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Abstract: Light scalar fields can naturally couple disformally to matter fields. Static,

non-relativistic sources do not generate a classical field profile for a disformally coupled

scalar, and so such scalars are free from the constraints on the existence of fifth forces that

are so restrictive for conformally coupled scalars. In this work we show that disformally

coupled scalars can still be studied and constrained through their microscopic interactions

with fermions and photons, both in terrestrial laboratories and from observations of stars.

The strongest constraint on the coupling scale comes from mono-photon searches at the

LHC and requires M & 102 GeV.
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1. Introduction

Are we allowed to introduce a new light scalar field [1] that couples to matter [2]? For

conformally coupled scalar fields, the answer to this question appears to be “yes, but with

difficulty”. If a scalar field has a canonical kinetic term, and its potential consists only of

a mass term, then experimental searches for fifth forces severely constrain the existence

of a minimal coupling to matter [3]. These constraints can be alleviated through screen-

ing mechanisms that introduce non-linear, higher order operators (that can be radiatively

stable) but the cost is a more baroque scalar sector. Disformal couplings present an inter-

esting alternative; such a coupling does not (classically) result in a force between static,

non-relativistic objects and therefore is not constrained by the fifth force experiments that

are so restrictive for conformal couplings.

Disformal interactions were first discussed by Bekenstein [4], who showed that the most

general metric that can be constructed from gµν and a scalar field that respects causality

and the weak equivalence principle is;

g̃µν = A(φ,X)gµν +B(φ,X)∂µφ∂νφ , (1.1)

where the first term gives rise to conformal couplings between the scalar field and matter,

and the second term is the disformal coupling. Here X = (1/2)gµν∂µφ∂νφ. The disformal

interactions give rise to Lagrangian interaction terms of the form

L ⊃ 1

M4
∂µφ∂νφT

µν . (1.2)

where Tµν is the energy momentum tensor of matter fields. As is clear from Equation

(1.2) a disformal coupling occurs through a high mass dimension operator, however if the

scalar field possesses a shift symmetry then this is the lowest order operator we can write

down which respects Lorentz invariance. This direct coupling between derivatives of φ and

the energy-momentum of matter is such that the matter density T 00 only couples to time

derivatives of φ. As a result the scalar field is not sourced by a static pressureless perfect

fluid. However, quantum effects are still present and a new force mediated by the scalar

field appears at the one loop level [5, 6]; we will examine this force in detail in Section 4.

Operators of even higher order than those in Equation (1.2) can be generated by quantum

corrections. Those involving additional derivatives of ∂µφ give rise to terms in the equation

of motion that have more than two derivatives per field and thus are expected to give rise

to ghost degrees of freedom. Such terms are suppressed by the cut off of the effective field

theory which we expect to lie above the scale M . Other higher order operators contain

the same ∂φ∂φT combination, and remain small compared to the term in Equation (1.2)

if (∂φ) < M2.

Various order of magnitude bounds on the strength of the disformal coupling were

discussed in [6] the strongest of which was M & 200 GeV from requiring the theory to give

a unitary description of electron positron collisions at the LEP collider. In Section 3 we will

show that the cross section for two fermions annihilating into two scalars takes a different

form to that considered in [6], and that therefore unitarity at LEP requires a much weaker
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bound on M . Our aim in this work is to determine the best current constraints on the

scale M . A variety of observational probes of disformal couplings have also been previously

considered: The disformal interactions of scalars with photons can be probed in laboratory

experiments [7]. In models motivated by Galileon theories and massive gravity, constraints

have been put on the disformal interactions from studying gravitational lensing and the

velocity dispersion of galaxies [8, 9]. A disformally coupled Galileon has been shown to fit

current cosmological observations and a non-zero disformal coupling seems to be marginally

preferred [10]. Other cosmological implications of disformal scalars have been considered

in [11–15]. Disformal interactions have been shown to arise in the four dimensional effective

theory resulting from various brane world scenarios [16, 17], in branon models [18, 19] and

in theories of massive gravity [20,21].

In this work we determine the constraints imposed on disformal scalars by consider-

ing the microscopic interactions between scalars, fermions and photons. We will find that

constraints on the disformal coupling can be imposed by a wide ranging array of labo-

ratory experiments and astrophysical observations. In the first section, we introduce the

disformal coupling and show the absence of any classical effect in the presence of dense

and non-relativistic matter. In Section 3 we consider the constraints imposed on the the-

ory by requiring unitary evolution in particle colliders, and then bound the theory with

the null results of mono-lepton searches for new physics at the LHC. Then in Section 4,

we investigate the quantum effects and rederive the force between two fermions due to a

scalar loop. This force is strongest at short distances therefore in Section 5 we study the

macroscopic effects of the disformal interaction and consider the disformal Casimir-Polder

interaction between one fermion and a plate, and the disformal Casimir effect. In Section

6 the one loop force is applied to atomic transitions in hydrogen-like atoms where the

disformal interaction changes the atomic energy levels. We also calculate the cross section

in the scattering between non-relativistic neutrons and rare gases in Section 7. We then

check in Section 8 that the disformal interaction does not lead to a fatal increase in the

burning rate of stellar structures. We conclude and summarize the constraints in Section

9.

2. Disformally Coupled Scalar Fields

2.1 Effective Action

As discussed in the introduction a disformal coupling between matter and a scalar field, φ,

arises because in the Einstein frame matter fields move on geodesics of a metric g̃µν that

depends on the scalar field. We consider a disformal scalar field defined by the following

action:

S =

∫
d4x
√
−g
(
R

2κ2
4

− 1

2
(∂φ)2

)
+ Sm(ψi, g̃µν) , (2.1)

where the metric is

g̃µν = gµν +
2

M4
∂µφ∂νφ . (2.2)
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This is not the most general scalar metric as given by Bekenstein in Equation (1.1), however

it describes all the leading order effects of disformal couplings, and is much simpler to work

with. The coupling scale M is constant and unknown and should be fixed by observations.

The metric g̃µν is the Jordan frame metric with respect to which matter is conserved

[12] (this follows from diffeomorphism invariance of Sm):

D̃µT̃
µν = 0 , (2.3)

where the Jordan frame energy momentum tensor is

T̃µν =
2√
−g̃

δSm
δg̃µν

. (2.4)

The Einstein frame energy-momentum for matter is Tµν = (2/
√
−g)(δSm/δgµν).

2.2 Absence of Tree Level Interactions with Static Non-Relativistic Sources

The disformal coupling induces interactions between the scalar field and matter at all orders

in 1/M4. The first order interaction reads

S(1) =
1

M4

∫
d4x
√
−g∂µφ∂νφTµν . (2.5)

Higher order terms are simply obtained by iteration

S(n) =
1

M4n

∫
d4x
√
−gCα1β1...αnβn

(n) (∂α1φ∂β1φ) . . . (∂αnφ∂βnφ) , (2.6)

where we have identified the tensor

Cα1β1...αnβn
(n) =

2n√
−g

δnSm(ψi, g̃µν)

δgα1β1 . . . δgαnβn

∣∣∣∣
g̃µν=gµν

, (2.7)

or equivalently

Cα1β1...αnβn
(n) =

2n−1

√
−g

∂n−1(
√
−gTα1β1)

∂gα2β2 . . . ∂gαnβn

∣∣∣∣
g̃µν=gµν

. (2.8)

For non-relativistic matter, we have

Tµν = ρuµuν , (2.9)

where ρ is the matter density (which is a delta function for matter particles) and the

velocity 4-vector is uµ = dxµ/dτ where the proper time is dτ = (−gµνdxµdxν)1/2. At

second order we find that

Cα1β1α2β2
(2) = (gα1β1 + 2uα1uβ1)Tα2β2 , (2.10)

and by iteration, we find that all the higher order tensors are proportional to Tµν . As a

result, in static situations where u0 = 1, ui = 0 and φ̇ = 0 we find that all the disformal

terms vanish S(n) = 0. This implies that the scalar field does not mediate any classical

interaction between matter particles. For instance, one does not expect any interaction

between test particles in a static laboratory experiment. This is not the case at the quantum

level, and this is what we turn to now.
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2.3 Interactions with Fermions

In what follows we will restrict ourselves to the leading order effects of the disformal

coupling between the scalar field and matter, and so calculate only to leading order in

1/M4. To this order the action can be expanded as

S =

∫
d4x
√
−g
(
R

2κ2
4

− 1

2
(∂φ)2 +

1

M4
∂µφ∂νφT

µν

)
+ Sm(ψi, gµν) . (2.11)

where Tµν is now the Einstein frame energy-momentum tensor for matter.

In this paper we will focus in detail on the microscopic interactions between the scalar

field and fermions, for which we first need to determine the interaction vertex. A fermion

field in the Jordan frame is characterized by the action

SF = −
∫
d4x
√
−g̃[iψ̄γ̃µD̃µψ +mψψ̄ψ] , (2.12)

where the Dirac matrices and the covariant derivatives are those corresponding to g̃µν . The

associated Einstein frame energy momentum tensor is given by

Tµνψ = − i
2

[ψ̄γ(µDν)ψ −D(µψ̄γν)ψ] , (2.13)

where indices have been symmetrised and we have taken the fermions to be on-shell. There-

fore the Einstein frame scalar action contains a disformal interaction with the fermions of

the form:

Sφ ⊃ −
∫
d4x

i

2M4
∂µφ∂νφ[ψ̄γ(µDν)ψ −D(µψ̄γν)ψ] . (2.14)

In static situations where the scalar field profile is non-trivial, this implies a modification

of the fermion dispersion relation [22] and superluminal effects1. Here we are interested

in the quantum properties of this interaction. They can be deduced from the interaction

vertex shown in Figure 1:

V = − 1

4M4
ū(p2)[(k.p1) /k′ + (k′.p1)/k + (k.p2) /k′ + (k′.p2)/k]u(p1) , (2.15)

where p1,2 are the four-momenta of the external fermions.

We now summarize our conventions for the following calculations: We take external

Dirac fermions to be normalized such that∑
s

ūs(p)ūs(p) = −/p+ imψ , (2.16)

where the sum is over the spins ±1/2. We chose the γ matrices to be in the Dirac repre-

sentation corresponding to the mostly plus signature (−+ ++)

γ0 = i

(
I2 0

0 −I2

)
, γi = i

(
0 −σi

σi 0

)
, (2.17)

1An analogue of Hawking’s chronology protection conjecture is expected to apply to prevent the forma-

tion of closed time-like curves. For further discussion we refer the reader to [23,24]
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p1

p2

k k′

V

Figure 1: The disformal interaction vertex connecting two fermions (solid lines) and two scalars

(dashed lines).

where I2 is the two dimensional identity matrix and the σi’s are the Pauli matrices. This

will be convenient when taking the non-relativistic limit of various interactions.

In the non-relativistic limit, we have

us =
√

2mψ

(
ψs
ψ̃s

)
, (2.18)

where ψ̃ = − σ.p
mψ

ψ, the 3-momentum of the fermion is pi, and ψs is the non-relativistic

wave function of a spin 1/2 fermion. Notice that in this limit we have
∑

s ūs(p)ūs =

mψTr(iI4 + γ0) = 2imψ, where I4 is the 4-dim identity matrix, where the last equality

holds for the non-relativistic wave function of the spin 1/2 fermions.

3. Collider Constraints

The interaction vertex shown in Figure 1 allows a fermion and an anti-fermion to annihilate

into two scalars, such interactions typically occur in particle colliders, and the null results

of searches for beyond the standard model physics can be used to constrain the disformal

interaction. On purely dimensional grounds the cross section for this interaction can be

expected to take the form

σ ∼ α1
E6

M8
+ α2

E4m2

M8
+ . . . (3.1)

where E is the center of mass energy, m is the mass of the fermions, and αi are dimensionless

coefficients. In [6] it was assumed that the leading term in Equation (3.1) would be the

dominant contribution to the cross section, and as a result it was estimated that requiring

unitarity for electron-positron collisions at the LEP collider imposes M & 200 GeV. Here

we show that in fact α1 = 0 and therefore the unitarity constraints on the disformal

coupling scale are weaker than previously thought.

The scattering amplitude corresponding to Figure 1 is

|M|2 =
1

16M8
Tr[ /X(−/p1

+ im) /X(−/p2
+ im)] , (3.2)

where Xµ = (k · p1)k′µ + (k′ · p1)kµ + (k · p2)k′µ + (k′ · p2)kµ. We work in the center

of mass frame where the incoming fermions have four-momenta p1 = (E,
√
E2 −m2~z)
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and p2 = (E,−
√
E2 −m2~z) and the corresponding scalar momenta are k = (E, ~q) and

k′ = (E,−~q), where ~q2 = E2 and ~z is a unit vector. We find that the structure of the

vector Xµ leads to a cancellation amongst the terms that are independent of the fermion

mass and as a result we find

|M|2 =
8m2E6

M8
. (3.3)

The corresponding cross section is

σ =
m2E4

πM8
√

1− m2

E2

. (3.4)

At energies higher than the fermion mass the square root can be expanded to put this

expression into the form of Equation (3.1), and identify α1 = 0 and α2 = 1/4π.

3.1 Unitarity

Clearly the cross section in Equation (3.4) diverges as the energy of the interaction is

increased, leading to a violation of unitarity. Particle interactions have been observed to

be unitary all the way up to the TeV scale energies probed by the LHC, therefore we

require that M . 16π for all observable interactions. With the scattering amplitude of

Equation (3.3) we can update the unitarity bounds from LEP; the collider reached energies

of 209 GeV when colliding electrons and positrons, for the disformal contribution to these

interactions to be unitary we must impose:

M & 3 GeV . (3.5)

The LHC now reaches significantly higher energies than were accessible at LEP. Making

the conservative assumptions that the most common interactions involve up and down

quarks with energies ∼ 2 Tev then we find that unitarity requires

M & 30 GeV . (3.6)

Clearly the bounds on M can be increased if heavier particles, or higher energy collisions

are considered.

3.2 Constraints from Searches for Beyond the Standard Model Physics

The annihilation of two fermions into two scalars is difficult to detect in a particle collider.

The scalars do not decay inside the detector, and therefore we must search for a missing

energy signal. This is particularly difficult to extract from a hadron collider such as the

LHC where searches rely on an observable trigger to identify an event. In searches at the

ATLAS and CMS detectors fermion annihilation into undetectable particles is searched

for in events where one of the incoming fermions radiates a gluon, or a jet, referred to as

mono-jet searches, or a W boson prior to the collision. The W boson is assumed to decay

into a lepton and it associated neutrino, and therefore these are known as mono-lepton

searches. The limit from mono-jet searches are very sensitive to the analysis cuts made by

ATLAS and CMS, and as these cuts are done with the aim of constraining the production
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of WIMP dark matter particles in fermion annihilation it is unclear how to translate these

bounds into constraints on disformal scalars.

Mono-lepton searches are more easily applied to disformal scalars. The results of

searches for new physics in the final states with an electron or a muon was reported by

the CMS collaboration in Reference [25] following the strategy of Reference [26]. The

cross section for such a process, when the interaction is spin and flavour independent, is

constrained to be

σ < 0.3 pb , (3.7)

for light scalars. The most common interactions involve up and down quarks, and assuming

that the energy carried by these quarks can reach 2 TeV we find that this results in a

constraint on the disformal interaction of

M & 120 GeV . (3.8)

A stronger constraint has been recently obtained using data from the ATLAS collaboration

[27] and by the CMS experiment [28] in the single photon channel with a resulting bound

on the disformal coupling 2

M & 490 GeV . (3.9)

4. The One-Loop Fifth Force

When a source is static and non-relativistic no field profile is generated classically for a

disformal scalar field at any order in 1/M . The absence of a force was also explicitly shown

at the level of the classical equations of motion in Reference [7]. In References [5,6], it was

shown that the lowest order one loop diagram would correspond to a force between the

fermions of the form

F ∼ m1m2

M8r8
, (4.1)

where m1 and m2 are the masses of the particles being scattered. Contributions at higher

loop order are suppressed when Mr > 1. An estimate of the constraints from fifth force

experiments in Reference [7] gave M > MeV. In this section we re-derive these results, and

then proceed to constrain the existence of this force with torsion balance measurements.

Our derivation of the force will follow the calculation of the Casimir-Polder force presented

in the textbook by Itzykson and Zuber [29], and we will quote the main results that are

derived there.

We consider the four fermion interaction mediated by a loop of two scalar fields, as

shown in Figure 2. At large distances and in the non-relativistic limit, the Feynman

amplitude becomes a function of the momentum transfer

q = p1 − p2 , (4.2)

2We focus on the massless limit where the brane tension f4 is related to the disformal coupling as

M4 = 2f4.
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p1

p3

p2

k k′

p4

Figure 2: Two fermion scattering mediated by a loop of the disformal scalar field.

where momentum conservation implies that p1 + p3 = p2 + p4. In this limit we can define

the interaction potential between the two fermions as

Vφ(r) =

∫
/d

3
qV (q)eiq.r , (4.3)

where we use the standard notation /d
3
q = d3q

(2π)3
. This is related to the forward scattering

amplitude F(q2) as

V (q) = i
F(q2)

4m1m2
, (4.4)

where the masses of the two interacting fermions are m1,2.

A convenient way of extracting the small q (and therefore long range) behaviour of

V (q) is to notice that, for a fixed Mandelstam variable s = −(p1 + p3)2 ≈ (m1 + m2)2 in

the non-relativistic limit, the forward amplitude F is an analytic function of −q2 with a

cut along the positive axis3. A dispersion relation then relates FR, the real part of F , on

the positive axis to the forward amplitude

F(q2) =
1

iπ

∫ ∞
0

dm2 FR(−m2)

m2 + q2 − iε
, (4.5)

where the Cutkosky rules give

FR(q2) =
1

2

∫
/d

3
k

2k0

/d
3
k′

2k′0
/δ

4
(k + k′ − q)d(k, k′)|k2=k′2=0 . (4.6)

Transforming back to real space we find that the non-relativistic scattering potential is

then

V (r) = − 1

16π2m1m2r

∫ ∞
0

dm2FR(−m2)e−mr , (4.7)

where the leading order is given by the behaviour of FR(q2) around the origin and we have

q2 = (~q)2.

To perform this calculation for the disformal force it is convenient to define the average

〈X〉 =

∫ /d
3
k

2k0
/d
3
k′

2k′0
/δ

4
(q − k − k′)X(k, k′)∫ /d

3
k

2k0
/d
3
k′

2k′0
/δ

4
(q − k − k′)

, (4.8)

3We use the (−+++) signature for the metric implying that our q2 corresponds to −q2 in Itzykson and

Zuber.

– 9 –



where the denominator is a step function 1
8πθ(−q

2). As a result we have that

FR(q2) =
1

16π
θ(−q2)〈d〉 . (4.9)

The scattering amplitude corresponding to Figure 2 reads

F(q2) =

∫
/d

4
k/d

4
k′

/δ
4
(k + k′ − q)

(k2 − iε)(k′2 − iε)
d(k, k′) , (4.10)

where /δ
4
(k + k′ − q) = (2π)4δ(k + k′ − q) and d encodes the effects of the two interaction

vertices in the Feynman diagram:

d(k, k′) =
1

16M8
ū(p2)[(k.p1) /k′ + (k′.p1)/k + (k.p2) /k′ + (k′.p2)/k]u(p1)

× ū(p3)[(k.p4) /k′ + (k′.p4)/k + (k.p3) /k′ + (k′.p3)/k]u(p3) , (4.11)

the average of which is

〈d〉 =
(q2)2

30× 16×M8
[2(p1.p3 + p2.p4 + p1.p4 + p2.p3)ū(p2)u(p1)ū(p3)u(p4)

+ ū(p2)( /p3 + /p4)u(p1)ū(p3)( /p1 + /p2)u(p4)] , (4.12)

where we have used the result that, to leading order in q2,

〈kµkνk′ρk′σ〉 =
(q2)2

15× 16
(gµνgρσ + gµρgνσ + gνρgµσ) . (4.13)

In the non-relativistic limit

ū(p2)u(p1)ū(p3)u(p4) = −4m1m2 , (4.14)

and

ū(p2)( /p3 + /p4)u(p1)ū(p3)( /p1 + /p2)u(p4) = 16m2
1m

2
2 . (4.15)

Combining all of the above we find that, in the non-relativistic limit,

FR(q2) =
1

10π
θ(−q2)

m2
1m

2
2(q2)2

16M8
. (4.16)

From which we deduce that the scalar induced interaction between two fermions is

V (r) = − 3

32π3r7

m1m2

M8
. (4.17)

This is an attractive interaction which is proportional to the particle masses.

We stress that although we have performed a one-loop calculation, this is the leading

order potential mediated by a disformally coupled scalar between static non-relativistic

objects, because for such objects the tree-level interaction vanishes at all orders in 1/M4.
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4.1 Constraints from Fifth Force Experiments

Constraints on deviations from a 1/r Newtonian gravitational potential are most commonly

formulated in terms of Yukawa corrections and laboratory experiments aiming to probe such

corrections have been performed over a wide range of distance scales from centimeters to

tens of nanometers, for a review see [30]. Experiments probing millimeter distance scales

give the tightest constraint on the magnitude of the correction to Newtonian gravity, and

the constraints weaken dramatically over shorter distance scales.

The best constraints from torsion balance experiments [30] find that the inverse square

law holds down to a length scale of 56 µm. This requires that the ratio of the disformal

potential to the Newtonian potential be less than unity at this distance scale. Such a

constraint requires:

0.07 MeV < M . (4.18)

This is a weak bound which will be superseded by other laboratory and astrophysical

constraints.

5. The Scalar Casimir and Casimir-Polder Effects

As the disformal one-loop force scales as ∼ 1/M8r8 we still expect the tightest constraints

on M to come from experiments performed at the shortest possible distance scales. These

short distance experiments are for instance measurements of the Casimir force. The Casimir

force is usually discussed as the pressure exerted on the bounding surfaces of a region due

to the zero-point fluctuations of quantized fields in the interior. An alternative formulation

due to Jaffe [31] describes the Casimir force as the (relativistic, retarded) Van der Waals

force exerted between the boundaries of a region. In this formulation, the standard result

for the Casimir force is recovered in the α → ∞ limit (a limit that can be shown to be

appropriate on the short distance scales used to measure the Casimir effect). The Casimir-

Polder effect, closely related to the Casimir force, is the force exerted on a test particle due

to a nearby surface. The Casimir force per unit area for two idealized, perfectly conducting

plates with vacuum in between then scales inversely with the fourth power of the distance

between the plates F ∼ 1/a4. Therefore experiments searching for the Casimir force focus

on probing physics at extremely short distance scales, making them ideal experiments to

constrain the existence of a disformal force.

The presence of the plates does not impede the propagation of fluctuations of the

scalar field, and so there is no analogue of the quantum Casimir effect for disformal scalars.

However the one-loop force calculated in Section 4 creates an attractive force that can

be constrained by searches for the Casimir and Casimir-Polder force. These experiments

are typically performed either by studying the force between two parallel plates or be-

tween a plate and a sphere. The first case is easiest to calculate but difficult to realize

experimentally. Therefore the current best measurements of the Casimir effect come from

experiments using the sphere-plate geometry.
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5.1 The Disformal Force in a Plate-Sphere Casimir Experiment

The most sensitive measurement of the Casimir force are those that probe the interactions

between a plate and a sphere. To compute the disformal effects in such experiments we

have to integrate the interaction over the volume of the sphere and plate. We take the

plate to be of density ρ1 and width a with infinite extent in the (x, y) directions. The

shortest distance between the plate and the sphere is d and the sphere has density ρ2

and radius R. All experiments are performed with d � R. Points on the surface of

the plate are described by ~r1 = (r1 cos θ1, r1 sin θ1, 0) and points within the sphere have

~r2 = (r2 cos θ2 sinφ, r2 sin θ2 sinφ, d + R − r2 cosφ), with 0 ≤ r2 ≤ R. The disformal

potential is then found to be

Φ = − 3ρ1ρ2a

32π3M8

∫ ∞
0

dr1

∫ R

0
dr2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ π

0
dφ

r1r
2
2

|~r1 − ~r2|7/2
, (5.1)

whilst the full integral is difficult to compute it is clear that it is dominated by the con-

tribution of the points of closest approach between the sphere and the cylinder. With this

assumption, and d� R, we can approximate the disformal potential as

Φ = −3ρ1ρ2aR
5

64πM8d7
. (5.2)

The Casimir force between a sphere and a flat surface is

FC =
π3R

360d3
, (5.3)

and therefore the ratio of the disformal force, FC = ∂Φ/∂d, to Casimir force is

F

FC
=

945

8π4

ρ1ρ2aR
4

M8d5
. (5.4)

The best constraints on the existence of a disformal force from a Casimir type ex-

periment comes from the measurement performed by Lamoreaux [32], where a = 0.5 cm,

R = 11.3 cm and ρ1 = ρ2 = 2.6 gcm−3. No deviation from the theoretical prediction of

the Casimir force is seen at the 5% level when the plate and sphere are separated by a

distances down to d = 0.5 µm. This requires

0.1 GeV < M . (5.5)

5.2 The Disformal Force in a Casimir Polder Experiment

In Section 4 we proved that two point sources are attracted by a disformal potential that

scales as the inverse of the seventh power of the distance between the sources. To compute

the effect of this disformal interaction in a Casimir-Polder experiment we integrate over a

uniform plate. We approximate the experimental environment by assuming that the plate

has infinite extent in the (x, y) directions, and that a test particle lies a distance z from the

surface. We assume that the plate has thickness a and density ρ. The disformal potential

experienced by the test particle due to the plate is:

Φ = − 3

32π3

1

M8

∫
ρ

r7
dV , (5.6)
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where R2 = x2 + y2 + z2 = r2 + z2 and the integral is performed over the plate. Therefore

Φ = − 3

32π3

ρa

M8

∫ 2π

0

∫ ∞
0

r drdθ

(z2 + r2)7/2
(5.7)

= − 3ρa

80π2M8z5
. (5.8)

Neutrons in empty space over a thin mirror have quantized energy levels in the ter-

restrial gravitational field. The disformal Casimir-Polder interaction between the neutron

and the mirror changes the energy levels and the interaction potential

V (z) = m

(
gz − 3ρa

80π2M8z5

)
, (5.9)

where m is the neutron mass. The second term must be a perturbation to the gravitational

interaction as the first four energy levels of the unperturbed system have been observed

to a precision of 10−14 eV [33]. The neutron energy levels in the absence of a disformal

coupling are determined by the zeros of the wave functions ψn(z) = cnAi
(
z
z0
− εn

)
, where

Ai is the Airy function, z0 =
(

1
2m2g

)1/3
and Ai(−εn) = 0, resulting in the energy levels [34]

En = mgz0εn . (5.10)

The disformal coupling implies that the Casimir-Polder interaction diverges as z → 0, which

is not physical and corresponds to extending the validity of the effective interaction between

the neutron and the mirror to a regime where the plate cannot be considered as a dense

object anymore. Indeed, the continuous plate approximation that we have used is valid

only where z & zatom where zatom ∼ 10−10 m. Below this scale, the interaction becomes an

interaction between individual particles and not a continuum. The approximation is valid

all the way down to the atomic scale provided we have

M &

(
3σ

80π2gz6
atom

)1/8

≈ 0.1 GeV , (5.11)

where σ = ρa ∼ 17 gcm−2 is the surface density of the mirror. This bound is consistent

with that previously obtained from Casimir experiments.

The shift in the energy levels induced by the disformal interaction becomes

δEn =

∫ ∞
zatom

dx|ψn(x)|2 3mσ

80π2M8z5
. (5.12)

Using c2
n = 1

Anz0
where An =

∫∞
−εn Ai2(x)dx and an = dAi

dx |x=−εn we find that

δEn ∼ −
3a2

nmσ

160π2Anz2
atomz

3
0M

8
, (5.13)

which must be less that 10−14 eV for n = 1 . . . 4. This results in the bound

M & 0.8 MeV , (5.14)

which is weaker than the requirement for validity of our approximations and therefore no

constraint on disformal scalars can currently be applied.
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6. Constraints from Precision Atomic Measurements

Precision atomic measurements are not commonly considered tests of modifications of

gravity. However because the disformal force derived above varies as 1/r8, precision mea-

surements over short distance scales can be extremely constraining, and the Bohr radius

describing the size of an atom is a0 = (~/mec)/α = 5.3 × 10−11 m, making atomic mea-

surements potentially a very sensitive probe. Constraints from atomic measurements were

placed on chameleon theories in [35], and the results of this section are derived in a similar

way.

The scalar interaction acts as a perturbation of the Coulombic interaction in hydrogen-

like atoms

V (r) = −e
2

r
− m1m2

M8

3

32π3r7
. (6.1)

The second, disformal, term in this expression is strongly divergent at the origin. As atomic

precision measurements agree well with theoretical expectations (with the exception of

measurements of the proton charge radius [36]), the effects of the disformal force on atomic

structure must be small. In order to ensure that no modification of the electron wave

functions is required we impose that the disformal perturbation must be subdominant in

Equation (6.1) down to the size of the nucleon rN . This requires

M8 &
3mfmN

128π4αr6
N

. (6.2)

where mf is the mass of the fermion in the orbitals, mN is the mass of the nucleus and α is

the fine structure constant. For a hydrogen atom this requires M > 0.07 GeV. In addition

we will also cut off all spatial integrals at rN , and assume that any divergences as r → 0

are resolved by the extended size of the nucleus and its structure.

To first order in perturbation theory, the atomic levels are perturbed by

δE = −
3mfmN

32π3M8

〈
E

∣∣∣∣ 1

r7

∣∣∣∣E〉 , (6.3)

where |E〉 is the unperturbed wave function of the energy level. Let us focus on hydrogen-

like atoms and consider the 1s, 2s and 2p levels. In each case the disformal perturbation to

the energy levels is most sensitive to the small r parts of the wave function, when r � a0

we have:

ψ1s(r) ≈
1√
π

(
Z

a0

)3/2

,

ψ2s(r) ≈
1

2
√

2π

(
Z

a0

)3/2

,

ψ2p(r) ≈
1√
π

(
Z

2a0

)5/2

r cos θ ,

where the Bohr radius is a0 = 1
mfα

and Z is the atomic number of the nucleus.
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The disformal interaction produces the following shifts in the energy levels:

δE1s = − 3

25π3

(
Z

a0

)3 mNmf

M8r4
N

, (6.4)

δE2s = − 3

28π3

(
Z

a0

)3 mNmf

M8r4
N

, (6.5)

δE2p = − 1

29 × π3

(
Z

a0

)5 mNmf

M8r2
N

. (6.6)

This leads to a disformal contribution to the lowest atomic transition δE1s−2s :

δE1s−2s =
21

28π3

(
Z

a0

)3 mNmf

M8r4
N

. (6.7)

Similarly the Lamb shift δE2s−2p = δE2p − δE2s is modified

δE2s−2p =
3

28π3

(
Z

a0

)3 mNmf

M8r4
N

[
1− 1

6

(
Z

a0

)2

r2
N

]
, (6.8)

where the second contribution in the bracket is negligible.

The most precisely measured atomic transition is the lowest, 1s − 2s, transition in

hydrogen [39]. The measurement accuracy constrains δE1s−2s . 10−9 eV with Z = 1

and mf = me [40]. The choice of what distance scale to take for rN is more subtle.

Measurements of the Lamb shift can be interpreted as a measurement of the proton charge

radius, and therefore the nuclear size for a hydrogen atom. There is currently a significant

discrepancy between measurements of this radius performed with electronic hydrogen, and

those performed with muonic hydrogen [36]. In this work we take the current CODATA

value [41] that does not include the muonic hydrogen measurements rP = 0.88× 10−15 m.

We discuss the charge radius measurements and their implications for disformally coupled

scalars separately in more detail in [42]. The measurement of the 1s − 2s transition in

hydrogen therefore constrains

0.2 GeV < M . (6.9)

7. Neutron Scattering Experiments

The presence of a new force, particularly one that is strong over short distance scales, can

affect the way that atoms interact with one another. Precise constraints on the presence of

such a new force come from studying the interaction between slow neutrons and a gas, in

which the scalar field could mediate a new force between the nuclei of the gas atoms and

an incoming neutron. Such experiments are performed using thermal neutrons that scatter

off noble gases such as Ne, Ar, Kr and Xe [37,38]. In our analysis we will assume that the

gases are dilute enough to neglect multiple scattering, so that the problem reduces to a

2-body scattering.
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The total cross section for a neutron scattering off a gas has the form:

dσ

dΩ
(θ) = |b+ fφ(θ)|2 , (7.1)

where b is the nuclear scattering length and, in the Born approximation, the scattering

amplitude due to the scalar interaction is given by

fφ(θ) = −2mN

∫ ∞
RA

drr2 sin qr

qr
Vφ(r) , (7.2)

where RA is the nuclear radius of atoms in the gas which have mass mA. In this expression

q = k sin(θ/2) and E = k2/2m. Observations constrain the asymmetry between the forward

and backward scattering cross sections. For θ = π/4 and θ = 3π/4 this can be expressed

as

1 + δR =
dσ
dΩ(π/4)
dσ
dΩ(3π/4)

, (7.3)

In argon with a pressure of 1.64 atm, using b = 1.909 fm, RA ∼ 3 fm2, the constraint is

δR ≤ 4× 10−3 for energies around 1 eV [37].

The corrections due to a disformal scalar are dominated by the short distance behaviour

of the disformal scalar potential, Equation (4.17), and we find

fφ(θ) ≈
3m2

NmA

64π2M8

∫ ∞
RA

dr

r5

(
1− q2r2

6

)
, (7.4)

≈
3m2

NmA

256π2R4
AM

8

(
1−

q2R2
A

3

)
, (7.5)

where the first term renormalizes the nuclear scattering length b. To leading order the

resulting cross section is

dσ

dΩ
(θ) = b2

(
1−

m2
NmA

128π2R4
AM

8

q2R2
A

b

)
, (7.6)

and the correction to the forward-backward asymmetry is

δR = −
m3
NmA

128π2R4
AM

8

√
2ER2

A

b
. (7.7)

Therefore, measurements of neutrons passing through a gas of Argon constrain:

0.03 GeV < M . (7.8)

8. Constraints from Stellar Burning

The emission of scalar fields from stars carries away additional energy, this changes the rate

at which the star burns and impacts on its lifetime and structure. We expect disformal

scalars to be produced in the interior of stars through the particle interactions shown

in Figures 4-9, and therefore observations of the life times of the Sun, supernovae and
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Figure 3: The disformal scalar scattering off a nucleon in the stellar medium.

horizontal branch stars all place constraints on the strength of the disformal coupling. An

order of magnitude estimate of the constraints in [6] required M & 30 GeV. In this section

we consider the different production processes in turn in the following subsections, but

begin with a calculation of the mean free path of a scalar in the stellar interior.

In what follows we will make a number of approximations in order to enable us to

compute the energy loss rates analytically. Numerical simulations of the interior of stars

would allow more precise bounds to be placed on the disformal scalar, this work is currently

in progress [43].

8.1 The Scalar Mean Free Path

It is simplest to calculate the effects of scalar emission from stars if, once produced, the

scalars escape from the star without further interaction. This happens provided the mean

free path of the scalar due to the disformal interaction with fermions, shown in Figure 3,

is larger than the size of the star.

The mean free path is related to the reaction rate between disformal scalars and nu-

cleons in the stellar interior as

` =
1

Γ
, (8.1)

where

Γ =

∫
/d

3
pfpσ , (8.2)

σ =
1

2Ep2Ek|~vk − ~vp|

∫
/d

3
k′

2E′k

/d
3
p2

2E2

/δ
(4)

(k′ + p2 − k − p)|M|2 , (8.3)

and the difference of velocities is close to unity as the scalars are massless and the fermions

are non-relativistic. The matrix element is simply

M = ū(p2)V u(p) , (8.4)

where V is the four point vertex from the disformal coupling given in Equation (2.15). In

the non-relativistic approximation where E2 ∼ Ep ∼ mψ, the cross section is

σ =
m2
ψE

4
k

8πM8
, (8.5)
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and this gives rise to a reaction rate

Γ = nψ
m2
ψE

4
k

16πM8
, (8.6)

where nψ is the number density of the fermion ψ. Finally the mean free path is found to

be:

` =
16π(Z +N)

Z

M8

ρT 4mp
, (8.7)

where Z is the atomic number of the dominant atoms in the star and N is the number of

neutrons. In the Sun, where hydrogen burns predominantly we have Z = 1, N = 0 while

on the Horizontal Branch (HB) where Helium burns we have Z = 2, N = 2. The mass of

the proton is mp and we have assumed that the highest energy available to the scalars is

of the order of the stellar temperature T .

To estimate the mean free path for the different stars we will consider in the following,

we take the most stringent lower bounds on M obtained in the previous section from

considerations of particle physics M > 120 GeV. We then find that in the Sun (ρ ∼
150 g.cm−3 and T ∼ 1.5× 107 K)

`� & 2× 1038 km , (8.8)

where the solar radius is R� ∼ 7 × 105 km. For stars on the horizontal branch (ρ ∼
104 g.cm−3 and T ∼ 1× 108 K)

`HB & 4× 1033 km , (8.9)

where a typical radius is R ∼ 3× 107 km. Finally for supernovae

`SN & 109 km , (8.10)

larger than the progenitor solar radius. Hence the stars are transparent to scalars inter-

acting with matter via the disformal coupling.

8.2 Unitarity Constraints

All of the calculations that we will study in this section are perturbative and must preserve

the unitarity of the underlying field theory. In the non-relativistic approximation which is

valid in all the environments from main sequence stars to supernovae, the matrix elements

for the scattering a scalar off a fermion fφ→ fφ involving the disformal coupling is given

by

M∼
m2
fE

2

M4
(8.11)

where E is the energy of the incoming scalar. Unitarity imposes that M . 16π where the

typical energy of scalars created in the stellar medium is E ∼ T , the temperature of the

star. We must therefore require that

M &

(
mfT

4
√
π

)1/2

(8.12)
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Figure 4: Bremsstrahlung of disformal scalars by an electron scattering off a nucleus.
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Figure 5: Bremsstrahlung of disformal scalars by an electron scattering off a nucleus.

for perturbative unitarity to stand. This constraint is easily satisfied in main sequence

stars such as the sun where T� ∼ 1.3 keV and mf = mp, we find

M & 31 keV. (8.13)

For stars on the horizontal branch where THB ∼ 8.6 keV, we find

M & 1 MeV. (8.14)

Finally in supernovae where T ∼ 30 MeV we have

M & 63 MeV. (8.15)

All these bounds are much weaker than the ones we will now derive from stellar burning

rates.

8.3 Bremsstrahlung

The bremsstrahlung process of scalar production is shown in Figures 4 and 5. We consider

the emission of two scalars from the initial or final electrons interacting with the nucleus of

an atom with Z protons. The matrix element corresponding to this process can be written

as

MT =M+ M̃ , (8.16)

where M describes scalar radiation from the final state electron, and M̃ from the initial

state electron. We have

M =
Ze2

|~p1 − ~p|2 +m2
D

1

p2
1 +m2

e

ū(p2)V (i /p1 +me)γ
0u(p) , (8.17)
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where the disformal vertex, V , is given in Equation (2.15).

In the plasma where the electrons evolve, the photons are not massless and have a

mass given by the Debye mass

mD =

(∑
i q

2
i ni

T

)1/2

=

4π
(

1 + Z2

N+Z

)
αρ

mpT

1/2

, (8.18)

where the charged particles are the electrons with charge −e and the nuclei with charge Ze.

The densities are ne = Znnuclei and (N +Z)ne = ρ
mp

where ρ is the plasma density, mp the

proton mass, and N the number of neutrons in the nuclei. Numerically, we find that in the

Sun we have mD ≈ 9.5 keV and in horizontal branch stars we have mD ≈ 0.03 MeV. This

is larger than the energy scale associated with the temperatures of the stars, respectively

T� ≈ 1.3 keV and THB ≈ 8× 10−3 MeV.

We define Ṽ where we exchange p1 → p̃1 in Equation (2.15) and M̃ where p1 → p̃1

and V → Ṽ in Equation (8.17). This gives

M̃ =
Ze2

|̃~p1 − ~p2|2 +m2
D

1

p̃2
1 +m2

e

ū(p2)γ0(i /̃p1 +mN )Ṽ u(p) . (8.19)

The emission rate of disformal scalars from a star, Γ, is given by the integral

Γ =
1

2EvE

∫
/d

3
k

2Ek

/d
3
k′

2E′k

/d
3
p2

2E2

/δ(E − E2 − Ek − E′k)(Ek + E′k)|MT |2 , (8.20)

where the velocity is vE = |~p|
me

, and |MT |2 is the squared matrix element averaged over

spins. The averaged energy loss rate per unit mass is given by

ε =
nnuclei

ρ

∫
/d

3
pfpΓ , (8.21)

where fp is the thermal distribution of the initial electron which is non relativistic

fp =
ρ

2mp

(
2π

meT

)3/2

e−
~p2

2meT . (8.22)

In the non-relativistic limit, the squared matrix element becomes

|MT |2 =
64Z2e4m6

e

M8

E2
kE
′2
k

(p2
1 +m2

e)
2(|~p1 − ~p|2 +m2

D)2
. (8.23)

Inserting 1 =
∫
/d

4
p1/δ(p1 − p2 − k − k′) we find that

Γ =
1

2EvE

∫
/d

3
p1

/d
3
p2

2E2

θ(−(p1 − p2)2)

8π
〈|MT |2〉 (8.24)

=
1

2EvE

∫
/d

3
p1

/d
3
p2

2E2

θ(−q2)

10π

(E − E2)P (q0, ~q)

(p2
1 +m2

e)
2(|~p1 − ~p|2 +m2

D)2
, (8.25)
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where q = p1 − p2 and the polynominal P is given by

P (q0, ~q) =
a

3d
q2

0 −
2b+ 4c

3d
q2

0q
2 + q4 , (8.26)

where q2 = −q2
0 + ~q2 and we have defined the coefficients a = 1

30 , b = − 1
60 , c = 1

60 , d =
1

15×16 following the notation of Itzykson and Zuber [29]. Performing the ~p2, integral first

we find that the constraint (p1 − p2)2 ≤ 0 reduces to

|~q| ≤ |~p
2 − ~p1

2|
2me

, (8.27)

and therefore

Γ =
1

2EvE

Z2e4m5
e

35π3

∫
/d

3
p1

(
|~p2− ~p12|

2me

)8

(p2
1 +m2

e)
2(|~p1 − ~p|2 +m2

D)2
. (8.28)

The domain of the ~p1 integration is |~p1| ≤ |~p
2− ~p12|
2me

implying that |~p1| ≤ ~p2

2me
, therefore we

find that

Γ =
4Z2α2me

105πM8|~p|

(
~p2

2me

)9
m2
e

(~p2 +m2
D)2

. (8.29)

The rate per unit mass is now given by explicit integration

ε =
Z2α2me

210π3Amp
ρ

(
T

M

)8 1

(2πmeT )3/2
g

(
m2
D

2meT

)
, (8.30)

where A = N + Z and

g(x) =

∫ ∞
0

du
u9e−u

(u+ x)2 . (8.31)

For the Sun, the energy loss rate per unit mass must be ε� . 0.1 erg/s.g [44]. Taking,

as before, the temperature of the Sun to be T ∼ 1.5 107 K and the density ρ ∼ 150 g/cm3,

we find that this implies

M & 39 MeV . (8.32)

For stars on the horizontal branch, we have T ∼ 108 K, ρ ∼ 104 g/cm3 and the energy loss

rate due to scalars is constrained to be εHB . 10 erg/s.g. We find that this requires

MHB & 173 MeV . (8.33)

8.4 Compton Scattering

A pair of scalars can also be produced by Compton scattering between one fermion and

one photon, see Figure 6. The emission rate is given by

Γ =
1

2Ep2EK |~vE − ~vK |

∫
/d

3
k

2Ek

/d
3
k′

2E′k

/d
3
p2

2E2

/δ
(4)

(k+ k′ + p2 −K − p)(Ek +E′k)|MT |2 , (8.34)
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Figure 6: Compton process for production of disformal scalars.

where again the velocity difference is |~vE − ~vK | ∼ 1 as the photons are relativistic and the

fermions non-relativistic, and |MT |2 is the squared matrix element averaged over spins and

polarizations. The averaged energy loss rate per unit mass is given by

ε =
1

ρ

∫
/d

3
p/d

3
KfpfKΓ , (8.35)

where fp is the thermal distribution of the initial fermion which is non relativistic, and fK
the photon distribution function. The matrix element is given by

M =
e

p2
1 +m2

ψ

ū(p2)V (i /p1 +mψ)γµεµu(p) , (8.36)

where εµ is the photon polarization vector normalized such that∑
εµεν = ηµν , (8.37)

and the sum is over the two polarizations. We have that

|MT |2 = − e2

2(p2
1 +m2

ψ)2
Tr(( /p2 − imψ)V (i /p1 +mψ)(/p+ 2imψ)(i /p1 +me)V ) . (8.38)

The initial and final fermions are non-relativistic while the photon spectrum is peaked

around a temperature T that is less than the fermion mass. In this approximation we find

that

|MT |2 =
2e2m6

ψ

(p2
1 +m2

ψ)2

E2
kE
′2
k

M8
, (8.39)

and the emission rate becomes

Γ =

∫
/d

3
qθ(−q2)

e2m4
ψ

32π(p2
1 +m2

ψ)2

〈E2
kE
′2
k 〉

M8
, (8.40)

where q = p1− p2. We have used the approximation Ek +E′k ∼ EK . The condition q2 ≤ 0

implies that

(q0)2 ≥ ~q2 = (~p1 − ~p2)2 , (8.41)

where p1 = p+K = p2 +k+k′. Using 〈E2
kE
′2
k 〉 = aq4

0−(2b+4c)q2
0~q

2 +3d(~q)2 , and X = |~q|,
we have ∫

/d
3
qθ(−q2)〈E2

kE
′2
k 〉 =

24dq7
0

7
, (8.42)
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Figure 7: The Primakov process for producing disformal scalars.

where d = 1/15× 16 and with q0 ∼ EK . Now using

p2
1 +m2

ψ ∼ −2mψEK , (8.43)

we find that

Γ =
3d

28(2π)3

e2m2
ψE

5
K

M8
. (8.44)

The emission rate is maximal for protons, hence we deduce the energy loss rate due to

scalars produced by Compton scattering to be

ε =
3dh

8π(2π)3

αZmp

(Z +N)

(
T

M

)8

, (8.45)

where

h =

∫ ∞
0

u7du

eu − 1
. (8.46)

We find that the emission rate is smaller than that allowed for stars on the horizontal

branch when

M & 811 MeV , (8.47)

and for the Sun when

M & 236 MeV . (8.48)

8.5 Primakov Process

We now consider the coupling between photons and the scalar field due to the disformal

term
1

M4
∂µφ∂νφ

(
F νaF νa −

ηµν

4
F 2

)
, (8.49)

which can lead to productions of scalars in the interior of a star due to the Primakov process

shown in Figure 7. The coupling in Equation (8.49) leads to a four particle interaction

vertex in the Feynman diagram expansion of perturbation theory:

Vγ =
1

M4

(
(p.k)(p′.k′)(ε.ε′)− (p.k)(k′.ε′)(p′.ε)− (p.ε′)(k.ε)(p′.ε′)

+(p.p′)(k.ε)(k′.ε′)− (k.k′)

2
[(ε.ε′)(p.p′)− (p′.ε)(p.ε′)]

)
, (8.50)
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where ε and ε′ are the polarization vectors of the incoming photons of momenta (p, p′) and

the scalars have momenta (k, k′).

The Primakov effect occurs when an incoming photon interacts with the electric field

of a nucleus:
Ze

~p′
2

+m2
D

ε′µ , (8.51)

where ε′µ = (1, 0, 0, 0). To simplify the calculations, we take the real and external photons

to have transverse polarizations where ε0 = 0. As a result the vertex becomes

Vγ =
1

M4

[
E′k
(
(p.p′)(k.ε)− (p.k)(p′.ε)

)
+ Ep

(
(k.k′)

2
(p′.ε)− (k.ε)(p′.k′)

)]
. (8.52)

The matrix element is simply

M =
Ze

~p′
2

+m2
D

Vγ . (8.53)

The emission rate is given by

Γ =
1

2Ep

∫
/d

3
k

2Ek

/d
3
k′

2E′k
/δ(Ek + E′k − Ep)(Ek + E′k)|MT |2 , (8.54)

where |MT |2 is the square of the matrix element averaged over the polarizations of the

incoming photon. The energy loss rate is given by

εγ =
nnuclei

ρ

∫
/d

3
pfpΓ . (8.55)

The calculation can be simplified by introducing the four-vector p′ = (0, ~p′) and inserting

1 =
∫
/d

3
p′/δ

(3)
(~p′ + ~p− ~k − ~k′) in Γ so that it becomes

Γ =
1

32π

∫
/d

3
p′θ(−q2)

Z2e2

(~p′
2

+m2
D)2
〈Tr(V 2

γ )〉 , (8.56)

where the expectation value 〈.〉 was defined in Equation (4.8), and q = p+p′. We find that

Tr(V 2
γ ) =

1

M8

[
E′2k

(
p′2(p.k)2 − 2(p.k)(p.p′)k.p′

)
+ E2

p

(
(k.k′)2

4
p′2 − (k.k′)(p′.k′)(p′.k)

)
+2EpE

′
k

(
k.k′

2
((p.p′)(k.p′)− p′2(p.k)) + (p.k)(p′.k′)(p′.k)

)]
. (8.57)

The domain of integration is defined by q2 ≤ 0, or equivalently ~p′
2

+ 2~p.~p′ ≤ 0. Defining

the angle θ = (~p, ~p′) between ~p and ~p′, and X = cos θ, the integration can be performed

over p′ =
√
~p2 such that p′ ≤ −2XEp and then over X where −1 ≤ X ≤ 0. In addition we

approximate ~p′
2

+ m2
D ∼ m2

D which is justified as long as T . mD valid for the Sun and

horizontal branch stars. After an extremely lengthy calculation to obtain 〈Tr(V 2
γ )〉 and the

phase space integral over ~p′, we find that

Γ =
UZ2e2

16(2π)3

E11
p

m4
DM

8
, (8.58)
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Figure 8: Production of disformal scalars by pion exchange.
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Figure 9: Production of disformal scalars by pion exchange.

where U = 99133
14175 . The loss rate becomes

εγ =
UhZ2α

4π(2π)3

T 14

mpm4
DM

8
, (8.59)

where h =
∫∞

0 dx x13

ex−1 .

Bounding the energy loss rate due to Primakov production of disformal scalars in

horizontal branch stars yields

M & 346 MeV , (8.60)

and the corresponding bound from the Sun is

M & 40 MeV . (8.61)

8.6 Pion Exchange

The interiors of supernovae differ substantially from the interiors of main sequence and

horizontal branch stars. The dominant process for producing disformal scalars becomes

the creation of two scalars with the exchange of one pion between two nuclei. The diagrams

are depicted in Figures 8 and 9. As before we define the emission rate

Γ =
1

2Ep2EKvp

∫
/d

3
k

2Ek

/d
3
k′

2E′k

/d
3
p2

2E2

/d
3
K2

2EK2

/δ
4
(p2 +K2 +k+k′−p−K)(Ek+E′k)|NT |2 , (8.62)

and the rate per unit mass

ε =
1

ρ

∫
/d

3
p/d

3
KfpfKΓ . (8.63)
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Fortunately, in the non-relativistic limit, the rate per unit mass from the pion exchange

can be related to the previous bremsstrahlung calculation. Indeed the pion propagators

reduce to 1

(~k+~k′)2+m2
π

and the nucleon propagator is simply 1

(~k+~k′)2
implying that one can

factorize the propagators and write

NT =
A2g2

πNN

((p1 − p)2 +m2
π)(p2

1 +m2
N )

[N1 +N2 +N3 +N4] , (8.64)

where the number of nucleons per nucleus is A = Z + N . We consider that the nucleons

interact coherently, and we have defined

N1 = (ū(p2)V (i /p1 +mN )γ0u(p))ū(K2)u(K) ,

N2 = (ū(p2)(i /̃p1 +mN )Ṽ γ0u(p))ū(K2)u(K) ,

N3 = (ū(K2)W (i /K1 +mN )γ0u(K))ū(p2)u(p) ,

N4 = (ū(K2)(i /̃K1 +mN )W̃γ0u(K))ū(p2)u(p) .

(8.65)

The scalar-pion vertices that we label W and W̃ follow the same pattern as V and Ṽ in

Section 8.3 with the p momenta replaced by K’s. We find that

|NT |2 =
29A4g4

πNNm
8
N

M8

E2
kE
′2
k

(p2
1 +m2

N )2(|~p1 − ~p|2 +m2
π)2

, (8.66)

from which we can directly obtain that

Γ =
4A4α2

πmN

210πM8|~p|

(
~p2

2mN

)9
m2
N

(~p2 +m2
π)2

, (8.67)

where απ =
g2πNN

4π ∼ 13.5. Using
∫
/d

3
KfK = nN

2 = ρ
2mp

the total number of nucleons

divided by 2 (where we take all the nucleons to have the proton mass), we find that

ε =
A4α2

π

105π3
ρ

(
T

M

)8 1

(2πmNT )3/2
g

(
m2
π

2mNT

)
. (8.68)

Observations of supernova SN1987A, constrain the energy loss due to any new physics

to be εSN . 1019erg/s.g. Taking the supernova to have a temperature of T = 30 MeV and

a density ρ ∼ 3× 1014 g/cm3, we find that

M & 92 GeV . (8.69)

However this should be considered an order of magnitude estimate only as the nuclear

forces are strongly coupled with a large coupling constant απNN and so higher order effects

not computed here may become important. Moreover, the emission rate ε is also only an

estimate as it involves a certain number of astrophysical uncertainties.

– 26 –



Source of bound Lower bound on M in GeV Environment Discussed in Section

Unitarity at the LHC 30 Lab. vac. 3

CMS mono-lepton 120 Lab. vac. 3

CMS mono-photon 490 Lab. vac. 3

Torsion Balance 7× 10−5 Lab. vac. 4.1

Casimir effect 0.1 Lab. vac. 5.1

Hydrogen spectroscopy 0.2 Lab. vac. 6

Neutron scattering 0.03 Lab. vac. 7

Bremsstrahlung 4× 10−2 Sun 8.3

0.18 Horizontal Branch 8.3

Compton Scattering 0.24 Sun 8.4

0.81 Horizontal Branch 8.4

Primakov 4× 10−2 Sun 8.5

0.35 Horizontal Branch 8.5

Pion exchange ∼ 92 SN1987a 8.6

Table 1: Summary of the constraints on the disformal coupling scale M . Lab. vac. means the

constraint derives from a laboratory vacuum on Earth. Horizontal branch means the constraint

derives from observations of horizontal branch stars, and similarly for constraints labelled Sun.

9. Summary and Conclusions

9.1 Summary of Constraints

In Table 1 we summarize the constraints on disformal couplings derived in this paper, and

give a reference to the section in which each constraint is derived. The most constraining

observations are the null results of mono-photon searches for beyond the Standard Model

physics performed by the CMS collaboration. We present each constraint with a comment

on the environment it is derived in, as in some theories with disformal couplings, such as

the Galileon [45], the coupling scale can be renormalized by an environmentally dependent

factor. We hope this will allow the reader to apply these results to their preferred theory

with a disformal coupling.

9.2 Conclusion

Nearly massless scalar fields can play a role in either generating the right amount of energy

to trigger the late time acceleration of the Universe or in modifying gravity on very large

scales. In this paper, we have considered the possible coupling between such a scalar

and matter which preserves a shift symmetry. This symmetry is instrumental in building

models such as Galileons or K-mouflage [46] and guarantees the absence of potential for

the scalar field, i.e. that the field is massless. The classical disformal coupling of a scalar

field to matter cannot be tested in static situations as no tree-level force between static

objects is generated. Nevertheless the theory can still be constrained. We have shown that

collider searches for new physics give the most stringent bounds on the disformal coupling.

We have shown that quantum mechanical effects at the one loop level lead to a disformal
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force that could have consequences in atomic physics. The disformal interaction also plays

a role in the heart of stellar objects where the disformal coupling opens up new channels

for their burning rates. We have calculated the energy emission rates due to the disformal

interaction in stars on the main sequence and the horizontal branch, and found stringent

bounds on the disformal coupling strength.

The astrophysical effects following our new calculation on the disformal burning rates

of stars can be applied to study the disformal effects on the Hertzsprung-Russell diagram

of stellar structures; this is under study. In another publication, we also explore in further

detail the applications of the disformal coupling to atomic physics.
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