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Abstract: We analyse the consequences of a disformal interaction between a massless

scalar and matter particles in the context of atomic physics. We focus on the displacement

of the atomic energy levels that it induces, and in particular the change in the Lamb shift

between the 2s and 2p states. We find that the correction to the Lamb shift depends on

the mass of the fermion orbiting around the nucleus, implying a larger effect for muonic

atoms. Taking the cut-off scale describing the effective scalar field theory close to the QCD

scale, we find that the disformal interaction can account for the observed difference in the

proton radius of muonic versus electronic Hydrogen. Explaining the proton radius puzzle

is only possible when the scalar field is embedded in non-linear theories which alleviate

constraints from collider and stellar physics. Short distance properties of the Galileon

where non-perturbative effects in vacuum are present ensure that unitarity is preserved

in high energy particle collisions. In matter, the chameleon mechanism alleviates the

constraints on disformal interactions coming from the burning rates for stellar objects. We

show how to combine these two properties in a single model which renders the proposed

explanation of the proton radius puzzle viable.
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1. Introduction

The Lamb shift is one of the most precisely studied effect in atomic physics. Its relevance

has been recently enhanced by the discovery that the Lamb shift behaves differently when

muonic atoms are considered, compared to their electronic siblings. The Lamb shift can be

used to deduce the value of the proton radius and muonic versus electronic discrepancies

imply that the proton radius is lower by four percent in muonic experiments. The combined

discrepancy between the proton radius as inferred from muonic Hydrogen and that inferred

from electronic Hydrogen now stands at 7σ. Whilst the muonic results currently only come

from one group at PSI no systematic uncertainty has been identified that could explain the

size of the discrepancy [1]1. This is the proton radius puzzle which has resisted explanation

with standard model physics [3]. Could this be an indication of the need for new physics?

Current attempts to explain the proton radius anomaly with new physics have introduced

1There is an ongoing debate on the proton radius discrepancy inferred from e-p scattering experiments [2].
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new force carriers with masses in the 1 − 100 MeV range, which may have non-universal

couplings [4–7], however these are difficult to reconcile with existing constraints on dark

forces. New forces deduced from hidden photons or conformally coupled scalars have

also been invoked with limited success [8, 9]. In this work we take a different approach,

introducing a nearly massless scalar degree of freedom which interacts with matter species

through a universal disformal coupling.

The existence of nearly massless scalar fields is strongly suggested by the acceleration

of the Universe, as they could act as dark energy, or arise in theories of massive gravity

as the scalar polarisation of a low mass graviton. This seems far removed from the proton

radius puzzle, but in this work we will show that these two motivations for considering

new physics can be connected. When conformally coupled to matter, new light scalars

are severely constrained by the Cassini probe [10] and tests of the strong equivalence

principle such as the Lunar Ranging experiment [11]. This results in a strong bound on

the coupling between the scalar and matter, β, that can, however, be alleviated when

screening mechanisms are invoked as non-trivial self-interactions of the field can naturally

reduce the strength of the force to observationally undetectable levels in experimental

environments. They do this by allowing the properties of the scalar field to vary with

the environment. For example; in the chameleon model [12,13] the mass of the scalar field

increases in dense environments, in the Galileon model [14], the prefactor of the kinetic term

becomes large in the vicinity of dense sources. Even for models with screening mechanisms,

however, suitably chosen laboratory tests of theories with screening mechanisms can still

be constraining; for models such as chameleons, the conformal coupling to matter could

be tested in neutron experiments where the energy levels of the neutron in the terrestrial

gravitational field are measured [15]. In this article, we will investigate new tests at the

atomic level, due to a disformal coupling between matter and scalars, and we will rely on

a screening mechanism to alleviate constraints from higher density environments such as

stellar interiors.

Bekenstein has shown [16] that the most general metric that can be constructed from

gµν and a scalar field that respects causality and the weak equivalence principle is;

g̃µν = A(φ,X)gµν +B(φ,X)∂µφ∂νφ , (1.1)

where the first term gives rise to conformal couplings between the scalar field and matter,

and the second term is the disformal coupling. Here X = (1/2)gµν∂µφ∂νφ. The conformal

coupling gives rise to Lagrangian interaction terms of the form

L ⊃ A(φ,X)T µ
Jµ . (1.2)

and the disformal interactions give rise to Lagrangian interaction terms of the form

L ⊃ B(φ,X)

2
∂µφ∂νφT

µν
J . (1.3)

where T µν
J is the energy momentum tensor of matter fields in the Jordan frame, defined

by the metric gJµν = A(φ,X)gµν . The conformal coupling gives rise to Yukawa type long
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range forces between matter fields. The disformal coupling has no influence on static

configurations of matter as no disformal interaction between static non-relativistic objects

is generated. This follows from the vanishing of the coupling (1.3) when the only non-

vanishing component of T µν
J is T 00

J and φ is static. This can be extended to all the higher

order terms involving more than two derivatives of φ obtained by expanding the matter

Lagrangian in perturbations of B(φ,X)∂µφ∂νφ. This means that constraints on disformal

couplings are much weaker than on their conformal counterparts. The leading disformal

interaction between two static bodies is a quantum effect at one loop [17–19] which appears

at the 1/M8 = B2(φ0, 0) level where the loop has been calculated in a uniform scalar

background φ0. This gives rise to a potential of the form 1/M8r7, which will be analysed

and tested here.

We will find that the proton radius puzzle can be explained using the mass dependent

disformal potential generated at one loop in 1/M8r7 when M lies close to the QCD scale

M = ΛQCD ≈ 220 MeV. This is appropriate for a model which we only require to be

valid at low energies, below the QCD phase transition and after Big Bang Nucleosynthesis

(BBN) in cosmology. This choice of coupling scale would also lead to small anomalous radii

for the deuteron [20] and the He nucleus [21]. With new experimental results for deuterons

and He nuclei to be soon published, this is a prediction of our model which will be soon

tested [22].

In section 2, we recall salient properties of disformally coupled scalars. In section 3,

we apply these results to the proton radius puzzle, determine the required value of the

coupling constant M and predict the ensuing deviations for helium and the deuteron. The

disformal coupling, viewed as a higher order operator, would lead to a violation of unitarity

at high energy. It would also increase the burning of stars. In section 4 , we show that

the constraints on disformal couplings coming from the burning of stars can be alleviated

in non-linear models for which the chameleon mechanism, whereby the mass of the scalar

becomes large in dense environments, prevents the creation of scalars in stellar media. In

section 5 we turn to the strong constraints which spring from the absence of any violation of

unitarity in particle collision at high energy. This is alleviated by embedding the disformal

coupling in Galileon models which pass these tests by a novel mechanism whereby classical

configurations akin to Black Holes in trans-Planckian scattering are formed. We also show

how the chameleon mechanism, which is effective in dense environments, and the Galileon,

which applies in vacuum such as the ones of atomic and particle physics, are compatible.

We then conclude in section 6.

2. Light scalar fields

We consider a scalar field coupled to matter defined by the action

S =

∫

d4x
√−g

(

R

16πGN
− 1

2
(∂φ)2

)

+ Sm(ψi, g̃µν) , (2.1)

where the metric governing the interactions between the scalar and matter is given by:

g̃µν = A(φ)gµν +B(X)∂µφ∂νφ . (2.2)
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This is not the most general scalar metric as given by Bekenstein in equation (1.1), however

it describes all the leading order effects of the disformal and conformal couplings.

The metric g̃µν is the metric with respect to which matter is conserved. We impose

that the conformal coupling function A(φ) is the only source of (soft) breaking of the shift

symmetry φ → φ + c, which forces the coupling B(X) to be independent of φ. We take a

conformal coupling to matter of the form,

A(φ) = 1 +
βφ

mPl
, (2.3)

which is the lowest order breaking of the shift symmetry and we assume that the disformal

coupling function can be expanded as

B(X) =
1

M4



1 +
∑

n≥1

an
Xn

M4n



 . (2.4)

As M will be the lowest energy scale in the disformal sector of our theory we take the

cut-off scale, that defines the model as an effective theory at low energy, to lie just above

the scale M . We assume a hierarchy between the scales M and mPl/β. As we will find

that M is of the order the QCD scale, and assuming that β ∼ O(1), protecting these

scales is similar to the hierarchy problem of the Standard Model. We have nothing to

add to the solutions of this problem except to note that hierarchies between disformal

and conformal coupling scales arise naturally in theories of massive gravity [23]. When

β ∼ O(1) in laboratory interactions the conformal coupling is so weak that it can be safely

neglected. The disformal coupling scale M appears as a one-loop interaction. For matter

sources of masses m1, m2 separated by a distance r the potential interaction mediated by

the disformal scalars is [18, 19]

V (r) = − 3m1m2

32π3r7M8
, (2.5)

when the scalar is canonically normalised. The coupling scale M is in principle unknown

and should be fixed by observations. Here we will focus on theories where this scale is close

to the QCD scale

M ∼ ΛQCD , (2.6)

where ΛQCD = 217+25
−23 MeV is the strong interaction scale of quantum chromodynamics

(QCD). This choice is compatible with the desire to view our disformal scalars as a low

energy description of some unknown physics which should appear for scales larger than M .

Below the scale M , the physics only involves matter particles which are the electrons, the

protons and the neutrons as formed during Big Bang Nucleosynthesis (BBN). At higher

energies, the model must either be completed by some new Ultra Violet (UV) physics,

or as we shall see with the example of the Galileon, enter a new phase of the model

where perturbative calculations fail and non-perturbative phenomena should be taken into

account.
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Source of bound Lower bound on M in GeV Environment

Unitarity at the LHC 30 Lab. vac.

CMS mono-lepton 120 Lab. vac.

CMS mono-photon 490 Lab. vac.

Torsion Balance 7× 10−5 Lab. vac.

Casimir effect 0.1 Lab. vac.

Hydrogen spectroscopy 0.2 Lab. vac.

Neutron scattering 0.03 Lab. vac.

Bremsstrahlung 4× 10−2 Sun

0.18 Horizontal Branch

Compton Scattering 0.24 Sun

0.81 Horizontal Branch

Primakov 4× 10−2 Sun

0.35 Horizontal Branch

Pion exchange ∼ 92 SN1987a

Table 1: Summary of the constraints on the disformal coupling scale M derived in [19]. Lab.

vac. means the constraint derives from an experiment conducted in a laboratory vacuum on Earth.

Horizontal branch means the constraint derives from observations of horizontal branch stars, and

similarly for constraints labelled Sun and Supernova SN1987a.

Experimental constraints on disformal couplings have been extensively studied in [19]

and these are reproduced in Table 1. We will discuss in later sections how to make our

requirement for M ∼ ΛQCD compatible with all current constraints.

In what follows we will restrict ourselves to the leading order effects of the disformal

coupling between the scalar field and matter. Therefore we calculate only to leading order

in 1/M4, implying the action can be expanded as

S =

∫

d4x
√−g

(

R

16πGN
− 1

2
(∂φ)2 +

1

M4
∂µφ∂νφT

µν
J

)

+ Sm(ψi, A(φ)gµν) , (2.7)

where we have introduced the Jordan frame energy-momentum tensor

T µν
J =

2√−gJ
δSm
δgJµν

. (2.8)

Notice that this last action is written in the Einstein frame and involves the coupling

between the Jordan frame energy-momentum tensor TJ and the scalar derivatives.

3. Microscopic effects

It has been shown that the disformal coupling to matter induces a one loop potential

between matter particles [18, 19]. This potential is highly sensitive to short distances

as it scales as 1/r7. Atomic physics experiments are therefore ideal settings to test the

influence of the disformal coupling on the properties of matter. As the conformal coupling

scale is O(mPl) it can be safely neglected over atomic distance scales. In previous work
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we have shown that the strongest constraints on M from such experiments comes from

precision spectroscopy of Hydrogen atoms and constrains the scale M & 200 MeV. In this

Section we will determine whether disformal couplings satisfying this bound can explain

the proton radius anomaly. This requires determining disformal corrections to the Lamb

shift in Hydrogen from which the proton radius can be inferred. We will find that the

disformal Lamb shift is sensitive to the mass of the particle orbiting around the atomic

nucleus, hence inducing different effects in muonic compared to electronic atoms.

3.1 Lamb shift and proton radius

The scalar interaction due to the one loop effect of the disformal coupling to matter acts

as a perturbation of the Coulombic interaction in Hydrogen-like atoms

V (r) = −e
2

r
− 3m1m2

M8

1

32π3r7
. (3.1)

In first order perturbation theory, the atomic levels are perturbed by

δE = −3mfmN

32π3M8

〈

E

∣

∣

∣

∣

1

r7

∣

∣

∣

∣

E

〉

, (3.2)

where |E〉 is the unperturbed wave function of a given energy level. Let us focus on

Hydrogen-like atoms and consider the 2s and 2p levels, as used to calculate the Lamb shift.

In each case the perturbed energy levels are sensitive to the small r parts of the wave

function, r ≪ a0 where a0 is the Bohr radius and read

ψ2s(r) ≈
1

2
√
2π

(

Z

a0

)3/2

; ,

ψ2p(r) ≈
1√
π

(

Z

2a0

)5/2

r cos θ; ,

resulting in the perturbation of the 2s and 2p levels given by

δE2s = − 3

248π3

(

Z

a0

)3 mNmf

M8r4N
; , (3.3)

and

δE2p = − 1

29π3

(

Z

a0

)5 mNmf

M8r2N
; , (3.4)

where the interaction has been cut-off at the nuclear radius rN as below this scale the

internal structure of the nucleus becomes relevant. This leads to a contribution to the

Lamb shift δE2s−2p = δE2p − δE2s which is given by:

δE2s−2p =
3

248π3

(

Z

a0

)3 mNmf

M8r4N

[

1− 1

6

(

Z

a0

)2

r2N

]

. (3.5)

The Lamb shift can be used to infer the proton radius rN = rp in atoms where the nucleus

reduces to a single proton. The phenomenological parametrisation of the Lamb shift in
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terms of QED and nuclear physics effects and their dependence on the radius rp is given

by [1]
∆E2s−2p

meV
= 210 − 5.23

( rp
fm

)2
+ 0.035

( rp
fm

)3
. (3.6)

A new interaction, such as the disformal one, would lead to a change in the Lamb shift

δE2s−2p which would be read as a corresponding change in the proton radius δrp:

δE2s−2p

meV
= −10.31

δrp
rp

. (3.7)

Experimentally, the proton radius deduced from electronic Hydrogen measurements is given

by rp = 0.8758(77)fm, and this agrees with the charge radius obtained in electron scattering

experiments at low energy [3]. The same measurements of the Lamb shift can be conducted

for muonic atoms, and surprisingly the proton radius appears to be significantly lower;

rp = 0.84087(39) fm, [1], representing a decrease of approximately four percent.

Reinterpreting the disformal contribution to the Lamb shift as a change in the proton

radius for muonic Hydrogen gives

(

δrp
rp

)

= −0.90

(

217 MeV

M

)8

, (3.8)

where we have taken rN to be the unperturbed proton radius. The electron contribution is

suppressed compared to the muonic contribution by the ratio of electron to muon masses.

Therefore to account for a four percent shift in the proton radius in muonic Hydrogen we

must choose:

M = 320 MeV , (3.9)

which lies close to the QCD scale. This is compatible with constraints from measurements

of Hydrogen spectroscopy which requireM & 200 MeV. It is possible to explain the proton

radius puzzle because muons orbit closer to the nucleus of an atom than electrons and the

disformal force strengthens rapidly with decreases in distance.

One could ask why should the value of M lie close to the QCD scale? We can only

give a plausibility argument: we want to describe low energy physics in the late universe.

As we are not sensitive to internal nuclear structure it makes sense to cut off the physical

description around ΛQCD. We also should not be sensitive to physics in the early universe.

The averaged density of the earth, around 5 gcm−3, correspond to the densities during

BBN. In this environment where the density is similar to the density of the universe during

BBN, it is likely that the cut-off scale M should be close to the cut-off scale of the particle

physics model during BBN, i.e. ΛQCD.

3.2 The helium radius

We can extend our study to He ions carrying one muon compared to those with one electron.

In this case the Lamb shift is related to the Helium radius as [21]

∆E2s−2p

meV
= 1670.37 − 105.322

( rHe

fm

)2
+ 1.529

(rHe

fm

)3
. (3.10)
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The disformal interaction would induce a change in the Lamb shift, which is connected to

a change in the He radius in the following way:

δE2s−2p

meV
= −573.5

δrHe

rHe
. (3.11)

Using a value of M determined in Equation (3.9), rHe = 1.681 fm with mHe = 3.728 GeV

and Z = 2 for the two protons in the He nucleus, we find that the disformal coupling would

induce a change in the Helium radius

δrHe

rHe
= 0.2% . (3.12)

This is smaller than the uncertainty in the Helium radius coming from e scattering exper-

iments, which is of order 0.3%, and therefore is not currently a detectable effect.

3.3 The deuterium

New experiments will also give their results on the deuteron’s radius as inferred from the

Lamb shift in muonic deuterium. The deuteron has a radius of rd = 2.1402 fm and a mass

md = 1.875 GeV. This leads to a shift in the muonic case of the energy levels

δE2s−2p = 0.023 meV . (3.13)

This is a prediction of our model which should be compared with future experimental

results.

4. Stellar Burning Constraints

4.1 Constraints from stars

We have just seen that the proton radius puzzle seems to indicate that the scale M ∼
ΛQCD. This is a low energy scale and one may wonder if the disformal interaction may

not have an influence on the burning rate of stars, as is the case for axions and axion-

like particles. These constraints are summarised in Table 1. For disformally coupled

scalar fields the light particles could be emitted by processes such as Compton scattering,

bremsstrahlung or Primakov processes in stars of the main sequence and on the horizontal

branch of the Hertzsprung-Russell diagram. Two scalars would also be emitted by nuclear

processes involving the pion exchange in supernovae. The latter process gives the most

severe constraints but suffers from theoretical uncertainties due to the fact that the pion

exchange diagram between two nuclei is a strongly coupled effect treated at tree level,

although higher order effects could alter the result drastically. In addition the maximal

emissivity of supernovae ǫSN . 1019erg/g · s as deduced from the SN1987A explosion is only

a rough estimate [24]. The constraints from these processes have been presented in [19] and

it was shown that for the sun we must impose that M & 240 MeV, for horizontal branch

stars M & 810 MeV and for supernovae M & 92 GeV. The solar constraint is always

satisfied if we take M ∼ 320 MeV. The horizontal branch and supernovae constraints need

to be analysed carefully as they rule out, at face value, a disformal explanation of the

proton radius puzzle.
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4.2 Alleviating the burning constraints with chameleons

We now embed the disformally coupled scalar field in a chameleon model. These are scalar

field theories where a potential term V (φ) is added to the Lagrangian

S =

∫

d4x
√−g

(

R

16πGN
− 1

2
(∂φ)2 − V (φ)

)

+ Sm(ψi, g̃µν) . (4.1)

Working to leading order in the disformal coupling, this becomes the effective action

S =

∫

d4x
√−g

(

R

16πGN
− 1

2
(∂φ)2 − V (φ) +

1

M4
∂µφ∂νφT

µν
J

)

+ Sm(ψi, A(φ)gµν) . (4.2)

One of the salient features of these scalar-tensor models is that, in the presence of non-

relativistic matter with a density ρ, the dynamics of the scalar field are governed by the

effective potential

Veff(φ) = V (φ) + (A(φ)− 1)ρ , (4.3)

which appears in the Klein Gordon equation

�φ− 2

M4
Dµ(∂νT

µν
J ) =

∂φVeff(φ)

∂φ
. (4.4)

When the matter density is constant inside a dense region of the Universe, the field settles

at the minimum of the effective potential φ(ρ) satisfying

∂φVeff(φ)

∂φ

∣

∣

∣

∣

φ(ρ)

= 0 , (4.5)

when it exists, e.g. for decreasing potentials V (φ) and increasing coupling functions A(φ).

When the mass of the scalar field, defined as

m2(ρ) ≡
∂2φVeff(φ)

∂φ2

∣

∣

∣

∣

∣

φ(ρ)

, (4.6)

increases with the matter density ρ, the model is a chameleon theory which evades gravita-

tional tests on scalar fifth forces when the scalar interaction range λ(ρ) = m−1(ρ) becomes

small enough in dense environments.

Chameleon models are fully characterised by their mass as a function of the density

ρ and the coupling β. There is a one to one correspondence between m(ρ) and V (φ) [25]

which allows one to define models

m(ρ) ∼ m0

(

ρ

ρ0

)(n+2)/2

, (4.7)

where n > 0 is an index which fully characterises the model. This is, for instance, the mass

function of f(R) models in the Einstein frame and the large curvature regime. The density

ρ0 is the matter density in the Universe now. Local tests of gravity require that

m0 & 103H0 ∼ 10−30 eV , (4.8)
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which is a very low mass, i.e. the scalar is nearly massless in vacuum. In stars such as

the ones on the Horizontal Branch or supernovae, the scalar field settles at its minimum

where ρ/ρ0 ∼ 1033 and ρ/ρ0 ∼ 1043 respectively. Taking n = 1 for instance, we find that

the mass of the scalar field in these environments far exceed the temperature and therefore

scalars are not created inside stars simply for kinematical reason [26]. Hence disformal

scalar fields that possess a chameleon mechanism evade the constraints on the disformal

coupling coming from the burning rate of stars.

5. Collider Physics Constraints

5.1 Unitarity constraint

Strong constraints on the scale M can also be obtained from particle physics. Indeed the

disformal coupling is nothing but an irrelevant operator of higher order whose presence

jeopardises the UV behaviour of the model. We can evaluate when this breakdown occurs

and above which scale the effective field description must be altered, by analysing the

unitarity of scattering processes. We focus on high energy physics experiments and consider

that M ≈ 320 MeV, as suggested by proton radius measurements. A typical scattering

experiment will involve the creation of two scalars from the annihilation of two fermions

f f̄ → φφ. The disformal matrix element for this process becomes

M =
2
√
2mfE

3

M4
, (5.1)

in terms of the energy of the incoming particles in the centre of mass frame. Perturbative

unitarity is preserved when M ≤ 16π implying an energy bound

E ≤ Emax =

(

8πM4

√
2mf

)1/3

. (5.2)

Unitarity has been precisely tested in the standard model with LEP where mf = me and

we find

Emax ∼ 7 GeV . (5.3)

Hence unitarity would have been violated at LEP, which reached beam energies of 200 GeV,

if we extrapolate the disformal coupling between scalars and matter to such high energies.

However if we expect the cut-off to lie just above the scale M then we are not able to

naively extrapolate the theory to such high energies. There are two possible ways to pro-

ceed. The first is that, for energies larger than Emax, the model must be UV completed in

the Wilsonian sense, and the disformal interaction replaced by another interaction between

new degrees of freedom, replacing the low energy field φ, and unitarity is restored. However

in this case we can make no statement about whether our model is compatible with col-

lider measurements. The second, more predictive, alternative is to use the classicalisation

property of Galileon models [27], which we will describe in the following section.
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5.2 Galileons

We embed the disformally coupled scalar field in a Galileon model [14]. These are scalar

field theories which have equations of motion that are at most second order in derivatives,

despite the presence of non-trivial derivative self-interactions. In flat space the theory also

respects the symmetry φ→ φ+ bµx
µ+ c for constant bµ and c. We work with this simplest

form of the theory, the cubic Galileon, which has the following Lagrangian

L = −1

2
(∂φ)2 − 1

Λ3
�φ(∂φ)2 +

βφ

mPl
T +

1

M4
∂µ∂νT

µν , (5.4)

In addition to the coupling scales mPl/β and M the theory is determined by Λ, a suppres-

sion scale which controls the derivative self interactions that define the Galileon. Around

a spherically symmetric source of mass m the scalar field profile is

dφ

dr
= −Λ3r

4



1−

√

1 +

(

R∗
r

)3


 , (5.5)

and the non-linearities dominate the evolution of the scalar within the Vainshtein radius

R∗ =
1

Λ

(

βm

2πmPl

)1/3

. (5.6)

Within this radius the non-linearities act to suppress the scalar force, Fφ, compared to that

of Newtonian gravity, FN , so that

Fφ

FN
= β2

(

r

R∗

)3/2

. (5.7)

Outside the Vainshtein radius, the non-linearities in the kinetic terms become irrelevant

and the dominant kinetic term reduces to −(∂φ)2/2. Inside the Vainshtein radius, any per-

turbations around the background of equation (5.5) inherit a wave function renormalisation

such that the kinetic terms of the perturbations read Z (∂δφ)2

2 where we have

|Z| ∼ 1 +
φ′

rΛ3
, (5.8)

and a prime denotes a derivative with respect to radius. Therefore inside the Vainshtein

radius Z can be large.

The Galileon models rely on high mass dimension operators and therefore are sensitive

to quantum corrections at short distance. At the quantum level, the Galileon models receive

corrections which preserve the Galilean symmetry. Many operators which are not present

at tree level appear, and the effective action calculated using the one-particle irreducible

diagrams for the Galileon models can be organised in an infinite series which depends only

on the effective cut-off scale

ΛZ =
√
ZΛ , (5.9)

and its derivative. This follows from the fact that expanding φ = φ0 + δφ and canonically

normalising the field δφ, the only dimensionful quantities controlling self interactions of the
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field are ΛZ and the effective mass of δφ which depends only on ∂ΛZ and its derivatives.

As a result, the quantum corrections are given by

δL = Λ4
ZF

(

∂iΛZ

Λi+1
Z

)

, (5.10)

where the function F depends on the multiple derivatives of ΛZ . The overall factor Λ4
Z

appears for dimensional reason. For instance, at one loop, the mass term behaves like

mφ ∼ ∂ΛZ

ΛZ
and the Coleman-Weinberg potential reads δV ∼ m4

φ which corresponds to

F (x) = x4 where x = ∂ΛZ

Λ2
Z

.

This result has important consequences. Firstly, the conformal coupling determined

by β and the disformal coupling scaleM are not renormalised by Galileon fluctuations [28].

Secondly, the structure of δL implies that the Galileon interactions are not renormalised,

the corrections appearing with at least one more derivative at the same order in the φ

expansion. The higher order terms from δL are therefore small compared to the Galileon

terms provided that ∂iΛZ

Λi+1
Z

. 1. Inside the Vainshtein radius the dependence of ΛZ on r is

a power law and therefore this condition is met provided

rΛZ & 1 . (5.11)

For the cubic Galileon, we have inside an object and up to its surface

ΛZ ∼
(

βρ̄Λ

mPl

)1/4

, (5.12)

for an object of averaged density ρ̄. This scale is independent of r and guarantees that one

can trust the Vainshtein solution as long as

r & rE ∼
(

mPl

βρ̄Λ

)1/4

, (5.13)

We have used a free scalar field model down to the nuclear scale in the disformal calculation

of the Lamb shift, so we must impose that rNΛZ & 1. Taking ρ̄ ∼ r−4
N for nuclear matter,

we find that rE ≫ rN for Λ ≪ mPl and β = O(1). This would prevent us from trusting our

loop calculation of the Lamb shift. The only possibility is to impose that the Vainshtein

radius of nucleons is smaller than their size, implying that the Galileon theory is weakly

coupled down to nuclear scales. This requires that

Λ &
1

rN

(

βmN

mpl

)1/3

∼ 0.2 keV . (5.14)

5.3 Non-perturbative effects

In some models, the perturbative assumption that single particle states are created from

annihilation processes is no longer valid in high energy collisions. This happens when

non-perturbative effects occur at high energy due to the non-linearities of the theory. In

particular, classical lumps can be created in some scalar models that would be akin to
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the creation of black holes at Planck scale energies. This phenomenon alleviates the per-

turbative unitarity bound as the growth of the scattering cross section with the energy

is modified. Let us illustrate this with the Galileon models which offer the possibility of

annulling the constraint from perturbative unitarity.

The Vainshtein radius plays an important role in particle scattering experiments. Take,

for instance, the case of a two fermion annihilation process previously discussed. On shell,

the trace of the energy momentum tensor of massive fermions is

T = −mF ψ̄ψ , (5.15)

corresponding to a non-vanishing energy density which is highly concentrated and can be

modelled as

T 00 =
√
sδ(3) , (5.16)

in the centre of mass frame, with s = −p2 where p is the total incoming 4-momentum.

This is a peaked energy density ρ of order
√
s over a region of size R ∼ 1√

s
during a time

interval of order ∆t ∼ 1√
s
. During the time interval of the collision when the energy density

ρ is non-vanishing, the scalar field can be modelled as a solution of the time independent

Klein-Gordon equation sourced by T 00. In this frame the tree level contribution from the

disformal term vanishes as the source is static and the scalar field profile is determined

by the same equation as the one used to analyse the Vainshtein screening in Galileon

models. The scalar profile becomes a scalar lump with its energy concentrated inside

the Vainshtein radius. The non-linearities dominate inside the Vainshtein radius and are

important for scattering experiments provided the source term lies inside its own Vainshtein

radius R . R⋆. This is the analogue of the criterion for the formations of black holes, i.e.

the requirement that the size of the interaction region must be within its Schwarzschild

radius.

Being dominated by the creation of a classical lump, the scattering process has a total

cross section which is of the order of the Vainshtein radius squared

σT ∼ R2
⋆ . (5.17)

After the time interval ∆t, the energy density drops to zero and the scalar lump cannot

be maintained any more. This triggers the classical decay of the scalar configuration,

and the solution becomes time dependent. We do not study the details of this decay

here, however one expects the energy of the initial lump to spread out in space and decay

classically. During this process, one also expect that quantum phenomena take place with

the emission of on shell particle states.

For the Galileons, a source of mass
√
s and size R = 1/

√
s has a Vainshtein radius

R⋆(s) =
1

Λ

(

β
√
s

2πmPl

)1/3

, (5.18)

and the Vainshtein criterion R . R⋆(s) is satisfied provided

s & s⋆ ≡
(

2πΛ3mPl

β

)1/2

, (5.19)
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where β = O(1). The high energy behaviour above s⋆ determined here must resolve the

breaking of perturbative unitarity implying that s⋆ ≤ E2
max ∼ (7 GeV)2 and therefore

Λ3 ≤ βE4
max

2πmPl
, (5.20)

which corresponds to Λ ≤ 6 keV. Unitarity must also be respected in the scalar sector of

the theory where the φ + φ → φ + φ process leads to a scattering amplitude at tree level

M ∼ s3

Λ6 in a terrestrial environment. At higher energy, one must resum all the ladder

diagrams involving the three-point vertex of Galileon models with an amplitude of the

form M ∼ s3

Λ6 (1 + α s3

Λ6 )
−1 where α is a numerical factor. This resummation renders the

amplitude bounded at large s guaranteeing that unitarity is not violated.

Whilst this classicalisation process alleviates the unitarity bounds on the disformal

coupling, the decay of the scalar lumps must still be compatible with collider observations.

At energies higher than
√
s⋆, fermion annihilation including those at LEP and the LHC

would not create two particle scalar states but classical Galileon configurations. These

Galileons would then decay classically and quantum mechanically into a few multi-particle

states coming from the coupling of the scalar field to matter fields. A full calculation of this

process is beyond the scope of this work, however as the coupling between the scalar and

matter particles is suppressed by β/mPl for the conformal coupling and by loop suppression

factors for the disformal coupling we expect observable signatures of this process to be very

difficult to detect.

5.4 Combining the chameleon and Galileon effects

We have seen that the unitarity bound from particle physics can be alleviated provided

Λ . 6 keV. We have also found that the calculation of the disformal Lamb shift can be

trusted provided that Λ & 0.2 keV. This gives a narrow band of values for Λ ∼ 1 keV. For

these values of Λ, the Vainshtein radius of stars of the main sequence and on the horizontal

branch are extremely small compared to their sizes. For supernovae, the Vainshtein radius

is of the order of the radius of the core. We have used the chameleon mechanism to

tackle the burning rate problem for stars. How can we make the chameleon and Galileon

compatible? We consider the full model defined by the action

S =

∫

d4x
√−g

(

R

16πGN
− 1

2
(∂φ)2 − 1

Λ3
�φ(∂φ)2 − V (φ) +

1

M4
∂µφ∂νφT

µν
J

)

+Sm(ψi, A(φ)gµν ) , (5.21)

where V (φ) and A(φ) depend on the chameleon model. Inside a dense body of almost

uniform density, the field settles at the minimum of the effective potential φ(ρ). This is

even true inside the would-be Vainshtein radius R⋆ of the object as the source term in

the Klein-Gordon for the spatial variation of the field ∂Veff

∂φ |φ(ρ) vanishes altogether. This

implies that the model behaves like a chameleon model inside matter, and the burning rate

bounds are evaded provided the mass of the scalar field in dense media is large enough.

On the contrary, in the sparse environments of atomic or particle physics experiments

where the ambient density is low, the scalar behaves like a nearly massless field with a
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background value φ0 which minimises the effective potential. During the course of a high

energy collision, the extreme densities reached in the centre of mass frame during a time

∆t ∼ 1/
√
s far exceed the background density and act as a peaked source localised in

space. Expanding φ = φ0 + δφ, the action reduces to the one of a cubic Galileon model for

a nearly massless field sourced by the matter density coming from the particle collision. As

a result, the Galileon lumps can be created at high enough energy and unitarity is restored.

In conclusion, we have introduced a class of models where the chameleon mechanism

dominates in dense environments where the scalar field is extremely massive and cannot

be produced by the particle reactions involving the disformal coupling. This prevents the

dramatic increase of the burning rate of star that a disformal model with M ∼ ΛQCD

would entail. On the other hand, in (near) vacuum situations where particle experiments

take place, the Galileon interactions become relevant at short distance when the Galileon

coupling is approximately Λ ∼ 1 keV.

6. Conclusion

We have considered the effects of a disformal coupling between a massless scalar field and

matter in the context of atomic physics. We have shown that the proton radius puzzle,

i.e. a difference of four percent between the Lamb shifts of electronic and muonic atoms,

can be explained by such a disformal coupling when the cut-off scale of the model for

experiments carried out in the terrestrial environment is close to the QCD scale. This

allows us to predict that the disformal effect on the He radius should be below the percent

level. These results are only valid when the scalar model is embedded in non-linear models

with the chameleon screening mechanism in dense environments. This helps alleviating

the constraints coming from stellar burning rates as scalars are too heavy to be created in

such environments. At higher energy and in near vacuum, the Vainshtein mechanisms of

cubic Galileon models would prevent the violation of unitarity by disformal interactions.

These models would be characterised by the production and decay of classical lumps. The

determination of signatures for these events would certainly lead to promising tests of the

models presented here at the LHC. This is left for future work.
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