jones et al., 2012a; Piggott et al.,

2015; Suren & Jowett, 2001), manipulation at the scale of river reaches

can provide further mechanistic understanding of ecological responses

to sediment inputs, and thus better define relationships between

sediment, river communities, and ecosystem processes.

Peatlands are areas of significant organic soil accumulation, but the

low‐bulk density of peat makes it extremely susceptible to erosion fol-

lowing catchment disturbances. Peatlands cover around 4 million km2
of the Earth's surface, but their soils have been disturbed and exposed

to erosional processes due to the removal of vegetation by fire or forest

activity, permafrost degradation, overgrazing, peat cutting, and/or vehi-

cle tracks (Brown et al., 2015; Campbell, Lavoie, & Rochefort, 2002;

Kokelj et al., 2013). Frequent overland flows erode peat once it has been

exposed and carry it to rivers during storms (Ellis & Tallis, 2001). In addi-

tion, peat can be added directly to river channels in significant quantities

over short time periods by bank erosion and detachment of peat blocks

or during slumping events (Evans & Warburton, 2005). Fine particulate

organic sediment accumulations in peatland rivers have recently been

associated with significant changes in macroinvertebrate biodiversity

(Ramchunder, Brown, & Holden, 2012, 2013) and algal community

change (O'Driscoll et al., 2013). However, these studies were correla-

tional in design, and therefore, experimental studies are vital to properly

attribute cause and effect. The only study of how peatland management

affects river ecosystem functioning has focused on forest harvesting,

with multiple environmental changes (solar radiation receipt, water

temperature, and flow) linked to increased community respiration (CR;

O'Driscoll et al., 2016). Controlled experimental manipulations of

organic particulate supply are needed to understand the wider

ecological effects of erosion, because in contrast to inert inorganic sands

and silts, organic sediment has the potential to fuel heterotrophic

metabolism by acting as both a substrate and by releasing nutrients as

it decomposes (e.g., Mayer, Schick, Skorko, & Boss, 2006).

This paper reports the results of a manipulative experiment to

quantify the short‐term impacts of organic sediment inputs on the water

quality and ecology of two peatland rivers in Northern England, scaling

from populations and communities to ecosystem processes. A reach‐

scale approach was adopted with organic sediment addition used to

simulate sediment influx events. Monitoring of water quality responses

focused on nutrients (N,P) and dissolved organic carbon (DOC). At the

community level, sediment impacts on macroinvertebrate behavioural

drift and benthic assemblages were assessed. At the ecosystem scale,

whole river metabolisms (net daily metabolism [NDM], GPP, and CR)

were quantified to establish wider effects of sedimentation on function-

ing.We hypothesised (H1) that organic sediment inputswould lead to the

release of organic forms of carbon and nitrogen thus increasing river

water concentration. Furthermore, we expected that (H2) sediment

deposition would trigger significantly increased macroinvertebrate drift

as an avoidance behaviour (Larsen & Ormerod, 2010; Suren & Jowett,

2001) that would lead to (H3) reduced benthic macroinvertebrate abun-

dance and species richness (Matthaei et al., 2006). Finally, we

hypothesised that (H4) sediment smothering of algal biofilms would

suppress GPP but stimulate CR via enhanced consumption of available

particulate and dissolved organic matter by heterotrophs (Izagirre,

Bermejo, Pozo, & Elosegi, 2007; Roberts, Mulholland, & Hill, 2007).
2 | METHODS

2.1 | Study site

Sediment addition experiments were conducted in two second‐order

tributaries (Moss Burn and Netherhearth Sike) of Trout Beck, North

Pennines, UK (54°41′19.7″N; 2°23′01.7″W). The study area is located



TABLE 1 Mean contextual data for each reach and experimental period from Moss Burn and Netherhearth Sike

Moss Burn Netherhearth Sike

Control before Control after Impact before Impact after Control before Control after Impact before Impact after

Air temperature (°C) 15.4 16.0 15.4 16.0 13.7 7.2 13.7 7.2

PAR (μmol·m−2·s−1) 653.1 624.0 653.4 624.2 510.1 196.6 510.2 196.3

Velocity (m s−1) 0.10 0.10 0.08 0.07 0.11 0.13 0.11 0.12

pH 7.0 7.0 7.0 7.0 7.1 7.1 7.1 7.1

EC (μS cm−1) 79.9 79.9 89.1 89.1 72.7 72.8 85.3 86.3

DO (mg L−1) 8.2 7.9 8.1 7.5 8.6 9.3 8.4 8.9

Temp (°C) 16.2 16.9 16.2 16.8 14.1 10.7 14.2 10.7

Travel time (s) 280 270 190 150 260 260 225 225

Discharge (m3 s−1) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Note. DO = dissolved oxygen, EC = electrical conductivity.
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at an altitude of 560 m in the Moor House National Nature Reserve, an

area of open moorland characterised predominantly by Calluna vulgaris,

Vaccinium myrtillus, Eriophorum spp., and Sphagnum mosses. Moor

House has served as a major centre for upland research since the

1930s (Heal & Perkins, 1978), with the site being designated a nature

reserve in 1952 and a World Biosphere Reserve in 1991. The underly-

ing geology is a mix of limestone, shale, and sandstone with overlaying

deep blanket‐peat soils (Johnson & Dunham, 1963). The climate of

Moor House is subarctic oceanic with a mean annual temperature of

5.3 °C between 1931 and 2006 (Holden & Rose, 2011) and mean

annual precipitation of 2,012 mm (using full year records of 1951–

1980 and 1991–2006).

The two rivers were chosen as they are typical of those on

peatlands, with shallow stony beds dominated by boulders, cobbles,

and gravel. The two rivers have similar water quality characteristics

(Table 1) as they drain adjacent areas of blanket peatland. Both rivers

were unshaded with riparian vegetation typical of many other upland

headwater river systems. Some rivers within the wider nature reserve

have been affected by fine sediment influx from peat erosion linked to

vegetation loss (Evans & Warburton, 2005), but the two rivers chosen

for experimentation were not receiving major inputs of fine sediment

from upstream prior to the manipulation. The rivers also had no

confounding effects of forestry activity, mining spoil, land drainage, or

vegetation burning, and so theywere chosen as examples of unimpacted

“reference” rivers that would potentially respond to sedimentation.
2.2 | Experimental design

We used a before‐after‐control‐impact (BACI) experimental design to

test for the effect of sediment inputs in both rivers independently.

Each experiment was conducted over 2 days in May 2010. Consistent

with Larsen and Ormerod (2010), two 20‐m reaches were identified in

each river: an upstream “control” reach and a downstream “impact”

reach, separated by 6 m of untreated river channel. Sampling for mac-

roinvertebrates and metabolism was conducted in the control and

impact reaches of each river before (Day 1) and after (Day 2) the sedi-

ment addition. Following pretreatment sampling on Day 1, ~0.5 kg m−2

of disaggregated organic sediment (peat) was applied evenly across the

impact reaches, mimicking a relatively heavy influx of sediment covering

~55% of the bed. The treatment was consistent with ~75th percentile of
fine sediment cover reported in surveys of upland rivers in the UK

(Aspray, 2012; Larsen et al., 2010). The inorganic content of the added

peat was not quantified but typically is <10% (Green et al., 2011).
2.3 | Water quality and sediment processes

Water samples were collected in triplicate from the control and impact

reaches before and after the sediment addition (total six samples per

reach, 12 samples per river) to determine the extent of any release

of nutrients or carbon and which might underpin changes in ecosystem

metabolism. Each water sample was passed through a 0.45‐μm

Whatman cellulose nitrate filter and later analysed in the laboratory

for nutrients (total N, total oxidised N [TON; i.e., NO2
− and NO3

−],

and total P) and DOC. Additionally, 500 ml of unfiltered river water

was collected to determine suspended sediment concentrations (SSCs)

using vacuum manifold filtration (Jones, Duck, Reed, & Weyers, 1999).

Contextual measurements of water temperature, electrical conductiv-

ity (EC), and pH were made on site to ensure that there were no major

differences between reaches (Table 1). Water measurements were col-

lected using an HQ40d portable multiparameter meter (Hach Lange,

Düsseldorf, Germany). River flow velocity was measured throughout

the experiment, with eight measurements taken randomly across each

reach before and after sediment addition using a SENSA RC2 electro-

magnetic velocity sensor (OTT, Kempten, Germany). Measurements

were taken from the bank to minimise disturbance to the substratum.
2.4 | Macroinvertebrates: behavioural drift and
benthic biodiversity

Macroinvertebrate densities drifting in the water column were quanti-

fied at the downstream end of the control and impact river reaches

before and after sediment addition. Samples were collected using

two contiguous drift nets (dimensions 400 mm × 250 mm; 250‐μm

mesh) held by steel rods fixed in the riverbed. Drift nets were posi-

tioned at constrictions such that they filtered all river water flowing

through the cross section of these small river channels (baseflow dis-

charge was ~0.02m3 s−1 in each river). This meant that there was no

requirement to correct drift densities by the amount of water filtered

through each net. Macroinvertebrates were retrieved from each net

every 3 hr over the 48‐hr period of monitoring each river. Drift
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densities were presented as total numbers drifting per sampling period

(Brittain & Eikeland, 1988).

Three benthic macroinvertebrate samples were collected from

both control and impact reaches at the end of the before and after

experimental periods using a modified Surber sampler (0.05 m2 area,

250‐μm mesh) and preserved immediately in 70% ethanol. Although

three Surber samples are a minimal level of replication for

characterising the benthos of headwater streams, the experimental

design meant that it was necessary not to disturb these small stream

reaches excessively by collecting larger numbers of replicates. Macro-

invertebrates were sorted from debris, identified to the lowest practi-

cable taxonomic unit—usually species, excepting Diptera and

Oligochaeta; using Pawley, Dobson, and Fletcher (2011) and refer-

ences therein—and counted.
2.5 | Whole river metabolism

Metabolism measurements were made using the open system dual sta-

tion technique, which estimates a mass balance of dissolved oxygen

(DO)alonga river reach fromthechange inDObetweentwooxygensen-

sors, after accounting for reaeration (Demars, Thompson, & Manson,

2015; Demars et al., 2011). Measurements were taken simultaneously

in the control and impacted river reaches for 24‐hr periods before and

after the addition of peat. DO and water temperature were sampled

every 5 s and averaged every 15 min using Campbell CS512 Oxyguard

Type III Dissolved Oxygen Sensors and Campbell 107‐Thermistor tem-

perature probes wired to Campbell CR1000 data loggers (all Campbell

Scientific Inc., Loughborough, UK). Prior to deployment, the oxygen

probes were calibrated in air at a known temperature and atmospheric

pressure, and cross‐calibrated in oxygen‐saturated water (Campbell

Scientific Inc.,2008).Contextualmeasurementsofatmosphericpressure

and photosynthetically active radiation (PAR) were measured over the

same period, using a CS106 barometric pressure sensor (Campbell

Scientific Inc., Loughborough, UK) and a Skye PAR sensor (Skye, Powys,

Wales), respectively. Meteorological conditions were highly similar

between experimental periods, with the exception of the after impact

period forNetherhearthSike (Table1). This periodexperienceda decline

in bothmean air temperature (6.5 °C) and PAR (314 μmol·m−2·s−1).

Reaeration was estimated using the energy dissipation method

(EDM; Grace & Imberger, 2006; Marzolf, Molholland, & Steinman,

1994). Although we were unable to compare the performance of the

EDM to other reaeration methods in our study streams, the reaeration

parameter serves only as a multiplier. Thus, the relative changes in

metabolism can still be assessed using the BACI design. Whole‐reach

velocity (V) and slope (S) measurements taken at the site were multi-

plied by a discharge‐dependant coefficient (K′) to give an estimate of

reaeration, EDM = V × S × K′ (Bott, 2006). Bankfull width was mea-

sured at 10 evenly spaced cross sections along the reach length and

water depth measured at five intervals at each cross section. Discharge

(Q) was estimated at the lower cross‐sectional areas of each reach

using the velocity–area method (Hauer & Lamberti, 2006). In addition,

whole‐reach velocity and time of travel of water were measured after

the completion of the experiment using a dilute NaCl tracer, which was

discharged upriver of the upper reach boundary. EC was logged con-

currently every 10 s at the upriver and downriver reach boundaries,
then time of travel calculated from the time between the two peaks,

and divided by reach length to give an average velocity and travel time

(Grace & Imberger, 2006). The velocity–area method was used to cal-

culate discharge at the downstream boundary of each reach.

Metabolism parameters were estimated from DO change along

each reach, corrected for reaeration on the basis of the methods of

Bott (2006) and modified subsequently by Demars et al. (2011).

Whole‐reach CR was estimated from nighttime changes in DO and

extrapolated throughout the day. GPP and NDM were calculated from

the change in DO and temperature between the downriver and upriver

stations at time (t) and time plus travel time (tt). DO change was

corrected for reaeration and multiplied by reach depth and sample

interval to give areal estimates of GPP per time of travel. NDM was

calculated as GPP‐CR. GPP:CR was calculated to determine the trophic

status of the river, with values <1 indicating net heterotrophic status.

These estimates were made for each 15‐min sampling interval and

summed to provide daily GPP, CR, NDM, and an overall CR:GPP.
2.6 | Data analysis

Generalized linear models (GLMs) were used to compare BACI data

(treatment, time period, and treatment × time period) for physicochem-

ical variables using replicate sample data. Gaussian error distributions

were specified for most tests, following examination of Q‐Q plots,

residual versus fitted plots, and histograms of residuals. For GLMs of

count data, negative binomial error distributions were specified

(O'Hara & Kotze, 2010). The differential for significant interactions

was calculated from means of (Control After—Control Before)—(Impact

After—Impact Before). Percent change was calculated by expressing

the differential relative to the before × impact mean values of each

parameter.

For macroinvertebrate drift, the samples formed a continuous time

series; therefore, analyses focused specifically on differences

calculated between control and impact reaches for paired time periods

(e.g., control at 3 a.m.—impact at 3 a.m.), thus avoiding issues with

temporal autocorrelation and pseudoreplication (James, Dewson, &

Death, 2008; Larsen & Ormerod, 2010). Therefore, the GLM analyses

compared control–impact (before) versus control–impact (after). If

there were no impacts of peat addition, differences calculated

between the two reaches would remain the same. Analyses compared

(a) all sample data and (b) a subset of the samples collected over four

sampling periods (19:00–04:00) corresponding with the nocturnal

period when behavioural drift is typically highest (Brittain & Eikeland,

1988). Six macroinvertebrate drift composition metrics were

calculated: (a) density (abundance per square metre); (b) taxonomic

richness; (c) the abundance of the four most common macroinverte-

brate orders in the benthos of these study rivers (Ramchunder et al.,

2011): Ephemeroptera, Plecoptera, Diptera (Chironomidae), and

Coleoptera.

To visualise changes in drifting macroinvertebrate community

composition, non‐metric multi Dimensional scaling (NMDS) was used

to ordinate sample data. Macroinvertebrate densities were square root

transformed, and the analysis was based on Bray–Curtis dissimilarities.

To compare the composition of drifting macroinvertebrate samples,

Bray–Curtis dissimilarities were calculated between control and impact



FIGURE 1 BACI interaction plots (Mean � 1 SE) for water quality variables in Moss Burn and Netherhearth Sike. BACI = before‐after‐control‐
impact
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reaches for paired time periods and GLM analyses used to compare

control–impact (before) versus control–impact (after). The six macroin-

vertebrate community metrics used to describe drift samples were also

calculated for the benthic community Surber samples and analysed using

the same GLM approach as water quality parameters. Metabolism data

were single estimates for each treatment and period; therefore, change

between before and after periods in the two rivers was assessed only

with interaction plots and calculation of differential values.
3 | RESULTS

3.1 | Water quality and sediment processes

The addition of fine sediment to Moss Burn led to significant increases

in DOC, TON, and SSC (Figure 1; Table 2). In comparison, the addition

of peat to Netherhearth Sike only led to a significant increase in SSC,

the magnitude of which was lower than that in Moss Burn (Figure 1;

Table 2).
3.2 | Macroinvertebrate behavioural drift

Forty‐six macroinvertebrate taxa were found in the drift samples. Leuc-

tra inermis (Plecoptera) were particularly dominant whereas, from the

Ephemeroptera, Baetis rhodani, Rhithrogena semicolorata, and

Electrogena lateralis were found in relatively high densities. Oulimnius

spp. dominated from the Coleoptera, with Esolus parallelepipedus,

Oreodytes sanmarkii, and Elmis aenea also prevalent.

Drift patterns exhibited diurnal variations over the 24‐hr periods,

with increases in total density and taxonomic richness at night

(01:00–04:00), in both control and impacted reaches, both before and

after treatment (Figure 2). Maximum drift abundance in any one 3‐hr

sampling period was 39 individuals (density = 1,950/m3) and 12 taxa

before the addition of peat but reached 125 individuals (6,250/m3)

and 19 taxa after the addition of peat (Figure 2). Drift density and rich-

ness increased immediately after the addition of sediment and contin-

ued to increase over subsequent nighttime samples (Figure 2). There
TABLE 2 Results of GLM analyses comparing water quality and benthic m

Moss Burn

t p Di

Water quality

Total N (mgL−1) −1.18 .27

Total P (mgL−1) 1.89 .096

TON (mgL−1) 4.52 .002 0.0

DOC (mgL−1) 4.16 .003 1

SSC (mgL−1) 7.21 .00009 4

Benthic macroinvertebrates

Density (per m2) −0.269 .79

Richness 0.836 .43

Ephemeroptera (per m2) −0.64 .54

Plecoptera (per m2) 1.64 .14

Chironomidae (per m2) 0.88 .41

Coleoptera (per m2) 0.49 .64

Note. Differentials are presented where interaction terms were significant at p
GLM = generalized linear model, SSC = suspended sediment concentration, TO
was a significant increase in the difference between control and impact

drift abundance after sediment addition in Moss Burn but not

Netherhearth Sike (Table 3; Figure 3). In contrast, analyses conducted

on the nocturnal drift densities showed significant effects of peat addi-

tion in both rivers (Table 3).

The density of Plecoptera in the drift was significantly elevated

across all samples following the addition of organic sediment to both

rivers (Table 3; Figure 3). The analysis of nocturnal samples also

revealed significant effects of sediment addition on the density of

Coleoptera in Moss Burn and the density of Ephemeroptera in

Netherhearth Sike (Table 3; Figure 3). The dissimilarity of drift compo-

sition between paired control and impact samples showed a change

after sediment addition only for the full Moss Burn data set (Moss

Burn: t = 2.42, p = .03). No changes were evident after sediment addi-

tion for the full data set in Netherhearth Sike (t = 1.54, p = .15) or the

nocturnal sample periods after sediment addition in both rivers (Moss

Burn: t = 1.20, p = .28; Netherhearth Sike: t = 1.32, p = .24). The NMDS

analysis illustrated that the after sediment addition impact reach sam-

ples for Moss Burn were discrete from the control reach samples, plot-

ting in the negative regions of Axis 1 (Figure 4b). These samples were

characterised by elevated densities of L. inermis, Polycentropus

flavomaculatus, and Oulimnius spp.
3.3 | Benthic macroinvertebrates

Benthic macroinvertebrate samples contained 47 taxa. Before the

addition of peat, mean benthic densities were higher in impact

reaches compared to the controls (Figure 5). The input of sediment

reduced mean macroinvertebrate density in impact reaches, but con-

trol reaches were also reduced in the after period, and the time

period × treatment interactions were not significant for either river

(Table 2; Figure 5). There were no significant time period × treatment

interactions for either river for all of the other five benthic macroin-

vertebrate community composition summary metrics with the excep-

tion of Coleoptera abundance in Netherhearth Sike, which declined

by 66% (Table 2; Figure 5).
acroinvertebrate data sets for time period × treatment interactions

Netherhearth Sike

fferential t p Differential

0.68 .52

1.40 .20

85 [+106%] −1.80 .11

.99 [+33%] −1.14 .29

43 [+4,643%] 2.84 .021 265 [+2,739%]

−1.60 .15

−1.82 .11

−1.90 .09

0.32 .76

−1.21 .26

−2.55 .034 −67 [−67%]

< .05, with percent change calculated relative to before × impact values.
N = total oxidised N.



FIGURE 2 Time series of drift in control and impact reaches for 24 hr before and after sediment addition (denoted by dashed vertical line) for
macroinvertebrate density in (a) Moss Burn and (b) Netherhearth Sike, and macroinvertebrate richness in (c) Moss Burn and (d) Netherhearth Sike

TABLE 3 Results of generalized linear model analyses comparing differences in drifting benthic macroinvertebrates for all data and for samples
collected in the four sampling periods period after sediment addition (19:00–04:00)

Moss Burn Netherhearth Sike

t p Differential t p Differential

All data

Density (per m3) 2.21 .044 23 [+152%] 1.53 .15

Richness 1.53 .15 0.94 .37

Ephemeroptera (per m3) 0.97 .35 0.83 .42

Plecoptera (per m3) 2.42 .029 11 [+326%] 2.79 .014 22 [2,200%]

Chironomidae (per m3) −0.82 .43 1.71 .11

Coleoptera (per m3) 2.08 .056 0.94 .36

19:00–04:00

Density (per m3) 3.52 .012 44 [+223%] 2.49 .047 47 [+348%]

Richness 2.38 .054 2.23 .07

Ephemeroptera (per m3) 0.45 .67 2.53 .044 8 [+320%]

Plecoptera (per m3) 5.27 .0018 22 [+463%] 1.70 .014 16 [+1,067%]

Chironomidae (per m3) 1.80 .12 1.57 .17

Coleoptera (per m3) 2.73 .034 14 [+144%] 1.38 .22

Note. Differentials are presented where p < .05 and percent change calculated relative to before × impact values.
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3.4 | Whole‐river metabolism

All river reaches before and after sediment addition were strongly net

heterotrophic (Table 4). GPP in both impact reaches was higher than

control reaches before the addition of peat (+12% in Moss Burn and

+3% in Netherhearth Sike; Table 4), but the input of sediment caused

relatively rapid declines in both impact reaches (Figure 6 and 7). GPP

was lower than that of the two control reaches throughout the subse-

quent 24‐hr monitoring period (Figure 6) with a 54% mean decline in

impact reaches compared to control reaches after the sediment influx

(Figure 6; Table 4).

Before the addition of peat, CR was +64% higher in the Moss Burn

impact reach compared to the control, but this difference declined
considerably to only +6.5% after sediment addition (Table 4). For

Netherhearth Sike, CR between the impact and control reach were

similar before (−33%) and after (−35%) the addition of peat. Thus, the

magnitude of the effect was considerably different between the two

rivers (Figure 7). Overall, the changes in NPP and CR resulted in slightly

reduced NDM in impact reaches after the addition of peat compared

to before.
4 | DISCUSSION

Many headwater rivers are increasingly affected by sedimentation,

including those draining peatland catchments, yet experimental studies



FIGURE 3 Boxplots showing differences (impact–control) in drifting macroinvertebrates, for all data and nocturnal samples only
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examining the effect of organic sediment influx on populations, commu-

nity structure, and functional processes in these river ecosystems remain

scarce (Piggott, Lange, Townsend, &Matthaei, 2012; Piggott et al., 2015).

Our experiment in two peatland rivers revealed that organic sediment

influx can have immediate impacts on river water quality and across dif-

ferent levels of biological organisation (macroinvertebrate behavioural

drift and whole river metabolism). Our results show how organic

sediment influx impacts macroinvertebrate drift rates, benthic
macroinvertebrate communities, and whole‐river metabolism, further-

ing general understanding of sediment impacts in river ecosystems.
4.1 | Water quality and sediment processes

Increased sediment loads can alter water quality in rivers, typically

increasing nutrient and dissolved metal concentrations (Bilotta &

Brazier, 2008). In our experiment, peat addition increased



FIGURE 4 Nonmetric multidimensional scaling analysis of control and impact drift samples in Moss Burn (a) before sediment addition and (b) after
sediment addition and in Netherhearth Sike (c) before sediment addition and (d) after sediment addition. Samples labelled with 19:00 denote the
first sample collected in each 24‐hr period. Nocturnal samples are denoted by filled circles. (e) The taxonomic biplot. Overall test stress = 0.13
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concentrations of suspended sediment in both rivers, and DOC and

TON inMossBurn, consistentwithH1. Because the input of low‐density

peat to fast flowing upland rivers can lead to immediate downstream

transport in suspension as well as significant localised sedimentation,

we anticipate that these effects would likely occur throughout peatland

river networks.Concentrations of riverDOChave increasedmarkedly in

many regions over recent decades, including in freshwaters draining

peatlands (Roulet & Moore, 2006). These increases have been linked

tomany drivers of change in the terrestrial landscape, including environ-

mental warming, declining nitrogen deposition and acidity, altered veg-

etation cover, or management regimes such as prescribed vegetation

burning and artificial drainage (Evans, Chapman, Clark, Monteith, &

Cresser, 2006; Holden et al., 2007; Ramchunder, Brown, & Holden,
2009). Our finding inMoss Burn suggests that DOC increases could also

be attributed to instream processing of eroded particulates (Palmer

et al., 2015). Our observations also suggest that eroding peatlands could

serve as a sourceofNO3 (thedominant componentofTON). This finding

is supportedbyobservations inotherpeatlands thathave suggested that

NH4 released from eroding peatlands can be nitrified rapidly to NO3

(Daniels, Evans, Agnew, & Allott, 2012).
4.2 | Macroinvertebrates: behavioural drift and
benthic biodiversity

Our study revealed a typical diurnal pattern in macroinvertebrate drift

abundance and density, which peaked at night. These drift patterns



FIGURE 5 BACI interaction plots
(mean � 1 SE) for benthic macroinvertebrate
community variables in Moss Burn and
Netherhearth Sike. BACI = before‐after‐
control‐impact
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TABLE 4 Gross primary production (GPP), community respiration (CR), and net daily metabolism (NDM) values for control and impacted reaches,
before and after sediment additions

GPP
(gO2·m−2·d−1) % difference

CR
(gO2·m−2·day−1) % difference

NDM
(gO2·m−2·day−1) % change GPP:CR

Moss Burn

Control before 2.4 11.4 –9.0 0.2

Impact before 2.7 +12.5% 18.7 +64% –16.0 +77.0% 0.1

Control after 2.4 15.5 –13.3 0.2

Impact after 1.2 −50.0% 16.5 +6.5% –15.1 +13.5% 0.1

Netherhearth Sike

Control before 2.9 19.3 –16.0 0.2

Impact before 3.1 +7.0% 12.9 −33.0% –9.7 +39.0% 0.2

Control after 2.6 18.4 –15.3 0.1

Impact after 1.1 −58.0% 11.9 −35.0% –10.9 +28.0% 0.1

Note. Percent differences values are for impact relative to control reaches in the before and after periods.

FIGURE 6 Diurnal variations in dissolved oxygen change between upstream and downstream monitoring stations in (a) Moss Burn before
sediment addition, (b) Moss Burn after sediment addition, (c) Netherhearth Sike before sediment addition, and (d) Netherhearth Sike after
sediment addition. The dual station oxygen method for calculating metabolism parameters assumes CR is invariable during the 24‐hr periods and is
averaged from overnight changes in DO. CR = community respiration; DO = dissolved oxygen
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arise as a product of the behaviour of larvae in running water and

includes active entry into the drift when foraging or to avoid competi-

tion (e.g., Brittain & Eikeland, 1988; Hildrew & Townsend, 1980). Con-

sistent with H2, we found that sediment addition significantly

increased the density of drifting animals in Moss Burn for up to

24 hr and in both rivers at night when the effect was especially pro-

nounced. Increased drift in response to sedimentation is a commonly

reported phenomenon (Culp et al., 1986; Larsen & Ormerod, 2010;

Suren & Jowett, 2001).
Observed increases in drift within 3 hr of peat addition may be

indicative of avoidance behaviour by macroinvertebrates in response

to the smothering effect of sediment settling onto the predominantly

stony surface of the riverbed and the abrasive action of suspended

sediment particles (Culp et al., 1986; Jones et al., 2012a; Piggott

et al., 2015). However, the greatest and most significant increases in

drift in this experiment were delayed for several hours following sedi-

mentation, consistent with other experiments in mesocosms (Fairchild

et al., 1987) and river reaches (Larsen & Ormerod, 2010). These



FIGURE 7 BACI interaction plots for (a and b) GPP, (c and d) CR, and (e and f) NDM before and after the addition of peat in Moss Burn and
Netherhearth Sike. BACI = before‐after‐control‐impact; CR = community respiration; GPP = gross primary production; NDM = net daily metabolism
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delayed drifting behaviours following sedimentation likely reflect

enhanced nocturnal active entrance into the drift, prompted by

declines in habitat quality associated with the loss of interstitial habitat

(Fairchild et al., 1987; Larsen & Ormerod, 2010; Suren & Jowett, 2001).

Responses to sediments may also be lagged for macroinvertebrate taxa

that move into surficial sediments at night (Culp et al., 1986).

Drift composition changed markedly after peat addition, driven by

entrainment of Plecoptera, principally L. inermis. Plecoptera are intoler-

ant of degradation in water and habitat quality and suffer increased
drift and/or decreased benthic abundance where sediment concentra-

tions are high (e.g., Jones et al., 2012a; Larsen et al., 2010; Wood,

Toone, Greenwood, & Armitage, 2005). Sand has been shown to affect

Plecoptera species through feeding inhibition (Hornig & Brusven,

1986), as well as abrasion and changes in benthic habitat. However,

this is the first time such immediate responses have been recorded fol-

lowing organic sediment influx. Where organic sediments decompose

and consume DO, Leuctra often emigrate and show reduced abun-

dance (Turley et al., 2016) due to their high‐oxygen requirement.
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Although water column DO concentrations did not fall significantly

after organic sediment treatments were applied, smothering of the

benthos could have led to significant reductions in interstitial flow

rates, preventing the delivery of oxygenated water into these habitats.

Previous work by Ramchunder et al. (2011, 2012, 2013) in peatland

river networks has suggested a negative association between particu-

late organic sediments in the benthos and macroinvertebrate commu-

nity composition, in river systems affected by artificial drainage and

prescribed burning. Our study provides insights into the mechanisms

by which fine sediment accumulation might have contributed to the

alteration of aquatic biodiversity seen in these previous surveys.

With reference to our third hypothesis of reduced benthic macro-

invertebrate abundance and richness and despite significant increases

in drift following sediment addition, effects were limited to decreases

of Coleoptera abundance in Netherhearth Sike. These results contrast

with other experiments that reported significant declines in abun-

dances of several benthic macroinvertebrate groups after the addition

of sand to headwater rivers (Larsen & Ormerod, 2010). However, our

results are more consistent with those of Fairchild et al. (1987) who

found no effects of predominantly silt on benthic macroinvertebrate

abundance and diversity in mesocosm channels, although Coleoptera

were not considered in those experiments. The general lack of effect

on benthic macroinvertebrate densities was probably due to a combi-

nation of the low number of replicate Surber samples collected (thus

any “effects” being obscured by patch‐scale spatial variability) and

the duration of our experiments being short and missing drifting

behaviour eroding benthic densities over several days. Alternatively,

the results could indicate a degree of resistance to short‐term sedi-

ment influx among some constituent taxa, or sediment deposition

may have caused rapid mortality of some macroinvertebrates (Wood

et al., 2005), which were then sampled, preserved, and counted from

benthic samples. Organic sediments are lower in density than inorganic

sediments, meaning that macroinvertebrates can typically avoid com-

plete smothering, and some particles will also serve as a food resource

for detritivores. Extended observational periods after the addition of

sediment would provide a clearer picture of sediment influx effects

on benthic communities and thus help to link experimental observa-

tions to long‐term effect in rivers draining peatland catchments

impacted by relatively continuous soil erosion and riverbed sedimenta-

tion (e.g., Ramchunder et al., 2012, 2013).
4.3 | Whole‐river metabolism

GPP declined in impact reaches after the addition of peat, partially

supporting H4, despite increases in PAR between the before and after

period in Moss Burn. This suggests that in‐river processes linked to

sediment addition were the primary drivers of change. The changes

in meteorological conditions between the before and after period at

Neatherhearth Sike were unlikely to have contributed to the lowered

GPP rate in the impact reach because the dramatic decline was not

replicated in the control reach. The decline in GPP in both rivers after

the addition of peat provides supports for findings elsewhere in whole‐

catchment surveys (Izagirre et al., 2007; Roberts et al., 2007). Roberts

et al. (2007) found GPP declined after storm events in a headwater

river and attributed these changes to increased turbidity and abrasion.
Similar results were also found by Izagirre et al. (2007), with turbidity

suggested as the main controller of GPP across rivers in northern

Spain. Thus, declines in GPP seen in our study after the addition of

peat could be due to a combination of abrasive sediment action,

smothering of biofilm, and/or increased turbidity (linked to the signifi-

cant increases in SSC) reducing light penetration and thus

photosynthesis.

Contrary to H4, increases in CR were not observed after the addi-

tion of peat. In fact, small declines in CR were quantified in impact

reaches after the addition of peat to both rivers, consistent with

Roberts et al. (2007) who reported declines in CR after storm events,

attributable to a near complete reduction in autotrophic activity (esti-

mated to contribute 20–50% of CR in their study) and a reduced respi-

ration of stressed heterotrophs. It is possible that the decline in CR

seen in the 24‐hr period after the addition of peat was a result of the

decreased activity of autotrophs, as shown by declines in GPP. Lagged

increases in CR were observed by Roberts et al. (2007), attributed to

delayed decomposition of organic matter delivered from the catch-

ment. Increased CR has been reported following peatland deforesta-

tion in some Irish rivers (O'Driscoll et al., 2016); thus, it is likely that

the short duration of our experiment was insufficient to capture such

an effect. To test this hypothesis experimentally in peatland rivers will

require longer periods of ecosystem function monitoring after the

addition of organic sediments.
5 | CONCLUSION

Short‐term sediment addition experiments have provided novel

insights into the implications of sediment influx for headwater river

ecosystems, showing notable changes to water quality, which may be

different to inorganic sediments (e.g., release of organic forms of C

and N with impacts on metabolism) and across different levels of eco-

logical organisations (i.e., macroinvertebrate behaviour and functional

processes). The functional processes that we examined have rarely

been studied in peatland rivers, and so the effects seen on primary pro-

duction point towards a need to increase our understanding of stressor

effects with further experimental work and observational surveys

(O'Driscoll et al., 2016). Furthermore, it is possible that the sediment

influx would have longer term effects across different levels of ecolog-

ical organisation. For example, if GPP remained low for prolonged

periods after sediment addition, this may induce bottom‐up effects

through the benthic macroinvertebrate community and thus drive fur-

ther emigration from affected study reaches. The delivery of organic

sediments is also likely to benefit some detritivorous invertebrates,

altering the relative role of “green” and “brown” energy pathways in

aquatic food webs. The significance of the disturbances to the river

mean that repeated and/or long‐term exposure to sediment influx

could lead to long‐term impairment of rivers draining impacted

peatland catchments (e.g., Brown et al., 2015). The prevalence of green

energy pathways in upland rivers of the UK is itself a product of his-

toric riparian tree removal though. Restoring the balance of tree cover

and open reaches throughout upland river networks is a key conserva-

tion goal (Mainstone et al., 2016), and so further evidence is needed to

understand the effects of organic sediment delivery from peatlands to



14 of 15 ASPRAY ET AL.
rivers where food web structure is reliant more on detrital energy

pathways.

This experiment contributes to the growing body of knowledge

regarding the impacts of sediment influxes on river ecosystems. The

effects have the potential to be profound, manifesting themselves as

changes to water chemistry, aquatic biodiversity, and ecosystem func-

tioning. Changes to land use, management regimes, and impacts from

acidification and climate change in river catchments have contributed

to a continuing elevation in sediment delivery rates to river networks

worldwide (Piggott et al., 2015; Wood & Armitage, 1997). Gaining an

improved understanding of sediment effects on rivers is necessary

for the conservation and restoration river habitats impaired by erosion

and is becoming more imperative due to the widespread occurrence of

catchment degradation and soil erosion. Our findings show that where

significant quantities of fine organic sediments are delivered to river

systems, effects can be expected throughout the whole aquatic eco-

system. Land managers should therefore take steps to limit organic

sediment erosion and delivery to aquatic systems to prevent ecological

impairment and thus increase resilience of aquatic communities

throughout entire river networks.
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