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Abstract
This paper is devoted to numerical simulation of elasto-plastic large deformation in

three-dimensional (3-D) solids using isogeometric analysis (IB&9ed on Bézier extraction of
NURBS (non-uniform rational B-splines), due to some inherently desifebleires. The Bézier
extraction operation decomposes the NURBS basis functions into a set ofdomhbination of
Bernstein polynomials, and a set df-€ntinuity Bézier elements are thus obtained. The data structure
is thus similar to traditional finite element method (FEM). Consequenty|@#® based on Bézier
extraction of NURBS can be embedded in existing FEM codes, and mpogtantly, as have been
shown in literature that high accuracy over traditional FEM can be gaindthe main features
distinguish between the IGA and FEM are the exact geometry description wéh dentrol points,
high-order continuity, high accuracy, especially the NURBS basis fundi@ensapable of describing
both geometry and solution fields where the FEM does not. The present kinerbased on the Total
Lagrange description due to the elasto-plastic large deformation with deforrhidtory. The results
for the distributions of displacements, von Mises stress, yielded zonesyraedlisplacement curves
are computed and analyzegebr convenience in verification of numerical resulte same numerical
examples have additionally been computed with the FEM using ABAQUS. It isl fthat most
numerical results obtained by the developed IGA are acceptable and in geechewgtr with FEM
solutions.
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1. Introduction
The main problem addressed in this manuscript is the prediction of nwalhbaehaviors of

three-dimensional (3-D) elasto-plastic solids under large deformationstatically applied load using

an effective numerical approachhe elasto-plastic large deformation behavior is very common in the
process of engineering design and analysis. In real enginegpiplgations large deformations of
elasto-plastic materials are often encounteiredfor instance, sheet metal forming or structural
crashworthinesg1, 2]. The existence of material nonlinearity and geometric nonlinearity usually
causes the modeling and simulations difficultly. The calculation accisawt always satisfactory, and
still remains a challenging taskhe accurate prediction of mechanical behaviors of elasto-plastic large
deformation is absolutely indispensable for any steps of proper defsigructural and mechanical
components [34]. Basically, the geometric nonlinearity is caused by the large displacemerdg of th
structural deformation. The strain tefima nonlinear matrix containing higher order trace, and the
deformation process can not be described on the basis of the initial stadeq@antly, the equilibrium
position is unknown. In such circumstanaecremental methodkave to be developed for solving
nonlinear problems. In the last decades, the authors of several impodéfavarite textbooks in the
field, for instance, see [5-7], who have made great contributitiee development and perfectioh o
the geometric nonlinear theories.

In line of 3D elastoplastic large deformation problems, Khoei and Lewis [2] described algener
framework for finite element simulation of metal powder formifigeir approach is based on a total
and updated Lagrangian formulation, an adaptive finite element stratebyusmmatic remeshing
techniques. Chiou et al. [4] developed a 3-D finite element code for large stistin-plastic solids.
They used their own theory by decomposing the deformation gradierd product of the elastic and
plastic parts, instead of a combination of elastic and plastic strain rates. They statesirtbatutions
for elastic-plastic solids are path-dependent. The numerical results still may actdgpgable if the
incremental step size is too large, even through the obtained solutions dee Redse et al [8
proposed a new locking-free brick element fob 3arge deformation problems in finite elasticity on
the basis of enhanced strain method. Their new elements are foe&in§, which is often caused by
using isoparametric low-order elements in modeling elasto-plastic large défomrarising mainly in
bending-dominated situation and in the limit of incompressibility. Pusb Soiberg [9] devoted a
stabilized nodally integrated tetrahedral element, an effective low-order eleratcfithcircumvent
the poor performance of classical linear tetrahedral element in problems ladficity, nearly
incompressible materials and acute bending. Areias and Mat@ugrgsented a 3-D mixed stabilized
four-node tetrahedron with nonlocal pressure for hyperelastic materia@sfifrced elastomers. Their
element is unconditionally convergent and free of spurious pressanlesmDuster and Rank [11]
applied the high-order finite element method to the problem of large plasticrddion, obtained high
convergence rate and accurate solution, and there is no self-lockimgnpdr®on. Recently, Pascon and
Coda [3 12-14], in contrast, developed high-order full integrated tetrahedral efeaech successfully
applied them to large deformaticaralysis of, for instance, elastoplastic homogeneous materials,
elastic functionally graded materials, elastoplastic functionally graded materials, airiaity
graded rubber-like materials. Nevertheless, there are a number of previbes atailable in literature,
and most of them are in 2-D and are carried out using the FEM [15]nlée contrary to the
low-order finite elements, the present study however is devotedttaBie deformation analysis of
elasto-plastic materials, but using an effective, accurate, high order andjirelérisogeometric finite
element method.



Isogeometric analysis (IGA) pioneered by Hughes et a].gvhs many advantages as compared
with the traditional FEM The exact geometrical representation, high-order continuity, and high
accuracy are those that substantially exhibit the implication of the IG& &m leffective numerical tool
nowadays The inherently desirable characteristics of IGA makes it superior to thécalaBEM in
many aspects and has successfully applied to many engineedbterps including plate/shell
structures [18-25], structural optimization [26], contact problem [27]id flmechanics [28],
fluid—structure interaction [29], damage and fracture mechaB@83], and unsaturated flow problem
in porous media [34]

The IGA has also been applied to the modeling of material and geometrineaontiroblems
such as elasto-plastic behavior, nearly incompressible behavior and langeadiefio behaviof35-38].

In Elguedj and Hughes [35], the IGA is applied to solve the n@aztmpressible large strain plasticity
problem, and it is found that the displacement and relative displacemtet gfecific position of the
reaction force curve, often in the plastic problem is misleading metritheir analysis, high-order
NURBS cell does not appear low-order finite element mesh self-locking pheoomand can
accurately describe the phenomenon of large plastic deformation, calculated accuitateBaesically,

the implementation of the conventional IGA approach based on NURBS riscafteplex since their
basis functions are not confined to one single element, but span deeabdpmain instead. Recently,
the construction of the Bézier extraction operator of NURBS integratedthiBtdGA has been
described, e.g., see [380], by which the NURBS basis functions are thus decomposed into linear
combinations of Bernstein polynomials. This development brings gesgftbas it provides an
element structure for IGA that can be incorporated into any existing FEB kodther words, this
transformation makes it possible to usé-cGntinuous Bézier elements as the finite element
representation in IGA, thus a local data structure for IGA is close to thaafiitional FEM. The IGA
implementation can now be made sintifaio that of traditional FEM.

In addition, IGA data structures based on Bézier extraction of T-spliaésoiintroduced recently
in [41]. Based on Bézier extraction and spline reconstruction, a Bézier projémtilmeal projection,
refinement, and coarsening of NURBS and T-splines was proposed bya3leb@l [42], which results
in an element-based formulation that may easily be implemented in efisttegelement codes. Irka
et al [43] developed an interface element of the IGA through Bézier exiraatiich can be casted in
the same framework as the conventional interface element. Evans e} aktphtled Bézier extraction
to HASTS, which are utilized as a basis for adaptive IGA. Schillinger et hlajb Rypl et al. [4p
further put their efforts to some studies about the computational efficief nhumerical quadrature
schemes in IGA based on Bézier extraction. However, most of the existitigsstising the IGA based
on Bézier extraction have been limited to two-dimensional (2-D) elastic proldeigs In this
manuscript, the IGA based on Bézier extraction of NURBS will be furthemaatk to large
deformation analysis of 3-D elasto-plastic solids under static loading conditiis interesting work,
in fact, has not been carried out in literature so far. Indeed, thimigh more difficult and challenging
task as compared to 2-D problems, due to the material and geometrical mdgphus complicated
inherent configuration of 3-D model§he accuracy and the performance of our present 3-D IGA
method will be verified by comparing the computed numerical results with taspeference results
derived from other numerical methods, e.g., FEM (ABAQUS). The mesfemence, distributions of
displacements and stressthe force versus displacement curves, and other relevant field variables
pertaining to large elasto-plastic deformation analysis will be analyzed to cdahéreffectiveness of
the developed IGA.



One crucial issue related to the simulation of elasto-plastic large deformatiolems, which
must be stated here, is the mesh distortion. In terms of the classical FEEMgsastated and discussed
in [47] that the higher order Lagrange elements are notoriously sensitimesio distortion, which in
general prevents their use in modeling large deformation problems. In tieargoithe recent
investigation of the IGA robustness by Lipton et al [48] demonstrdited higher-order and
higher-continuity functions are able to lessen the impact of the distomionest cases. In words, the
IGA elements with the high-order NURBS basis functions appear toiteergbust out, to at leastg
[48], implying that the robustness of the IGA NURBS elements ineredth order. Nonetheless, their
studies [47, 48] shed light on the potential, robustness and capalilihbe dGA to many large
deformation problems of industrial interest. Inspired by aforemesdiamorks our motivation is to
further extend the capability of the IGA to large elasto-plastic deformatabigms. However, we are
particularly interested in simulation of 3-D problems, which is rarely avaiiabliéerature, and the
Bézier extraction of NURBS which owns some advantages over the NUR&& sinstead.

The rest of the manuscript is structured as follows. In Section 2, threegiimal IGA formulation
based on Bézier extraction is presented. Fundamental equations of elasto-plastieftargatidn
problems are then given in SectionSubsequently, solution of nonlinear equations is described in
Section 4 Three numerical examples in[Blarge elasto-plastic deformation are considered, analyzed,
and discussed in Section 5. Some conclusions drawn from the stusbatad in Section 6.

2. Three-dimensional isogeometric analysis based on Bézier extraction of NURBS

For the sake of completeness, we briefly present in this section éeedimensional IGA based
on Bézier extraction of NURBS, which will be used for the large deformatialysis of elasto-plastic
materials. Detail can be found in Ref. [39].40

2.1 The NURBS basis functiop$7-25
An arbitrary set of B-spline basis functions can be defined in a corraagmtdndard parameter

space & € [0,1]. The one-dimensional parameter spacealled a knot vector. A knot vector is a set

of non-decreasing numbers in the parametric space as the folld@sogption
T

K(E)={&1 &0 purf @

where & is the I" knot with & <& ,, the indices n and p denote, respectively, the number of basis

functions and the order of B-spline basis functidocording to the Cox-de Boor recursion formula,

and for a given knot vectok (5) , the B-spline basis functiori\li’p (f) is expressed as

— 1 é:I < é < gi+l _
Niole)= {0 otherwise for p=0 @
and
N; (&) :% Ni,p_1(§)+% N, 1(&) for p=1 (3)

For modeling 3-D problems, the NURBS basis functions can be obtainectidifrom the
tensor-product of three one-dimensional B-spline basis functiohs [49
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in which N, (&), N,,(n7) and N, () are the B-spline basis functions of ordefs, q,

and r in the &, 77 and ¢ directions, respectively;N; (17) and N, (é’) follow the
recursive formula shown in Egs. (2) and (3) with knot ved&(m) and k(é’), and the definition

of k(n) and k(é’) is similar to that ofk(é‘); W, are the weight, andV(&,7,5) represent

the weight function.
By defining W as the diagonal matrix of weights,

W = (5)

and let N (§,r7,g) be the vector of B-spline basis functions, then Eq.(4) can bétteswin matrix
form

1
R(é:’n’g):—VVN (5,77@) (6)
W(&,m,.5)
Fig. 1 schematically illustrates the representatiora gfuadratic B-spline defined by the knot

vectors = = {0,0,0,1, 2, 2,}2 , H= {0,0,0,1, 2,3, 3,}5 and Z= {0,0,0,1,1,}. . That is
accomplished by assumption that, if two elements, three elementseetement are taken for thé

n and ¢ directions, respectively. One can see from the figure that a B-splineflrasiion spans

the parameter space composed of several elements. As a result, the NIOBIR® hence spans the
parameter space also composed of several elememp®rtantly, it can now easily be seen ttha
implementing the NURBS basis functignarduous.



Z={0,0,0.1.1,1}

Fig. 1 Schematic representation of quadratic B-spline basis functions.

2.2 Bézier extraction of NURBS

Due to the complicated calculation of the NURBS basis functions as addressed in the previous
section, the underlying idea behind the Bézier extraction of the NURBS isjrdsdoout in [39], to
provide an element structure for IGA that can be incorporated into any eXgMgode.

Basically, the Bézier extraction operation is to decompose the NURBS badisriunto a set
of linear combinations of Bernstein polynomials, and to obtain a s€todntinuity Bézier elements,
which is similar to the Lagrange elementace again, straightforwardly integrating into the existing
FEM code. The Bézier decomposition is the consequence of the desingprocess of the NURBS
basis functions into corresponding Bézier elements. The Bézier decompissiitained by repeating
all interior knots of a knot vector until they have a multiplicity equal.tdhe degree of interior knots
should be p +1 to produce the truly separate Bézier elements. Howevenultiplicity equal to p is
sufficient to represent the Bernstein polynomial that is the Bézier basis function

T
Let k(§)={§1,§2,...,§n+p+l} be the original knot vector, let us insert a new knot
fe[fk,ﬁkﬂ) (k> p) into the knot vector, the number of the new basis functions reaches

M= n+1, and the new control pointsE_? can be deduced with old control points [39, 40]

P i=1

P=1aP+(1-q)P, Ii<n )
P i=m

with

1 I<k-p

6 =175 k_piicisk ®)
Siep TG
0 i>k+ 1

It is worth noting that the knot values may be inserted multiple timest lmakes the continuity
of the basis to be reduced by one for each repetition of a givew&net The continuity of the curye
however, is preserved, provided that the control variables in Egs.(7) aaue @)osen.

According to [3940], the Bézier extraction operator of thjeth knot inserted is defined by

o l-a, 0O L 0
. 0O o 1l-a 0 L 0
C' = M o M (9)
0 L A, j-1 1- an+j



P is the original control points, and Iel?1 = P, Eq. (7) can then be rewritten in matrix form
_ nNT p
=(C') B (10)
By defining {&, &,L , &L ,&,} is the set of inserted knots vector, the whole Bézier
extraction operator yields
"=(C)(C,)" . C) (11)

Consequently, the relation between the new control pol%'i’s after Bézier extraction and the
original control points P can be expressed as

P°=C'P (12)
It is important to stress out here that inserting a new knot to the curvendbehange the
geometric shapes, and B-spline curves can now be defineﬂi@ﬁ)= PTN(f), yielding the
following relation

c(¢)=(P*) B(£)=(C'P) B(¢)=P' CB(&)= P N(&) (13)
The relationship between the B-spline basis functions and Bernsteiropo@ys is thus obtaineas
N()=CB(¢) (14)

Using the same technique, we can infer the local 3-D Bézier extraction operato
C°=C!®C/®C; (15)

in which C;,C,j and C; respectively are thei™, j™ and k™ univariate element Bézier

extraction operator in theZ, 7 and £ directions, ande denotes the number of element. Through
Egs. (14) and (15), the local 3D relationship between the B-spése unctions and Bernstein

polynomials reaches:
N°(&,77,6)=CB(&.5) (16)

In analysis, it isunnecessary to establish the global extraction operator. Instead, only
establishment of the local extraction operator of each element is heegeNURBS basis functions
after Bézier extraction operator is now defirsed

WECB(&,7,
W°(&,17,6)
where W€ is the local NURBS weights, anWb(g,n,g) finally yields the form

17)

p+1) P (q+l) P (r+1) P

W (&.77,6) = Z 2 Z £)B4 (1) By, (6 )« (18)

with dp representing the parameter dimensions.

The relationship between Bézier control |ooirﬁ’§”e and NURBS control pointsP® can be
written as

Poe=(W"e) (CH WP - (19)

with Wb'edefining the local Bézier weights, which is in diagonal matrix.
For 3-D model, the NURBS basis functions and control points, in matrix ferexpressed as

C(&1.6)=P'R(&11.5) (20)
The NURBS 3-D model in @ontinuous Bézier elements, by combining Egs. (17), (19)20)d (

can now be defined as
(W™P®) B(&,7,6)
C(&n.¢)= b
(&.1.,5) W ()

Additionally, Fig.2 sketches the Bézier basis functions derived from B-spline basis funetion
shown in Fig.1 by taking the Bézier extraction operator. The resulting Basetion has been
decomposed into a set of &@ntinuous Bézier elements with each element corresponding to a knot
spans in the original knot vector.

(21)



Fig. 2 Schematic representation of Bézier basis functions obtained from B-splinéubasians using
the Bézier extraction operator.

3. Fundamental equations of elasto-plastic large deformations

In this section, we briefly present fundamental equations for elasto-plastic defgrmation
analysis of solidsBasically, the non-linearity in the elasto-plastic large deformation analysis is
composed of two parts: the material nonlinearity and geometric nonlinéeybasic description of
elastoplastic constitutive models at finite strains is clear and detail can be foBimdoirfl5, 16] and
Simo and Hughes [50]. Due to the elasto-plastic large deformation relatinthevidleformation history,
the Total Lagrange description are used in this analysihat circumstance, meaning that, the initial
state is the reference system, and the reference system is unchanigge¢theé increment process.

In large deformation problem, the strain is expressed by the Green strai

ou. .
3 :}( u, N ou +8q( 814(} (222)

2| 0X, X, &, &,

_ aou. 0 u oy

Er:E J+au,+6q( oY (22b)
bo2(ox X, X, X,

The Green strainEij at time t_,, =t+Vt can be expressed as the sum of the Green strain
E, attimet, =t and strainincremenVE; in this time stepVt:

+Vu. _
E =E +VET:E a(U,+ uj)+8(u,+Vq)i+a(uk+Vuk)a(q(+qu)
2 oX. oX, X X

I J [ J

(23)

Itis trivial to obtain the strain incremerN/Eij from the Egs. (22) and (23):



with

AE,

=AE,+AE,+AF

“2(ax X,

e 1{8Vu,- 8Vui]
ijo 2

ij1 2

VEL 1(6uk vy, Vy, aq]

oX, X, X, X,
VEN 1{6Vuké‘Vuk]

v T2l ax, X

And Eq. (24) can be written in matrix form as

AE =AE ,+AE ,+AE

where

with

ou”

oX,

VE,=LVu
VE ,=AHVuU
VEN:%VAHVU
-7
oX, X,
PR R
oX, oX, X,
o O o & 2
oX, oX, 5)(1_
T "
oX, X,
T T T
o, uou
oX, oX, 3
T T T
o M 4 Qv v
o0X, oX, 6)(1_

(24)

(25a)

(25b)

(25¢)

(26)

(27a)

(27Db)

(27¢)

(28a)

(28D)



r T T 77
ovu 0 0 ovu 0 v u
oX, oX, X,
T T T
VA- ovu 0 ovu ovu 0 (280)
oX, oX, X,
T T T
0 0 ovu 0 oVu aNu
i o0X, oX, X, |
| 9
oX,
H =!I a% (28d)
2
|9
o0X,

Because of the displacement fieldliss NU®, Eq. (26) can be written as

VE = BVuU*® (29a)
S(VE)=Bs(Vu) (29b)
where
B=B,,+B,,+B, =B ,+B ,+VAHN (30a)
B=B,+B,+B,=B,+B ;+AHN (30b)

Here B, =LN and B, = AHN have no connection with/u®, and B, equivalents to
the strain matrix B in small deformation problemsBL1 represents the displacement effect of the
linear incremental straiVE, .

The balance equation at time,; =t+Vt can be obtained according to the energy-variational
principle:

[ GESdV=[ oTU pdV+| sU qdA 61)

Because of the displacement and strain E are known at timet =t, it is possible to

obtain the following formula:

§(0)=5(Vu)=Ns(Vu°) 829

5(E)=6(VE)=Bs(Vu) (32b)



By substituting Eqg. (7) into Eg. (6), and considerirfg(Vue) is arbitrary, one can get:

TS _ T T
, B'Sdv= jvo N™ pdV + jAO N g dA 63
The above formula can be written in the form of incremental:

w(Vu)=[ BVSdV+| BISIV+| (B + ) SIV- T

0 (34)

where Fy = [ NTp,dV+ jAO NTgdA

From Eq. (34), the following equations can be obtained by usingstsy linearization
approximation.
First, strain-displacement transformation matrix linearization is achieved ubsgtitsiting

B, +B,, for B:
VE =BVuU tumninto VE z(BLO + BLl)Vu (35)
Second, strain increment and stress increment are expressed by IinearizBienDrdE

turn into AS = J-jAE D.dE, where D; is the elasto-plastic matrix at timg, =t .
J,BTVsav=| BV Ede(LO( B+ §,) D (B o+ BLl)dV(,)/ = KVu ()
EE ( J,, & Moay, )Vue _ ( J,6 MGdVO)\/u °_K M @7)
jvo (Bl,+B,)SdvV=F (38)
where K| is the stiffness matrix of linear strairK, is the stiffness matrix of nonlinear strain, and

F. is the equivalent nodal force vector at tinhg =t .

One can finally get linearized balance equation:
(Ke+K MW =F ,—F (39)
In summary, one can use the Euler-Newton method to solve the edpaations in each time step.

4. Solution of nonlinear equations
The Euler-Newton method is one of the common methods used forgsalwinear equations. It
is also called incremental iteration method, meaning that the load is applieditag¢orthe given load

factor in some steps and the load incremental iteration calculated fortepchet U> and U, be
the initial and final value of displacement,, be the given load factor in ster.‘nth and F be the

total load. The iterative formula for ste[tnth is [51]

ul=u,, (40)
F =AF A1)
Wo=Fn=Fen=Fu| (B') (Sn+AS)dY, 42

11



. . . -1 .
5(Au:n):_(Kll_,m+Kls,m) Wm 43
Aupt = Au,+5(Aul,) 09
where F_ is the total load after then” load increment applied AF :(Am—/”twl) F=AAF
is the m" load increment, Fsi’m is the nodal force after thé" iteration of the m" load
increment, ! is the unbalanced force&(Au;n) is the displacement increment after th&

iteration of the m" load increment.

We will continue to iterate untiIHt//(éi )H < a, ||R|| with a, being a predetermined tolerance,

and when the convergence criterion is satisfied, one takes, ~ U .

Additionally, some key steps of solution procedure for the impiéatien of the present work can
be summarized as follows:
1. Pre-processing of the geometric model and define relevant parameters
The Bézier extraction operator
Assemble the global load array
Loop over all load steps
a. Ascertain the elato-plastic modulus and assemble the global stiffness matiidirigcl
both linear and nonlinear parts

A wDw

b. Use the Euler-Newton method for solving the linearized balance equation
c. Calculate the stress and strain increment at each iteration step
d. Calculate the total displacement and stress of the load step

5. Post-processing of the calculation results

5. Numerical examples and discussions

The merits of the present method for 3D elasto-plastic large deformation arddgsribed in the
previous sections are illustrated here through numerical examples, shbwiagcuracy of computed
numerical resultsTo this end, three representative numerical examples such as a block with a cylinder
hole under tension, a partially loaded elasto-plastic block, and a local compressiin logtinder are
considered.

In three numerical examples, the distribution of displacements vamd Mises stress, the
force-displacement curves, and plastic zone are all presented, investigatédcasded, addressing
the accuracy and effectiveness of our developed IGA based on Bézieti@xtehdNURBS To verify
the accuracy of our developed apprqadhthe numerical examples have additionally been computed
the same using 3-D FEM via ABAQUS, since proper reference solwdiensot available in literature
In particular, the second-order elements in IGA baseBéamer extraction and second-order elements
(20-node hexahedron elements) in FEM are taken

In the numerical examples, unless stated otherwise the following matericlgbers are adopted:

the Young’s modulus E=2.1x 10 MPe and the Poisson ratior = 0.3, and the uniaxial initial

yield stress 0'2 =440 MPg and the hardening modulukl =0, which implies that a perfect

elasto-plastic model is employed. The von Mises vyield criterion is used, whiledieenental step

12



loading technique is applieHiere, a, =0.001 is adopted.

5.1 A block with a cylinder hole under tension

The first numerical example of elasto-plastic large deformation problems deala battk with a
cylinder hole under tension whose geometry is schematically depicted BaFIde radius of the hole
is 5m, while the length, width and height of the block are set t&im 30m and 10m, respectively. In
this example, the maximum acting load is set by p=225.1@Rf a quarter of block as depicted in Fig.
3b is modeled, which is to reduce the computational time, due to the dyulmeesry of the geometry
As mentioned already, the reference solutions for this example are conby¢tEt (ABAQUS).

Figure 4 shows a physical meshigix5x5 elements (or 1764 DOFs) used for the IGA simulation
based on Bézier extraction of NURBS, and a mesh of 4335 Q20 elemes®97@rDOFspf the FEM
analysis. In this example, we concentrate our investigation on the accuraparison of the
distributions of displacements and von Mises stress between our devel#padd the FEM, see Figs.
5-7. As observed from the figures, a good agreement between twiiosslis obtained. While the
FEM, as usual, takeshigher number of elements or DOFs to be able to achieve the acceptaliig, r
our developed method, in contrast, offers good results with less éffost.in general is known as
major advantages of employing the IGA.
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(b)
Fig. 3 Schematic representation of a block with a cylinder hole (a), and its quadetr ), the
normal displacements on the shadow planes of the quarter model are constranggbical points
with their coordinates such as A(5m,0,10m) and B(0,10m,10nmjoassdered to estimate the

appropriate numerical results.

!
i !
s E (b) The IGA

(a) The FEM (ABAQUS)
Fig. 4 Mesh discretization of the quarter of the block using the FEM (a) an@ géb)

(a) The FEM (4335 elements, 60072 DOFs) (b) The IGA (250 elements, 1764 DOFs)

Fig. 5 Comparison of the displacemet, for the quarter of a block forp=225MPa  (unit:m)

(b) The IGA (250 elements, 1764 DOFs)

(a) The FEM(4335 elements, 60072 DOFs)

Fig. 6 Comparison of the displacement, for the quarter of a block forp = 225MPa (unit:m)
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(a) The FEM (4335 elements, 60072 DOFs) (b) The IGA (250 elements, 1764 DOFs)

Fig. 7 Comparison of the von Mises stress for the quarter of a blocK¥er 225MPa(unit:Pa)

In this work, the force-displacement curve is also an important aspeetanalyzed. To this end,
two typical points as indicated in Fig. 3, A(5m,0,10m) and B(0,10m), are chosen to visualize such
load-displacement curve resullisis observed from FigBb that the displacement in y-direction at point
A and that in x-direction at point B are equal to zero. Thus, Figs. 8 and %egept the
load-displacement curve on the point A and B, respectively. The accurtdwy @éveloped IGA can be
confirmed as very good agreements between two solutions are obtained.

250 —————————

200

150

p (MPa)

50

0 s 1 N 1 N 1 N 1 N 1 N
0.00 0.05 0.10 0.15 0.20 0.25 0.30

u, (m)

Fig. 8 Comparison of the load- x-displacement curagsoint A between the developed IGA and the
FEM.
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250 ———— 17—

Fig. 9 Comparison of the load- y-displacement curagsoint B between the developed IGA and the

T T T T
FCk
200 -
150 =
=
=¥
)
o, 100 - -
50 - - -FEM |
| —0—IGA
0 1 ) 1 N 1 1 1
-0.18 -0.15 -0.12 -0.09 -0.06 -0.03 0.00

u, (m)

FEM.

Further study for mesh convergence using the proposed IGWvensin Fig.10, representing the
variation of x-displacement along the inner bottom edge of the cylivader(i.e., the red curve in Fig.
3b) with different meshes. Not surprisingly, our own numerigpeement has found that adequate fine
meshes can provide acceptable solutions, whereas coarse meshes, e2geletrexnts, destroy the
accuracy. For more information, we also report in Table 1 the computatiimeabnd the number of
iteration during loading by the Newton-Raphson nonlinear IGA. As ¢ggethe computational time

and the number of iteration significantly increase when the meshes get fine

0.30 T T T T T T T T T T T
0.25
0.20 |-
. 0.15 |-
g
¥ 010}
- —0— 4x2x2 elements
0.05 |- ?{5‘& —O— 8x4x4 elements E
L é;:gl’ —— 12x6x6 elements
G A?Im —— 16x8x8 elements |
1 " 1 " 1 1 1 1 1 1 1 " 1

00 05 10 15 20 25 30 35 40 45 50 655

Fig. 10 The variation of x-displacement along the inner bottom edge of the eylinde with different

meshes using the developed IGA method.

Table 1

x (m)

6.0
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Information of computational time and number of iteration during loakjntdne IGA

No. of elements 4AX2%2 8x4x4 12x6%6 16x8x%8
Computatiomal time/s 58 691 2535 4027
No. of Iteration during the first

loading 2 2 2 2
No. of Iteration during the second

loading 9 9 9 9
No. of Iteration during the third

loading 15 15 16 16
No. of Iteration during the fourth

loading 32 44 48 51
No. of Iteration during the fiveth

loading 76 91 98 104

Additionally, the plastic regions of the quarter of the block calculated arédtubhe plastic
regions calculated by our proposed IGA based on Bézier extraction comytreétdose derived from
the FEM (ABAQUS) are thus shown in Fig..1ilis interesting to see that the plastic zone given by the
IGA is in good agreement with the plastic zone by using FEM

—

(a) The FEM (4335 elements, 60072 DOFs)
(b) The IGA (250 elements, 1764 DOFs)

Fig. 11 Comparison of the plastic regions for the quarter of a blockflor 225MPa between the
developed IGA and the FEM.
5.2 Partially loaded elasto-plastic block

The second example is a tridimensional elasto-plastic block under partialessiopras shown
in Fig. 12a The material parameters used for the analysis are 6900 MP¢ and v = 0.3, and

022500 MPe&. The maximum acting load for this example 8=800MPa. Due to the double

symmetry, only one quarter of the block as depicted in Fig. 12b isisnffto be modeled to save the
computational time. A physical mesh df0x 10x 1C elements is taken for the simulation of IGA
based on Bézier extraction, while a mesh2x 20x 2( Q20 elements is for the FEM analysis, see

17



Fig. 13 Similarly, the distributions of the displacement and the von Mises sifdbe quarter of the
block, the force-displacement curve, and the plastic regions, computkd BEZM (ABAQUS) and the
proposed IGA based on Bézier extrantare analyzedrigs. 1447 respectively show comparisons of
the von Mises stress and three components of displacements betweeapvwoaches. Good
agreements between both solutions are obtained. The load-z-displacemvenat point A(0,0,10)m
plotted in Fig. 18 calculated by the IGA agrees well with the curve obtaingtebyEM. The plastic
regions are depicted in Fig. 19. Overall, the results of both approaches #ae bmithe FEM yields
the plastic zone slightly larger than the IGA.

(b)
Fig. 12 Schematic representation of the full model of a block under partial compressiand i}
guarter model (b).
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(a) FEM 20%20%20 (b) IGA 1@0x10
Fig. 13 Mesh discretization af quarter of the block using the FEM (ABAQUS) (a) and the developed
IGA (b)

(a) The IGA (b) The FEM
Fig. 14 Comparison of the von Mises stress of a quarter of the block betivee
developed IGA and FEM (unit: Pa).

(@) The IGA (b) The FEM

Fig. 15Comparison of the displacemett, of a quarter of the block between the
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developed IGA and FEM (unit:m)

() The IGA (b) The FEM

Fig. 16 Comparison of the displacement, of a quarter of the block between the

developed IGA and R& (unit:m)
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(a) The IGA (b) The FEM
Fig. 17 Comparison of the displacement, of a quarter of the block between the

developed IGA and FEM (unit:m)
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Fig. 18 Comparison of the load- z-displacement cuatpoint A (0,0,10)m between the
developed IGA and FEM.

(a) The IGA (b) The FEM

Fig. 19 Comparison of the plastic zone of a quarter of the block o= SOOMPa

between the developed IGA and FEM.

5.3Athree-dimensional curved beam
The last numerical example deals wahmore complicated configuration, a curved beam as
shown in Fig. 20in which the inner and the outer radii are set to@®e 0.8m and b=1m, and

length L =1m. The maximum acting load for this curved beamfs= 49MPa. For the boundary

conditions: the displacements in x- and z-directions at the left facg &eixed. The displacements
in y-direction at the right face (y=0) are also fixed. Typical meshesd fisr the FEM and IGA
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simulations are shown in Fig. 2%imilar to the previous examples, the calculation results of the two
methods are subsequently shown in Figs222in which the displacements, the von Mises stress, and
force-displacement curve at point A(0.8, 0,1)m, and the plastic regiiamed by the developed IGA
match well with those using FEM (ABAQUS). The plastic zone of thiseslibeam obtained by the
IGA agrees well with the FEM. It is important to note that, while ouh bways offers efficient

solutions with less effort as a smaller number of DOFs is used. In cotie§EM however requires
much larger DOFs

Fig. 20 Schematic representation of a three-dimensional curved beam.
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(a) FEM 20:4.0x20 (b)IGA 8x6x8
Fig. 21 Mesh discretization of the curved beam by the FEM (a) and the IGA (b)
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(a) The IGA (b) The FEM
Fig. 22 Comparison of the von Mises stress of the curved beam betwedavbloped IGA and FEM

(a) The IGA (b) The FEM
Fig. 23 Comparison of the displacemend, of the curved beam between the

developed IGA and FEM.

(@) The IGA (b) The FEM

Fig. 24 Comparison of the displacememy of the curved beam between the
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developed IGA and FEM.

(a) The IGA (b) The FEM
Fig. 25 Comparison of the yielded regions of the curved beam betwedevtkioped
IGA and FEM.

p (MPa)

0k ] L |

-0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

Uy (m)

Fig. 26 Comparison of the load- x-displacement cuavthe point A(0.8,0,1)m between
the developed IGA and FEM.

6. Conclusions

In this paper, we have extended the IGA based on Bézier extraction d8ItéRthe simulation
of elasto-plastic large deformation problems in three-dimension (3e@jpuistrating the accuracy and
effectiveness of the present meth@dl numerical examples of the elasto-plastic large deformation
problems have additionally been computed using FEM based on ABAQU#)endomputed results
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have been used as reference solutions for validation of the accuratye gfrdsent IGA The
displacements, distributions of von Mises stress, convergence, plastic yieldiesh, and the
force-displacement curves computed by the IGA are investigated and comipaadidcases, good
agreements between two solutions are found. It is indicated fremottained results that the IGA
based on Bézier extraction of NURBS can effectively be used to solve tHerpsobf elasto-plastic
large deformation in 3-Dby which less elements than the FEM but can yield acceptable accuracy.
More importantly, among many desirable features of the IGA, andistertibn issue of the meshes
encountered when modeling elasto-plastic large deformation problems often repet$ahtreatment
from the traditional FEM approaches, which however is not the case in tetiesIGA
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