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Abstract - In search of a suitable CMOS compatible light source [I. GESNLASERS

many routes and materials are under investigation. Si-basedgq; e presented laser experiments, GeSn epilayers of up to
group IV (S)GeSn alloys offer a tunable bandgap from indiréghy nm thickness (Fig.1), with Sn concentrations ranging
to direct, making them ideal candidates for on-chip photoniﬁét\,\/een 8.5-14 at.% [Ljvere grown on 2.5 um thick Ge buffers
and n_ano-electronlcs. An overview of reqent atheveme.ntselﬁllpbymg reactive gas phase epitaxy and growth temperatures
material growth and device dgvelo_pment will be given. OPt'CaIB’elow 400°C. Subsequently, Fabry-Pérot and microdisk laser
pumped waveguide and microdisk structures with differeplyities were formed using Si CMOS compatible processing, as
strain and various Sn concentrations provided direct evidenceQfvn in Fig. 2. GeSn mesas were anisotropically dry-etched
gain in these alloys and of the width of the emission wavelengify,y cy/Ar reactive ion etching. Parts of the waveguides were
range that can be covered. With the final aim being tgectively underetched, up to appréxum undercut, withCFs
fabrlc_:atlo_n of eIe_ct_rlcaII_y pumped lasers, a set of different hom@ﬁemistry All samples were passivated using@i. This step is
Junction light emitting diodes and more complex heterOSt_rUCtUéEPecially important in order to reduce the surface recombination
SiGeSn/GeSn LEDs is presented. Detailed investigations @f -arriers. It is shown schematically in Fig. 3 for non-
electroluminescencg spectra indicate that GeSn/SiGeReretched Fabry-Pérot waveguides. TheOAlpassivated
heterostructures  will be advantageous for future lasglyities show a much lower temperature dependence of lasing
fabrication. threshold. The unsaturated surface states induce a temperature
| INTRODUCTION dep_er_lden_t carrier d_ensity associat_ed with a dec_re_ase of the non-
' radiative lifetime (Fig. 4). The lasing characteristics, however,
Since 2016, the semiconductor industry research plan isifgicate that, at 20 K, the threshold is not limited by surface
longer primarilycentered on Moore’s law, i.e., on improving chip recombinations.
performance first and then focusing on applications. Thus, the ) . o )
integration of additional, value-added functionalities on future 1he underetchingf cavities, as shown in Fig. 5a, improves
silicon dies will be key for upcoming strategies, which will staffe ldeV|ce pgrformance In terms of optlca_l mpde ovgrlap and
with the application defining the functionality of chips. This wilfr@in relaxation; due to the higher refractive index difference
require the integration of a large variety of devices such 2gween GeSn and the surrounding bnode overlap with the
amplifiers, ultra-low power switches and optoelectronic devicd4€ct bandgap GeSn material increases from 60% to about
on the very same Si substrate. In this respect, silicon/group39P% @s shown in the inset of Fig. 5a. On the other hand,
Photonics promises to reduce the power consumption of ebc%ompresswe) strain relaxation in th_e layer enlarges the so_—cglled
circuits through the addition of optical components. In order #y€Ctness, defined as the energy difference between the indirect
transfer electrically stored information to an optical circuit, ari 21d direct I-valleys. Waveguides with a widdf 10 ym show
on-chip laser is highly desireabEnormous effort has been spent directness of about 15 meV, which can be improved to > 30
onthe development of 1lI-V growth on 8i alternative solutions MeV by underetching the cavity by 3.6 um, as simulations
for the integration into CMOS processing. However, group wdlcate_(cf. Figbb). As a consequence, _the higher carrier density
materials such as Ge and (S#5n offer a promising perspective " the_dlrect valley., available for radiative recombination, leads
for CMOS integration and represent possible candidates for ligh@" improved lasing performance.
emission in the SWIR-NIR range. In the past few years, the Optically excited (A = 1064 nm, 5 ns pulse length) lasing is
epitaxy of GeSn and SiGeSn alioys has improved dramaticalipserved around 55@eV (2.3 m) for samples with 12.5 at.%
As aresult, industry-compatible epitaxial reactors for wafer sizggin non-underetched cavities [2]. Underetching of the cavities,
of 200-300 mm can be used nowadays, indicating the enormgysshown in Fig. 5, shifts lasing emission to smaller energies,
potential of these alloys for large-scale optoelectronifown to 5.0 meV for a 4.3un undercut. This shift is linked to a
Integration. bandgap reduction due to the higher degree of strain relaxation in
the cavities [3]Besides the lasing emission shift, underetching
the cavities leads indeed to an improvement of lasing action in
the devices, as shown Fig. 6. The lasing threshold is halved
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from approx430kW/cn? to 206 kW/cri for the undercut cavity carrier confinement in the well. Figure 13b and ¢ show the
and the slope efficiency of the laser is more than doubledcalculated band structure of MQWs with Ge and SiGeSn as
underetched waveguides (x2.2). Additionally, the temperatibarrier materials, respectively. In contrast to the band alignment
rangeof operationis extended in underetched devices. Whilwith Ge barriers, the GeSn/SiGeSn configuration offers a clear
lasing originally vanishes at temperatures above ~90 Type-lband alignment, confining both electrons and holes inside
underetched structures show lasing up to 135 K, despite the well. Holes of the GeSn/Ge structure are more confined in the
reduced capacity for excess heat dissipation in this typeParrier than in the well [6]n the GeSn/Ge structure the holes
structures. We attribute the improved performance to tactually pile up in the barrier, rather thin the well layers
increased directness of the mater@imilar results are also Intensuyes 4 |tnt<iﬁrated o;/er the twholg terlnperature '(rjarcljg'e E\_nd
. ) . " ; - normalized to the room temperature signals are provided in Fig.
?et)gg:ﬂteign fggert?tlr(googlfﬁe (fh?:pecr%\gtlzzlg:;g.l aZé'r ;2362'914. The measurement again confirms the superior performance
of GeSn/SiGeSn MQWs compared to GeSn/Ge MQWSs: at RT,

shown in Fig 8. the EL increase is about 6x and about 20x at.20Khe used
The emission of the GeSn lasers can be tuned to cover a brosetup a minimum injection current density of 20 mAJomas

range of the SWIR spectrum. Along with. strain engineering, necessary to detect EL. Duty cycle and power dependent
incorporation strongly influences the emission wavelength. Fmeasurements were also performed on the GeSn/SiGeSn MQW
9 presents the measured laser emission at 20 K, betwegar®l | EDs. The emission peak position is tracked to identify possible
2.6um for Sn contentsf 8.5 10, 12.5 and 14 at.%. If roomheating effects, which could result in a decreased emission
temperature lasing obtained, the available range should correnergy. Results are presented in Fig. 15. Increasing the peak
up to 3 pm, due to temperature-related bandgap narrowing. current density leads to band filling for low injection current
1. GESN-BASED L IGHT EMITTING DIODES densities while, above 100 Acinthe emission energy remain
) constant. Also, increasing the duty cycle does not change the
On the road to an electrically pumped GeSn laser, temission energy, indicating that heating effects do not influence
electroluminescence is first studied in GeSn light emitting diodthe measured results.

(LEDs). The complete p-i-n layer staés grown in-situ on
relaxed GeSn buffers. GeSn homo-junctions with Sn contents
between 8.5 and 12&i % were processed using standard CMOS e have shown that direct bandgap GeSn is a promising
technologies. The mesa and the contact areas are definegdfical material forSi-based laser fabricatiorour optically
optical lithography and reactive ion etchinGl{Ar plasma) pumped GeSn lasers with different Sn contand with two
followed by an AlO4/SiO, passivation Finally, ~20 nm thick different laser cavities were demonstrated at low temperature.
stanogermanide contacts [4] are formed. Figure 10 shows\@ih electrically pumpd lases being the final targettype |
SEM image of a processed LED. Light emitting diodes agiGeSn/GeSn MQW LED were successfully tested, showing
characterized by pulsed bigk measurements with a duty cyclepperation with injection currents as low as 10 mA at 20K and 50
of 50%. Three homo-junction GeSn LEDs with diameters gfA at 300K. Investigations of Fabry-Pérot laser cavities using

100 pm are compared and the spectrakatshown inFig. 11 such advanced Sn based MQW layersaprogress.
The emission peak energy is blue-shifted frome¥5up to
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Fig. 1: Cross-section Transmission Electron
Mircoscopy image showing high quality
Gep.8755N0.125 With a thickness of 414 nm.
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Fig. 3: Light in - light out characteristics for (a) as processed and (b) Al,O3
passivated Geg.g75SNno.125 Waveguide cavity lasers.
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Fig. 2: Fabrication of Fabry-Pérot lasers by GeSn waveguide patterning and
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