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We compare ultrafast electron and X-ray diffraction using quantum molecular dynamics simulations in
photoexcited ethylene. The simulations of ethylene are done using the ab-initio multiconfigurational
Ehrenfest (AI-MCE) approach, with electronic structure calculations at the SA3-CASSCF(2,2)/cc-ppVDZ
level. The diffraction signal is calculated using the independent atom model. We find that the electron
diffraction is more sensitive to the nuclear wavepacket, and the dynamics of the hydrogen atoms in
particular.
� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Ultrafast laser spectroscopy has developed dramatically over
the past two decades, and constitutes today a large family of tech-
niques capable of probing fundamental transformations of matter
in astonishing detail [1,2]. However, spectroscopy probes molecu-
lar rearrangements of geometry indirectly, in energy rather than in
spatial coordinates, and inversion of the observed spectra often
requires extensive high-level calculations. In contrast, diffraction
probes molecular geometry directly. This key advantage was
recognised by Ahmed Zewail, who even before his 1999 Nobel
Prize was working on ultrafast electron diffraction (UED) [3] and
continued to pursue it vigorously after the Prize [4,5], in the foot-
steps of and alongside other pioneers [6–8].

The bet on electron diffraction was clever, because it echoed a
similar development in the early days of static gas-phase diffrac-
tion [9,10], where electrons came to supersede X-rays thanks to
the larger scattering cross-section. However, interest in time-
resolved X-ray diffraction remained [11], and new experiments
suitable for time-resolved X-ray scattering in the condensed phase
were developed using mechanical choppers at synchrotrons [12].
The emergence of X-ray Free-Electron Lasers (XFELs) put X-ray
diffraction firmly back in the picture by offering a large increase in
X-ray intensity and short pulse durations [13], making ultrafast
X-ray diffraction possible both in gas [14–19] and condensed
phases [20,21]. In parallel, the introduction of high-energy electron
beams overcame the space-charge and velocity mismatch prob-
lems that previously hampered the time-resolution of UED [22,23].

This brings us to the current and rather promising situation,
where we have two powerful ultrafast diffraction techniques, one
based on electrons and one on X-rays, both capable of comple-
menting ultrafast spectroscopy. This Letter, in recognition of
Ahmed Zewail’s contributions to ultrafast spectroscopy, femto-
chemistry, and UED, compares the electron and X-ray diffraction
signals predicted for the ultrafast dynamics of photoexcited
ethylene using state-of-the-art quantum molecular dynamics
simulations, with the aim of exploring the complementarities of
ultrafast diffraction by either electrons or X-rays.
2. Theory

The photodynamics of the excited ethylenemolecule (H2C@CH2)
is simulated using the AI-MCE quantum molecular dynamics
method [24,25], which is derived from the coupled coherent states
methodology [26–28]. The molecular wavefunction, jWðtÞi, is
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Fig. 1. Contour plot showing the probability distribution of the CAC twist angle and
the degree of pyramidalisation of the carbon atoms at times t ¼ 10;20;40, and
125 fs.

Fig. 2. Elastic electron scattering difference signal, DdSelecðs; tÞ, in percent, shown as
a function of momentum transfer s and pump-probe delay-time t, calculated using
Eq. (8) with rotational averaging for photoexcited ethylene. The upper figure shows
the signal calculated for 1000 trajectories, while the lower shows the signal for a
subset of 20 trajectories.
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expanded in terms of Ehrenfest wavepacketswith dynamically cou-
pled expansion coefficients DkðtÞ,

jWðtÞi ¼
XN
k¼1

DkðtÞjwkðtÞi; ð1Þ

where each individual wavepacket, jwkðtÞi, consists of a nuclear
wavepacket, j�zkðtÞi, distributed across multiple electronic states,
j/i

ki, with amplitudes aikðtÞ,

jwkðtÞi ¼
XNs

i¼1

aikðtÞj/i
ki

" #
j�zkðtÞi: ð2Þ

For larger molecules and complicated dynamics, converging the
expansion in Eq. (1) is challenging but sampling methods have
been developed to speed up convergence [29,30]. The electronic
potential energies, gradients, and nonadiabatic couplings required
for the simulations are calculated on-the-fly at the SA3-CASSCF
level using the MOLPRO electronic structure package [31]. A small
but balanced CAS(2,2) active space is used together with the
Dunning’s cc-ppVDZ basis [25]. The Ehrenfest trajectories are ini-
tiated in the Franck-Condon region using a Wigner distribution
[32], with initial population completely localised on the first
excited S1 ðpp�Þ state, and are propagated for 150 fs with a total
of 1000 Ehrenfest trajectories included, resulting in a converged
calculation [25].

Next we calculate the time-dependent X-ray and electron
diffraction signals for the photoexcited ethylene using the inde-
pendent atom model (IAM) approximation for elastic scattering
with the assumption of a negligible coherence length of the probe
pulse relative the time-scale of the dynamics. This results in an
incoherent convolution from different molecular geometries pre-
sent in the wavepacket [33]. Thus, the differential scattering
cross-section is a convolution of the instantaneous scattering sig-
nal Wðs; qÞ [33],

dSðq; tpÞ ¼ a
Z 1

0
IPðs� tpÞ Wðs;qÞ ds; ð3Þ

where IPðsÞ is the intensity profile of the probe pulse, tp is the
delay time between pump and probe pulses, and the pre-factor
a provides an overall scaling of the signal which is different for
electrons and X-rays, and is left out in the present comparison.
The momentum transfer vector q is the difference between the
incident and scattered wave vectors, and has amplitude
jqj ¼ ð4p=kÞ sin h=2ð Þ, with h the deflection angle and k the (de
Broglie) wavelength. In electron diffraction the conventional sym-
bol for the momentum transfer is s rather than q, and we use the
two symbols interchangeably.

Since the IAM does not distinguish between different electronic
states, the signal depends only on molecular geometry,

Wðs;qÞ ¼ hWðs; �RÞj jf IAMðq; �RÞj2 jWðs; �RÞi�R; ð4Þ
with the integration over the nuclear coordinates �R, amounting to a
convolution of the IAM scattering over the total nuclear wavefunc-
tion [33].

The explicit form of the IAM form factor f IAMðq; �RÞ is different
for X-rays and electrons. In practice, the X-rays scatter only from
the electron density, resulting in,

f xrayIAM ðq; �RÞ ¼
XNat

a¼1

f 0aðqÞeıRaq; ð5Þ

where f 0aðqÞ are the tabulated atomic form factors [34], Nat the num-
ber of atoms, and Ra the position of atom a. In contrast, the elec-
trons scatter from the total charge density. Assuming that the
nuclei are point charges we obtain,
f elecIAMðs; �RÞ ¼
XNat

a¼1

Zi � f 0aðsÞ
s2

eıRas; ð6Þ
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where Zi is the atomic number of each nucleus. The scattering from
the electron density is included via the same atomic form factors as
in X-ray scattering, and is added coherently to the scattering
from the nuclei. The expression for electron scattering is quite
similar to Eq. (5), apart from an overall damping factor s�2. The
treatment of electron scattering could be improved by compensat-
ing for failures in the Born-approximation via atomic phase-factors
ga and relativistic corrections (an overview is provided in
Section 4.3.3.3 of Ref. [34]).

In the following, we consider rotationally averaged scattering
(mean intensity) along the lines of Debye’s well-known derivation

[35], which results in an intensity hjf IAMðqÞj2irot that depends only
on the amplitude of the momentum transfer and the distance
between atoms, Rab ¼ jRa � Rbj,

hjf IAMðqÞj2irot ¼
XNat

a¼1

jf 0aðqÞj2 þ
XNat

b–a
f 0aðqÞf 0bðqÞ

sin qRab
� �
qRab

; ð7Þ

shown here for X-ray scattering, and with an analogous expression
for electron scattering. The first sum on the right-hand side is the
atomic scattering term, IatðqÞ, and the second is the molecular term,
ImolðqÞ, which contains the interference that yields structural
information.
3. Results

Ethylene photodynamics has been studied extensively, both
experimentally [36] and theoretically [25,37], and our AI-MCE sim-
ulations are broadly in agreement with previous simulations which
exclude the contribution of Rydberg states [25,37]. Following ver-
tical excitation into the S1 ðpp�Þ state, the ethylene molecule
Fig. 3. Contour plots of the elastic scattering signal for photoexcited ethylene, plotted
electron (Fig. 3a) and X-ray (Fig. 3b) scattering respectively. Fig. 3c shows the absolute
undergoes cis-trans isomerisation around the C@C bond, and
decays via nonradiative decay through a twisted or pyramidalised
conical intersection, or via H-atom migration to form ethylidene
(CH3CH) which then decays through a different conical
intersection.

The population of S1 remains fairly constant for the first 30 fs, at
which point the molecule reaches a region where the gap between
S1 and S0 is sufficiently small for efficient population transfer, and
the population then decays exponentially with an approximate
lifetime of � 112 fs. As can be seen in Fig. 1, the wavepacket dis-
perses rather quickly.

The diffraction signal is given in terms of the percentage differ-
ence signal, DdSðq; tÞ, defined as,

DdSðq; tÞ ¼ cexcit
dSðq; tÞ � dSoffðqÞ

dSoffðqÞ ; ð8Þ

where cexcit is the fraction of excited molecules, dSðq; tÞ is the laser-
on signal corresponding to the molecular wavefunction excited by
the pump pulse, dSoffðqÞ is the laser-off background signal, and we
drop the subscript on tP . In the calculations a Gaussian-profile probe
pulse with duration 25 fs is assumed, with the q/s-range up to
14 Å�1 and an excitation fraction of 9%.

The resulting diffraction signal, DdSelecðs; tÞ, is shown in Fig. 2a.
At short times the coherent oscillation in the CAC bond-length
leaves a distinct signature, while at later times the signal becomes
progressively more constant as increasing dispersion and delocali-
sation of the nuclear wavefunction averages out specific motions.
The main three factors that influence the diffraction signal are
the oscillations in the CAC distance, the pyramidalisation and twist
around the CAC bond, and the dispersion of the molecular
wavepacket.
against the momentum transfer s (q for X-rays) and pump-probe delay-time t, for
difference between electrons and X-rays.
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The sensitivity of the calculated scattering signal to the number
of included Ehrenfest trajectories can be assessed from comparison
of Fig. 2a, which shows the signal calculated for 1000 trajectories,
and Fig. 2b, which is calculated using 20 trajectories. The smaller
subset captures the main features of the scattering signal quite
well, but underestimates the dispersion of the nuclear wavepacket
at longer times, as can be seen from the comparatively sharp fea-
tures present in the small set at long times, but absent from the
large set. The reminder of the calculations in this Letter are done
with the smaller subset in Fig. 2b. Overall, the electron diffraction
signal calculated here agrees with the X-ray signal calculated pre-
viously [33].

To examine the differences between the X-ray and the electron
diffraction, we calculate the absolute difference of the diffraction

signals, jDdSelecðs; tÞ � DdSxrayðq; tÞj, with the results shown in
Fig. 3c. The non-negligible difference between the two diffraction
signals stems from the greater contrast (variation) in the electron
diffraction signal, which ultimately can be traced to the additional
contributions from the nuclei. The difference is very small in the
small angle scattering, but increases at intermediate angles and
remains fairly significant to 11 Å�1, corresponding to compara-
tively high resolution. The difference also appears to increase over
time, an issue that we will address below.

We proceed to demonstrate that a large part of the difference
between the electron and X-ray scattering signal stems from the
Fig. 4. Contour plots of ‘‘normal” vs ‘‘modified” ethylene diffraction plotted as a
function of the momentum transfer s (q for X-rays) and the pump-probe delay-time
t. In the modified case, the contribution to the structural component of the
diffraction from the H-atoms has been quenched. Fig. 4a shows the difference
between normal and modified diffraction for electron diffraction, while Fig. 4b
shows the same difference for X-rays.
greater sensitivity of electron scattering to nuclear motion. In ethy-
lene, at longer times the most distinct motion is associated with
the hydrogen atoms, while the carbon-carbon dynamics is strongly
dispersed. Using ‘‘computational alchemy” we set all distances
associated with the H-atoms to large values (>1000 Å), thus
quenching the contribution of the H-atoms to the structural inter-
ference term (Imol), while leaving their contribution to the atomic
scattering (Iat) unaffected. We examine the effect of this modifica-

tion, by plotting DdSelecnormðs; tÞ � DdSelecmodðs; tÞ
��� ��� with the ‘‘modified”

diffraction, DdSelecmodðs; tÞ, corresponding to the ethylene signal with

quenched H-atoms and the ‘‘normal” diffraction, DdSelecnormðs; tÞ, cor-
responding to the regular diffraction obtained with normal
distances.

The results are shown in Fig. 4. The main differences between
the ‘‘modified” and the ‘‘normal” diffraction appear in the interval
2 < q < 8 Å�1 for both electrons (Fig. 4a) and X-rays (Fig. 4b). It is
clear from the two contour plots, both plotted using the same color
axis, that the effect of the H-atoms on the diffraction pattern is far
greater for electron diffraction. Looking at the electron diffraction
in Fig. 4a there is also a comparative increase in the difference sig-
nal over time, which is largely absent in the X-ray diffraction in
Fig. 4b. This leads to the conclusion that the increased difference
between electron and X-ray diffraction observed at long times in
Fig. 3c can be ascribed to diffraction from the small amplitude
motion of the H-atoms, emphasising the sensitivity of electron
diffraction to nuclear dynamics.
4. Conclusions

Our quantum molecular dynamics simulations of photoexcited
ethylene and the calculated diffraction signals for X-rays and elec-
trons show that the signals from ultrafast electron and X-ray
diffraction are qualitatively similar. Although both signals carry
signatures of the dominant carbon-carbon dynamics at short times,
the electron diffraction is more sensitive to the dynamics of the
hydrogen atoms at long times when the carbon-carbon portion of
the wavepacket is strongly dispersed. This is not surprising given
that the electron beam probes the nuclei directly, while in the
X-ray scattering the nuclear motion is probed indirectly via the
comparatively diffuse electron densities of the atoms.

One of the greatest advantages of X-rays may lie in their versa-
tility, since they are not just capable of ultrafast X-ray diffraction
but also of e.g. X-ray spectroscopy [38], inelastic Raman scattering
[39], and Coulomb explosion imaging [40]. In general, a promising
future direction for both electron and X-ray diffraction is the com-
bination of energy-resolved and spatially-resolved measurements,
with a recent example of this a combined photoelectron spec-
troscopy and ultrafast X-ray diffraction study of the ring-opening
reaction in 1,3-cyclohexadiene [41].

Finally, it is worth pointing out that the independent atom
model (IAM) is a simplified model of the elastic scattering.
Accounting for the actual electron density of the target is known
to result in differences in the elastic scattering, something which
may potentially be exploited to distinguish different electronic
states [42,43]. Polarisation of the electron density, for instance
around hydrogen atoms, is known to require corrections beyond
the IAM model [44,45,42], and the additional scattering from the
nuclei afforded by electrons is useful in those situations. It would
be interesting to see UED data for the ultrafast dynamics of H2 or
D2 in the gas-phase [46], or perhaps for tunneling in photoexcited
dimer-molecules [47]. Looking further into the future, one may
envision the detection of electronic structure using X-ray or
electron scattering [48,49,42,50].
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