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miR-145 suppresses embryo–epithelial juxtacrine communication
at implantation by modulating maternal IGF1R
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ABSTRACT

Successful implantation requires the synchronization of viable

embryonic development with endometrial receptivity. The

mechanisms allowing for the initiation of crosstalk between the

embryo and the endometrium remain elusive; however, recent

studies have revealed that there are alterations in endometrial

microRNAs (miRs) in women suffering repeated implantation failure

and that one of the altered miRs is miR-145. We assessed the role

of miR-145 and its target IGF1R, in early implantation. miR-145

overexpression and IGF1R knockdown were achieved in Ishikawa

endometrial cells. Quantitative PCR, western blotting and 39UTR

luciferase reporter assays confirmed that IGF1R is a direct target of

miR-145 in the endometrium. Attachment of mouse embryos or

IGF1-coated beads to endometrial epithelial cells was used to study

the effects of altered miR-145 and/or IGF1R expression on early

implantation events. miR-145 overexpression or specific reduction

of IGF1R impaired attachment in both cases. An IGF1R target

protector prevented the miR-145-mediated reduction in IGF1R and

reversed the effect of miR-145 overexpression on attachment. The

data demonstrate that miR-145 influences embryo attachment by

reducing the level of IGF1R in endometrium.
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INTRODUCTION
Implantation failure is a major cause of infertility in the
developed world (Margalioth et al., 2006) and a continuing

problem in assisted reproduction (Ferraretti et al., 2012), where

success rates after IVF still only lie at around 25% and the rate of
embryonic loss at the implantation stage is higher than the rate of

later fetal loss (de los Santos et al., 2003; de Mouzon et al., 2010).

Although definitions of recurrent implantation failure (RIF) vary

(Coughlan et al., 2014; Polanski et al., 2014), it is clear that

embryo transfer commonly leads to a biochemical pregnancy

[human chorionic gonadotropin (hCG) detected but no embryonic

sac] or no detectable pregnancy at all. RIF appears distinct from

recurrent miscarriage; that is, there is a group of women in whom

pregnancy repeatedly fails very early on (Koot et al., 2011). This

might be accounted for by the repeated transfer of karyotypically

abnormal embryos or, alternatively, by a lack of adequate

receptivity in the endometrium.

Prior to the arrival of an embryo, the action of steroid

hormones on endometrium produces a period of receptivity,

referred to as the ‘window of implantation’ (Cha et al., 2012;

Psychoyos, 1974; Tabibzadeh et al., 1987). In humans, this lasts

from approximately day 20 to day 24 of the menstrual cycle

(Achache and Revel, 2006; Aplin, 2000; Aplin and Kimber, 2004;

Bergh and Navot, 1992; Enders, 1989; Psychoyos, 1974). After

the endometrium becomes receptive and the embryo reaches the

blastocyst stage, the embryo must initiate interaction with the

luminal epithelium (Dey, 2004; Nimbkar-Joshi et al., 2009;

Rashid et al., 2011; Tabibzadeh et al., 1987). A cascade of

physiological and molecular events is then triggered, leading to

the establishment of a stable maternal–conceptus relationship

(Garrido-Gomez et al., 2010; Simón et al., 2000a; Simón et al.,

2000b). It is estimated that half of implantation failures in women

suffering from RIF after embryo transfer are due to defects in

endometrial receptivity. However, little is known about the

molecular events that establish receptivity prior to implantation,

especially in humans (Aplin, 2007), or the mechanisms that

mediate early dialogue between the embryo and endometrium

(Bazer et al., 2009; Cakmak and Taylor, 2011; Salker et al.,

2011).

Analysis of temporal changes in biopsies of endometrial tissue

taken from different stages of the menstrual cycle and from

patients with RIF has been suggested as a means by which to

identify candidate molecules that are involved in mediating

endometrial receptivity. ‘Omics’ technologies have allowed the

identification of candidate mediators of adhesion (Singh and

Aplin, 2014), menstrual-cycle-related alterations and illuminated

adverse effects of some ovarian stimulation regimes (Altmäe

et al., 2014; Aplin and Singh, 2008; Domı́nguez et al., 2009; Rai

et al., 2010; Vilella et al., 2013), but these have not yet been

exploited in new medical treatments to improve endometrial

receptivity.

MicroRNAs (miRs) suppress gene expression at the

posttranscriptional level by blocking target mRNA translation

or selecting mRNA for degradation (Bartel, 2004). It has been

suggested that they are involved in mediating endometrial
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responses to maternal hormones and regulating the transition
from the proliferative into the secretory phase (Kuokkanen et al.,

2010). Endometrial miRNA profiles are altered in women
suffering from endometriosis – a disease associated with
infertility (Burney et al., 2009; Burney et al., 2007) – and in
patients with RIF (Revel et al., 2011), suggesting that they might

be important regulators of endometrial receptivity and thus
implantation success.

Among the most dysregulated miRs within the endometrium of

women with RIF is miR-145 (Revel et al., 2011). We have
recently shown that miR-145 is important in mediating placental
growth in humans (Farrokhnia et al., 2014; Forbes et al., 2012).

One of the targets of miR-145 is the type-1 insulin-like growth
factor receptor (IGF1R) (La Rocca et al., 2009; Law et al., 2012)
and IGF1R mRNA has been previously shown to be present in

endometrium (Zhou et al., 1994). Despite this, to our knowledge,
its role in regulating human endometrial receptivity or
implantation remains to be explored.

We hypothesized that altered expression of miR-145

contributes to the initial maternal–embryo interaction during the
window of implantation by regulating gene expression in
endometrial epithelial cells. To explore this, we manipulated

miR-145 expression in endometrial cells and assessed embryo
attachment using in vitro models (Kang et al., 2014). We
examined IGF1R as a potential target of miR-145 in epithelium

and the effect of altering the level of the receptor on embryo
attachment. We suggest that IGF1R plays a role in implantation.

RESULTS
miR-145 overexpression prevents embryo attachment
Following transfection with miR-145-specific miR mimics, levels
of miR-145 were significantly increased compared to control

(10–100 nM; P,0.05, n56) (Fig. 1A). The transfection
procedure alone or the presence of a non-targeting miR mimic
had no effect on levels of miR-145. All subsequent experiments

were undertaken using both 50 nM and 100 nM of the mimetic. A
total of 18 5-day-old mouse embryos were transferred to Ishikawa
cells 48 h after transfection with miR-145. The stability of

embryo attachment was measured after a further 24 h of co-
culture (Carver et al., 2003). Displacement or disruption of cells
surrounding the attached mouse embryos, and marked outgrowth
of trophoblast cells were observed in the controls, whereas

embryos attached to miR-145-transfected cells retained the
blastocyst morphology including a clearly defined cavity
(Fig. 1B). Embryo attachment stability was measured using a

five point scale: 1, floating; 2, weakly attached but detached after
tapping; 3, weakly attached but stuck at the attachment site after
tapping; 4, stably attached; and 5, stably attached and showed

outgrowth (Kang et al., 2014). This quantification revealed that
embryos on control cells had attachment scores of 3–5 compared
to scores of 1–2 for miR-145-treated cells. Control cells without

any transfection, and mock or pre-miR transfected cells were
significantly (P50.0097) more stably attached than on miR-145
transfected cells (Fig. 1C).

miR-145 regulates IGF1R expression in Ishikawa cells
miR-145 has multiple targets, one of which is IGF1R, which is
present in the human endometrium (Zhou et al., 1994).

Ishikawa cells were transfected with a miR-145 mimic and
the effect on IGF1R mRNA and protein monitored using
quantitative real-time PCR (QPCR) and western blotting,

respectively. Despite no changes in IGF1R mRNA (Fig. 2A),

IGF1R protein expression was reduced 48 h following miR-145

overexpression (Fig. 2B).
To determine whether miR-145 directly binds to IGF1R

in these cells, the highly conserved predicted binding site

within the IGF1R 39UTR (3804–3810 bp) was cloned into the

Fig. 1. See next page for legend.
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pmiR-GLO luciferase reported vector alone or in combination
with miR-145 mimics (Fig. 2C). As expected, luciferase

activity was detected under all conditions in the presence
of a non-targeting mimic. In the presence of the miR-145
mimic there was an 81% reduction in luciferase activity of the
IGF1R 3804–3810 vector (Fig. 2C; P50.0079, n55). Co-

transfection of the miR-145 mimic with the empty pmiR-GLO
(empty vector) or the scrambled IGF1R 39UTR vector (IGF1R
D3804–3810) did not alter luciferase activity. This indicates

that miR-145 binds directly to the 3804–3810 region in IGF1R
39UTR.

Fig. 1. miR-145 regulates embryo attachment. Ishikawa cells were mock-
transfected (mock) or transfected with a non-targeting control miR-mimic
(control mimic) or a miR-145 mimic (10–100 nM). (A) Overexpression of miR-
145 was confirmed by QPCR. ***P,0.0001 (n56, Wilcoxon Signed Rank
test in comparison to control). The box represents the 25–75th percentiles,
and the median is indicated. The whiskers show the range. (B) Phase-
contrast images at three z-planes of mouse embryos attached to Ishikawa
endometrial cells following transfection with miR-mimics. Images were taken
after 24 h of co-culture (representative of n515). (C) The stability of
mouse embryo attachment to Ishikawa cells was assessed as previously
described (Kang et al., 2014). Data are expressed as median and
interquartile range. **P,0.01 (n53, Kruskal–Wallis test with Dunn’s
multiple comparison).

Fig. 2. miR-145 regulates IGF1R
expression. (A,B) Ishikawa cells
were transfected with a non-targeting
(control mimic) or miR-145 specific
miR mimic (10–100 nM) and
appropriate controls. (A) IGF1R
mRNA expression was quantified by
QPCR and normalized to b-actin
mRNA. Data are presented as a fold
change in comparison to control
(n56). There is no observed change
in mRNA expression. (B) Western
blotting revealed decreased
expression of IGF1R protein following
transfection with miR-145 mimic at
100 nM in comparison to control.
Blots were stripped and re-probed
with anti-GAPDH antibodies to
correct for protein loading. Blots
represent at least three individual
sample sets. Data are expressed as
median and interquartile range.
(C) Synthetic oligonucleotides for the
specific (IGF1R 3804–3810) or
mutated (IGF1R D3804–3810) miR-
145-binding sites in IGF1R mRNA,
were cloned in to pmiR-GLO
luciferase reporter vector and
transfected in to Ishikawa cells in the
presence of non-targeting (control
mimic) or miR-145 specific miR-
mimics. Direct interaction between
miR-145 and IGF1R in Ishikawa cells
was assessed by luciferase reporter
assay. Levels of firefly luciferase were
assessed and normalized to levels of
b-galactosidase. *P,0.05 (n55,
Kruskal–Wallis test). For A and C, the
box represents the 25–75th
percentiles, and the median is
indicated. The whiskers show the
range.
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IGF1R is upregulated in the endometrial epithelium at the
time of endometrial receptivity
Previous studies have localized IGF1R mRNA in vivo to
endometrial luminal and glandular epithelium (Zhou et al.,
1994) but localization of IGF1R protein has not been reported.
We examined IGF1R protein expression in human endometrium

at different time points in the menstrual cycle (proliferative, days
7–17; early secretory, days 18–20; mid-secretory, days 20–21;
late secretory, days 26–27). IGF1R was detectable at all stages

(Fig. 3A,C,E,G). Some regional variation in epithelial staining
was evident, but staining intensity was highest at the endometrial
luminal epithelium during the mid and late secretory stages

(Fig. 3E,G).

miR-145 overexpression prevents IGF1-loaded
bead attachment
Multiple factors are released from embryos and/or are present
in the uterine fluid, including the predominant ligand for

IGF1R, IGF1 (Kane et al., 1997). To demonstrate functional
receptor at the apical epithelial surface, and to assess the

possibility that IGF1R might contribute directly to an adhesive
interaction at the cell surface, we examined attachment to
confluent Ishikawa cells of IGF1-coated embryo-sized beads
(Kang et al., 2014). Attachment of beads was assessed by

counting the number stably attached against the total number of
beads originally transferred (Kang et al., 2014). Following
overexpression of miR-145 (48 h), IGF1 or BSA (negative

control)-loaded beads were transferred and, 24 h later,
attachment was assessed. 52% of beads carrying IGF1 were
stably attached under control conditions (Fig. 4) and following

miR-145 overexpression this was reduced to 17% (100 nM;
P,0.01; n55). Levels of attachment were unaffected by the
transfection procedure (mock) or in the presence of non-

targeting miR (control mimic). Levels of attachment of BSA-
coated beads were low and unaffected by miR-145
overexpression.

Fig. 3. IGF1R is present in endometrial luminal
epithelium at the receptive phase. Endometrial biopsies
obtained from different stages of the menstrual cycle were
stained for IGF1R. Mouse IgG was included as a negative
control in adjacent sections. IGF1R is expressed in the
endometrium throughout the menstrual cycle but appears to
be primarily localized to the endometrial epithelium (arrows)
in the mid-late secretory stages, the former representing the
time of optimal endometrial receptivity. Insets in A and E
show luminal epithelium at higher magnification. Each
image is representative of at least three tissue samples.
Scale bar: 75 mm. Insets are 75 mm across.
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siRNA-mediated knockdown of IGF1R suppresses embryo
attachment
The role of IGF1R in mediating embryo attachment was
examined using small interfering RNA (siRNA) (100 nM) to
directly reduce its expression in endometrial cells. Western

blotting confirmed IGF1R expression to be reduced by 80% after
48 h (Fig. 5A,B). Attachment of mouse embryos (Fig. 5C,D) or
IGF1-coated beads (Fig. 5E) was reduced following IGF1R
knockdown (P,0.05). To determine whether the effect of miR-

145 on attachment is mediated by its ability to target IGF1R, we
prevented the interaction of miR-145 with the IGF1R 39UTR
using the specific miR-target protector for the 3804–3810 region

of IGF1R mRNA (Fig. 5F,G). miR-145 mimics (50 nM)
significantly reduced IGF1R protein (Fig. 5F) and attachment
of IGF1-coated beads (Fig. 5G) compared to non-targeting miR

mimics (control mimic). Western blotting (Fig. 5F) demonstrated
that miR-145 was unable to reduce levels of IGF1R in the
presence of the target site-specific target protector (IGF1R TP
3804–3810). The ability of miR-145 to reduce attachment of IGF-

I-loaded beads was significantly attenuated in the presence of the
target-site-specific target protector (IGF1R TP 3804–3810;
100 nM; P,0.05) but was unaffected by the scrambled IGF1R

target protector (D3804–3810; 100 nM) (Fig. 5G). This suggests
that the effects of miR-145 on embryo attachment are directly
mediated by IGF1R.

DISCUSSION
Array approaches are cataloguing biomarkers of receptivity,

comparing endometrium from different stages of the menstrual
cycle or from fertile and infertile women (Altmäe et al., 2010;
Ruan et al., 2013), but data are difficult to interpret in the absence
of functional information on the role of putative markers in

the process of implantation. Comparison of miR profiles of
endometrium from RIF and normally fertile women yielded a
group of candidates among which miR-145 showed an

,threefold elevation (Revel et al., 2011), leading to a
hypothesis that among its targets are components vital for
implantation. However, the cell populations expressing miR-145

were not identified. By using an embryo attachment model, we
now demonstrate that overexpresssion of miR-145 at levels

approximately comparable to those reported in RIF endometrium
reduces the stability of the embryo–epithelial interaction. Given
the barriers to direct examination of human embryo implantation,
in vitro modelling is a viable approach to gathering relevant

functional information to complement the analytical data
emerging from arrays. Translated to the in vivo situation, we
predict that such an effect might delay implantation to the point

where corpus luteum rescue would not occur, leading to a failed
pregnancy. Data from the rat similarly point to a role for miRs in
regulating endometrial cell function in the implantation window

(Xia et al., 2014a; Xia et al., 2014b). Such a prediction in human
must be tempered by the limitations of the in vitro model, which
includes the use of mouse embryos and cells from a well-

differentiated adenocarcinoma. However, a recent proteomics
study of apically displayed glycoproteins in polarized Ishikawa
cells showed that these were substantially similar to the
epithelium in vivo (Singh and Aplin, 2014). Furthermore we

have observed that hatched human blastocysts attach to these
cells with kinetics that are not dissimilar to those of the mouse
(unpublished).

Following previous reports that IGF1R is a target gene for
miR-145 (La Rocca et al., 2009; Law et al., 2012), we have
shown that overexpression of miR-145 reduces the level of

IGF1R protein in endometrial epithelial cells, and identified a
target site in the 39UTR. This is consistent with miR action in
mammalian cells through translational repression (Erson and

Petty, 2008). A previous study reported mRNA encoding IGF1R
in the endometrial luminal epithelium during the mid-late
secretory phase (Zhou et al., 1994). We have here extended
these data to show the distribution of the protein through the

normal cycle and, most importantly, its expression in mid
secretory luminal epithelium. Direct evidence for hormonal
control of IGF1R expression comes from studies in isolated

human endometrial cells that report IGF1R downregulation by
progesterone (Strowitzki et al., 1996). In rats, IGF1R expression
in the uterus is enhanced by estrogen treatment (Ghahary and

Murphy, 1989) and in baboons, expression at the glandular and
luminal epithelium undergoes cyclic changes and is upregulated
by estrogen (Hild-Petito et al., 1994).

Our data reveal that there might be a previously unsuspected

role for IGF1R in regulating embryo attachment, with stability of
adhesion to the epithelium dropping after receptor knockdown in
a fashion that parallels the effect of miR-145 overexpression.

IGF1R is a protein tyrosine kinase that is predominantly activated
by IGF1 and IGF2. Immunoblotting identified IGF1R as being
expressed in Ishikawa cells, so we adopted a ligand-coated bead

assay (Kang et al., 2014) to probe its presence and function at the
apical epithelial surface where embryo attachment is initiated.
The observations that IGF1-coated beads can attach stably and

that IGF1R knockdown impairs this process, might indicate the
presence of receptor at the apical cell surface and, perhaps
surprisingly, its ability to mediate an adhesive interaction with an
object that approximates the size of the implanting blastocyst. By

specifically inhibiting the interaction between miR-145 and
IGF1R 39UTR, without affecting interaction between miR-145
and other targets, we were further able to attribute the effects of

miR-145 on embryo attachment to interaction with IGF1R.
Previous work in receptive-phase mouse uterus has shown that
IGF1 delivered on the surface of a bead could activate a response

in the epithelium that was transduced to stroma to influence

Fig. 4. miR-145 overexpression reduces IGF1-coated bead attachment.
Ishikawa cells were mock-transfected, transfected with a non-targeting
control miR-mimic or a miR-145 mimic (10–100 nM) and cultured for 48 h
prior to transfer of beads coated in IGF1 (IGF-I) or BSA (negative control).
Attachment was assessed after a further 48 h using a scale adapted
from Kang et al., 2014. Data are expressed as a percentage of total
beads. The box represents the 25–75th percentiles, and the median is
indicated. The whiskers show the range. **P,0.01 (n55, Kruskal–Wallis
test).
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vascular permeability (Paria et al., 2001). Our data further
validate the ligand-coated bead interaction model as a tool

to investigate expression and function of apical epithelial
receptors.

Although IGF2 is expressed by both the mouse and human
blastocyst (Lighten et al., 1997; Szabó and Mann, 1995), there

is no evidence at present that surface-associated IGFs are
displayed on trophectoderm. IGF ligands, however, are produced

Fig. 5. See next page for legend.
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endogenously in the endometrium (Giudice et al., 1993;

Murphy and Ghahary, 1990). One hypothesis consistent with
these data is that IGF2 released by the implanting embryo
activates IGF1R locally in epithelial cells, and signals ensue
through the phosphoinositide 3-kinase (PI3K) and mitogen-

activated protein kinase (MAPK) pathways to influence
downstream factors regulating attachment (Forbes and
Westwood, 2008; Forbes et al., 2008). For example, in breast

cancer cells IGF1R activation upregulates fascin-1, a modulator
of adhesion and cell–cell interactions (Wong et al., 1999) to
promote reorganization of cell–cell contacts (Guvakova et al.,

2002a; Guvakova et al., 2002b; Yamashiro et al., 1998).
Increased expression of fascin has been reported at implantation
sites in mice, suggesting that it has a potential role in the initial

adhesion stages (Yoon et al., 2004).
However, in recent years it has emerged that binding and

crosstalk between IGF1R and cell–cell or cell–matrix adhesion
molecules can occur in either the presence or absence of IGF

ligand, including with integrin avb3 (Maile et al., 2008; Xi et al.,
2008), which is involved in implantation (Kang et al., 2014;
Lessey, 1997). Such interactions are important for cytoskeletal

organization, cell adhesion and motility (André et al., 1999;
Clemmons and Maile, 2005; Juliano and Haskill, 1993; Mauro
and Surmacz, 2004; Tai et al., 2003). Further work is therefore

required to examine the possibility that cis interactions between
growth factor receptors and adhesion molecules might occur at
the apical luminal epithelial plasma membrane during

implantation.
miRs alter the expression of target genes in one of two ways

depending on the level of base complementarity with the 39UTR
of the target mRNA. Complete complementarity results in

degradation of target, whereas partial complementarity induces
translational repression (Filipowicz et al., 2008). Partial
complementarity enables miRs to regulate expression of

multiple targets (Erson and Petty, 2008), and despite our miR-
145 target blocking data demonstrating that IGF1R mediates the

effects of miR-145 on embryo attachment, we cannot rule out that
miR-145 has effects on implantation by targeting genes other than
IGF1R. For example, miR-145 targets MUC-1 in the human
embryonic kidney cell line HEK293 (Sachdeva and Mo, 2010);

MUC-1 is expressed on the luminal epithelium of the
endometrium (Hey et al., 1994) and is cleared at the site of
implantation as a result of local juxtacrine signaling of the

embryo (Singh et al., 2010). In both Ishikawa cells and primary
endometrial cells, miR-145 regulates the expression of fascin
(Adammek et al., 2013; Götte et al., 2010).

miR-145 is a regulator of endometrial IGF1R expression, and
our in vitro model has suggested that IGF1R has a role in
implantation. IGF1R is upregulated at the time of embryo

attachment in vivo and reduced expression in epithelial cells
destabilizes embryo attachment in vitro. Reduced IGF1R
expression has been reported in mid-secretory endometrium in
women with unexplained infertility (Wu and Zhou, 2004). There

is evidence for regulation by leukemia inhibitory factor (LIF),
which is required for endometrial receptivity in mice (Rosario
et al., 2014). miR-145 in endometrium might be sensitive to

steroid hormone – whereas estrogen influences expression in
mouse splenic lymphocytes (Dai et al., 2008), it is under the
control of progesterone in murine endometrial epithelial cells

(Yuan et al., 2014). We have yet to establish whether miR-145 is
under hormonal control in the human endometrium, but future
studies will explore the possibility of utilizing synthetic steroids

to modulate expression. We note the therapeutic potential of
targeted miR-145 inhibitors (Caruso et al., 2012) and suggest that
therapies to suppress miR-145 in the endometrium might improve
pregnancy rates in women with RIF.

MATERIALS AND METHODS
Endometrial tissue
Endometrial biopsies were from pre-menopausal women at different points in

the menstrual cycle were obtained anonymously from local pathology

archives. Research access to the pathological archive of St Mary’s Hospital

was approved by Central Manchester REC. No signs of hyperplasia, neoplasia

or inflammation were present in these samples. Dating of the menstrual cycle

was established from histopathology reports and was confirmed by

histological examination of sections stained with haematoxylin and eosin.

Cell culture
Ishikawa cells (a well-differentiated human endometrial adenocarcinoma

line), obtained from American Type Cell Culture (ATCC), were

maintained in phenol red-free DMEM/F12 medium (Invitrogen, UK)

supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 mg/

ml streptomycin and 2 mM L-glutamine. Cells were grown in 95% air

and 5% CO2 on matrigel (1:8 dilution; growth factor-reduced, BD, UK)

for further attachment assays.

Animals, superovulation and embryo recovery
All experiments were conducted under a Home Office license and the

Animal Act, 1986, and had local ethical approval for care and use of

laboratory animals. C57BL/6 strain mice were maintained by the

Biomedical Services Unit at the University of Manchester. Mice were

kept under standard environmental conditions of 12 h light and 12 h dark

and housed at 20–22 C̊ and 40–60% humidity with food and water

provided at ad libitum and males (less than 6 months old) were caged

singly. Female mice (6–8 weeks) were superovulated with 5 IU of

pregnant mare serum gonadotrophin (PMSG, Calbiochem, Nottingham,

UK) and ovulation was synchronized by 5 IU human chorionic

gonadotrophin (hCG, Intervert UK, Milton Keynes, UK) 46–48 h later,

both by intraperitoneal injection. Females were placed singly with males

Fig. 5. The effects of miR-145 on embryo attachment are mediated by
IGF1R. Non-targeting (NT) or IGF1R-specific siRNA (100 nM) were
transfected into Ishikawa cells. Untreated (‘C’) and mock-transfected cells
were included as controls. (A) Knockdown was confirmed by western
blotting. Membranes were re-probed for b-actin to control for protein loading.
(B) Density of bands was quantified, and levels were normalized to b-actin
and expressed as a fold change relative to control. *P,0.05, **P,0.01 (n53,
one-way ANOVA with Tukey’s multiple comparison test). Data are expressed
as median and interquartile range. (C–E) Cells transfected with IGF1R
siRNA or appropriate controls (NT siRNA) were used for in vitro implantation
using (C–D) mouse embryos or (E) ligand-coated beads [IGF1 (IGF-I) or
BSA]. (C) Phase-contrast images of mouse embryos attached to Ishikawa
cells after knockdown of IGF1R at three z-plane levels, taken 24 h after
transfer of embryos (n515). (D) The stability of mouse embryo attachment to
Ishikawa cells following transfection with IGF1R siRNA. ***P,0.001 (n56,
Kruskal–Wallis with Dunn’s multiple comparison). (E) The effect of IGF1R
knockdown on firm attachment of IGF1-coated beads was monitored. IGF1R
knockdown resulted in a reduction in IGF1-coated bead attachment in
comparison to controls **P,0.01 (n55, Kruskal–Wallis test).
(F–G) Ishikawa cells were transfected with a specific miR target protector
(TP) (100 nM) for the miR-145-binding site at the 3804–3810 bp region of
IGF1R 39UTR (IGF1R TP 3804–3810) or with a scrambled sequence for this
region (IGF1R TP D3804–3810), which served as a negative control in the
presence of a non-targeting control mimic (control mimic) or miR-145 specific
miR mimic (miR-145 mimic). (F) Western blotting confirmed that the IGF1R
39UTR IGF1R target protector (3804–3810) prevented miR-145 induced
reduction in IGF1R protein expression after 48 h. (G) Analysis of stable
attachment of IGF1-coated beads was assessed after a subsequent 48 h.
BSA-coated beads were included as a control. * P,0.05 (n55, Kruskal–
Wallis test). For D,E,G, the box represents the 25–75th percentiles, and the
median is indicated. The whiskers show the range.
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of the same strain overnight. The presence of a vaginal plug the following

morning (day 1 of pregnancy) was used as an indicator of successful

mating. Pregnant mice were killed on day 2, 48 h after hCG injection.

Using sterilized scissors and forceps the lower abdominal cavity was

incised and both oviducts dissected. Two-cell embryos were obtained

from the oviduct either by flushing using a 34G blunt-ended stainless

steel needle (Cooper Needleworks, Birmingham, UK) and syringe.

Flushed embryos were washed with M2 media (Sigma) supplemented

with 4 mg/ml BSA washed in KSOM (Millipore, UK) and cultured in a

30 ml drop of KSOM covered with mineral oil at 5% CO2, 37 C̊ until the

blastocyst stage. Only expanded blastocysts with clearly observable inner

cell mass and trophectoderm on day 5 were included in the study.

IGF1R localization
Sections of endometrial tissue (5 mm thick), or Ishikawa cells fixed in

4% PFA were incubated overnight at 4 C̊ in a humidity chamber, with

either rabbit polyclonal anti-IGF1R antibody (1:75; Cell Signaling

Technologies, 3027) or IgG purified from rabbit serum (1:2000; Cell

Signaling Technologies) followed by anti-rabbit biotinylated antibody

(1:200) (Dako), avidin peroxidase and then developed by DAB as

previously described (Forbes et al., 2008).

Overexpression of hsa-miR-145 in Ishikawa cells
Non-targeting (Cy3-labeled Pre-miR precursor negative control) or miR-

145 specific miR mimics (Pre-miR mimics; Ambion, UK) were

transfected into Ishikawa cells (10–100 nM) with DharmaFECT2

reagent (Dharmacon, UK) as previously described (Kang et al., 2014).

Following transfection, cells were cultured for up to 96 h in 20% O2 at

37 C̊. Prior to analysis in subsequent experiments, overexpression was

confirmed by QPCR. The effect of miR-145 overexpression was

compared with that of three controls: untreated cells, tissue exposed to

transfection procedure alone (mock) or tissue transfected with non-

targeting miR mimic (Pre-miR precursor negative control, Ambion, UK)

which has no known homology to any mammalian miRs.

siRNA mediated knockdown of IGF1R
siRNA sequences used to target the human IGF1R gene (GenBank NM-

000875) were either in a SMARTPool containing four different target

sequences: A, 59-GGAAGCACCCUUUAAGAAU-39; B, 59-GGACUC-

AGUACGCCGUUUA-39; C, 59-AAAUACGGAUCACAAGUUG-39 and

D, 59-AGUGAGAUCUUGUACAUUC-39 (100–500 nM; Dharmacon,

UK), or using a single validated sequence 59-GGAAUACAGGAA-

GUAUGGA-39 (100–500 nM; Ambion, UK). Silencer Select Negative

Control siRNA (Ambion, UK), which does not target any known sequence

in the human genome, was used in control experiments. The specific and

non-targeting siRNA sequences were transfected into Ishikawa cells using

DharmaFECT 2 reagent as previously described (Kang et al., 2014).

Quantitative RT-PCR based analysis of miR expression
Total RNA was extracted from Ishikawa cells from at least six separate

experiments by using the miRVANA total RNA extraction kit (Ambion,

UK) and quantified using a Quant-iT Ribogreen kit (Molecular Probes).

The expression of miRs was assessed using the miRCURY LNATM

Universal RT microRNA PCR system (Exiqon) following the

manufacturer’s instructions. Briefly, 25 ng RNA was reversed

transcribed using Universal cDNA Synthesis kit (Exiqon), which

allows polyadenylation and reverse transcription of all miRs within the

sample into cDNA in a single reaction step. Individual miRs were then

detected using LNA-enhanced miRNA-specific primer sets (Exiqon) for

hsa-miR-145 (target sequence: 59-GUCCAGUUUUCCCAGGAAUC-

CCU-39) or 5S rRNA. miR expression was quantified against standard

curves generated from human reference total RNA (Stratagene, USA).

PCRs were performed in duplicate for each sample to control for user

error, using a Stratagene MX3000P real-time PCR machine. Values were

only deemed acceptable when each replicate sample deviated by less than

1 from its matched duplicate. The CT value for each sample (i.e. the

average of the two duplicates) was used to calculate absolute values

(determined from the standard curve). To further control for variations in

sample input into the PCR assay, levels of miR-145 were normalized to

5S rRNA, which is present at equal levels in all our samples (data not

shown). Data were then expressed as fold change compared to control

and analysed using the Wilcoxon signed-rank test.

Quantitative RT-PCR based analysis of mRNA expression
Total RNA was extracted from Ishikawa cells by using the miRVANA

total RNA extraction kit (Ambion UK) and quantified using a Quant-iT

Ribogreen kit (Molecular Probes). 100 ng of total RNA from each

sample was reverse transcribed using AffinityScript cDNA synthesis

kit (Stratagene, USA) and IGF1R and b-actin mRNA was amplified

by QPCR using 200 nM primers 55 C̊ [IGF1R: forward, 59-

GAAGGAGGAGGCTGAATAC-39; reverse, 59- CTACAACATCAC-

CGACC-39; Invitrogen (Paisley, UK); b-actin: forward, 59-

AGCCACCCCACTTCTCTCTAA-39, reverse, 59-ACACGAAAGCA-

ATGCTATCACCT-39 (MWG Biotech, UK)] and Stratagene Brilliant

SYBR Green II QPCR mastermix, with 5-carboxy-x-rhodamine as a

passive reference dye in a Stratagene’s MX3000P real time PCR

machine. mRNA expression was quantified against standard curves

generated from human reference total RNA (Stratagene, USA). Data

were normalized to b-actin mRNA then expressed as a percentage of

levels measured in cells transfected with pre-miR negative control mimic,

and analysed using the Wilcoxon signed-rank test.

In vitro implantation models
Embryo attachment assay
Mouse embryos (5 days old) were transferred onto Ishikawa cells in

independent microwells of a 96-well plate. Multiple observations of

attaching embryos from 24–48 h after transfer allowed distinct stages of

attachment to be identified. A standardized plate movement protocol was

implemented to characterize the stability of attachment: the plate was moved

quickly three times laterally and then orthogonally to detect unattached

embryos. Upon moving the plate, unattached embryos floated, or rolled, over

the epithelial surface. Attached embryos were then examined for tandem

movement when the microscope stage was tapped. At initial attachment,

embryo wobble was observed, whereas at more advanced stages of

attachment, embryos moved fully in concert with the underlying epithelial

layer. Five stages of attachment were defined and used as a measurement

scale as previously described (Carver et al., 2003; Kang et al., 2014).

Bead attachment assay
10 ml of embryo-sized beads (Bio-Rad) were washed six times in sterile

PBS. Beads were then incubated with 20 ml of 100 ng/ml IGF1 (R&D)

and BSA (RIA Grade, Cat no: A7888, Sigma) dissolved in PBS, and

overlaid with 1 ml of mineral oil (Sigma) at 37 C̊ for 2 h. Beads were

used immediately after incubation. Prior to co-culture, the mineral oil

was removed and the beads were washed in sterile PBS to remove any

unbound growth factor. Beads were then re-suspended in sterile PBS and

10–15 beads bearing IGF1 or BSA were transferred onto each well of

Ishikawa cells in 96-well plate as previously described (Kang et al.,

2014). After 24–48 h of co-culture, cells containing beads were washed

with PBS and fixed with 4% PFA. The number of attached beads was

counted and analysed by normalizing to the total number of beads

transferred.

Western blotting
Following appropriate experimental treatment, cells were washed in PBS

and scraped into RIPA buffer. 30 mg of protein was loaded into each well

of 8% SDS-polyacrylamide gels and protein was separated

electrophoretically by molecular mass. The separated proteins were

then transferred onto PVDF membrane (Millipore) and blocked with 5%

BSA in TBS with Tween-20 at room temperature for 1.5 h. Membranes

were then probed with rabbit anti-phospho-IGF1R antibody (1:1000;

Product number 3027; Cell Signaling Technologies), or a rabbit antibody

against the b subunit of IGF1R (C20; 2 mg/ml; Santa Cruz Biotech) at

4 C̊ overnight, washed with TBS with Tween-20, and incubated with

horseradish peroxidase (HRP)-conjugated anti-rabbit-IgG antibody at

room temperature for 1 h. The protein was exposed to the enhanced
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chemiluminescence system (Amersham) and then to Amersham or Kodak

hyperfilm. Blots were stripped and reprobed with mouse-anti-b-actin

(4.5 mg/ml; Sigma) or rabbit anti-GAPDH (1:1000; Cell Signaling

Technologies) antibodies to control for protein loading. ImageJ (National

Institute of Health, Bethesda, MD) was used to quantify bands comparing

to loading control.

Assessment of miR-145–IGF1R interaction
pmiR-GLO Dual-Luciferase miRNA Target Expression Vector

(Promega) was used to demonstrate the interaction between miR-145

and IGF1R. The 39 untranslated region (UTR) of IGF1R was cloned into

the multiple cloning site (MCS) in the 39UTR of the firefly luciferase

gene. The principle of the vector is such that if endogenous miRs bind to

the 39UTR following introduction into cells, translation of firefly

luciferase will be reduced.

IGF1R 39UTR luciferase reporter constructs
Two 42 base pair (bp) oligonucleotides and complementary antisense

strands were designed using TargetScan (http://www.targetscan.org) to

correspond to the highly conserved region of the IGF1R 39UTR to which

miR-145 is predicted to bind (3804–3810 bp; supplementary material

Table S1). Pme1 and Xba1 overhangs were incorporated to ensure correct

orientation of the oligonucleotide from 59 to 39. A Not1 restriction site

was included, to act as an internal restriction site to confirm successful

ligation. A scrambled version of the first predicted binding site was

included as a control (supplementary material Table S1).

Prior to ligation, the pmiR-GLO Dual-Luciferase miRNA Target

Expression vector was linearized with Pme1 (New England Bio Labs)

and Xba1 (Roche) restriction enzymes to ensure complementarity with

oligonucleotide overhangs. 1 mg of vector was incubated with 1 ml of

each restriction enzyme and 2 ml of 106 CutSmart Buffer 4 (New

England Bio Labs) overnight at 37 C̊, samples were then heated to 65 C̊

for 15 min to deactivate enzymes prior to electrophoresis. The linearized

vector underwent gel electrophoresis on a 1% agarose gel and was then

extracted using the Qiagen gel extraction and purification kit. Prior to

ligation with the linearized vector, complementary oligonucleotides were

annealed using Oligo Annealing Buffer (Promega) following the

manufacturer’s instructions. 4 ng of annealed oligonucleotides were

incubated with 50 ng of linearized vector, 2 ml of T4 DNA ligase (New

England BioLabs) and 1 ml of 106T4 DNA ligase buffer (New England

BioLabs) at 4 C̊ overnight. Following ligation the vector, which contains

an ampicillin resistance gene, was transformed into XL-10 Gold Ultra

competent cells (Aligent Technologies) using heat shock as per the

manufacturer’s instructions. Cells were then plated onto ampicillin-

containing agar plates and incubated at 37 C̊ overnight. Colonies were

selected and grown overnight in LB medium containing ampicillin at

37 C̊ and the vector was purified using the Qiagen mini prep kit

(Thermoscientific). Not1 digestion was performed to confirm successful

ligation of the IGF1R and scrambled 39UTR binding sites.

Luciferase reporter assay
Following successful ligation, vectors (50 ng) containing miR-145, or

IGF1R 39UTR sites and pSV-b-Galactosidase Control Vector (100 ng;

Promega) were transfected into Ishikawa cells alone or in combination with

miR-145 or non-targeting miR mimics (100 nM) using DharmaFECT2 as

described above. Untreated and mock-transfected samples and the pmiR-

GLO vector were included as controls. 24 h after transfection cells were

washed twice in PBS and lysed with passive lysis buffer (Promega). Levels

of Firefly luciferase were read using the Orion L Microplate Luminometer

(Titertek) using the luciferase reporter assay (Promega) according to the

manufacturer’s instructions. Levels of b-galactosidase were measured using

the mammalian b-galactosidase assay kit (Pierce, Thermoscientific). Firefly

luciferase was normalized to b-galactosidase in each sample to control for

transfection efficiency.

miR-binding site target protector
Target protectors (purchased from Qiagen) were designed to correspond

to the region of the IGF1R 39UTR (3804–3810 bp) to which miR-145 is

predicted to bind (59-TACCTACCGGTTTCCACAACTGGATTTCT-

ACAGATCATTC-39, where the underlined region represents the seed

sequence). BLAST analysis demonstrated that the target protector did not

have any homology to any mammalian genes, other than IGF1R. The

target protector is therefore specific and allows effective blocking of

miR-145–IGF1R interaction without influencing binding of miR-145 to

its other targets (Stanton and Giraldez, 2011). Effects of miR-145 altered

in the presence of the target protector, are thus attributable to interaction

between miR-145 and IGF1R. A scrambled target protector was designed

as a control (sequence, 59-TACCTACCGGTTTCCACAAAAGGAT-

TTCTACAGATCATTC-39, D3804–3810 bp). Ishikawa cells were

transfected with scrambled or IGF1R target protectors (100 nM)

individually or in combination with miR-145 or non-targeting mimics

(50 nM). 48 h later, IGF1 or BSA-coated beads were added to the cells

and 24–48 h later the ability of miR-145 to influence IGF1R expression

and bead attachment were assessed.
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Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the
endometrium causes reproductive failure. Nat. Med. 17, 1509-1513.

Simón, C., Martin, J. C., Meseguer, M., Caballero-Campo, P., Valbuena, D. and
Pellicer, A. (2000a). Embryonic regulation of endometrial molecules in human
implantation. J. Reprod. Fertil. Suppl. 55, 43-53.

Simón, C., Martı́n, J. C. and Pellicer, A. (2000b). Paracrine regulators of
implantation. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14, 815-826.

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 804–814 doi:10.1242/jcs.164004

813

http://dx.doi.org/10.1093/molehr/gap068
http://dx.doi.org/10.1093/molehr/gap068
http://dx.doi.org/10.1093/molehr/gap068
http://dx.doi.org/10.1093/molehr/gap068
http://dx.doi.org/10.1093/humupd/dmq037
http://dx.doi.org/10.1093/humupd/dmq037
http://dx.doi.org/10.1161/CIRCRESAHA.112.267591
http://dx.doi.org/10.1161/CIRCRESAHA.112.267591
http://dx.doi.org/10.1161/CIRCRESAHA.112.267591
http://dx.doi.org/10.1161/CIRCRESAHA.112.267591
http://dx.doi.org/10.1093/humrep/deg072
http://dx.doi.org/10.1093/humrep/deg072
http://dx.doi.org/10.1093/humrep/deg072
http://dx.doi.org/10.1038/nm.3012
http://dx.doi.org/10.1038/nm.3012
http://dx.doi.org/10.1210/me.2004-0376
http://dx.doi.org/10.1210/me.2004-0376
http://dx.doi.org/10.1210/me.2004-0376
http://dx.doi.org/10.1016/j.rbmo.2013.08.011
http://dx.doi.org/10.1016/j.rbmo.2013.08.011
http://dx.doi.org/10.1016/j.rbmo.2013.08.011
http://dx.doi.org/10.1182/blood-2008-04-152488
http://dx.doi.org/10.1182/blood-2008-04-152488
http://dx.doi.org/10.1182/blood-2008-04-152488
http://dx.doi.org/10.1182/blood-2008-04-152488
http://dx.doi.org/10.1093/humrep/deq124
http://dx.doi.org/10.1093/humrep/deq124
http://dx.doi.org/10.1093/humrep/deq124
http://dx.doi.org/10.1093/humrep/deq124
http://dx.doi.org/10.1093/humrep/deq124
http://dx.doi.org/10.1093/humrep/deq124
http://dx.doi.org/10.1530/rep.1.00537
http://dx.doi.org/10.1093/humrep/dep230
http://dx.doi.org/10.1093/humrep/dep230
http://dx.doi.org/10.1093/humrep/dep230
http://dx.doi.org/10.1093/humrep/dep230
http://dx.doi.org/10.1093/humrep/dep230
http://dx.doi.org/10.1111/j.1399-0004.2008.01076.x
http://dx.doi.org/10.1111/j.1399-0004.2008.01076.x
http://dx.doi.org/10.1074/jbc.M114.587295
http://dx.doi.org/10.1074/jbc.M114.587295
http://dx.doi.org/10.1074/jbc.M114.587295
http://dx.doi.org/10.1093/humrep/des255
http://dx.doi.org/10.1093/humrep/des255
http://dx.doi.org/10.1093/humrep/des255
http://dx.doi.org/10.1093/humrep/des255
http://dx.doi.org/10.1093/humrep/des255
http://dx.doi.org/10.1093/humrep/des255
http://dx.doi.org/10.1038/nrg2290
http://dx.doi.org/10.1038/nrg2290
http://dx.doi.org/10.1038/nrg2290
http://dx.doi.org/10.1159/000112585
http://dx.doi.org/10.1159/000112585
http://dx.doi.org/10.1152/ajpcell.00035.2008
http://dx.doi.org/10.1152/ajpcell.00035.2008
http://dx.doi.org/10.1152/ajpcell.00035.2008
http://dx.doi.org/10.1016/j.placenta.2012.03.006
http://dx.doi.org/10.1016/j.placenta.2012.03.006
http://dx.doi.org/10.1016/j.placenta.2012.03.006
http://dx.doi.org/10.1210/endo-125-2-597
http://dx.doi.org/10.1210/endo-125-2-597
http://dx.doi.org/10.1210/endo-125-2-597
http://dx.doi.org/10.1038/onc.2010.386
http://dx.doi.org/10.1038/onc.2010.386
http://dx.doi.org/10.1038/onc.2010.386
http://dx.doi.org/10.1038/onc.2010.386
http://dx.doi.org/10.1038/onc.2010.386
http://dx.doi.org/10.1242/jcs.00104
http://dx.doi.org/10.1242/jcs.00104
http://dx.doi.org/10.1242/jcs.00104
http://dx.doi.org/10.1242/jcs.00104
http://dx.doi.org/10.1016/S1357-2725(01)00160-1
http://dx.doi.org/10.1016/S1357-2725(01)00160-1
http://dx.doi.org/10.1016/S1357-2725(01)00160-1
http://dx.doi.org/10.1095/biolreprod50.4.791
http://dx.doi.org/10.1095/biolreprod50.4.791
http://dx.doi.org/10.1095/biolreprod50.4.791
http://dx.doi.org/10.1083/jcb.120.3.577
http://dx.doi.org/10.1083/jcb.120.3.577
http://dx.doi.org/10.1093/humupd/3.2.137
http://dx.doi.org/10.1093/humupd/3.2.137
http://dx.doi.org/10.1093/humrep/det433
http://dx.doi.org/10.1093/humrep/det433
http://dx.doi.org/10.1093/humrep/det433
http://dx.doi.org/10.1093/humrep/der217
http://dx.doi.org/10.1093/humrep/der217
http://dx.doi.org/10.1093/humrep/der217
http://dx.doi.org/10.1095/biolreprod.109.081059
http://dx.doi.org/10.1095/biolreprod.109.081059
http://dx.doi.org/10.1095/biolreprod.109.081059
http://dx.doi.org/10.1095/biolreprod.109.081059
http://dx.doi.org/10.1002/jcp.21796
http://dx.doi.org/10.1002/jcp.21796
http://dx.doi.org/10.1002/jcp.21796
http://dx.doi.org/10.1093/carcin/bgs130
http://dx.doi.org/10.1093/carcin/bgs130
http://dx.doi.org/10.1093/carcin/bgs130
http://dx.doi.org/10.1093/carcin/bgs130
http://dx.doi.org/10.1111/j.1749-6632.1997.tb48529.x
http://dx.doi.org/10.1111/j.1749-6632.1997.tb48529.x
http://dx.doi.org/10.1002/(SICI)1098-2795(199706)47:2<134::AID-MRD2>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1098-2795(199706)47:2<134::AID-MRD2>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1098-2795(199706)47:2<134::AID-MRD2>3.0.CO;2-N
http://dx.doi.org/10.1002/jcb.21841
http://dx.doi.org/10.1002/jcb.21841
http://dx.doi.org/10.1002/jcb.21841
http://dx.doi.org/10.1002/jcb.21841
http://dx.doi.org/10.1093/humrep/del305
http://dx.doi.org/10.1093/humrep/del305
http://dx.doi.org/10.1093/humrep/del305
http://dx.doi.org/10.1023/B:HIJO.0000032356.98363.a2
http://dx.doi.org/10.1023/B:HIJO.0000032356.98363.a2
http://dx.doi.org/10.1210/edrv-11-3-443
http://dx.doi.org/10.1210/edrv-11-3-443
http://dx.doi.org/10.1210/edrv-11-3-443
http://dx.doi.org/10.1016/j.jri.2009.08.011
http://dx.doi.org/10.1016/j.jri.2009.08.011
http://dx.doi.org/10.1016/j.jri.2009.08.011
http://dx.doi.org/10.1073/pnas.98.3.1047
http://dx.doi.org/10.1073/pnas.98.3.1047
http://dx.doi.org/10.1073/pnas.98.3.1047
http://dx.doi.org/10.1073/pnas.98.3.1047
http://dx.doi.org/10.1093/humrep/det414
http://dx.doi.org/10.1093/humrep/det414
http://dx.doi.org/10.1093/humrep/det414
http://dx.doi.org/10.1093/humrep/det414
http://dx.doi.org/10.1093/humrep/det414
http://dx.doi.org/10.1016/S0083-6729(08)60999-1
http://dx.doi.org/10.1016/S0083-6729(08)60999-1
http://dx.doi.org/10.1002/prca.200900094
http://dx.doi.org/10.1002/prca.200900094
http://dx.doi.org/10.1002/prca.200900094
http://dx.doi.org/10.1002/prca.200900094
http://dx.doi.org/10.1111/j.1600-0897.2011.01048.x
http://dx.doi.org/10.1111/j.1600-0897.2011.01048.x
http://dx.doi.org/10.1111/j.1600-0897.2011.01048.x
http://dx.doi.org/10.1093/humrep/der255
http://dx.doi.org/10.1093/humrep/der255
http://dx.doi.org/10.1093/humrep/der255
http://dx.doi.org/10.1095/biolreprod.114.118513
http://dx.doi.org/10.1095/biolreprod.114.118513
http://dx.doi.org/10.1095/biolreprod.114.118513
http://dx.doi.org/10.1158/0008-5472.CAN-09-2021
http://dx.doi.org/10.1158/0008-5472.CAN-09-2021
http://dx.doi.org/10.1038/nm.2498
http://dx.doi.org/10.1038/nm.2498
http://dx.doi.org/10.1038/nm.2498
http://dx.doi.org/10.1038/nm.2498
http://dx.doi.org/10.1053/beog.2000.0121
http://dx.doi.org/10.1053/beog.2000.0121


Jo
ur

na
l o

f C
el

l S
ci

en
ce

Singh, H. and Aplin, J. D. (2015). Endometrial apical glycoproteomic
analysis reveals roles for cadherin 6, desmoglein-2 and plexin b2 in epithelial
integrity. Mol. Hum. Reprod. 21, 81-94.

Singh, H., Nardo, L., Kimber, S. J. and Aplin, J. D. (2010). Early stages of
implantation as revealed by an in vitro model. Reproduction 139, 905-914.

Staton, A. A., Giraldez, A. J. (2011). Use of target protector morpholinos to
analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nat.
Protoc. 6, 2035-2049.

Strowitzki, T., Singer, G. A., Rettig, I. and Capp, E. (1996). Characterization of
receptors for insulin-like growth factor type I on cultured human endometrial
stromal cells: downregulation by progesterone.Gynecol. Endocrinol. 10, 229-240.
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