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Abstract Standard methods and theories in finance are ill equipped to capture complex data 

interactions presented in financial prediction problems. Deep learning approaches however 

offer more useful insights into these complex big data interactions. In this paper, using deep-

layered feedforward neural networks, which applies econometrically constructed gradients, we 

learn and exploit time-shifted correlations among S&P 500 stocks to predict intraday and daily 

stock price movements for target stocks with only other stocks' lagged prices as inputs. Our 

findings show that time-shifted correlations can be exploited to predict stock prices; our model 

is also consistent in volatile markets.  

 

Keywords: Machine Learning, Deep Learning, Artificial Intelligence, Asset Pricing, Big Data, 

Stock Price Prediction, Decision Analytics 

 

                                                 
*1University of Edinburgh and European Capital Markets Cooperative Research Centre, Pescara: University of 

Edinburgh Business School, 29 Buccleuch Place, Edinburgh EH8 9JS, United Kingdom; e-mail: 

Gbenga.Ibikunle@ed.ac.uk; phone: +441316515186. 
† 

AI & Machine Learning Group, Baillie Gifford & Co: Calton Square, 1 Greenside Row, Edinburgh EH1 3AN, 

United Kingdom 

  



2 

 

1. Introduction 

Machine learning involves using data to train a model in order to now use that model 

to make predictions from new data; in this paper, we deploy a form of machine learning known 

as deep learning. Machine/deep learning approaches to stock price prediction rely on the 

assumption that stock price time series are systematically linked, such that previous prices 

contain substantial relevant information that could be used to predict future price trends (White, 

1988). However, this assumption stands in direct violation of the efficient-market hypothesis, 

which describes stock market mechanics as being largely informationally efficient (Fama, 

1965, 1970), and even more so in a high frequency trading environment prevalent in most 

developed markets today (see Brogaard et al., 2014). As an example, if the semi-strong form 

of the efficient-market hypothesis holds in a market, the only source of changes in that market’s 

stock prices should be new and unpredictable information, as markets would have already 

reflected all previously available information. This notion of informational efficiency is 

consistent with the random walk hypothesis, which states that stock markets follow a random 

walk and are thus inherently unpredictable (Kendall and Bradford Hill, 1953; Cootner, 1964; 

Malkiel, 1973). Consequently, if stock markets merely following a random walk, it would be 

impossible to forecast price trends in a manner that results in selected portfolios outperforming 

the market over long periods of time and without a proportionately higher risk exposure. 

In this paper, we postulate that price series in historical stock market data contain time-

shifted correlations that can be successfully exploited with deep-layered feed-forward neural 

network architectures by using trend approximations as features (inputs). This can be used in 

making above-average price trend predictions without the data of the target stock as an input, 

while taking directional trend distributions for time intervals into account. Our hypothesis is 

linked to Ho and Stoll’s (1983) microstructure model, showing the connection between quote 

shifts in a stock and inventory changes in other stocks. They show that quote shifts in stock a, 

which is in reaction to a transaction in stock b is based on cov(Ra, Rb)/σ
2(Rb). This portfolio 

view of stock trading is consistent with commonly deployed diversification strategies in 

finance and has led to the rise of instruments such as exchange traded funds (ETFs), which 

offer cheap means of risk diversification. Indeed, it is instructive that the most liquid financial 

instrument, the SPDR, is an ETF.  
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We find evidence of the presence of time-shifted correlations in S&P 500 stocks in 

contradiction to both the random walk hypothesis and the efficient-market hypothesis in all 

three forms.  We also find evidence of the viability of using deep-layered neural networks for 

trend predictions in inter-correlated time series. Our experiments outperform the predefined 

baselines for strict statistical key performance indices (KPIs). Furthermore, predictions of one 

stock's trend changes based on other stocks’ price trend gradients in the preceding time step 

show an improved accuracy for larger time intervals, with average and maximum accuracies 

of 56.02% and 63.95% respectively for one-day predictions. Our findings are novel in that we 

exploit correlations of a target stock with other stocks in the same economy, without recourse 

to industry classifications, in making predictions about the target stock’s price evolution. The 

results are consistent in financial crisis situations and demonstrate that our framework is able 

to exploit existing and inter-temporal correlations in a highly volatile market environment. 

We ensure that our evidence holds up to scientific scrutiny by creating a high-quality 

set of features to train the models. The dataset employed is cleaned and pre-processed in a 

manner allowing for a perfect alignment of different stocks' observations for all time 

steps/intervals. We also ensure that the finalised models are shown to learn and successfully 

act on non-random correlations with above-average predictions of trend changes. Validation 

measures also confirm that the models outperform predetermined baselines that exclude the 

simple learning of distributions or frequencies, and adhere to statistical key performance 

indices. With our methodological approach, we also demonstrate the utility of linear regression 

derivatives as inputs for time series-based investigations in deep learning.  

The growing interest in research dealing with the usage of artificial neural networks for 

stock market prediction is facilitated by the availability of large historical stock market trading 

data/messages. Such data usually takes the form of a time series and thus classical approaches 

to time series analysis are currently widespread within the investment industry (Clarke et al., 

2001). This configuration, together with the existence of related hypotheses, makes the 

prediction of stock price changes based on historical data a good use case for trend forecasting 

in complex and potentially inter-correlated time series. 

Although a small number of papers on deep learning models for stock price prediction 

have been published in recent years, compelling and thorough evidence for the feasibility is 
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still outstanding. Deep learning recently started to be applied to stock price time series in order 

to improve simple strategies such as momentum trading, with results indicating the feasibility 

of such methods (Takeuchi and Lee, 2013). Only two existing studies could be directly 

compared to this paper; these are Takeuchi and Lee (2013) and Batres-Estrada (2015). Both 

papers employ deep-layered neural network models for a binary month-wise trend prediction 

of target stocks, based on historical stock market data of the preceding 12 months, with 

resulting accuracies of 53.36% and 52.89% respectively (see also Heaton et al., 2016; Krauss 

et al., 2017). Our approach is different since we address the prediction of up- and downward 

evolution of the trend gradient instead of the target gradient's sign. Furthermore, we concentrate 

on intraday intervals, which are more relevant in today’s high-tech stock market environments. 

Specifically, we predict stock price movements over one-day, one-hour and half-hour time 

intervals, while previous research based their analysis on months-long intervals, or as it is in 

the case of Krauss et al. (2017), day intervals only. The accuracies we find with our approach 

for one-day and one-hour predictions are higher than those reported by Takeuchi and Lee 

(2013) and Batres-Estrada (2015) with 56.02% and 53.95% respectively. Our modelling 

approach also proves capable of extracting required market prediction information in high 

volatility situations such as a financial markets crisis. 

While research on gradients of regression lines performed on stock price intervals is 

sparse, the utilisation of directional derivatives of wavelets has been successfully introduced in 

a wide number of research areas such as natural language processing (see Gibson et al., 2013). 

Mierswa (2004) uses, among other features, the gradients of linear regressions of the frequency 

spectrum over a moving window as input features for audio classification, explicitly treating 

the data as multivariate time series. Although a decision tree and a support vector machine are 

used to evaluate the viability of the selected features, this represents an instance of other 

research utilising such linear regression derivatives over time intervals as features. In another 

approach to time series classification, Górecki and Łuczak (2013) build on earlier research by 

Keogh and Pazzani (2001) on the addition of derivatives to dynamic time warping, where the 

latter is a method to measure the similarity of temporal sequences with potentially different 

speeds (Berndt and Clifford, 1994). The proposal of using a distance metric based on the 

discrete derivatives of different time series is later successfully used in an experimental 
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implementation for a k-Nearest Neighbours algorithm (k-NN) classification (Górecki and 

Łuczak, 2014).2 Generally, research on first derivatives for classification tasks in time series as 

features for machine learning is sparse. This is also the case even if not viewed in the narrower 

context of step-wise linear regression gradients over set intervals to search for time-shifted 

complex correlations in a large number of time series with deep-layered artificial neural 

networks. This gap in the literature allows this paper to spearhead applied research in this 

direction, with potential implications for a wider utilisation of this methodology based on deep 

learning with feedforward neural network models for time-shifted correlations. 

Our successful application validates the approach of using deep-layered feedforward 

neural networks for exploiting time-shifted and highly complex correlations between time 

series in the area of trend prediction. For that reason, this paper furthers the understanding of 

deep learning in this specific context. One of the main concerns for an effective application of 

deep-layered neural networks is the choice and implementation of feature engineering, which 

often consumes large parts of a machine learning project's outlay and relies on domain 

knowledge for the identification of good data representations (Najafabadi et al., 2015). As 

linear regressions on time series are simple measurements of trends, such regressions hold the 

potential of being used as input features extracted from the respective time series. They can be 

used in the input layer of a feedforward neural network, the results have to be further reduced 

to a vector per training example while maintaining a rich-enough representation, for example, 

as the gradients computed through the first derivatives of linear regressions. The gradient in 

such a case does not represent the value of a time series at a certain point, but the strength of 

the upward or downward movement as approximated by the regression. It is expected that the 

gradients of such simple trend approximations contain enough information to retain complex 

correlations between time series at different points in time, and deep-layered feedforward 

neural networks are able to extract this information.  

Changes in stock markets are fuelled by human decisions based on beliefs about a 

stock's future performance. Such beliefs are also influenced by investors anticipating the 

actions of other investors, especially in a period of high uncertainty. Examples include the 

sharp fall in the prices of airline stocks in the aftermath of the September 11 attacks, and the 

                                                 
2 See also Baggenstoss, (2015); k-NN is a non-parametric approach for classification and regression. 
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negative effects of acknowledgements of a CEO's deteriorated health (Drakos, 2004; Perryman 

et al., 2010). This makes markets inherently noisy and prone to fluctuations via overreactions 

and dynamic reinforcement (Chen et al., 1986). Such inconsistencies in the valuation of stock 

prices has been the subject of a long-standing academic debate centred on the efficient market 

and random walk hypotheses, i.e. whether such time-shifted correlations in the stock markets 

exist at all. Should such correlations be present in historical information, they must also be 

detectable despite potentially poor data quality, and through stock trading noise.  

The application of the proposed approach regarding the learning of time-shifted 

correlations between time series to stock market data in a sense is an empirical test of both the 

efficient market and random walk hypotheses. Our results deliver rigorously tested empirical 

evidence against the latter hypothesis. This is because the assumption of stock prices over time 

as random walks effectively excludes the possibility of exploitable information in historical 

stock market data. Thus our results are inconsistent with Sitte and Sitte (2002), who argue in 

favour of the existence of a random walk specifically for S&P 500 stocks due to the inability 

of artificial neural networks to extract any information resulting in over-average predictions 

for those stocks. The results are however consistent with previous, albeit weak, evidence for 

the absence of a random walk in financial time series via the use of artificial neural networks 

as presented by Darrat and Zhong (2000). The consistency of the efficient-market hypothesis 

with the random walk hypothesis also implies that our findings are in direct contradiction with 

the efficient-market hypothesis, which is widely supported by the preponderance of finance 

academic research (see as examples, Fama, 1970; Doran et al., 2010). 

The remainder of this paper is set out as follows: Section 2 discusses the progress made 

on predicting stock returns and prices and discusses the literature on deep neural networks and 

the functionality of deep learning models in finance; Section 3 presents the data and 

methodology, Section 4 discusses the results and findings while Section 5 concludes. 

 

2. Predicting stock returns 

Technical analysis involves making stock trading decisions on the basis of historical 

stock market data. The assumption behind its utilisation in the investment industry is that 

above-average risk-adjusted returns are possible when using past time series of stock 
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information. While this assumption is inconsistent with the random walk hypothesis and all 

forms of the efficient-market hypothesis, Clarke et al. (2001) show that this practice is wide-

spread in the investment industry. A meta-analysis by Park and Irwin (2004) also shows that 

the majority of studies on the topic of technical analysis report a profitability that undercuts the 

arguments of the efficient-market hypothesis. White (1988) hypothesised early that artificial 

neural networks could be successfully used to deliver empirical evidence against all the three 

forms of the efficient-market hypothesis, reporting an R² value of 0.175 when using a simple 

feedforward network of five previous days of IBM stock prices as inputs for a regression task 

(see also Saad, 1998). Zhang et al. (1997) find that artificial neural networks are especially 

suited to forecasting due to their unique characteristics, such as arbitrary function mapping, 

non-linearity and adaptability.  Skabar and Cloete (2002) also employ a neural network model 

with just one hidden layer trained on both a collection of randomly generated data and a small 

subset of historical stock prices, and find a statistically significant superior return when stock 

market information is used. Research on artificial neural networks for stock market prediction 

does, however, remain sparse over the last two decades. 

However, momentum trading strategies have been receiving a lot of attention in finance 

research in recent times. The apparent ability of momentum-based strategies to outperform the 

market are viewed as a premier anomaly within the framework of the efficient-market 

hypothesis (see Fama and French, 2008).  Takeuchi and Lee (2013), exploiting the suggested 

efficacy of momentum trading, is, to our knowledge, the first published research on deep 

learning for stock market prediction. Drawing on the work of Hinton and Salakhutdinov (2006) 

focused on the construction of auto-encoders via stacked restricted Boltzmann machines for 

dimensionality reduction and feature learning, Takeuchi and Lee (2013) predict stock 

movements using historical stock market data of only the respective target stocks from a large 

set of NYSE stocks. With an average accuracy of 53.36%, their model delivers evidence of 

above-average returns by using features learned from the preceding 12-month period to predict 

the trend for the 13th month. This study thus serves as a baseline for subsequent research 

endeavours in stock price prediction through the use of deep learning. Takeuchi and Lee’s 

(2013) approach is different from ours in that we examine price predictability for a target stock 

by using only alternate stocks’ data. 
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Following the work of Takeuchi and Lee (2013), Batres-Estrada (2015) constructs a 

deep belief network composed of stacked restricted Boltzmann machines, followed by a 

feedforward artificial neural network with one hidden layer. The input and objectives are 

similar, with the previous 12 months’ worth of a stock's log-returns as the input used to predict 

the 13th month's trend in a binary fashion, with the addition of daily log-returns for each day of 

a respective month. This approach results in an accuracy of 52.89% for the test set, which 

outperforms naïve baselines and a simple logistic regression, and also yields results that are 

comparable to Takeuchi and Lee (2013). Dixon et al. (2016) also implement a feedforward 

artificial neural network with five hidden layers for trinary classification, differing in an output 

that represents little or no change from the previously cited studies. Using data of CME-listed 

commodities and foreign exchange futures in five-minute intervals to generate a variety of 

engineered features like moving correlations, a single model is trained instead of a separate 

model for each target instrument resulting in an average accuracy of 42.0% for the investigated 

three-class prediction task. It should, however, be noted that no cross-validation is carried out, 

which would further validate the results for economic conclusions.3 Even more recently, 

Krauss et al. (2017) investigate the effectiveness of deep neural networks (DNN), gradient-

boosted-trees (GBT) and random forests (RAF) in the detection of statistical arbitrage. Their 

results indicate that when combining one each of DNN, GBT and RAF, one may obtain returns 

exceeding 0.45% per day before taking transaction costs into account. 

Apart from the sparse literature on deep learning for time series-based stock market 

prediction, text-based prediction approaches, using machine learning models, are also gaining 

traction and have emerged as the predominant alternative during the past few years. The notion 

of using news articles, with new information, as opposed to historical market data, to predict 

stock prices was introduced by Lavrenko et al. (2000) and is a common baseline for subsequent 

research. A system devised by Schumaker and Chen (2009a), named AZFinText, which 

employs wide-spread news coverage, results in a directional accuracy of 57.1% for the best-

                                                 
3 Cross-validation is the splitting of the dataset into, e.g., 5 sets of approximately the same size. A model is then 

trained on 4 of the sets and tested on the fifth, alternating which sets are trained on and which is used for testing, 

so five tests are carried out over all instances of the data, and the results for the five models are then averaged. 

This is the "gold standard", so to speak, in machine learning, as it takes care of the possibility of testing models 

on a subset unrepresentative of the whole dataset. Cross-validation makes for more reliable and stable results; 

therefore, we apply the approach to our analysis in this paper (see Section 3.3.2).  
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performing model. The approach involves a support vector machine with a proper-nouns 

scheme instead of a simple bag-of-words approach in combination with a stock's current price 

as inputs, over a five-week period. A criticism of the approach is that five weeks-worth of 

information could fail to constitute a rigorous test of performance. In addition, it proves to be 

only successful within a twenty-minute time frame, which falls under the margin of earlier 

research concluding that the majority of market responses to new information experiences a 

time lag of approximately ten minutes (see Patell and Wolfson, 1984). Subsequent research, 

however, shows that AzFinText can outperform established quantitative funds (see Schumaker 

and Chen, 2009b). 

Ding et al. (2015) propose the use of a neural tensor network to learn event embedding 

from financial news articles in order to feed that information into a deep convolutional neural 

network for a two-class prediction of a stock price's future movement. For this system, an 

accuracy of 65.9% is reported for 15 different S&P 500 stocks and daily trend predictions. No 

clear indication, however, is given as to how the reported stocks are selected. Related research 

by Fehrer and Feuerriegel (2015) employs recursive auto-encoders to extract sentiments from 

financial news headlines and companies' financial disclosure statements, resulting in an 

accuracy of 56.5% for the test set and predictions of stock price movements after a financial 

disclosure statement. 

 

2.1. Background to our approach: deep neural networks 

Artificial neurons are the fundamental building blocks of deep-layered feedforward 

neural networks, which are employed in this study. They were first proposed for solving 

computational problems by McGulloch and Pitts (1943) within the scope of thresholds for 

logical calculations. The basic idea is that a certain level of activation is necessary to make an 

artificial neuron fire instead of remaining dormant. Perceptrons are the next step in this 

evolution. Devised by Rosenblatt (1958), perceptrons are algorithms that implement a linear 

classification for binary distinctions and are thus the simplest example of a feedforward neural 

network. The mathematical formulation that takes place for a named perceptron can be 

summarised as follows: 
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      1 𝑖𝑓 𝐰 ⋅ 𝐱 + 𝑏 > 0 

         𝑓(𝐱)  =                (1) 

0 𝑒𝑙𝑠𝑒     

 

Here, w and x denote vectors in ℝ, with x being the vector of inputs to an artificial neuron, 

whereas w is the vector of the respective weights for each separate input. b denotes a bias term 

which represents the artificial neuron's firing threshold, and f(x) is a Heaviside step function, 

i.e. a function that outputs 1 for a positive argument and 0 for a negative argument. The dot 

product of w and x can be formulated as: 

 

             𝐰 ⋅ 𝐱 =  ∑ 𝑤𝑖
𝑁
𝑛=1 𝑥𝑖     (2) 

 

Feedforward neural networks are directed, acyclic graphs which use a set of artificial 

neurons to funnel inputs in one direction towards the outputs. In their commonly used form, 

such models are fully connected between neighbouring layers of artificial neurons, whereas no 

connections exist over multiple layers. Due to their antecedents, artificial neural networks are 

often still called single- or multi-layer perceptrons despite the term denoting a model consisting 

of just one artificial neuron (depending on their number of hidden layers). In this paper, 

however, the naming as perceptrons is mentioned only in the given context of a historical 

overview of the broader topic; the models are forthwith referred to as artificial neural networks. 

Figure 1 depicts a simple feedforward artificial neural network with no hidden layers. 

 

INSERT FIGURE 1 ABOUT HERE 

 

The input layer represents, in this form, the input vector used in Equations (1) and (2); 

in this case, values for four variables. The output layer represents the result that is obtained 

from running the values of the input layer through the model. In this basic form, the artificial 

neural network is equivalent to a linear regression, as each input is multiplied by a weight to 

obtain the corresponding output. In other forms, the weights are depicted as layers instead, but 

the former representation will be applied throughout this paper in order to guarantee a 
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consistent reading process for all sections. Other types of neural network models exist for 

example, various kinds of recurrent neural networks and convolutional neural networks.4  

Activation functions are utilised by artificial neurons in these models, allowing inputs 

to be transformed by using weights and, in the common case, a bias term. Apart from the 

Heaviside step function earlier stated, non-linear activation functions allow for the solution of 

non-trivial problems, as outputs are not constrained to logical values. Similarly, linearly 

increasing activation functions require a large number of artificial neurons for non-linear 

separation tasks, which makes them computationally challenging and expensive. Instead, 

commonly used activation functions are meant to increase in their output at first, but then 

gradually approach their limit in an asymptotic manner for higher values. A classic example of 

such a function is the sigmoid function depicted in Figure 2. 

 

INSERT FIGURE 2 ABOUT HERE 

 

In training artificial neural networks, sigmoid functions are a term applied to the special 

case of the logistic function shown in Figure 2, with a steepness value of 𝑘 =  1 and a midpoint 

of 𝑥0  =  0. The sigmoid function is calculated as follows: 

 

      𝑠𝑖𝑔𝑚(𝐱)𝑗  =  
1

1+𝑒
−𝑘⋅(𝑥𝑗−𝑥0)

             (3) 

 

It is important to note that values for the sigmoid function levels out at 0 on the lower end, 

which can lead to a fast saturation of weights at the top layers of multi-layered artificial neural 

networks (Glorot and Bengio, 2010). An alternative is the use of the hyperbolic tangent 

function, which is similar to the sigmoid function, but is centred on 0 instead of 0.5, with a 

lower limit of –1 and the same upper limit of 1 for its values: 

 

                                                 
4 The learning process discussed in this paper is restricted to the supervised version, i.e. the training of a model 

with already correctly labelled data. Other types of learning, such as unsupervised learning for unlabelled datasets, 

and reinforcement learning, find applications in a wide range of research areas as well.  
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           𝑡𝑎𝑛ℎ(𝐱)𝑗  =  
𝑠𝑖𝑛ℎ𝑥𝑗

𝑐𝑜𝑠ℎ𝑥𝑗
 =  

𝑒
𝑥𝑗−𝑒

−𝑥𝑗

𝑒
𝑥𝑗+𝑒

−𝑥𝑗
 =  

1−𝑒
−2𝑥𝑗

1+𝑒
−2𝑥𝑗

            (4) 

 

Other often-used activation functions for training artificial neural networks include 

radial basis functions and rectified linear units (see Broomhead and Lowe, 1988; Nair and 

Hinton, 2010). Other proposals for activation functions specifically target the goal of a reduced 

computational cost, e.g. the squash function introduced by Elliott (1993). The softmax function 

also deserves a mention as an activation function; it serves as a widely-used way to interpret 

the outputs of neural network models used for classification tasks as probabilities (Bishop, 

2006). The formula for this function, which is wide-spread in its application as a last layer of 

such models, is: 

 

          𝑠𝑜𝑓𝑡𝑚(𝐱)𝑗  =  
𝑒

𝑥𝑗

∑ 𝑒𝑥𝑛𝑁
𝑛=0

 , 𝑠. 𝑡. 𝑗 ∈ {1 , 2 , . . . , 𝑁}           (5) 

 

The notable difference to the other functions earlier enumerated is that the utilisation of 

all inputs from the previous layer results in values between 0 and 1 for the softmax layer adding 

up to 1. These outputs can be expressed as probabilities of mutually exclusive classes, i.e. used 

as percentages of a 100% total for further computations. Hidden layers are additional layers 

between the output and the input layers that are shown in Figure 1, with one hidden layer.5  

Figure 3 depicts a simple feedforward artificial neural network with four inputs, a single hidden 

layer, and two outputs, which could be used for a binary classification problem. 

 

INSERT FIGURE 3 ABOUT HERE 

 

Backpropagation of error was developed as a method to time-efficiently train multi-

layered artificial neural networks in the 1970s (Werbos, 1974). By using a predefined loss 

function's gradient w.r.t. all weights in a neural network model for optimisation methods, such 

                                                 
5 The main advantage of using hidden layers is that the artificial neurons of such layers can process the full output 

of the previous layer, which turns the linear separations that a neural network model with no hidden layers 

implements into a non-linear process, allowing for greater differentiation capabilities. 
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as stochastic gradient descent, efficient training of multi-layered models becomes feasible (see 

also Rumelhart et al., 1986; Nielsen, 2015). In this process, loss functions are used to attach a 

value to the total error under a certain set of weights between layers. Using the example of the 

quadratic cost function, the total error for this case can be calculated with the following 

equation: 

 

    𝐸 =  
1

2
∑ ∑ (𝑦𝑗,𝑖 − 𝑦𝑗,𝑖)𝑗𝑖             (6) 

 

where j indexes the output units and i indexes the pairs of training examples and corresponding 

outputs, 𝑦 and y denote the calculated outputs and actual labels respectively. In the forward 

pass of the input through the network model, the values for the neurons in each layer are 

calculated with the last layer's outputs, processed through the activation function, and the 

respective connection's weights and the layer's bias, as previously described. In the backward 

pass, the weights and the bias are then updated. Gradient descent is a common optimisation 

method, and gradient-based optimisers allow for the use of backpropagation. Weights and 

biases of a layer are updated as follows, with 𝑤𝑖,𝑗 as a weight, 𝑏1 as the layer's bias, and 𝜂 as 

the chosen learning rate: 

 

      𝑤𝑗,𝑖  =  𝑤𝑗,𝑖 − 𝜂
𝜕𝐸

𝜕𝑤𝑗,𝑖
                    (7) 

           𝑏𝑙  =  𝑏𝑙 − 𝜂
𝜕𝐸

𝜕𝑏𝑙
             (8) 

 

These expressions require the computation of the error w.r.t. a single weight or bias. 

Using the chain rule, the error can be propagated backwards through the neural network model, 

which gives the name to the method. For weights, the formula is: 

 

          
𝜕𝐸

𝜕𝑤𝑗,𝑖
𝑙  =  ∑

𝜕𝐶

𝜕𝑎𝑚𝐿
𝐿

𝜕𝑎𝑚𝐿
𝐿

𝜕𝑎𝑚𝐿−1
𝐿−1𝑚𝐿 ,𝑚𝐿−1  ,…,   𝑚𝑙  

𝜕𝑎𝑚𝐿−1
𝐿−1

𝜕𝑎𝑚𝐿−2
𝐿−2

𝜕𝑎𝑚𝐿
𝐿

𝜕𝑎𝑚𝐿−1
𝐿−1  . . .

𝜕𝑎𝑚𝑙+1
𝐿

𝜕𝑎𝑗
𝑙

𝜕𝑎𝑗
𝑙

𝜕𝑤𝑗,𝑖
𝑙          (9) 
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The case for computing the error w.r.t. a layer's bias is analogous to the above formula. 

Here, 𝑤𝑗,𝑖
𝑙  denotes a single weight in a specific layer l, with L indicating the final layer and 𝑎𝑥

𝑙  

denoting the output of neuron x via the neuron's activation function in layer l. Put simply, the 

rate of change of the error is calculated w.r.t. a single weight, i.e. every connection between 

two artificial neurons in two adjacent layers has a rate represented by the gradient of a neuron's 

output w.r.t. the preceding neuron's output. For a path through the model, the product of this 

path's rates is the path's own rate. 

 

2.2. The functionality of deep learning models 

In recent years, artificial neural networking has emerged as a subject of increased public 

interest in machine learning due to the increasing ease of training deep-layered models with 

advanced computing equipment. Although deep learning, describing a high number of 

processing layers mostly used for deep-layered neural network models, has been criticised as 

not being more than a marketing term for long-established machine learning methods, its usage 

is now firmly established in academia (see Wlodarczak et al., 2015). For deep-layered 

feedforward artificial neural networks, these models' graph structures are identical to Figure 3, 

with the exception of a number of additional hidden layers. The primary advantage of such 

model architectures is their high non-linearity, which allows for the automatic identification of 

complex relationships in data. According to Glorot and Bengio (2010) deep-layered 

feedforward neural networks have the rather unique ability to extract features from features 

learned by previous hidden layers. This attribute reduces the need for time-intensive feature 

engineering, otherwise known as model selection.6 While there are many varieties of deep 

neural network models, such as convolutional networks and deep belief networks, sufficiently 

deep feedforward models without such complexities attained the then-best performance of 

99.75% accuracy on the MNIST handwritten digit database (Cireçan et al., 2010). 

Despite their advantages, training deep-layered models brings difficulties that are 

addressed by refining the methods for the models described in the preceding section. Stochastic 

                                                 
6 Glorot and Bengio (2010) also criticise the use of the sigmoid function in hidden layers, as its non-zero mean is 

shown to decelerate the learning process, and support the use of zero-mean activation functions like the hyperbolic 

tangent function. 
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gradient descent deals with the problem encountered in computing the loss function's gradients 

for all training, i.e. the computational expensiveness of the process leading to a slowdown in 

the training of a model. Stochastic gradient descent involves approximating the total error via 

the gradients for a random sample of training inputs. This changes Equations (7) and (8), with 

𝑥1 , 𝑥2 , . . . , 𝑥𝑚 as the sample and 𝐸𝑥𝑘
 as the cost for each data point from the sample to: 

 

         𝑤𝑗,𝑖  =  𝑤𝑗,𝑖 −
𝜂

𝑚
∑

𝜕𝐸𝑥𝑘

𝜕𝑤𝑗,𝑖
𝑘  , 𝑠. 𝑡.  𝑘 ∈ {1 , 2 , . . . , 𝑁}        (10) 

             𝑏𝑙  =  𝑏𝑙 −
𝜂

𝑚
∑

𝜕𝐸𝑥𝑘

𝜕𝑏𝑙
𝑘  , 𝑠. 𝑡.  𝑘 ∈ {1 , 2 , . . . , 𝑁}        (11) 

 

Momentum is very important for the training of deep learning architectures (see 

Sutskever et al., 2013), the purposes of which are to prevent the model from remaining at a 

local minimum and to accelerate the step size in the so-called shallow valleys.7 If applied to 

stochastic gradient descent, with 𝜂 denoting the amount of friction for the momentum and 𝛥𝑤 

representing the last iteration's weight update, Equation (10) is transformed to: 

 

         𝑤𝑗,𝑖  =  𝑤𝑗,𝑖 −
𝜂

𝑚
∑

𝜕𝐸𝑥𝑘

𝜕𝑤𝑗,𝑖
𝑘 + 𝜂𝛥𝑤𝑗,𝑖 , 𝑠. 𝑡.  𝑘 ∈ {1 , 2 , . . . , 𝑁}        (12) 

 

Overfitting, a machine learning model's tendency to incorporate noise and random error 

from the training set, thus leading to a larger generalisation error, is a concern here. 

Generalisation error, while not subject to being calculated for all possible unseen data, is 

approximated via a split of the available data into a training set and a test set, which serves as 

an empirical example of unseen data. It indicates, for a poor performance on the test set in 

relation to the training set, the presence of overfitting. In order to prevent overfitting, 

regularisation becomes necessary, a simple example of which is ‘early stopping’. By splitting 

the data three-fold into an additional validation set, the model's performance on data that is not 

part of the training is assessed after each epoch. If the accuracy on the validation set stagnates 

                                                 
7 Shallow valleys are phases in which the steepest direction remains the same or similar for multiple iterations, 

but without a pronounced steepness. 



16 

 

over a predefined number of epochs, the training is terminated. Other, more sophisticated 

approaches include ℓ₁ and ℓ₂ regularisation for a sparsity-based solution.8 

 

2.3. Trend analysis of financial time series 

Clarke et al. (2001) and Gehrig and Menkhoff (2006) find that technical analysis, 

despite the permanence of the efficient-market hypothesis, is wide-spread in today's investment 

industry, although the term refers to simpler approaches in most of the cases. Exponential 

moving average, an infinite impulse response-based approach, is one of the dominant 

techniques used as a lagged indicator for stock trend forecasting. It is identical to exponential 

smoothing, a term more commonly used in the general study of time series, and can be 

calculated in a recursive manner as follows, with i as the time step indicator starting at 1 and α 

as the smoothing factor with 𝛼 ∈ (0,1): 

 

          𝐸𝑀𝐴0  =  𝑥0      (13) 

          𝐸𝑀𝐴𝑖  =  𝛼𝑥𝑖 + (1 − 𝛼)𝐸𝑀𝐴𝑖−1 , 𝑠. 𝑡. 𝑖 > 0 

 

Perceived patterns are among the other, less investigated methods that are used by 

technical analysts, e.g. the head-and-shoulders pattern. The latter is used as an indicator for a 

trend shift, using the negative value of the height denoted in Figure 4 as the target price for a 

trade initiated at the breakout point, which marks the pattern's completion. The lack of 

statistical research on such patterns has been criticised by Neftci (1991), noting that there is a 

disparity between the rigour of academic time series analysis and the decision-making of 

traders. Subsequent studies by Osler and Chang (1999) and Lo et al. (2000) show indicators of 

                                                 
8 There are other mathematical considerations. For example, the Universal Approximation Theorem states that 

feedforward networks with one hidden layer act as approximators for continuous functions on closed subsets of 

the Euclidean space ℝ𝑛. Initially, the theorem was proven for three hidden layers by Irie and Miyake (1988), 

followed by a proof for one hidden layer and the sigmoid function by Cybenko (1989). Hornik (1991) thereafter 

concluded this process by showing that arbitrary non-constant activation functions fit the criteria of 

approximators. The reason for deep-layered models being used instead is that the theorem makes no statement 

about the learnability itself, and the necessary numbers of neurons and training examples are only given as finite 

respectively. In practical applications, deep-layered models have been shown to perform better on complex 

problems, although that does not invalidate the theorem itself. 
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applications for select currencies in foreign exchange markets, concluding that such patterns 

may hold some practical value. 

 

INSERT FIGURE 4 ABOUT HERE 

 

As earlier stated, stock price changes are, at their core, driven by human beliefs about 

the future performance of a stock; this aggregate belief stock is correlated with the sum of 

beliefs that market participants think other participants hold about future price evolution. To 

this extent, investment decisions quantify beliefs about the beliefs of other investors in the 

future, which is a process that can be continued iteratively into the future. Thus the influence 

of new information on investment decisions, and a variety of methods of varying sophistication 

are used to make stock price predictions, making stock time series inherently noisy. This 

property of stock market prices makes stock markets an interesting and challenging example 

of real-world time series created by a global conglomeration of human decisions. Hence, stock 

series are ripe for the application of deep learning methods, especially, since traditional 

methods and theories in finance appear ill-equipped for capturing complex data interactions 

presented in financial prediction problems.  

 

3. Data and Methodology 

3.1. Data 

We obtain three sets of high frequency transactions data sampled at varying intraday 

intervals from the Thomson Reuters Tick History (TRTH) database. The variation in sampling 

allows for experiments over differing intraday time intervals. Each set of data contains the 

Reuters Identification Code (RIC) for each stock in the sample, transaction date, transaction 

time to the nearest millisecond, high/best bid price, low/best ask price, volume, and average 

transaction price.9 The RICs for all stocks contained in the sample are listed in Appendix B. 

The first dataset is sampled from 2011-04-04 to 2016-04-01, covering approximately 

five years’ worth of stock transactions price information in 1-hour intervals for the S&P 500 

                                                 
9 Three prices are obtained for robustness: (1) volume weighted average price, (2) average price and (3) last 

transaction price for the time interval; our inferences are unchanged irrespective of the price variable employed.  
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stocks, with 6,049,849 transactions for 505 stocks in total. The second dataset spans the same 

time frame and stocks sampled at 5-minute intervals, resulting in 47,853,642 transactions. The 

final dataset is also sampled at 1-hour intervals; however, sampling begins from 1996-04-04, 

which results in a larger dataset covering approximately 20 years and with 65,183,368 

transactions, including the financial crisis period of 2007/2008. 

The datasets show instances of missing values for the price variables in some stocks, 

especially earlier in the largest of the datasets, thus suggesting that there are no transactions 

recorded for those intervals. We follow Chordia et al. (2001) by replacing the missing values 

with the same-column entries of the preceding index or the index with the next non-missing 

value, depending on whether the former belongs to the same stock as identified by the X.RIC 

value. In order to generate feature vectors that can be used as inputs, the time stamps have to 

be aligned perfectly. Thus, missing observations are forbidden, unless that interval’s 

observations are missing for every other stock in the sample. We therefore write a code in the 

R software in order to secure a time-wise alignment of observations for different stocks by 

substituting missing rows.10 All observations with inexplicable and incomplete timestamps are 

also eliminated. Following the data cleaning process, the datasets are checked for a subset of 

stocks satisfying the requirement of being consistently present over a sufficiently large portion 

of the dataset's time frame divisible by the chosen number of time steps for the subsequent 

gradient calculation. The datasets' price information is extracted and transformed into a feature 

matrix with row-wise time steps and column-wise stocks. The final sets of cleaned data contain 

449 stocks. 

 

3.2. Statistical feature engineering 

Feature engineering describes the manual selection and, if necessary, transformation of 

given datasets into new data that better represents the features needed for a chosen task (see 

                                                 
10 The full R software code of the algorithm that we create is presented in Appendix A. The primary goal behind 

the design of the above approach to data alignment is to speed up the code execution, as naïve procedures with 

loops over the full datasets and copies of a full matrix for every missing observation, as well as a vectorised 

implementation of the latter, result in infeasible time estimates. By acting solely on time vector comparisons, with 

matrix shifts in the case of local time vector incompatibility, only for a specific pre-split stock's matrix, and 

operating on a pre-assigned matrix of sufficient dimensionality to allow for insertions instead of appending values 

in-process, a sufficient speed for datasets of the given scale in comparably short time frames is realised. 
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Ng, 2012). For this paper, a simple approach, linear regressions, is used to approximate the 

trends over given time intervals. Linear regressions assume a linear relationship between the 

regressand 𝑦𝑖 and the regressors 𝑥𝑖. They follow the form below, with i denoting an 

observation, 𝛽0 as the intercept, and 𝜖𝑖as the unobserved error term: 

 

      𝑦𝑖  =  𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2+ . . . +𝛽𝑝𝑥𝑖,𝑝  =  𝑥𝑖
𝑇𝛽 + 𝜖𝑖 , 𝑠. 𝑡.  𝑖 ∈ {1 , 2 , . . . , 𝑛}        (14) 

 

Simple linear regressions are least-squares estimators of such models with one 

explanatory variable to fit a line that minimises the squared sum of the residuals. They take the 

form of a minimisation problem to find the intercept 𝛽0 and the slope 𝛽1: 

 

     𝑚𝑖𝑛
𝛽0,𝛽1

𝑄(𝛽0,𝛽1) , 𝑠. 𝑡. 𝑄(𝛽0,𝛽1)  =  ∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2𝑁

𝑖=1         (15) 

 

By running a linear regression over each time series and time interval separately, and 

by taking the first derivative of the resulting equation, the trend gradients for single stocks and 

time intervals are obtained. Given aligned stock prices for N points in time and a chosen step 

size s, the resulting feature vector generated from a stock's price has the length N/s. Depending 

on the time frame covered by the dataset, limits apply to the size of intervals that can be chosen 

to still obtain a viable size for the training set. For the 5-year hourly interval dataset, gradients 

are computed for a time step size of 8, covering a whole trading day with 1,242 gradients per 

stock for 449 stocks. For the 5-year dataset with data in 5-minute intervals, two sets of gradients 

are computed: The first set covers a time step size of 12, resulting in 7,361 one-hour gradients 

for 449 stocks, whereas the second set covers a time step size of 6, with 14,725 gradients for 

each half hour and 449 stocks.11 For the 20-year dataset with hourly values, daily gradients 

with a step size of 8 were computed for the years from 2003, preceding the global financial 

crisis, to and including 2008, resulting in 2,131 gradients for 298 stocks. 

 

                                                 
11 As the code that implements the linear regression cuts the respective dataset to a length that allows for the 

computation over the prescribed amounts of values, the second set for half-hour gradients is slightly larger than 

double the first set. 
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3.3. Training the deep learning models 

3.3.1. Libraries and programming environment 

 We choose Python for the implementation of the deep learning experiments, because 

it is a multi-purpose language with sufficient mathematical capabilities through extensions 

such as NumPy (see van Rossum, 1995). Python has become established as one of the primary 

programming languages for deep learning in libraries like Theano (Bergstra et al., 2011). Keras, 

also a highly modular library for neural networks written in Python, which is able to incorporate 

either Theano or, more recently, Google's TensorFlow as its basis (see Chollet, 2015), is chosen 

to build the experimental models. This is also due to its suitability for the fast prototyping of 

artificial neural networks.12 We implement the experimental code using version 2.7.11 of 

Python, with IPython Notebook in its version 4.2.1 as the programming environment to allow 

for gradual code execution and an easily accessible overview of scrollable outputs, e.g. for 

training epochs. 

 

3.3.2. Experimental setup and data splits 

Figure 5 depicts a schematic overview of the experimental setup used in this paper. For 

the number n + 1 of stocks that are made usable during the data cleansing and pre-processing, 

gradients of the price trends for each separate stock are computed in the feature engineering 

step as earlier described. The n gradients for one time step t – 1 are then used as inputs to a 

feedforward artificial neural network that is fully connected for adjacent layers in order to 

predict whether the gradient of the left-out (n + 1)st stock changes up- or downwards w.r.t. its 

gradient in the preceding time step t – 1. This setup ensures that the experiments test for time-

shifted correlations between stocks instead of using a stock's own historical price information; 

thus, the data of the stock that is to be predicted is not part of the model's input. This is a major 

distinguishing aspect of this paper from preceding research on time series-based stock market 

prediction.  

 

INSERT FIGURE 5 ABOUT HERE 

                                                 
12 Theano is preferred over TensorFlow due to its position as an established machine learning library and the 

resulting variety of guidelines for its proper usage (Bahrampour et al., 2015). 
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As the experiments aim to find general correlations between stocks, five-fold cross-

validation is used in order to reduce the variability of results, and frugally exploit the datasets 

(see Giovanni and Elder, 2010). After each five-way split and sorting into a training set of 80% 

of the dataset for the respective fold, another 25% of the training set is partitioned off as the 

validation set for the aforementioned early stopping procedure. Hence, a 60-20-20 split is used 

for each fold and stock. The experiments are run for all n + 1 stocks by looping over an index i 

for all column-wise stock gradients and splitting the matrix into the target gradients for stock i 

and the inputs for the rest of the columns. The time intervals are then shifted one step by 

clipping the first row of the input matrix and the last value of the output vector. The output 

vector is subsequently replaced by a binary one-hot representation indicating whether the 

gradients for each successive time interval for stock i are larger or smaller than for the 

preceding interval. Consistent with Takeuchi and Lee (2013) and Ding et al. (2015), two output 

nodes are chosen. 

 

3.3.3. Input normalisation and regularisation 

Normalising the inputs is necessary in order to address geometrical biases, distribute 

the importance of values equally and ensure that all values are situated in the same range in 

order to make them comparable for an efficient learning process. The training examples split 

from the dataset are normalised element-wise using min-max scaling as follows: 

 

         𝑋𝑛𝑜𝑟𝑚  =  
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
          (16) 

 

As earlier stated, regularisation approaches are a valuable way to address issues with 

overfitting, i.e. poor generalisation due to a specialisation on unneeded idiosyncrasies of the 

training set. Early stopping and ℓ₂ regularisation are used to prevent overfitting and 

unnecessary complexity, whereas momentum is applied in order to prevent stochastic gradient 

descent from terminating in small-spaced local minima. In addition, a dynamic learning rate 

decay is utilised to find a minimum along the optimiser's descent path: 
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            𝑥  ∗  =  𝑟𝑎𝑡𝑒 ⋅
1

1+𝑑𝑒𝑐𝑎𝑦⋅𝑒𝑝𝑜𝑐ℎ
          (17) 

 

3.3.4. Parameter tuning and model complexity 

Commenting on the inherent vagueness of parameter tuning with regards to real-world 

applications, Snoek et al. (2012) concisely summarise the problems associated with the terrain 

by stating that machine learning algorithms: 

 

"[...] frequently require careful tuning of model hyperparameters, regularization terms, and 

optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert 

experience, unwritten rules of thumb, or sometimes brute-force search." (Snoek et al., 2012). 

 

While such a statement sounds bleak, the parameters and hyperparameters that have to 

be set can be determined, or at least approximated.13 Preliminary test runs show a rise in 

accuracy for up to five hidden layers, after which the learning process is hindered by the 

model's complexity in relation to the available number of training examples and thus provide 

no further improvement in accuracy. In order to achieve comparability in the models' 

performances over different experiments with all datasets, 400 nodes per hidden layer is 

identified as the level slightly below the number of inputs for the experiments, since the number 

of stocks used is 449 as stated above. 

Preliminary tests run with 20 randomly chosen stocks for each of the three datasets with 

half-hour, one-hour and one-day gradients show the smallest test set error for this size of hidden 

layers, as measured in increments of 50 nodes for up to 800 nodes. In order to address potential 

memory issues, a mini-batch size of 100 is chosen, and each model is trained for 50 epochs, 

with early stopping as a regularisation measure as described in Section 2.2. Hyperbolic tangent 

functions serve as activation functions, with sigmoid functions at the output layer, and the 

model's weights are initialised as scaled samples from a Gaussian distribution (see He et al. 

                                                 
13 The choices we make in this paper follow a combination of established scientific reasoning and preliminary 

experimentation, as well as experience in the application of deep learning architectures, and simple heuristics. 

These are employed in slowly increasing the model's complexity; further details can be found (Nielsen, 2015). 
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2015).14 In addition, ℓ₂ regularisation is added to the regularisation process and chosen over ℓ₁ 

regularisation. This decision is driven by the encouragement to use all inputs to a certain 

degree, as a complex interdependence of the studied time series is assumed due to the failures 

of past approaches to identify simpler correlations. Through the introduction of decaying 

weights, and with the parameter 𝜆 defining the trade-off between the loss function and the 

penalty for larger weights, the previously introduced notation for unaltered gradient descent in 

Equation (7) is extended to: 

 

             𝑤𝑗,𝑖  =  𝑤𝑗,𝑖 − 𝜂
𝜕𝐸

𝜕𝑤𝑗,𝑖
− 𝜂𝜆𝑤𝑗,𝑖         (18) 

 

Hyperbolic tangent functions from Equation (4) serve as activation functions, with 

sigmoid functions from Equation (3) at the output layer. The former choice is due to the 

discussed concerns regarding weight saturation, while the latter function is chosen over the 

softmax function due to the interpretability of the results as independent probabilities, and also 

because these results are not required to integrate to 1 as inputs for subsequent methods. The 

model's weights are initialised as scaled samples from a zero-mean Gaussian distribution to 

address the potential of vanishing or exploding gradients, with a standard deviation of √2 𝑛𝑙⁄ , 

an initial bias of 0, and with 𝑛𝑙 denoting the number of connections in a layer, allowing for an 

easy adaptation to future experiments with rectified linear units (Glorot and Bengio, 2010; He 

et al. 2015). 

 

3.4. Further experiments and high volatility 

3.4.1. Complexity reduction via bottleneck layers 

In the context of the given problem, an interesting question is that of its general 

complexity, i.e. to find out to what number of variables the relevant data necessary for an 

acceptable accuracy can be reduced. In order to give an indication, a bottleneck layer consisting 

of a small number of neurons is inserted into the models for the daily predictions based on the 

                                                 
14 Parameters and hyperparameters for the artificial neural networks used in the experiments have to be chosen 

and subsequently fixed for the experimental implementation. 
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5-year dataset with hourly values. This process is implemented for 1, 3, 5 and 10 nodes to see 

how the bottleneck's size influences the accuracy. This approach is favoured over using 

autoencoders (see Heaton et al., 2016) as a precedent to using their compression layer as inputs 

for a full model, because autoencoders learn a goalless reduction of their inputs.15 For a 

bottleneck layer in the same model, the latter is forced to learn a compressed representation 

directed at a representation that is suited to the target predictions at hand, funnelling the model's 

learning process through the nodes of the respective bottleneck. Figure 6 shows a modification 

of the model depicted in Figure 3, featuring an exemplary additional bottleneck layer for 

complexity tests with one node marked b: 

 

INSERT FIGURE 6 ABOUT HERE 

 

3.4.2. Performance during a financial crisis 

Previous studies applying machine learning approaches to stock market prediction are 

not tested for above-average results in selectively volatile market situations. However, 

Schumaker and Chen (2009a), who develop the AZFinText system, note such a test as a 

suggestion for further research. For time series-based prediction, high-volatility environments 

are more problematic contexts than for text analysis-based systems like AZFinText. This is 

because they rely solely on stock market information that is effectively in a state of unrest in 

that scenario. In order to test the gradient-based approach and the model implementation for 

such environments, data from 2003 to, and including, 2008 is extracted from the 20-year dataset 

with hourly values and used to compute daily gradients for the contained stock price 

information for 298 stocks. No cross-validation is performed for these experiments, as the test 

set has to represent a phase of enhanced volatility in the market. In order to achieve this, a test 

set from July 2007 to the end of 2008 is split from the set of gradients, with the previous 4.5 

years serving as training data. This setup also more closely resembles an applicable prediction 

                                                 
15 While similar to using a bottleneck, auto-encoders recreate their input as their output through a reduction layer 

without a target outside of the input recreation, whereas our chosen method reduces the complexity via the 

bottleneck layer with the explicit goal of making that reduction suitable for the computational task. 
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system, as only past data is used instead of identifying general correlations between 

combinations of different time periods through cross-validation. 

Due to the large fluctuations in the dataset, and given that some stocks remain more 

stable than others during the financial crisis of 2007/2008, a higher variance of accuracies is 

expected. An accuracy above the baseline, which is expected to be higher than random chance 

due to the general negative trend in that time period, would deliver evidence for the persistence 

of correlations in high-volatility scenarios such as global financial markets crises. 

 

3.5. Reliability and robustness analysis 

For a validation of the results, baselines that address the market behaviour and the 

distributions of target vectors are necessary in order to find statistically significant evidence. 

The focus of this paper on time-shifted correlations between stocks in relation to economic 

theory, manifested in excluding the target stock data in the models' inputs, sets this work apart 

from research that aims to find the best-possible stock market predictions instead of 

correlations in stock market prices. For research focussed purely on prediction accuracy, 

baselines that represent naïve regression or classification approaches, or basic machine learning 

methods, are more suitable. In this paper, the threat of coincidences is partly approached 

through cross-validation, but a model's accuracy must also lie significantly above the 

accuracies of one-value and random predictions. 

Another area of concern relates to the accuracy of random mock predictions; we address 

this by creating for each stock and fold in each model, a randomly shuffled copy of the 

predictions and thereafter test them against the correct targets in addition to the predictions 

themselves. These result in mock predictions with a class distribution identical to the actual 

predictions. Such copies can be employed in testing whether the model learns the distribution 

of the two output classes in the training set, which would result in very similar accuracies for 

the actual and mock predictions when compared to the test set's correct targets. 

Another issue that needs to be contended with is that of the models learning to predict 

the dominant class of the respective training set. In order to address this potential issue, two 

targets are created for each stock and model, each containing exclusively one of the two classes. 

A model that learns more actionable information from its inputs than the dominant class of the 
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training set needs to perform better on the test set than on both of those one-class mock targets 

when compared to the correct targets. 

Finally, the average accuracies for each model over all stocks are expressed as the 

standard method to assess the predictive power of each model. These accuracies do not, 

however, give an indication as to whether the predictions' variations are too large to be 

considered successful in the context of this paper. For this reason, the accuracies for the three 

baseline mock predictions are also given, as well as the lower bound of each confidence 

interval. In addition, the p-values for the predictions' accuracies via an upper-tail test are 

calculated for each of the three baselines and an additional baseline that contains the highest 

accuracy among the three baselines for each stock, i.e. for each model. The null hypothesis 𝐻0 

in each case is that the predictions' accuracies are not significantly larger than the 

corresponding baseline, with a very strict significance level of 𝛼 =  0.001. 

 

4. Results and Discussions 

4.1. Primary experiments 

In Panels A, B and C of Figure 7 we present box and whisker plots to visualise the 

results of the one-day, one-hour and half-hour gradient interval results respectively. For every 

experiment, the accuracies for the model and the baselines are given, as well as the p-values 

w.r.t. the means and the minimal difference for a 99.9% confidence interval. In Table 1 and 

subsequent tables, class 1 is the prediction that stock trends will change downwards, and class 

2 is the prediction that stock trends will change upwards. 

 

INSERT FIGURE 7 ABOUT HERE 

 

In Figure 7, Panel A shows that the accuracy of 56.02% listed in Panel A of Table 1 lies 

significantly above all baselines, both for the means as measured by the p-values and the 

medians as indicated by the box plots, with neither the notches nor the boxes themselves 

overlapping. The first and third quartiles are, however, spread wider for the accuracy of the 

model. Panel B (Figure 7) shows the plot for the one-hour gradient intervals. With an accuracy 

of 53.95%, the model's accuracies exhibit the same increased variability as for one-day 
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gradients, albeit at a smaller rate. The baselines' accuracies are centred more closely on 50% 

(see also Panel B of Table 1), which is consistent with the overall smaller spread of the 

accuracies for both the model and the baselines, trading accuracy for narrowness. Figure 7’s 

Panel C, showing the plot for the half-hour interval gradients suggests a model accuracy of 

51.70%. Firstly, the distribution of the model's accuracies is also skewed towards lower values, 

i.e. more variability above the median. Secondly, there appears to be a pattern emerging here 

when all three plots are considered together. The model accuracies are lower for smaller 

gradient time intervals. However, the narrower boxes for the baselines also imply that the 

quartile ranges of the accuracy values are narrower, evidencing decreasing variability as time 

intervals considered become shorter. 

 

INSERT TABLE 1 ABOUT HERE 

  

The usage of p-values for validation purposes has to be viewed with caution, as 

criticisms of their often incorrect use have risen in recent years. (see Wasserstein and Lazar, 

2016). Accordingly, the p-values presented in Table 1 are given in combination with other 

metrics such as the lower boundary for differences in means given a 99.9% confidence interval, 

notched box and whisker plots for median differences and quartile distributions, as well as 

accuracies for both the models on the one hand and the separate baselines on the other. In 

combination, these metrics deliver arguably strong evidence in support of the economic 

arguments implied in our hypothesis, i.e. that price series in historical stock market data contain 

time-shifted correlations that can be successfully exploited with deep-layered feedforward 

neural networks. This exploitation can result in above-baseline price trend predictions without 

even using the data of the target stock. 

Notably, larger time intervals for gradient calculations and predictions based on the 

latter result in higher average accuracies, but with a trade-off in the form of an increased spread 

of the accuracies, i.e. a larger variance. It therefore seems to be easier for the models to learn 

correlations between gradients and make corresponding predictions for larger time steps, 

although more volatility w.r.t. to the variance is incorporated. A natural explanation for these 

differences is the presence of more noise in short-time stock observations, indicating that noise 
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is smoothed out for regressions over larger intervals. Such noise events, such as bid-ask bounce, 

are microstructural in nature and are thus more prevalent in higher frequency data. 

Although our results are in direct contradiction to two of the well-established 

hypotheses in modern finance, the findings presented are not exactly far-fetched. While meta-

analyses should always be interpreted cautiously due to the possibility of publication biases, 

Park and Irwin (2004) find that a majority of the published research dealing with technical 

analysis for stock market prediction reports findings that indicate a critical view of the efficient 

market hypothesis in its strong form. As research on deep learning for time series-based stock 

market prediction is still very sparse, there are two existing studies that we can directly compare 

to this study; these are Takeuchi and Lee (2013) and Batres-Estrada (2015). Both papers use 

deep-layered neural network models for a binary month-wise trend prediction of target stocks, 

based on historical stock market data of the preceding 12 months, with resulting accuracies of 

53.36% and 52.89% respectively. A direct comparison is still an approximation, as this paper 

addresses the prediction of up- and downward changes in the trend gradient instead of the target 

gradient's sign, but the binary prediction of either targets is comparable in their perceived 

difficulty and exclusion by the efficient-market hypothesis and the random walk hypothesis. 

A further distinction of our study is the time frame on which the stock price predictions 

are based. This paper is based on one-day, one-hour and half-an-hour predictions instead of 

months as is the case with existing research. Focusing on higher frequency intervals is critical 

given the evolution of global financial markets in recent times, as trading now occurs in large 

volumes at sub-second frequencies and at much lower trade sizes (see Chordia et al., 2011). 

Thus, investment windows of even significantly large funds have shortened over time. 

Despite the more limited features (mainly price gradients) employed in this paper, the 

accuracies for one-day and one-hour predictions surpass both Takeuchi and Lee (2013) and 

Batres-Estrada (2015), who obtain 56.02% and 53.95% respectively. The approach we use in 

this paper also proves capable of extracting additional information in high-volatility scenarios 

with imbalanced trend targets, albeit with a higher variance in the levels of accuracy than in 

non-volatile market environments. In summary, our approach outperforms both examples of 

binary trend prediction using past stock market time series, without the utilisation of 

information about the target stock itself, since the aim is to show time-shifted correlations of 
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stock prices. It can therefore be inferred that our findings could potentially be applied for 

profitable stock trading.  

 

4.2. Complexity and volatile environments 

4.2.1. Results for models with bottlenecks 

In order to show the effect of bottlenecks sizes, the box plots for four cases are depicted 

in Figure 8. The models' accuracies, as shown in Table 2, significantly increase with the 

increases in bottleneck sizes, with the maximum (10 bottleneck nodes) resulting in an accuracy 

slightly below the full model without a bottleneck. The quartile ranges of the box plots, 

remaining approximately symmetrical, also increase with a higher number of bottleneck nodes. 

The inclusion of a bottleneck layer in the neural network model should hinder its performance, 

with the number of nodes forming the bottleneck being the deciding factor. However, if judged 

via the notches of the box plots, the step-wise increases from one to three, then five and finally 

ten nodes each time lead to a statistically significant rise in performance. While a one-node 

bottleneck results in an average accuracy of 51.07%, the result for a ten-node bottleneck, with 

55.03%, differs only by 0.99% from the accuracy of the same model and dataset without a 

bottleneck layer. 

 

INSERT FIGURE 8 AND TABLE 2 ABOUT HERE 

  

The possibility of the model not learning anything new after the introduction of 

bottleneck(s), i.e. the bottlenecked model performance being identical to a model with less 

hidden layers, has to be taken into account, but can be safely dismissed due to the accuracies 

for 3, 5 and 10 nodes being notably different from each other. The results suggest that a large 

portion of the information can be compressed in ten weighted variables half-way through the 

model, which gives a rough indication of the overall complexity of the prediction problem 

itself. 

 

4.2.2. Robustness in a crisis/high volatility environment 
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Figure 9 presents plots for accuracies computed in a high volatility/crisis environment. 

Table 3 also shows the key performance estimates for the same scenario. Specifically, the 

results are for the trading environment during the global financial crisis of 2007/2008. The 

results show a large spread of the accuracies for different stocks. Notably, the medians and 

mean accuracies for one-class predictions show that the price trends more often change 

downwards during this modelled volatile scenario. In addition, the distribution of the model's 

accuracies is also skewed below the median; for example, the accuracies are spread higher 

upwards from the median, and the interquartile ranges are wider than for non-crisis scenarios. 

 

INSERT FIGURE 9 AND TABLE 3 ABOUT HERE 

 

While the average accuracies for predicting exclusively down- or upwards trend 

changes do not differ by more than 0.9% for the primary experiments, this difference grows to 

11.90% for the crisis data. The model's high accuracy of 61.13% can be partly explained by 

this difference, as the mean accuracy for predicting exclusively negative gradient changes is 

55.95% for the model's predictions, as shown in Table 3. The latter results are consistent with 

the general downwards-oriented trend of the whole market during a financial crisis, when 

confidence in the economy is expected to have fallen. Nevertheless, the additional accuracy of 

the model, along with the accuracy of the randomised mock predictions being below the 

exclusive predictions for negative trend changes, demonstrates that the model is able to exploit 

existent correlations in high-volatility environments such as the 2007/2008 financial crisis 

period. Thus, our findings are robust in the presence of extreme market stress. 

 

5. Conclusion 

In this paper, we test the hypothesis that stock price data contains time-shifted 

correlations that can be successfully exploited through the application of deep-layered feed-

forward neural networks. Specifically, by using trend approximations as features (inputs) we 

can make higher than average price trend predictions without using the data of the target stock 

in the inputs. Our findings deliver evidence that there exists time-shifted correlations between 

the price behaviour of S&P 500 stocks. This finding contradicts the essence of the random walk 
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hypothesis and the semi-strong and strong forms of the efficient market hypothesis  while 

underscoring the viability of applying deep-layered neural networks for trend prediction in 

cross-correlated financial time series. Several robustness analytical steps are taken, including 

testing the model in an environment of extreme price volatility, all of which firmly support the 

primary findings that stock price data contains time-shifted correlations that can be successfully 

exploited. In addition, the levels of prediction accuracies we obtain for the S&P 500 stocks in 

our sample outperform the predefined baselines for strict statistical key performance indices. 

Furthermore, we find that predictions of one stock's trend changes based on other stocks' 

price trend gradients in the preceding time interval improves in accuracy for larger time 

intervals, with average and maximum accuracies of 56.02% and 63.95% respectively for one-

day predictions, all in excess of stated baseline predictions. The estimates retain large parts of 

their accuracy for a minimum of 10 nodes for mid-model bottleneck layers, and show equally 

above-baseline predictions in high-volatility market scenarios, albeit with the trade-off of a 

higher variance for different stocks. The large difference in accuracies for the model's 

predictions and the baselines cannot be explained by the shift to a skewed distribution in favour 

of negative trend changes, given that the training data does not contain such an imbalance. 

The findings in this paper has implications for modern finance theory. It delivers 

vigorous evidence against the random walk and efficient market hypotheses. However, the 

postulations of the efficient market hypothesis may be adapted to allow for the findings as 

presented here. While indeed all three forms of the efficient-market hypothesis are inconsistent 

with the evidence, tweaking the weak form of the efficient market hypothesis could lead to it 

being consistent with our findings. Specifically, this would be for a case where the hypothesis 

allows for prediction methods that reliably outperform the market and can only be implemented 

by a sufficiently small number of investors so as not to result in a new aggregate equilibrium 

for a typical modern economy. With a negligible amount of capital involved in the context of 

the whole market, some agents, such as select quantitative hedge funds or individuals, could 

consistently realise above-average returns, thus reducing the weak form efficient market 

hypothesis to a context-based version. A time-specific weak form efficient market hypothesis 

would in effect acknowledge that it does not apply to the overall market, but does for a majority 
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of the trading stakeholders due to restrictions regarding the methodology and the capital 

involved in deploying such strategies.  

Finally, the results in this paper demonstrate the value of deep learning approaches to 

econometrics and show the utility of linear regression derivatives as features for time series-

based investigations, thus offering a simple trend indicator with a high predictive value in order 

to further the understanding of highly complex time series correlations.
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Figure 1: Feedforward neural network with no hidden layers 

The depicted model features four nodes in the input layer, i.e. four input variables, and one 

node in the output layer. Subject to the weights of the connections between the nodes, this 

model therefore implements a classic linear regression. 
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Figure 2: The sigmoid function 

The non-linear nature of the sigmoid that allows for a more differentiated output than, e.g. a 

binary Heaviside step function, as well as the sufficient approximation of biological neuron’s 

firing behaviour, are primary reasons to use it for neural network models. 
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Figure 3: Feedforward neural network with one hidden layer 

As opposed to Figure 2, which also shows four input nodes, the depicted model features an 

additional hidden layer with three nodes for a more complex information extraction, and two 

output nodes, e.g. for a binary classification task. 
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Figure 4: Head-and-shoulders pattern in stock market data 

Head-and-shoulders pattern in stock market data is not a mathematically developed decision 

aid. However, the pattern is widely used by technical analysts as a guideline for investments, 

as it is perceived to follow a predictable scheme as a rule-of-thumb within the stock market. 
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Figure 5: Model setup for the experiments 

A simple linear regression is performed on each time step for each stock’s price series, and the 

first derivative of the resulting regression is then taken as a trend strength indicator. For a 

respective stock, all stock’s gradients for the preceding time step except for information about 

the target stock are then used as input features for a feed-forward artificial neural network with 

5 hidden layers and two output nodes for a binary classification task. The model is then, with 

separate experiments for each stock, trained to predict the up- or downward change of the target 

stock’s trend gradient in the next time step. 
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Figure 6: Model with a one-neuron bottleneck layer 

The depicted model inserts a one-node bottleneck in a deep feed-forward neural network model 

for binary classification. The reason for this insertion is to force the model to learn a goal-

oriented reduction of the model’s information by “squeezing” the necessary information 

through a narrow representation mid-way. 
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Figure 7: Notched box-and-whiskers plots for accuracies over time intervals 

The Figure shows the notched box-and-whiskers plots for accuracies of various time intervals. 

Panels A, B and C presents the plots for one day, one hour and half-hour intervals respectively. 

A statistically significant difference in means at 95% confidence is indicated if notches are 

non-overlapping. The lower and upper ends of a box indicate the first and third quartile, while 

the median is depicted as a horizontal bar. The whiskers show the lowest and highest data point 

that is within 1.5-times the interquartile range of the first and third quartile: 

  〖whisker〗_upper  = min(max(data)  ,Q_3+1.5⋅(Q_1-Q_3 )) 

  〖whisker〗_lower  = max(min(data)  ,Q_1-1.5⋅(Q_1-Q_3 )) 

Outliers are shown above or below the whiskers, and non-overlapping notches for two boxes 

indicate a statistically significant median difference at 95% confidence. Welch's t-test is used 

to achieve a higher reliability for unequal variances. 

Here, class 1 is the prediction that stock trends will change downwards, and class 2 is the 

prediction that stock trends will change upwards, whereas randomised represents the same 

prediction distribution as the model’s predictions sampled randomly in order to test for simple 

distribution learning. The best-of features the respective highest accuracy of the three baselines, 

i.e. class 1, class 2 and randomised to result in a fourth baseline that is, by default, at least 50%. 

 

Panel A 
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Figure 8: Notched box-and-whiskers plots for accuracies for different bottleneck sizes 

within a feed-forward neural network model 

A statistically significant difference in means at 95% confidence is indicated if notches are 

non-overlapping. As can be seen from the figure, the accuracy rises significantly with each of 

the increments in the respective bottleneck’s size, with a reduction of the model’s information 

to 10 variables nearly reaching the accuracy of a model without a bottleneck. 
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Figure 9: Notched box-and-whiskers plots for accuracies in a high-volatility scenario 

A statistically significant difference in means at 95% confidence is indicated if notches are 

non-overlapping. Here, class 1 is the prediction that stock trends will change downwards, and 

class 2 is the prediction that stock trends will change upwards, whereas randomised represents 

the same prediction distribution as the model’s predictions sampled randomly in order to test 

for simple distribution learning. The best-of features the respective highest accuracy of the 

three baselines, i.e. class 1, class 2 and randomised to result in a fourth baseline that is, by 

default, at least 50%. 
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Table 1: Statistical KPIs for various time intervals 

449 S&P 500 stocks are used to predict directional trend changes for each stock, with only the 

respective other 448 stocks’ trends from the preceding time interval as input features. In the 

table, accuracies, p-values and the minimal difference w.r.t. the significant difference in means 

are given. Class 1 is the prediction that stock trends will change downwards, and class 2 is the 

prediction that stock trends will change upwards, whereas randomised represents the same 

prediction distribution as the model’s predictions sampled randomly to test for simple 

distribution learning. The best-of features the respective highest accuracy of the three baselines, 

i.e. class 1, class 2 and randomised to result in a fourth baseline that is, by default, at least 50%. 

Panels A, B and C presents the estimates for one day, one hour and half-hour intervals 

respectively. 

 

Panel A 

accuracies of predictions 

model randomised class 1 class 2 best-of 

~ 0.5602 ~ 0.5002 ~0 .4955 ~ 0.5045 ~ 0.5092 

tests against baselines 

 randomised class 1 class 2 best-of 

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 

min. diff. ~ 0.0599 ~ 0.0607 ~ 0.0518 ~ 0.0471 

 

Panel B 

accuracies of predictions 

model randomised class 1 class 2 best-of 

~ 0.5395 ~ 0.5008 ~ 0.4973 ~ 0.5027 ~0.5043 

tests against baselines 

 randomised class 1 class 2 best-of 

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 

min. diff. ~ 0.0356 ~ 0.0392 ~ 0.0338 ~ 0.0322 

 

Panel C 

accuracies of predictions 

model randomised class 1 class 2 best-of 

~ 0.5170 ~ 0.5011 ~ 0.4979 ~ 0.5021 ~0.5030 
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tests against baselines 

 randomised class 1 class 2 best-of 

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 

min. diff. ~ 0.0137 ~ 0.0169 ~ 0.0127 ~ 0.0118 

Table 2: Statistical KPIs for different bottleneck sizes 

449 S&P 500 stocks were used to predict directional trend changes for each stock, with only 

the respective other 448 stocks’ trends from the preceding time interval as input features. The 

accuracy rises with each of the increments in the respective bottleneck’s size, with a reduction 

of the model’s information to 10 variables nearly reaching the accuracy of a model without a 

bottleneck, i.e. no forced compression. 

 

accuracies of predictions 

1 node 3 nodes 5 nodes 10 nodes no bottleneck 

~ 0.5107 ~ 0.5309 ~ 0.5395 ~ 0.5503 ~0.5602 
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Table 3: Statistical KPIs for high-volatility environments 

449 of the S&P 500 stocks were used to predict directional trend changes for each stock, with 

only the respective other 448 stocks’ trends from the preceding time interval as input features. 

In the table, accuracies, p-values and the minimal difference w.r.t. the significant difference in 

means are given. Class 1 is the prediction that stock trends will change downwards, and class 

2 is the prediction that stock trends will change upwards, whereas randomised represents the 

same prediction distribution as the model’s predictions sampled randomly to test for simple 

distribution learning. The best-of features the respective highest accuracy of the three baselines, 

i.e. class 1, class 2 and randomised to result in a fourth baseline that is, by default, at least 50%. 
 

accuracies of predictions 

model randomised class 1 class 2 best-of 

~ 0.6113 ~ 0.5301 ~ 0.4405 ~ 0.5595 ~0.5607 

tests against baselines 

 randomised class 1 class 2 best-of 

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 

min. diff. ~ 0.0677 ~ 0.1589 ~ 0.0399 ~ 0.0388 
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Appendix A 

Main function for the substitution of missing instances: 

# Function to account for missing time stamps 

missinginstances <- function(data, stocks.num, valid.times, ) { 

  data.list <- list(); 

  for(i in 1:stocks.num) { 

    data.list[[i]] <- data[(data$X.RIC == unique.ric[i]), ]; 

  } 

  count.list <- list(); 

  for(i in 1:stocks.num) { 

    count.list[[i]] <- data.list[[i]]$Time.L.[1]; 

  } 

  count.wrong <- unlist(count.list); 

  count.wrong <- which(count.wrong != valid.times[1]); 

  for(i in count.wrong) { 

    data.start <-  

        as.integer(substring(data.list[[i]]$Time.L.[1], 1, 2)); 

    valid.start <- as.integer(substring(valid.times[1], 1, 2)); 

    start.diff <- data.start - valid.start; 

    data.list[[i]][(1 + start.diff):(dim(data.list[[i]])[1]  

        + start.diff), ]  

        <- data.list[[i]][1:dim(data.list[[i]])[1], ]; 

    for(j in 1:start.diff) { 

      data.list[[i]][j, ] <- data.list[[i]][(1 + start.diff), ] 

      data.list[[i]]$Time.L.[j] <- valid.times[j]; 

    } 

  } 

  for(i in 1:stocks.num) { 

    data.list[[i]] <- fillinstances(data.list[[i]], valid.times); 

    data.list[[i]] <- na.omit(data.list[[i]]); 
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  } 

  return(data.list); 

} 

 

Auxiliary function for missinginstances(): 

# Function to detect and fill missing instances 

fillinstances <- function(data, valid.times) { 

  ruler <- dim(data)[1]; 

  input.length <- ruler; 

  data <- rbind(data, data); 

  data.length <- dim(data)[1]; 

  data$Type[(input.length + 1):data.length] <- NA; 

  times <- data$Time.L.; 

  times.new <- rep(valid.times, length.out=input.length); 

  id.times <- FALSE; 

  while(!(id.times == TRUE)) { 

    loc.diff <- min(which((times == times.new) == FALSE)); 

    if((loc.diff == Inf) || is.na(data$Type[loc.diff])) { 

      id.times <- TRUE; 

    } else { 

      data[(loc.diff + 1):(ruler + 1), ] <- data[loc.diff:ruler, ]; 

      hold.time <- times.new[loc.diff]; 

      if(data$X.RIC[loc.diff] == data$X.RIC[loc.diff - 1]) { 

        data[loc.diff, ] <- data[loc.diff - 1, ]; 

      } else { 

        data[loc.diff, ] <- data[loc.diff + 1, ]; 

      } 

      data$Time.L.[loc.diff] <- hold.time; 

      ruler <- ruler + 1; 

      times <- data$Time.L.; 
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    } 

  } 

  data <- data[1:(min(which(is.na(data$Type))) - 1), ]; 

  data <- data[, !(names(data) %in% 'Type')]; 

  return(data); 

} 

 

Input explanation: 

Data is a matrix without NA values containing a dataset with a structure as described in Section 

3.1.2. stocks.num is the number of unique stocks represented in data, and valid.times is a vector 

of valid successive time stamps of the same length as the number of rows in data. The output 

of missinginstances() is a list with one list place for each unique stock in data that contain 

matrices that can be aligned perfectly. 
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Appendix B 

Reuters Instrument Codes for the primary and bottleneck experiments: 

AA.N  AAPL.OQ AAP.N  ABC.N  ABT.N  ACN.N 

ADBE.OQ ADM.N  ADP.OQ ADSK.OQ ADS.N  AEE.N 

AEP.N  AES.N  AET.N  AFL.N  AIG.N  AIV.N 

AIZ.N  AKAM.OQ ALL.N  ALXN.OQ AMAT.OQ AME.N 

AMG.N  AMGN.OQ AMP.N  AMT.N  AMZN.OQ A.N 

AN.N  AON.N  APA.N  APC.N  APD.N  APH.N 

ARG.N  ATVI.OQ AVB.N  AVGO.OQ AVY.N  AWK.N 

AXP.N  AZO.N  BAC.N  BA.N  BAX.N  BBBY.OQ 

BBT.N  BBY.N  BCR.N  BDX.N  BEN.N  Bfb.N 

BHI.N  BIIB.OQ BK.N  BLK.N  BLL.N  BMY.N 

BRKb.N  BSX.N  BWA.N  BXP.N  CAG.N  CAH.N 

CA.OQ  CAT.N  CBG.N   CB.N  CBS.N  CCE.N 

CCI.N  CCL.N  CELG.OQ CERN.OQ CF.N  CHD.N 

CHK.N  CHRW.OQ CI.N  CINF.OQ CL.N  CLX.N 

CMA.N  CMCSA.OQ CME.OQ CMG.N  CMI.N  CMS.N 

C.N  CNC.N  CNP.N  COF.N  COG.N  COH.N 

COL.N  COP.N  COST.OQ CPB.N  CRM.N  CSCO.OQ 

CTAS.OQ CTL.N  CTSH.OQ CTXS.OQ CVC.N  CVS.N 

CVX.N  CXO.N  DAL.N  DD.N  DE.N  DFS.N 

DG.N  DGX.N  DHI.N  DHR.N  DISCA.OQ DISCK.OQ 

DIS.N  DLTR.OQ D.N  DNB.N  DO.N  DOV.N 

DOW.N  DPS.N  DRI.N  DTE.N  DUK.N  DVA.N 

DVN.N  EBAY.OQ ECL.N  ED.N  EFX.N  EIX.N 

EL.N  EMC.N  EMN.N  EMR.N  ENDP.OQ EOG.N 

EQIX.OQ EQR.N  EQT.N  ESRX.OQ ESS.N  ETFC.OQ 

ETN.N  ETR.N  EW.N  EXC.N  EXPD.OQ EXPE.OQ 

EXR.N  FAST.OQ FCX.N  FDX.N  FE.N  FFIV.OQ 

FIS.N  FISV.OQ FITB.OQ FLIR.OQ FL.N  FLR.N 

FLS.N  FMC.N  F.N  FRT.N  FSLR.OQ FTI.N 

GD.N  GE.N  GGP.N  GILD.OQ GIS.N  GLW.N 

GME.N  GM.N  GOOG.OQ GPC.N  GPN.N  GPS.N 

GRMN.OQ GS.N  GWW.N HAL.N  HAR.N  HAS.OQ 

HBAN.OQ HBI.N  HCA.N  HCN.N   HCP.N  HD.N 

HES.N  HIG.N  HOG.N  HOLX.OQ HON.N  HOT.N 
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HP.N  HPQ.N  HRB.N  HRL.N  HRS.N  HSIC.OQ 

HST.N  HSY.N  HUM.N  IBM.N  ICE.N  IFF.N 

ILMN.OQ INTC.OQ INTU.OQ IPG.N  IP.N  IRM.N 

IR.N  ISRG.OQ ITW.N  IVZ.N  JBHT.OQ JCI.N 

JEC.N  JNJ.N  JNPR.N  JPM.N  JWN.N  KEY.N 

KIM.N  KLAC.OQ KMB.N  KMI.N  KMX.N  K.N 

KO.N  KR.N  KSS.N  KSU.N  LEG.N  LEN.N 

LH.N  LLL.N  LLTC.OQ LLY.N  LM.N  LMT.N 

L.N  LNC.N  LOW.N  LRCX.OQ LUK.N  LUV.N 

LYB.N  MAC.N  MA.N  MAS.N  MAT.OQ MCD.N 

MCHP.OQ MCK.N  MCO.N  MDT.N  MET.N  MHK.N 

MJN.N  MKC.N  MLM.N  MMC.N  MMM.N M.N 

MO.N  MON.N  MOS.N  MRK.N  MRO.N  MSFT.OQ 

MSI.N  MS.N  MTB.N  MU.OQ  MUR.N  MYL.OQ 

NBL.N  NDAQ.OQ NEE.N  NEM.N  NFLX.OQ NFX.N 

NI.N  NKE.N  NLSN.N NOC.N  NOV.N  NRG.N 

NSC.N  NTAP.OQ NTRS.OQ NUE.N  NVDA.OQ NWL.N 

NWSA.OQ NWS.OQ OI.N  OKE.N  OMC.N  O.N 

ORLY.OQ OXY.N  PAYX.OQ PBCT.OQ PBI.N  PCAR.OQ 

PCG.N  PCLN.OQ PDCO.OQ PEG.N  PEP.N  PFE.N 

PFG.N  PG.N  PHM.N  PH.N  PKI.N  PLD.N 

PM.N  PNC.N  PNR.N  PNW.N  PPG.N  PPL.N 

PRU.N  PSA.N  PVH.N  PWR.N  PXD.N  PX.N 

QCOM.OQ RAI.N  RCL.N  RF.N  RHI.N  RHT.N 

RIG.N  RL.N  R.N  ROK.N  ROP.N  ROST.OQ 

RRC.N  RSG.N  RTN.N  SBUX.OQ SCG.N  SCHW.N 

SEE.N  SE.N  SHW.N  SIG.N  SJM.N  SLB.N 

SLG.N  SNA.N  SNDK.OQ SO.N  SPG.N  SPLS.OQ 

SRCL.OQ SRE.N  STI.N  STJ.N  STT.N  STX.OQ 

STZ.N  SWK.N  SWKS.OQ SWN.N  SYK.N  SYMC.OQ 

SYY.N  TAP.N  TDC.N  TEL.N  TE.N  TGT.N 

TIF.N  TJX.N  TMK.N  TMO.N  T.N  TROW.OQ 

TRV.N  TSCO.OQ TSN.N  TSO.N  TSS.N  TWC.N 

TWX.N  TXT.N  TYC.N  UAL.N  UA.N  UDR.N 

UHS.N  ULTA.OQ UNH.N  UNM.N  UNP.N  UPS.N 

URBN.OQ URI.N  USB.N  UTX.N  VAR.N  VFC.N 
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VLO.N  VMC.N  V.N  VNO.N  VRSK.OQ VRSN.OQ 

VRTX.OQ VTR.N  VZ.N  WAT.N  WEC.N  WFC.N 

WHR.N  WMB.N  WM.N  WMT.N  WU.N  WY.N 

WYN.N  WYNN.OQ XEC.N  XEL.N  XL.N  XOM.N 

XRAY.OQ XRX.N  YHOO.OQ YUM.N  ZION.OQ 

 

 

 

Reuters Instrument Codes for the high-volatility experiments: 

AA.N  AAP.N  ABC.N  ABT.N  ACN.N  ADM.N 

ADS.N  AEE.N  AEP.N  AES.N  AET.N  AFL.N 

AGN.N  AIG.N  AIV.N  ALL.N  AME.N  AMG.N 

AMT.N  A.N  AN.N  APA.N  APC.N  APD.N 

APH.N  ARG.N  AVB.N  AVY.N  AXP.N  AZO.N 

BAC.N  BA.N  BAX.N  BBT.N  BBY.N  BCR.N 

BDX.N  BEN.N  Bfb.N  BHI.N  BK.N  BLK.N 

BLL.N  BMY.N  BRKb.N  BSX.N  BWA.N  BXP.N 

CAG.N  CAH.N  CAT.N  CB.N  CCE.N  CCI.N 

CCL.N  CHD.N  CHK.N  CI.N  CL.N  CLX.N 

CMA.N  CMS.N  C.N  CNP.N  COF.N  COG.N 

COH.N  COL.N  COP.N  CPB.N  CTL.N  CVC.N 

CVS.N  CVX.N  DD.N  DE.N  DGX.N  DHI.N 

DHR.N  DIS.N  D.N  DNB.N  DO.N  DOV.N 

DOW.N  DRI.N  DTE.N  DUK.N  DVA.N  ECL.N 

ED.N  EFX.N  EIX.N  EL.N  EMC.N  EMN.N 

EMR.N  EOG.N  EQR.N  EQT.N  ESS.N  ETN.N 

ETR.N  EW.N  EXC.N  FCX.N  FDX.N  FE.N 

FLR.N  FLS.N  FMC.N  F.N  FRT.N  FTI.N 

GAS.N  GD.N  GE.N  GIS.N  GLW.N  GME.N 

GM.N  GPC.N  GPN.N  GPS.N  GS.N  GWW.N 

HAL.N  HAR.N  HCN.N  HCP.N  HD.N  HIG.N 

HON.N  HOT.N  HP.N  HPQ.N  HRB.N  HRL.N 

HRS.N  HSY.N  HUM.N  IBM.N  IFF.N  IPG.N 

IP.N  IRM.N  IR.N  ITW.N  JCI.N  JEC.N 

JNJ.N  JPM.N  JWN.N  KEY.N  KIM.N  KMB.N 

KMX.N  K.N  KO.N  KR.N  KSS.N  KSU.N 
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LEG.N  LEN.N  LH.N  LLL.N  LLY.N  LM.N 

LMT.N  LNC.N  LOW.N  LUK.N  LUV.N  MAC.N 

MAS.N  MCD.N  MCK.N  MCO.N  MDT.N  MET.N 

MHK.N  MKC.N  MLM.N  MMC.N  MMM.N MO.N 

MON.N  MRK.N  MRO.N  MTB.N  MUR.N  NBL.N 

NEM.N  NFX.N  NI.N  NKE.N  NOC.N  NSC.N 

NUE.N  NWL.N  OI.N  OKE.N  OMC.N  O.N 

OXY.N  PBI.N  PCG.N  PEG.N  PEP.N  PFE.N 

PFG.N  PG.N  PGR.N  PHM.N  PH.N  PKI.N 

PLD.N  PNC.N  PNR.N  PNW.N  PPG.N  PPL.N 

PRU.N  PSA.N  PVH.N  PWR.N  PXD.N  PX.N 

RCL.N  RF.N  RHI.N  RIG.N  RL.N  R.N 

ROK.N  ROP.N  RRC.N  RSG.N  RTN.N  SCG.N 

SEE.N  SHW.N  SJM.N  SLB.N  SLG.N  SNA.N 

SO.N  SPG.N  SRE.N  STI.N  STJ.N  STT.N 

 


