
This is a repository copy of Clustering approaches to improve the performance of low cost 
air pollution sensors.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/113321/

Version: Accepted Version

Article:

Smith, Katie R., Edwards, Peter M. orcid.org/0000-0002-1076-6793, Evans, Mathew J. 
orcid.org/0000-0003-4775-032X et al. (5 more authors) (2017) Clustering approaches to 
improve the performance of low cost air pollution sensors. FARADAY DISCUSSIONS. pp. 
621-637. ISSN 1364-5498 

https://doi.org/10.1039/c7fd00020k

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/80839779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Clustering approaches to improve the performance of

low cost air pollution sensors†

Katie R. Smitha, Peter M. Edwardsab, Mathew J. Evansb, James D. Leea, Marvin D.

Shawa, Freya Squiresa, Shona Wildea, and Alastair C. Lewisb

Low cost air pollution sensors have substantial potential for atmospheric research and for the

applied control of pollution in the urban environment, including more localized warnings to the

public. The current generation of single-chemical gas sensors experience degrees of interference

from other co-pollutants and have sensitivity to environmental factors such as temperature, wind

speed and supply voltage. There are uncertainties introduced also because of sensor-to-sensor

response variability, although this is less well reported. The sensitivity of Metal Oxide Sensors

(MOS) to volatile organic compounds (VOCs) changed with relative humidity (RH) by up to a fac-

tor of five over the range 19-90%RH and with an uncertainty in the correction of a factor two at any

given RH. The short-term (second to minute) stabilities of MOS and electrochemical CO sensor

responses were reasonable. During more extended use inter-sensor quantitative comparability

was degraded due to unpredictable variability in individual sensor responses (to either measur-

and or interference or both) drifting over timescales of several hours to days. For timescales longer

than a week identical sensors showed slow, often downwards, drifts in their responses which di-

verged across six CO sensors by up to 30% after two weeks. The measurement derived from

the median sensor within clusters of 6, 8 and up to 21 sensors was evaluated against individual

sensor performance and external reference values. The clustered approach maintained the cost

competitiveness of a sensor device, but the median concentration from the ensemble of sensor

signals largely eliminated the randomised hour-to-day response drift seen in individual sensors

and excluded the effects of small numbers of poorly performing sensors that drifted significantly

over longer time periods. The results demonstrate that for individual sensors to be optimally com-

parable to one another, and to reference instruments, they would likely require frequent calibration.

The use of a cluster median value eliminates unpredictable medium term response changes, and

other longer term outlier behaviours, extending the likely period needed between calibration and

making a linear interpolation between calibrations more appropriate. Through the use of sensor

clusters rather than individual sensors existing low cost technologies could deliver significantly

improved quality of observations.

1 Introduction

Low cost sensor networks are an appealing prospect for use in

atmospheric chemistry research in particular offering the poten-

a Wolfson Atmospheric Chemistry Labs, Dept. of Chemistry, University of York, York,

YO10 5DD UK. Tel: 01904 324178; E-mail: ks826@york.ac.uk
b National Centre for Atmospheric Science, University of York, Heslington, YO10 5DD.

tial to greatly increase the spatial resolution of observations. Im-

proved spatial observations can support improved source appor-

tionment, improved validation of emission and transport models

and give better estimates of human exposure1. Arrays of air pol-

lution sensors are now being deployed in both indoor2, 3, 4, 5 and

outdoor6, 7, 8 environments and there is increasing confidence in

the quality of observations generated4, 7, 8.
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Technical approaches to using low-cost sensors tend to focus

on incorporating different types of individual sensors into

compact self-contained packages3, 6, 7, 9 in an attempt to monitor

multiple pollutants simultaneously in a manner analogous to

reference air quality monitoring stations. The inclusion of

multiple different sensors in a single package is also used to

support the self-correction of any cross-interferences between

sensors. The most advanced air quality sensor packages have

shown good capability to recreate general patterns of pollution

behaviour when co-located next to, and compared with, refer-

ence instruments1, 6, 7 and they have notable skill in detecting

individual pollution events7, 10.

Determining absolute concentrations is considerably more chal-

lenging when sensors are deployed outside the laboratory envi-

ronment, since they have substantial sensitivity to surrounding

environmental conditions and do not normally have access to

in-service reference materials for calibration1. The assumption

used in most sensor deployments is that once initially calibrated,

a sensor will maintain its response characteristics for long peri-

ods, much like a thermocouple. Sensors typically have unique

sensitivities towards both the target gas and towards cross inter-

ferences and raw signal data is often processed using multivariate

regression models6 and pattern recognition analysis2, 11 to cor-

rect for the multiple variables which impact sensor signals7, 10.

Experiments have shown that air flow12, temperature10, 12, hu-

midity4, 9, 12, exposure to other atmospheric gases7, 8, drift over

time6, 8 and sensor arrangements7 cause signal variability6, 13,

lowering sensor reproducibility and impacting on data quality11.

Approaches to improving the stability of sensor response include

using temperature steps throughout a sample period4 and noise

reduction using well-designed circuit boards7. However for an

atmospheric instrument that will not have access to calibration

materials during its period of operation, an understanding of

how sensor responses change over the full range of timescales

for which data may be collected and used is fundamental.

Metal oxide sensors (MOS) provide a continuous measure of

total volatile organic compounds (VOCs) in air and have suffi-

ciently fast responses to identify pollution events on the second

timescale3. Used in the laboratory, in combination with cali-

bration models and multivariate regression it is possible to dif-

ferentiate and semi-quantify VOCs5, 14, 15. Several studies have

shown that MOS sensors often exhibit nonlinear responses to-

wards VOCs3, 5, 8, although their response does become linear at

VOC concentrations below 100 ppb, a value reasonably represen-

tative of ambient air1, 5. Nonlinear relationships exist between

MOS VOC sensitivity and other variables, for example RH and

temperature, further complicating calibration and ambient use.

Sensitivities and response times can be different for notionally

identical sensors3, 14, 16 therefore transferring a single calibration

model from the laboratory to deployment, and indeed from sen-

sor to sensor is difficult5. There is an emerging literature showing

that corrections for both chemical and environmental factors can

be improved using more complex statistical models13 that go be-

yond simple linear regressions, for example, using Partial Least

Squares14, neural networks17 or Gaussian process emulation1.

These techniques have shown improvements in the extraction of

VOC concentration data from sensor signals with response drift,

cross interference and sensor to sensor variations7, 10. Training

data for these processes is improved by including laboratory cali-

brations as well as real world ambient data17.

This paper establishes the variability of response characteristics in

a VOC MOS and CO electrochemical sensor, both applied for am-

bient measurements. Both are relatively inexpensive technolo-

gies18 suitable for use in high-density networks. We evaluate

inter-sensor variability, whether this is systematic or randomised

across a population of sensors, and the time constants for change.

From this a ”clustered” approached is developed and a minimal

number of sensors required to generate an improved median con-

centration is established. By using fundamentally low cost com-

ponents, even in clusters of >20 identical sensors the conceptual

capital cost advantage is maintained, but data quality improved.

2 Experimental

2.1 VOC detection with metal oxide sensors (MOS)

Sensor systems for VOCs have a particular attraction since exist-

ing measurements are very sparse due to the expense and practi-

calities of using gas chromatography or mass spectrometry in the

field. Total VOC as measured by a MOS is an operationally de-

fined value representing a bulk or ”total VOC” concentration and

is not easy to directly compare against existing reference mea-

surements or standards. The value for research of a total VOC

sensor measurement is likely to be associated with the mapping of

geographic distributions and comparison of temporal behaviours,

but this can only usefully be derived if sensor devices are highly

reproducible amongst themselves. Figaro TGS2602 MOS are ap-

plicable for use in air pollution sensing systems because they are

sensitive towards VOCs (at the ppb level), they are small (8 mm

diameter), commercially available, inexpensive (~£10) and re-

quire low power and simple electronics to function19. The sen-

sor requires a circuit voltage of 5 ± 0.2 V and a separate heater

power supply that provides 5 ± 0.2 V to the integrated sensor

heater (Figaro TGS2602 datasheet). Reducing compounds such

as VOCs adsorb onto the sensing surface, which is a tin dioxide

n-type semiconductor mounted on an alumina substrate20. The

reducing compounds are oxidized by oxyanions on the surface of

the sensing material, with electrons that were previously drawn

to the oxygen then available to conduct. The change in surface

conductance, and hence resistance - which is measured as the

signal - is proportional to the concentration of VOCs in the sur-
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rounding environment20. As is the case with other MOS devices

they were initially used in applications such as leak detection for

refrigerators and industrial safety, with use for ambient air qual-

ity monitoring a later, and more challenging, application (Figaro

datasheet). In this study sensors are operated and used in clus-

ters rather than each sensor having a separate set of supply cir-

cuits and data capture. Eight identical Figaro TGS2602 MOS from

a common batch are mounted in a circular pattern on a single

printed circuit board (custom designed). The overall dimensions

of each sensor cluster are 90 mm (width) x 120 mm (length) x 30

mm (height). Change in individual sensor resistance is measured

as a voltage across a load resistor in series with the sensing sur-

face, and then an analogue to digital conversion prior to signal

communication to a microprocessor (Arduino Uno) device. This

load resistor is variable to enable all sensor signals to be ”zeroed”

to a common voltage at a baseline concentration reading. Data

acquisition occurs at 1 Hz in all experiments described here.

2.2 Carbon monoxide detection with electrochemical sen-

sors

Carbon monoxide has declined as a pollutant in many countries

but it remains a very useful observation for air pollution research

since it is an excellent tracer of combustion processes and often

valued in particular for testing of model performance. Classical

instrumentation for CO detection is based on IR absorption, GC,

or cavity enhanced methods, but all are relatively costly and so

the attraction of a sensor based approach is clear. The carbon

monoxide (CO) electrochemical sensors used here were supplied

by Alphasense Ltd (part no. CO-B4). This type of sensor is cur-

rently found in several commercial air pollution sensor packages.

Each CO sensor contains three electrodes; the working (sensing)

electrode (WE) is located closest to the surrounding environment

and contains a high surface area electro-catalyst to optimize the

oxidation of CO, the counter electrode (CE) lies underneath the

WE and a wetting filter and the opposing redox reaction occurs

here to generate an equivalent current7, and a reference elec-

trode is also included to ensure the WE potential remains in a suit-

able range (Alphasense CO-B4 specification sheet). The CO elec-

trochemical sensors come with an Individual Sensor Board (ISB)

which has been specifically calibrated for that sensor. The pre-

set correction factors to convert the voltage output signal from

the two electrodes to a concentration is therefore suitable for that

sensor, on that ISB. The sensors are 32 mm in diameter and the

mounting board is 39.1 mm x 44.6 mm x height 30 mm with the

sensor mounted onto the board. The CO electrochemical sensors

require a low-noise 3.5 to 6.4 V power supply, and the signal is

in the form of voltage output from the auxiliary and the working

electrodes.

2.3 Sensitivity and variability of MOS sensors to environ-

mental parameters

Previous work has shown that some low-cost sensor technologies

are prone to multiple cross sensitivities from both chemical and

physical parameters6, 7, 8, 9, 10, 12, 13. These cross-sensitivities

have the potential to produce significant signal interferences

when measuring in ambient air, particularly when the target mea-

surand is at low concentration and the interference is abundant

or highly variable. Lewis et al. 2016 showed an example of NO2

/ CO2 interferences highlighting that although the absolute sensi-

tivity of a NO2 sensor to CO2 was low, the high abundance of CO2

in air made this an important consideration at NO2 mixing ratios

below 20 ppb1. Ambient humidity is one of the more straight-

forward environmental interferences that can be evaluated and

potentially corrected for, since it can be measured alongside the

sensor at relatively little extra cost or complexity. Whilst collect-

ing the data is easy, using this to create a correction is less so,

particularly if the effects are nonlinear or not reproducible. As an

example, water vapour has the effect of both changing MOS sen-

sor sensitivity to VOCs and also generates an artefact signal in its

own right. Figure 1 shows the impact of relative humidity on the

sensitivity to VOCs of a set of 16 identical MOS (Figaro TGS2602)

- expressed as mV ppb[VOC]. A controlled mixture of gas phase

VOCs (gas cylinder mixture of pentane, heptane, toluene, ethyl

benzene, nonane and m+o-xylene at 5 ppm in N2 gas) and hu-

mid air are presented to two clusters. The water vapour content

in the gas stream is controlled by a DG3 Dewpoint Generator, and

the experiments run using a computer controlled set of mass flow

controllers to blend and dilute the gases.

Figure 1 shows only the nonlinear effect of relative humidity

on VOC sensor sensitivity; in addition there is a direct sensor

signal response to water itself (typical value -7 mV %−1). Fig-

ure 1 is also annotated with the humidity range encountered on

a recent field deployment to Beijing, an experiment referred to

later in more detail, showing the importance of accounting for

these environmental dependencies. If an instrument is to be de-

ployed to multiple locations across the globe it must be able to

operate over the full range of relative humidity shown in this fig-

ure. For each humidity value tested in the lab the range of ob-

served VOC sensitivity factors across the 16 sensors (housed in

two clusters) is shown with bars on the y axis, varying consider-

ably between individual sensors at any single humidity. Repeat-

edly testing this response at varying humidities yields a repro-

ducible shape of curve for the population of 16 sensors as whole,

but at an individual sensor level repeated tests do not give indi-

vidually reproducible values. This has the consequence that no

canonical sensor correction value can be applied, but only that

a range of possible sensor response factors can be constrained,

perhaps to a factor of two. We examine this further in the next

section. In practical application for Beijing, and for a period of
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Fig. 1 The range of observed sensor sensitivities to gas phase VOCs as a function of changing ambient relative humidity; tests conducted on 16

identical MOS in two clusters under controlled laboratory conditions. The blue shaded area indicates the humidity range observed during a recent

campaign to Beijing, China and this shows the importance of understanding how the surrounding environment impacts sensor behaviour.

just a few weeks of measurement, a relative humidity range from

17% to 90% was observed over which an individual sensor sensi-

tivity towards VOCs would vary over a range of roughly a factor

of five, and with an uncertainty of around a factor of two at any

given humidity. These experiments do not identify why the re-

sponse of a given sensor appears to vary in identical humidity

conditions, but they highlight that interference effects on individ-

ual sensors are not necessarily single fixed values, but at best can

be constrained to some relatively broader range of values. The

scale of the impact of an environmental factor such as RH means

that in-service calibration of interference responses is at least as

important as calibration of the measurand itself, and definitely

cannot be assumed to be a constant. A lack of reproducibility in

how each individual sensor responds to an interference is clearly

a crucial limiting factor when these sensors are then translated

into the field. The timescales for any changes in the effects of

interferences are therefore central to defining how often a sensor

must be calibrated, which in turn has large implications for how

sensor networks are delivered. We next examine the extent to

which environmental interferences on MOS sensor responses can

be removed, and test this over a range of timescales.

2.4 Variability of MOS sensor response in zero air

Figure 1 showed the impacts of a single environmental variable

on the sensor response. By placing clusters of sensors in a single

flow cell flushed with zero air the effect of the measurand (or

lack of) can be held constant whilst multiple other factors such

as temperature, supply voltage and humidity are allowed to vary

within a certain range. By testing multiple sensors at the same

time some insight can be gained into the degree of reproducibility

between sensors to a commonly experienced interference, and

whether these effects are stable over a given timescale.

Figure 2 shows a MOS cluster of eight TGS2602 sensors mea-

suring zero air, free from VOCs, generated using a Pure Air Gen-

erator, a device tested previously for VOC content using GC meth-

ods. The response from the cluster of sensors was monitored over

a period of c.a. 6 hours in an environmentally controlled labo-

ratory, but where ambient humidity and temperature did vary to

some small degree. A gas calibration sensitivity of 1 mV ppb−1

[VOC]
(Figure 1) was used to convert the sensor signal into a VOC mix-

ing ratio. Figure 2a shows the raw sensor signals, offset to zero at

t = 0, as a time series and probability density function (pdf) for

each of the 8 sensors; this shows that in this experiment sensor

signals varied over a range that would equate to approximately 10

ppb [VOC]. Classically a plot of this kind would be used to help

infer some measure of the sensitivity of the instrument. However,

the observed timeseries variability is not random, with all sensors

following some similar trends over the six hours, shown by the

solid black median value line. This component of the observed

variability that is common to all 8 sensors is not due to random

signal noise, but instead likely due to small variations in temper-

ature and humidity during the experiment - environmental inter-

ferences. Subtraction of the median sensor signal from all sensors

considerably reduces the observed pdf spread (Figure 2b), with
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Fig. 2 a) Normalized time series for 8 identical MOS sensors in zero air over a six hour period (median = black line), and b) the same observations

but with the median signal subtracted to eliminate contributions to individual sensors signals from external interferences such as temperature and

humidity.

the remaining variability consisting of an individual sensor noise

component and a residual environmental interference component

due to differences in sensor sensitivities to the environmental pa-

rameters.

Plots of the probability density functions for each of the sensor

signals in Figure 2 centered on the individual sensor mean are

shown in Figure 3, both with (a) and without (b) the subtrac-

tion of the median sensor signal, showing that all sensors show a

similar variability around the mean and that the major variabil-

ity is driven by factors common across all sensors (as per Figure

2). Figure 3c shows a Fourier transform power spectrum of a sin-

gle example sensor signal from Figure 2a, showing characteristics

of a pink noise spectrum, with the most power in the lower fre-

quencies (slope of approximately -1). Pink noise is more trouble-

some that white noise, which would show a flat power spectrum,

as the application of smoothing and low-pass filtering to reduce

noise is less effective for pink noise than for white noise. A given

standard deviation of pink noise will have a greater effect on the

accuracy of a measurement than the same standard deviation of

white noise. If the observed pink noise is a characteristic of the

sensor, then there should be no correlation between the differ-

ent sensor signal noise components. Figure 2a, however, shows

that much of the low frequency variability (minutes timescale)

does show correlation across multiple sensors. This suggests that

this low frequency variability is due to variations in environmen-

tal factors, such as laboratory temperature that typically vary on

these timescales, which all sensors have a response to. Removal

of the median sensor signal from each individual sensor signal

should thus reduce the low frequency power in the power spec-

trum. Figure 3d shows the power spectrum of the same sensor

signal in Figure 3c after removal of the sensor median, and shows

a reduction in the slope and a flattening of the spectrum above

0.01 Hz, resulting from a reduction in the low frequency power.

Autocorrelation plots are a commonly-used tool for checking

randomness in a data set. This randomness is ascertained by

computing autocorrelations for data values at varying time lags.

If random, such autocorrelations should be near zero for any and

all time-lag separations. If non-random, then one or more of the

autocorrelations will be significantly non-zero. The effect of the

sensor response to common factors can also be seen in the auto-

correlation plots of the sensor signals (Figures 3e and f). These

show an increase in the sensor-to-sensor variability between the

raw sensor signal autocorrelations (Figure 3e) and the autocorre-

lation of the signals after subtraction of the median sensor signal

(Figure 3f). The average time taken for a sensor autocorrelation

to become uncorrelated (within 95% confidence of 0) is approx-

imately 15 minutes prior to median subtraction, but reducing to

approximately 10 minutes afterwards.

The conclusion that can be drawn is that the responses induced

on each sensor by individual interferences do not change substan-
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Fig. 3 The probability density, Fourier transform and autocorrelation plots for the MOS sensors in zero air. (a) shows the pdf of all 8 sensors

(normalized to their individual sensor mean) showing overall distribution is driven by similar factors. (b) shows the pdf of all 8 sensors after subtraction

of the median sensor signal (normalized to their individual sensor mean), showing differences in the individual sensor noise characteristics. Example

Fast Fourier Transform of an individual sensor signal before ( c) and after (d) subtraction of the median sensor signal. All sensors show red/pink noise

characteristics but correlation timescale varies between sensors. (e) shows the autocorrelation of all individual sensor signals (colours) and the

median sensor signal (black), and (f) shows the autocorrelation of the sensor signals after subtraction of the median signal. Grey dashed lines

represent 95% confidence around 0. These plots show that all sensors show similar autocorrelation before subtraction of the median signal and

become uncorrelated after 8-15 mins, after subtraction of the median signal the sensor signals show less autocorrelation, and become uncorrelated

after 6-20 mins.
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tially over timescales of seconds to a few hours. The subtraction

of the median signal does not entirely remove the differences be-

tween individual sensor signals but the remaining differences can

be considered as the noise for each sensor and the pdf is nar-

rowed. Since repeated tests on different days for humidity effects

(of the kind shown in Figure 1) did not support the use of a sin-

gle response factor for individual sensors, it might be hypothe-

sized that the MOS sensors are stable in terms of their response

characteristics over a few hours, but possibly not over days or

longer periods. Understanding this timescale is crucial, since this

ultimately determines the required frequency of calibration of de-

vices (both measurand and interferences), and the uncertainties

associated with different data averaging periods. In the case of

the sensor network deployment concept this time period between

calibration will ideally be as long as possible.

2.5 The timescale MOS variability in ambient indoor air

The long term variability and drift of MOS clusters were next

tested in ambient air with variable VOC content and over much

longer periods than the laboratory experiments shown in Figures

2 and 3. Multiple clusters of eight TGS2602 sensors (making a

total of 21 operational sensors) were used to passively sample air

in a modern climate controlled indoor environment (~. 20◦C)

for a period of 20 days. An indoor environment was chosen since

it provided variable atmospheric concentrations of VOCs, but a

reasonably well constrained range of ambient temperatures and

humidities as environmental interferences. The sensor signal volt-

ages (normalised at time t = 0) are shown in Figure 4a. All sen-

sors showed a good correlation (average inter sensor R2 = 0.923)

with one another through the period of test. There were clear

daily cycles on weekdays and comparatively flat unchanging peri-

ods of VOC abundance on weekends, a result of low building oc-

cupancy and activity. In this regard the individual sensors worked

well, all showing the same qualitative trends of changing VOCs or

interferents indoors. The inter-sensor spread of observed values

increased throughout the test period (standard deviation increas-

ing from ~20 mV (~20 ppb VOC) on day 2 to ~100 mV (~100

ppb VOC) by day 19) as the sensor signals drift apart over the

week+ timescale. The changes in responses of individual sensors

cannot however be corrected assuming only a long-term linear

drift (either upwards or downwards) trend for each individual

sensor - an approach that would allow for a correction by lin-

ear interpolation between two calibration points. This becomes

apparent in the rank-order plot shown in Figure 4b. This figure

shows the ordering of the observations from the sensors, from

the highest reporting value to the lowest. Early in the time series

the sensor ranking of the sensors shows significant variability and

changes regularly over time periods of around 6 hours to 1-2 days,

particularly during periods where the mean sensor signal shows

large changes. In simple terms, the highest reporting sensor is not

always the highest and lowest not always the lowest, rather they

change from day to day. On these day-long timescales the unpre-

dictable changes in sensor sensitivity are possibly due to VOC sen-

sitivity change or changes in sensitivity to interferent chemicals or

physical parameters. This we refer to as medium term drift. Sig-

nificant longer-term (more than one week) MOS drift means that

towards the end of the time series less change in sensor rank is

observed since the responses have begun to separate. Over sev-

eral weeks there is substantial drift apart of the individual sensor

outputs, to a value (100 ppb VOC) likely to be greater than the

quantity itself being measured in air. In a practical deployment

the trends shown by each sensor could have some value, but little

quantitative comparison could be made between them. Medium

term drift is superimposed on the long term drift and this also de-

grades the quantitative comparisons between sensors. On short

timescales (6 hours) sensors appear to hold their response char-

acteristics quite well, implying that over this timescale relative

values between sensors could be directly compared.

Time averaging sensor signals is a way to address short term

random noise, but this does not handle medium term semi-

randomised drift in either sensor sensitivities to measurand or

interferences. Correcting for changing response characteristics in

an individual sensor can of course be achieved through regular

and extensive multivariate calibrations in the field, as is applied to

traditional instruments. The practicality of such complex calibra-

tions appears rather at odds however with the conceptual model

of low cost sensor science and the potential applications of low

cost sensors (e.g. air quality monitors in developing nations, or

for the general public). Based on these experiments indoors an

approximate calibration frequency of perhaps once per day would

appear reasonable if a quantitative comparison was required be-

tween individual sensors operating over multiple days or longer.

Once the timescales for variability and drift are known, potential

approaches to address and minimise this start to emerge. As is

alluded to by the experimental design of the MOS clusters, one

possible method is the use of multiple sensors whose signals are

used as an ensemble in a single device. The use of larger num-

bers of sensors together still exploits the overall low cost of com-

ponents, but minimises the impacts of medium term variability in

any single individual sensor. Figure 5 shows the impact of averag-

ing the individual sensor signals from Figure 4 on the correlation

slopes calculated for unique permutations of MOS sensors against

the median signal of all 21 sensors. Although inter-sensor MOS

signals show a large degree of variability, the standard deviation

of this is found to decrease with approximately 1/N, and provid-

ing sufficient sensors are used, the median sensor signal should

be less sensitive to individual randomised drift. Thus, calibration

factors applied to the cluster as a whole may be more robust than

any individual sensor calibration, and applicable for longer peri-

ods of time between calibrations. This is because the necessity
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Fig. 4 a) The time series of 21 MOS sensor signals, normalised at t = 0, monitoring indoor air in a climate controlled building. b) Rank order plot of

MOS sensor observations, y-axis sorted according to sensor ranking in the final hour of time series.

of frequent calibration when individual sensors are used alone is

to accommodate and correct for outlying sensors, which are of

course automatically excluded through selection of the median.

Over week+ periods inevitably sensor response to the measurand

begins to decrease (as with most instruments), but through the

use of clustering the variability of individual sensors on the day

timescale is removed and poor performing (or rapidly degrading

sensors) over longer timescales do not influence the result. The

remaining systematic decline in response can then more reason-

ably be corrected for via linear interpolation between relatively

infrequent calibrations.

2.6 A clustered approach to CO sensor measurements

The previous section shows the potential improvements in quality

of observation that may be achieved through taking an ensemble

value from clusters of MOS sensors rather than a reliance on in-

dividual sensor outputs. However the real-world performance of

the clustered approach is difficult to benchmark for MOS / VOCs,

since there is no obvious equivalent reference measurement to

compare against. In this section the clustered sensor concept

is applied using Alphasense CO-B4 electrochemical sensors. By

moving to CO as the measurand there is then an opportunity to

compare individual sensor and cluster performance against a ro-

bust reference measurement. The observations are made during

an experimental deployment at ground level (5 m) in central Bei-

jing, China, for a period of 1 month. The choice of Beijing as a

the test location exposes the sensors to a very wide range of both

ambient concentrations and relative humidity. The cluster of CO

sensors are housed in a 2 x 3 formation and mounted in a single

machined flow cell. Ambient air is supplied to the sensor flow cell

via a metal bellows pump, with flow rate throttled to 1.5 L min−1

using a KNF vacuum pump and an 1/4” needle valve. The sensor

and flow cell are then housed inside a further enclosure and the

device located in an air conditioned mobile laboratory, with dc

supply provided via transformer and mains power. In this regard

the CO sensors are placed in a far less challenging environment

than is commonly applied to air pollution sensors - e.g. located

outdoors, unregulated temperature, unregulated airflow, battery

power supply etc. An Aero-Laser AL5002 vacuum UV instrument

calibrated and zeroed every 9 hours against a BOC (1 ppm CO in

air ) standard provided reference measurements for two weeks of

this test period.

Figure 6a shows the observations from each sensor in the clus-

ter and the reference CO time series data. All reported CO sensor

readings are calculated using the individual calibrations provided

by the manufacturer, but are normalised to each other at the start

of the time series in Figure 6a, after an initial 12 hour warm up

period. An offset of 324 ppb was then calculated between the
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Fig. 5 The slope of sets of non-overlapping permutations of sensors against the median signal from all 21 sensors (i.e one = 21 slopes of individual

sensors vs 21 sensor median, 2 = 10 slopes of averages of 2 sensors vs median of 21, 3 = 7 slopes of the median of 3 sensors vs median of 21) The

red dots show the mean and the grey lines are ± 3 standard deviations on the mean. The dashed lines show calculated ± 3 standard deviations on

the mean using a 1/square root of N decrease (red) and a 1/N decrease (blue) from the 1 sensor observation.

Aerolaser CO and the median sensor CO on the 22nd November

and applied to all sensors, a value that was in line with an external

zero air (PAG air) value from the sensors during the experiment.

There are several notable features in Figure 6a. The first is that

the sensors qualitatively perform well against the reference and

are very well-correlated both internally and with the reference

instrument (R2 > 0.95); it is clear that in terms of tracking tem-

poral trends the CO sensors very perform well. There is however

considerable divergence in the response of each sensor over the

period of measurement. A rank ordering of the relative sensor

signals is shown (Figure 6b) with the highest reporting sensor at

any time point in red and the lowest in blue. Throughout the

earlier part of the time series the ranking of the sensors changes

frequently, particularly during periods where the reference CO

shows large atmospheric changes. This is due to the sensors each

responding to the different environmental conditions (for exam-

ple temperature and humidity), with slightly different sensitivities

to each parameter. Over time the individual sensors change their

responses to different degrees, resulting in a significant spread in

CO values across the 6 sensors ~370 ppb (or ~32%) between

highest and lowest in Figure 6c. This long-term signal drift is

clearer in Figure 6c which shows only the portion of the time se-

ries with reference CO measurements and all CO sensor offsets

corrected to the reference at the beginning of the time period.

Figure 6d shows the difference between each sensor and the CO

reference measurement throughout the time period. The scale

of drift would clearly be very significant if the individual sensors

were spatially distributed and then a concentration gradient in-

ferred between locations based on observations. Similar to the

MOS sensors this longer-term drift between sensors results in less

change in sensor rank towards the end of the period. Using a

single sensor in isolation would imply that frequent calibration -

perhaps of the order of daily would be the minimum needed to

maintain optimal compatibility between sensors. The frequency

of calibration would in practice need to adapt to the performance

of the worst performing (largest drift) sensor, but without prior

knowledge of which that was, all sensors would need to be sub-

jected to the same regime.

If all sensors of a particular type drift with a symmetric distri-

bution, then the use of all six CO sensors to derive a single CO

mixing ratio offers the potential for a much more robust observa-

tion than any single sensor. If in practice there is both a random

element (seen on the day timescale through rank order changes)

and systematic change in response (likely downwards over time)

then use of a cluster-derived value provides a means to extend

the period between overall instrument calibration through exclu-

sion of the outlier sensors. For the data shown in Figure 6, the R2

value for the median sensor value versus the reference instrument

(0.98) is higher than the average R2 of each of the individual sen-

sors. The impact of averaging over all permutations of multiple

sensors on the calculated mean squared error (Figure 7a) and

slope (Figure 7b) between the CO sensor cluster and the CO ref-
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Fig. 6 a) Time series for the CO electrochemical sensors (coloured lines) and the reference CO measurement (black). b) A sensor rank plot for the 6

CO electrochemical sensors. The sensors are ranked according to their output, with the highest reporting sensor shown in red and the lowest in blue.

The sensors frequently change ranking positions. c) Time series of period with both CO sensor and reference measurements. Sensors offset to

match reference at t = 0 d) Individual sensor CO - reference CO.
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Fig. 7 Mean squared error (a) and slope (b) statistics for the correlation of the CO reference fluorescence instrument data shown in Figure 6c with

sensor data calculated as the average of different combinations of sensor signals shown in the same figure, for every possible permutation of sensor

combination. For example, the ”Two” sensors averaged box plot shows the distribution of calculated mean squared error/slope of the average of two

sensors against the reference instrument for all 15 possible combinations of two sensors from the set of six. The dashed lines show calculated ± 3

standard deviations on the mean using a 1/square root of N decrease (red) and 1/N decrease (blue) from the individual sensor versus reference

instrument statistic.
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erence measurement was calculated. Increasing the number of

sensors that are averaged reduces the standard deviation in the

calculated correlation metric, and with sufficient sensors should

enable the characteristic sensor distribution to be determined and

calibrated so as to minimise variability. The sharp decrease in cor-

relation metric spread above 3 sensors averaged is due significant

overlap between the permutations due to the small sample size

(6 sensors). In this real-world test over time there is a gradual

reduction in the sensor cluster’s response to CO - at the start of

the experiment (first two days 21st to 22nd Nov 2016) the median

slope against reference is 0.997 and ten days later (3rd to 4th Dec

2016) it is 0.917, but the change is modest and linear for the me-

dian value. Whilst individual CO sensors would indicate the need

for almost daily calibration (if they are to all individually match

the performance of the reference) it might be reasonable for a

cluster of 6 to be calibrated only perhaps once every 2 weeks.

Since the overall cost of components in a 6-clustered CO device

are around $500, we consider that this still falls with the general

boundaries of low cost sensing, but delivers observations in an

urban environment that are highly competitive with a reference

instrument that was more than a factor of 100 more expensive.

3 Conclusions

Air pollution sensors are a high profile and rapidly growing field

of technology with many attractive conceptual benefits that allow

for increases the spatial resolution of monitoring networks and

reduction in cost. As has been reported previously environmental

interferences such as temperature and humidity on sensors can

be significant and have nonlinear impacts. With MOS devices we

show that the effects of an interference such as water vapour on

a population of sensors can be large, changing the response of

sensors to VOCs by a factor of five over a plausible range of at-

mospheric humidity conditions. The effects of the interference on

each sensor was seen to vary significantly and were not constant

when experiments were repeated over different days/weeks, with

individual sensor responses varying by up to a factor of two for

any given humidity. Over timescales of up to several hours the

effects of environmental interferences could be removed from a

data set through subtraction of a median sensor value when 8

identical MOS sensors were exposed to zero air. The mismatch

between apparent ’correctability’ of interference over minute to

hour timescales compared to much more variable response fac-

tors over days and longer was tested using a 20 day controlled

assessment of the performance of 21 identical MOS devices in am-

bient indoor air. The MOS showed a high degree of inter-sensor

correlation throughout the whole period, but over timescales of

>6 hours to around 1-2 days individual sensor response factors

(possibly to VOCs or interferences, this could not be discerned)

appeared to vary, superimposed on longer-term (week+) drifts.

The long term changes seen in individual sensors did not ap-

pear amenable to simple linear interpolation for correction, and

if all sensors were to be made quantitatively comparable would

imply frequent calibrations. This variability in each sensor’s re-

sponse was reflected in the distribution of correlation slopes cal-

culated for unique permutations of MOS sensors against the me-

dian signal of all 21 sensors. Using an ensemble value from an

increasing number of sensors, the range of slopes was signifi-

cantly reduced, indicating advantages in using a VOC measure-

ment based on a cluster of sensors rather than single sensors. To

allow a comparison of sensors against a well characterised refer-

ence instrument, a cluster of 6 CO sensors was tested against a

vacuum UV instrument in central Beijing. In general terms the in-

dividual sensors were very well correlated to the reference mea-

surement through 4 weeks of measurement. The apparent re-

sponse characteristics for each sensor appeared to vary however

in a similar way to the MOS with noticeable response variabil-

ity over the > 6 hour to 1-2 day timescale. This variability in

day to day response was visible with frequent changes in rank or-

dering of the sensor derived concentrations. This variability was

similarly superimposed on a longer-term slight downwards drift

in sensor responses, but by the end of 4 weeks the differences

between the highest and lowest responding CO sensor were very

pronounced (more than 32% different / equivalent to 370 ppb),

the spread impacted particularly by one outlier sensor. A com-

parison of the median CO sensor value against the reference was

however very good, and although this value displayed some long-

term downwards trend against the regularly calibrated reference

instrument, this would be correctable with interpolation between

calibrations on 2-4 week timescales.

These two commonly used air pollution sensors can provide very

good qualitative measures of pollution trends. The performance

of sensors, as measured by voltage output response to measur-

and, and other interferences, is stable over short time periods,

but can vary unpredictably on timescales of >6 hours to 1-2 days.

Over longer time periods the responses of individual sensors drift

in more systematic ways that may be correctable through linear

interpolation, although the extent of long term drift varies consid-

erably between sensors. The observed variability in performance

of individual sensors over hours to a few day suggests that to

achieve high precision comparability between sensors very fre-

quent multi parameter calibration would be required. Through

the use of a median value from an ensemble or cluster of sen-

sors, the effects of medium term drift in individual sensors can

be largely eliminated. By extension, use only of a median sensor

value from a cluster of sensors then considerably lengthens the

period between calibrations and makes linear interpolation be-

tween those calibrations potentially more applicable. The number

of sensors required in a cluster will depend both on the inherent

sensor-to-sensor variability in both signal noise components and

sensitivity, as well as the required level of stability and accuracy
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for the chosen purpose. Ultimately low cost air pollution sensors

are no different to all other atmospheric chemistry instruments,

with inherent requirements for in-service calibration, zeroing and

an understanding of possible interferences. Applying a cluster-

ing approach could bring the current generation of sensor tech-

nologies closer to existing reference instruments in terms of their

performance, but ultimately regular in field calibrations are still

likely to be required for optimal comparability.
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