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Disformally coupled, light scalar fields arise in many of the theories of dark energy and modified
gravity that attempt to explain the accelerated expansion of the universe. They have proved difficult
to constrain with precision tests of gravity because they do not give rise to fifth forces around
static non-relativistic sources. However, because the scalar field couples derivatively to standard
model matter, measurements at high energy particle colliders offer an effective way to constrain and
potentially detect a disformally coupled scalar field. Here we derive new constraints on the strength
of the disformal coupling from LHC run 1 data and provide a forecast for the improvement of these
constraints from run 2. We additionally comment on the running of disformal and standard model
couplings in this scenario under the renormalisation group flow.

I. INTRODUCTION

Evidence for the acceleration of the expansion of the
universe comes from a wide variety of cosmological ob-
servations [1–4], which probe the expansion history of
the universe and the way in which the distribution of
light and matter has evolved to form structures. There is
currently no convincing theoretical explanation for this
expansion. Introduction of a cosmological constant re-
quires an extreme fine tuning to explain why its value is
so small, when quantum fluctuations of standard model
fields want to drive its value to the highest energy scale of
the theory [5]. In contrast to the hierarchy problem, the
cosmological constant problem is a fine tuning problem
that exists even at low energies (smaller than the elec-
troweak scale) within the Standard Model. Attempts to
solve the cosmological constant problem, either by intro-
ducing new fields or by modifying the gravitational sec-
tor [6, 7], typically suffer from either related fine-tuning
problems or an inability to match current observations.
Almost all attempts to solve the cosmological constant
problem introduce new, light scalar degrees of freedom
that we will call dark energy.∗ Therefore, even without
knowing the complete explanation for the accelerated ex-
pansion of the universe, we can learn about the form of
the underlying theory by studying the behaviour of the
resulting dark energy scalars.

As dark energy is part of a hypothesised solution to the
cosmological constant problem it is expected to interact
with both standard model and gravitational fields [8].
The expectation that dark energy would couple to stan-

∗Electronic address: Philippe.Brax@cea.fr
†Electronic address: Clare.Burrage@nottingham.ac.uk
‡Electronic address: Christoph.Englert@glasgow.ac.uk
∗We use the term dark energy to include any scalar field that is
introduced as part of a solution to the cosmological constant prob-
lem, not just those that directly drive the expansion of the universe
to accelerate.

dard model fields has proved particularly difficult to em-
bed in the theory, as Yukawa type interactions are ex-
cluded by the results of fifth force searches [9] to a high
degree of accuracy. However these measurements only re-
strict one particular class of interaction between dark en-
ergy and the standard model, those that arise through a
conformal coupling where matter fields move on geodesics
of a metric g̃µν = A(φ)gµν , where gµν is the spacetime
metric and A an arbitrary function of the dark energy
scalar field. A second class of interactions, termed dis-
formal, is possible. In a disformal theory matter fields
move on geodesics of the metric g̃µν = gµν+B(φ)∂µφ∂νφ,
where again B is an arbitrary function of φ. Disfor-
mal interactions have been shown to arise in the four
dimensional effective theory resulting from various brane
world scenarios [10, 11], in branon models [12, 13] and
in theories of massive gravity [14, 15]. Disformal cou-
plings are particularly interesting in theories where an
(approximate) shift symmetry for the scalar field is used
to protect the mass of the dark energy scalar, and ensure
that it can remain light on cosmological scales. Unlike
conformal couplings, disformal couplings to matter do
not break this shift symmetry. One prime example is
provided by the Goldstone modes of a global symmetry
where the interaction potential results from a soft and
explicit breaking of the symmetry. Axion quintessence
models fall into this category and are an example of a
thawing model of dark energy [16]. These theories do
not make a definitive prediction for the scale of the dis-
formal interaction, allowing it to lie anywhere between
the dark energy scale Λ ∼ 10−3 eV and the Planck scale
MP ∼ 1018 GeV. It must therefore be determined by
experiment.

In contrast to conformal couplings, which are tightly
constrained by experiments, disformal couplings have
proved difficult to study experimentally. In particular
disformal interactions hide from fifth force searches ex-
tremely successfully because they are not sourced by
static, non-relativistic matter distributions. A new ap-
proach is needed to study disformal dark energy interac-
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tions.
Disformal interactions are derivative interactions be-

tween a light scalar field and matter, therefore they can
be most efficiently probed at high energies. The possibil-
ity of using particle colliders to constrain disformally cou-
pled scalars was first proposed by Kaloper [17]. In previ-
ous work, two of us have shown that such couplings can
be studied and constrained both in terrestrial laborato-
ries and from observations of stars [18]. A constraint was
estimated from early mono-photon searches at the Large
Hadron Collider (LHC) and required the coupling scale
M & 102 GeV. A comparable constraint was obtained
from restricting additional energy losses in supernovae.
These constraints are eleven orders of magnitude stronger
than the bounds that can be obtained from local tests
of gravity [19]. A variety of other observational probes
of disformal couplings have been previously considered:
the disformal interactions of scalars with photons can be
probed in laboratory experiments [20] and astrophysical
observations [21]. In models motivated by Galileon theo-
ries and massive gravity, constraints have been put on the
disformal interactions from studying gravitational lensing
and the velocity dispersion of galaxies [22, 23]. Further
cosmological implications of disformal scalars have been
considered in [24–31].

We briefly review the models considered in this paper
in section II. In section III we consider constraints on this
class of models that arise from precision measurements at
the Large Electron Positron Collider (LEP). Specifically,
we compute the oblique corrections and investigate the
impact of disformally coupled scalars on the Z boson line
shape. Section IV is devoted to setting constraints from
LHC measurements using the full run 1 data sets avail-
able from both ATLAS and CMS. In particular we study
constraints from di-lepton, mono-photon and mono-jet
production in association with missing transverse energy
and extrapolate promising channels to the end of run
2. We also comment on modifications to the recently
discovered Higgs boson phenomenology that arise from
disformally coupled scalars. Throughout we will use a
“mostly minus” convention for the Minkowski metric.

II. DISFORMAL DARK ENERGY

A scalar field couples disformally to matter if matter
fields move on geodesics of the metric [32]

g̃µν = gµν +B(φ)∂µφ∂νφ , (1)

where gµν is the space time metric, and B is an arbi-
trary function of the scalar field φ. In this work we
will only consider B(φ) = 1/M4, where M is a constant
with dimensions of mass. This is the leading order term
in a Taylor expansion of B(φ) and will be sufficient to
demonstrate the effects of a disformal coupling at the
LHC which will appear first at order (E/M)2, where E
is the characteristic energy of the process under discus-
sion. The value of φ may very from place to place in

the universe leading to a possible redressing of the scale
M , which would need to be taken into account in order
to compare constraints derived from different places cor-
rectly. We will not discuss variations in the background
value of φ further in this work.

Matter fields are conserved with respect to the metric
in equation (1) so that

D̃µT̃
µν = 0 , (2)

where D̃µ is the covariant derivative with respect to the
disformal metric of equation (1), and

T̃µν =
2√−g̃

δSm
δg̃µν

(3)

is the Jordan frame energy momentum tensor.

The interactions between the scalar field φ and stan-
dard model fields that arise from interactions with the
metric in equation (1) occur at all orders in (E/M)4,
however if we are only interested in the leading order
effects of the disformal coupling then the relevant inter-
action terms in the action are

S =
1

M4

∫
d4x
√
g∂µφ∂νφT

µν , (4)

where now Tµν = (2/
√−g)(δSm/δgµν) is the Einstein

frame energy-momentum tensor, defined with respect to
the space-time metric gµν . In this work we restrict our at-
tention to interactions of the form given in Equation (4),
other possible derivative interactions of the same mass
dimension are discussed in the Appendix. However we
will show in Section V that if they are initially chosen
to be absent additional operators are not generated by
quantum corrections at order 1/M4.

Equation (4) motivates two approaches to observe or
constrain models with disformally coupled scalars at col-
liders. The first avenue is through modifications to the
standard model expectation for processes at precision
machines such as LEP through either direct production
of the scalar, which modifies for example the Z boson
phenomenology or through internal quantum corrections
that lead to a deviation from the standard model (SM)
expectation, for example for two to two particle scatter-
ing. The second avenue is provided by exploiting the
current energy frontier of the LHC. Derivative disformal
couplings induce deviations at large momentum trans-
fers, which are directly accessible to current searches.
Since the scalar φ is light and stable on collider scales,
established dark matter searches for missing energy [33–
36] also provide sensitive strategies to look for disformal
couplings.
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III. CONSTRAINTS FROM ELECTROWEAK
PRECISION MEASUREMENTS

A. Oblique corrections

A customary way of assessing the impact of new
physics on standard model processes is via its impact
on precision measurements performed during the LEP
era. A framework which is typically adopted to analyse
modifications in the gauge sector are the oblique correc-
tions parametrised by the S, T, U parameters of Peskin
and Takeuchi [37, 38]:

V V

�

FIG. 1: One-loop and leading 1/M4 contribution to the
vector V = γ,W±, Z polarization functions Πµν(q2) =
Π(q2)gµν + . . . mediated by a virtual disformal scalar cou-
pling.

S =
4s2
wc

2
w

α

(
ΠZZ(m2

Z)−ΠZZ(0)

m2
Z

− c2w − s2
w

cwsw

ΠγZ(m2
Z)−ΠγZ(0)

m2
Z

− Πγγ(m2
Z)

m2
Z

)
, (5a)

T =
1

α

(
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

− 2sw
cw

ΠγZ(0)

m2
z

)
, (5b)

U =
4s2
w

α

(
ΠWW (m2

W )−ΠWW (0)

m2
W

− c2w
ΠZZ(m2

Z)−ΠZZ(0)

m2
Z

− s2
w

Πγγ(m2
Z)

m2
Z

− 2swcw
ΠγZ(m2

Z)−ΠγZ(0)

m2
Z

)
, (5c)

where the Π functions denote SM vector boson polariza-
tion functions and cW , sW are cosine and sine of the weak
mixing angle, respectively. From their definition it be-
comes obvious that the Peskin-Takeuchi parameters cap-
ture beyond the standard model (BSM)-induced effects
in the gauge sector in a q2 expansion of the polarization
functions to leading order. S, T, U parametrise “univer-
sal” modifications due to BSM physics in the gauge sec-
tor, i.e. the parameters provide an approximation to the
full next-to-leading order results under the assumption
that the BSM physics arises in the gauge sector only. As
such, consistency with existing constraints on the Peskin-
Takeuchi parameters should not be understood as con-
sistency of a particular model with electroweak precision
measurements, it merely acts as a first test that a par-
ticular model has to pass.

The contributions of the disformally coupled scalar at
one loop and leading order in 1/M4 are sketched in Fig. 1.
The polarization function for the photon reads:

Πγγ(q2) =
q2

32π2

(mφ

M

)4

. (6)

This is consistent with intact gauge invariance. For bro-
ken directions (and Z − γ mixing) we have

ΠγZ(q2) = 0 , (7)

ΠV V (q2) =
1

128π2

(
m2
φ(4q2 − 3m2

V )

+10m2
VA0(m2

φ)
) (mφ

M2

)2

, (8)

where V = W±, Z and A0(m2) is the scalar loop func-
tion in the Passarino Veltman language [40, 41] in D-

dimensional regularisation

A0(m2) =
(2πµ)4−D

iπ2

∫
dDq

1

q2 −m2

= −m2

(
m2

4πµ2

)D/2−2

Γ

(
1− D

2

)
, (9)

where µ is the so-called ‘t Hooft mass that keeps track of
mass units in D dimensions and cancels in renormalised
quantities. With these equations, it is easy to see that
the contributions of the ∼ q0, q2 pieces to the Peskin-
Takeuchi parameters Eq. (5) vanish identically. Note
that due to the appearance of only A0 functions in the
gauge boson self-energies ∼ q2 there are no contributions
to the extended set of precision observables as defined
in [42], which capture the impact of BSM effects on the
vector boson self-energies ∼ q4. Therefore no constraints
can be placed on the disformal coupling scale M from
precision measurements of S, T and U . We will comment
on the impact on running couplings in section V.

B. Z boson phenomenology

Another important and precisely determined quantity
is the lineshape of the Z boson. Since the disformal cou-
pling dresses every interaction vertex and the scalar mass
can be significantly below the Z boson threshold a novel
1 → 4 channel will open at leading order in the 1/M4

expansion. Depending on the size of M , this can lead
to a significant modification of the Z bosons decay phe-
nomenology and the Z boson lineshape as a consequence.
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(a)
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FIG. 2: Modification of the Z boson width to leptons (here concretely for Z → µ+µ−) due to “dressing” the decay using
the new interaction with two scalars. The leading order Feynman diagram contributing to this decay is shown in (a) and an
example diagram contributing to the modification of the decay at ∼ 1/M4 is shown in (b). Note that the individual fermion
legs and the Z boson propagator can also be dressed with a φ2 insertion and these diagrams are not shown. Similarly the
production of the Z boson receives modifications. The vertical line represents the current bound on Z → µ+µ− [39].

The size of the BSM correction as a function of M is
shown in Fig. 2. We can use this to set a lower limit on
M ; however an explicit calculation shows that this lower
bound is only weak, M & 60 GeV.

IV. CONSTRAINTS FROM LHC SEARCHES

The form of the disformal coupling means that disfor-
mal scalars can be produced on shell in a collider and,
as they will not interact in the detector, will leave only
missing energy as a signature of their presence. This
means that missing energy searches for dark matter can
be adapted to place constraints on disformally coupled
dark energy models. In this section we recast recent
analyses performed by ATLAS and CMS in the mono-
jet [33], mono-photon [34, 35] and di-lepton [36] searches,
where available, to reinterpret these measurements and
set constraints on the scale M .† By validating our analy-
sis against the 8 TeV results we can also extrapolate our
findings to the upcoming run 2 and estimate the limit
that will be set in the near future.

For the actual analyses we include the signal and all
dominant backgrounds and simulate them with Feyn-
Rules [45], MadEvent [46], Sherpa [47] and Her-
wig++ [48], jet clustering is performed with Fast-
Jet [49]. Throughout the numerical analysis we make
the specific choice thatmφ = 1 MeV. However our results
will be independent of the mass of such a light scalar, and
so will be valid for all lighter masses.

Setting limits on effective field theories at colliders can

†Mono-lepton searches [43, 44] crucially depend on a correct model-
ing of the missing energy resolution, and we do not consider these
searches.

suffer from shortcomings if the new physics scale is re-
solved by the experiment [50–55]. An effective field the-
ory description is only valid if the probed energy scales
are lower than the scale of new physics, e.g. if resonances
or thresholds remain unresolved. These shortcomings can
be mended by reverting to concrete UV complete sce-
narios (but limits become model dependent as a conse-
quence) or by separating energy scales consistently on the
basis of renormalisation group equations [50, 56]. In the
scenario we consider in this paper it is important to high-
light a difference compared to similar issues in dark mat-
ter searches: while complete field theoretic models can be
constructed in dark matter-related analyses, a concrete
model implementation is not available in the analysis of
strongly coupled gravitational effects due to the intrin-
sic non-linear and non-renormalisable nature of gravity
in a perturbative field theory context. In what follows,
this issue should be kept in mind; while limit setting is
a viable qualitative strategy in the absence of a signal,
the interpretation of a possible excess seen with M in the
TeV region will require the inclusion of non-linear effects
which are formally higher order in our (E/M)4 expan-
sion. We will comment on the validity of the set limits
in light of resolved energy scales later in section V.

Mono-Photon searches

Both ATLAS and CMS have published analyses in
mono-photon searches for the full run 1 data set [34, 35]
with similar sensitivities.

CMS reconstruct jets using the anti-kT algorithm [57]
to cluster particles into jets with resolution parameter‡

‡For readers less familiar with jet physics the D parameter refers
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FIG. 3: Results of the ATLAS dilepton search confronted
with disformal scalar coupling model. For further details see
the text. ATLAS do not quote uncertainties and hence we
only show central values.

D = 0.5 and define isolated photons based on the energy

deposit in a cone of ∆R =
√

∆Φ2 + ∆η2 < 0.3 (where
Φ and η are the azimuthal angle and pseudo-rapidity,
respectively) around the photon candidate, which is re-
quired to be smaller than 5% of the candidate’s energy
based on the expected shower profile. The transverse en-
ergy of the photon is required to be ET (γ) > 145 GeV.
Since a full detector simulation is not available, we ap-
proximate this energy with the Monte Carlo information
for the transverse momentum. Events with more than
one jet with pT > 30 GeV and light leptons (isolation
is based on a hadronic energy deposit in the vicinity of
∆R < 0.3 by less than 20% of the candidate pT ) with
pT > 10 GeV are vetoed if they are separated from the
photon by ∆R > 0.5. The final selection requires a miss-
ing transverse energy Emiss

T > 140 GeV, well separated
from the photon in azimuthal angle ∆Φ(Emiss

T , γ) > 2.
We include an expected missing energy resolution by fit-
ting the expectation of CMS particle flow as outlined in
[59]. After these steps CMS exclude an upper cross sec-
tion limit of 14 fb, which translates into a lower limit
of

CMS: M & 419 GeV (10)

in our analysis.
ATLAS follow a similar strategy, selecting photons

with pT (γ) > 125 GeV in |ηγ | < 1.37, Emiss
T > 150 GeV

and ∆Φ(Emiss
T , γ) > 0.4. Jets are reconstructed with the

anti-kT algorithm with D = 0.4 and vetoed if pT,j >
30 GeV and ∆Φ(Emiss

T , j) < 0.4. Electrons (pT > 7 GeV,
|η| < 2.47) and muons (pT > 6 GeV, |η| < 2.5) are ve-
toed. ATLAS exclude 6.1 events at 95% confidence level

to the conical size of the jet combined from particle tracks in the
azimuthal angle–pseudo-rapidity plane. An excellent review of jet
physics is provided in [58].

for the run 1 luminosity of 20.1/fb. This translates in
our implementation into

ATLAS: M & 447 GeV , (11)

which is consistent with the CMS limit.

Di-Lepton searches

ATLAS have published a dark matter search in a
Z+missing energy search based on the run 1 data set
in [36]. In their analysis, ATLAS require electrons to
have ET > 20 GeV, |η| < 2.47 and consider muons with
pT > 20 GeV, |η| < 2.5. Isolation is defined by re-
quiring the hadronic energy deposit in a cone of size
∆R < 0.2 around the candidate to be less than 10%
of the candidate’s ET and only tracks with pT > 1 GeV
are considered in this isolation criterion. Jets are recon-
structed with the anti-kT algorithm with D = 0.4, and
pT > 25 GeV and |η| < 2.5.

Candidate events need to have a di-lepton system con-
sistent with the Z boson 76 GeV ≤ m`` ≤ 106 GeV and
the missing energy has to be well separated from the di-
lepton pair: ∆Φ(Emiss

T , ``) > 2.5. Further, ATLAS im-
pose η`` < 2.5, |p``T − Emiss

T |/p``T < 0.5. Events with jets
with pT > 25 GeV are finally removed and ATLAS con-
sider four search regions based on a inclusive selection of
missing energy and provide expected and observed fidu-
cial cross sections at 95% confidence level.

Implementing these analysis steps, we can again trans-
late these limits into lower limits on the disformal cou-
pling scale M , as depicted in Fig. 3. The sensitivity is
maximised for the Emiss

T > 250 GeV search region, where
the trade off between differential signal cross section en-
hancement due to the probed energy in the disformal cou-
pling and decreasing background cross sections becomes
optimal. For more stringent requirements, the signal be-
comes kinematically suppressed.

Mono-Jet searches

The most recent mono-jet analysis exploiting the full
run 1 data set has been provided by the CMS collabora-
tion in [33]. In this analysis particles are clustered into
jets using the anti-kT algorithm [57] with D = 0.5 and
requiring the leading jet to have transverse momentum
and rapidity

pT,j1 > 110 GeV, |ηj1 | < 2.4 . (12)

A second jet

pT,j2 > 30 GeV, |ηj2 | < 4.5 (13)

is allowed if it is separated from the first jet by

∆Φ(j1, j2) < 2.5 . (14)
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FIG. 4: Minimum scale M extracted from the CMS mono-
jet search of [33] in the different search regions based on the
inclusive search regions characterised by Emiss

T (for details see
text). We also show the improvement based on an extrapo-
lation of the 8 TeV analysis to the 13 TeV LHC run 2 with
100/fb.

The analysis vetos events with more than two jets with
pT > 30 GeV and |ηj | < 4.5. Events with isolated lep-
tons are vetoed if pT,` > 10 GeV; isolation is defined by
requiring the total hadronic energy deposit in a cone of
size 0.4 around the lepton candidate being smaller than
20% of its transverse momentum. The analysis selects 7
inclusive search regions based on an additional missing
energy threshold.

We validate our analysis in these different search re-
gions, taking into account the Z+jets, QCD-jets, tt̄+jets,
W + jets and diboson+jets backgrounds and missing en-
ergy resolution is included in an analogous manner to
that of the previous sections. We find excellent agree-
ment of our analysis with the CMS background tem-
plates, especially for the dominant backgrounds and most
inclusive selections. The agreement of our simulation
with the Z + jets template in particular, provides con-
fidence that we can set a trustable limit on the presence
of an additional missing energy contribution that is the
main signature of our model in this channel. For the
fake-dominated background contributions as QCD jets,
we use the CMS results to derive a differential efficiency,
which we will later use in our 13 TeV projections without
further modification.

The results of the 8 TeV CMS analysis, recast along the
above lines is shown in Fig. 4. Comparing the findings of
the mono-jet search to the previously discussed channels,
we see that the mono-jet search is the most sensitive to
our scenario. In light of this result we extrapolate the 8
TeV CMS to LHC run 2 in Fig. 4 using the CLs method
of [60, 61]. Most of this improvement stems from a sig-
nificant signal cross section increase by a factor of 10.
It is not entirely unexpected that this particular anal-
ysis performs better than the other channels discussed
above. The particular form of the interaction basically
amounts to QCD-like BSM production suppressed by the

H → gg
H → ZZ → 4`

H → bb̄

M [GeV]

si
gn

al
st
re
n
gt
h
−

1

2202001801601401201008060

10

1

0.1

0.01

FIG. 5: Modifications of the Higgs boson signal strength as
a function of M for the gluon fusion production mode at 8
TeV, estimated using Higgs effective field theory [64–66]. The
modifications are analogous to the 2-body and 4-body decay
sample Feynman diagrams shown in Fig. 2.

scale M , and the relative sensitivity follows the paradigm
that events induced by strong couplings give tighter con-
straints on new physics than those produced by weak
couplings because jet production is the most abundant
high transverse momentum process at the LHC.

A note on modified Higgs phenomenology

Finally we comment on potential modification of Higgs
phenomenology. The crucial observable is the “signal
strength”

µik =
[σ{i}(H)× BR(H → {k})]BSM

[σ{i}(H)× BR(H → {k})]SM
, (15)

this measures the cross sections for Higgs production via
mechanism i and subsequent decay into final state k with
decay probability BR(h → {k}), relative to the SM ex-
pectation of the same production and decay. Measure-
ments of the Higgs signal strength have already reached
considerable sensitivity ∼ 10% around the SM hypothe-
sis, but are mostly driven by the gluon fusion production
mechanism. It is expected that we can scrutinize the
Higgs boson’s phenomenology at the percent level at the
high luminosity LHC [62, 63]. “Dressing” the Higgs ver-
tices with the additional interactions analogous to the Z
boson phenomenology (see Fig. 2) at LEP, we can under-
stand the allowed error as a limit on the scale M with the
benefit of a higher mass scale mh > mZ . The modifica-
tions of the signal strength for the different decay modes
are shown in Fig. 5. Whilst Higgs phenomenology is sen-
sitive to the presence of a disformal scalar, direct searches
for missing energy remain a more powerful probe.
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V. RUNNING OF COUPLINGS

In the previous sections we have focused on direct mea-
surements of and constraints on the presence of a disfor-
mal interaction. In section III A we saw that the disfor-
mal scalar does not lead to oblique corrections. Not all
BSM effects are expressed through oblique corrections
and we analyse other observables in the following. We
will see that these effects are highly suppressed and lim-
ited to kinematic thresholds in the limit mφ/M � 1,
where we can trust our expansion in terms of an effective
field theory deformation of the SM. We will also comment
on potential modifications of the running of couplings due
to the presence of the disformal interactions.

Taking the contribution to the vector polarization
functions as a starting point we can check whether the
presence of the additional derivatively-coupled scalars
impacts the running of SM couplings. In particular any
impact on the top Yukawa couplings, as well as on the
Higgs self interaction will have important consequences
on the stability of the electroweak vacuum. By working
out the ∼ M−4 corrections to wave function renormali-
sations and SM vertices we can compute potential con-
tributions to the SM β functions. Introducing the MS
parameter in D = 4− 2ε dimensional regularisation

∆ =
Γ(1 + ε)

ε

(
4πµ2

µ2
R

)ε
(16)

we have A0(m2) = m2∆ +O(ε). µR is the renormalisa-
tion scale that effectively replaces µ in the renormalisa-
tion procedure. We can calculate the renormalisation
∼ 1/M4 of the Higgs and top wave functions in the
MS scheme (note that all corrections vanish in the limit
mφ → 0 in dimensional regularisation)

δZH =
1

32π2
∆
(mφ

M

)4

, (17)

δZt =
3

64π2
∆
(mφ

M

)4

. (18)

The renormalisation of the t̄tH vertex to ∼ 1/M4 is

δZt̄tH =
1

16π2
∆
(mφ

M

)4

, (19)

which leads to an operator renormalisation

δZ = δZt̄tH − δZt −
1

2
δZH = 0 , (20)

which implies no contribution ∼ 1/M4 to the anomalous
dimension of the Yukawa coupling yt and its running is
therefore not affected by the presence of the disformal
coupling.

Similarly we can compute the renormalisation of the
quartic interaction operator in the Higgs potential by in-
vestigating the four point vertex H4 (Fig. 6)

δZH4 =
3

8π2
∆
(mφ

M

)4

(21)

and again we find an operator renormalisation

δZ = δZH4 − 2 δZH = 0 , (22)

meaning that again the disformal scalar has no impact
on the running of the quartic Higgs interaction.

We have checked that similar cancellations happen in
the renormalisation of all other SM couplings. This can-
cellation is not an accident, but happens due to the inde-
pendence of the external and internal symmetries of the
considered effective field theory.

The deformation of the disformal interactions, on the
other hand, has a dynamic dependence on scale which, if
external and internal symmetries are independent, should
be limited to the interaction itself as well as invariants
of the external (diffeomorphisim) symmetry. Due to the
complicated dynamics of the SM as a whole, to analyse
this we focus on a simple subsector of the SM; QED with
the top as a single massive fermion. Concretely we look
at the renormalisation of the operator

Odis =
cT
M4

Tµν∂µφ∂νφ (23)

and specifically at the dressed top propagator as probe
of the Wilson coefficient cT .

In this model, the wave function renormalisation for
the scalar φ is given by

δZφ =
21

8π2
∆
(mt

M

)4

(24)

and the full top renormalisation, including the 1/M0 part
in general gauge is

δZt =
α

9π
∆ ξ +

3

64π2
∆
(mφ

M

)4

, (25)

where ξ is the gauge parameter. The φ2-dressed top prop-
agator, Fig. 7 is renormalised by

δZtt̄φ2 =
α

9π
∆ ξ (26)

and therefore the operator renormalisation constant
is (see e.g. [67] for a detailed discussion of renormali-
sation in effective field theories)

δZOdis
= − 3

64π2
∆
(mφ

M

)4

− 21

8π2
∆
(mt

M

)4

, (27)

which implies an anomalous dimension

γcT =
d δZOdis

d logµR
=

1

16π2

[
3

2

(mφ

M

)4

+ 84
(mt

M

)4
]
,

(28)

such that the renormalisation group equation (RGE)
reads

cT (Λ) =

(
Λ

M

)γcT
(Λ ≤M) (29)
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FIG. 6: One-loop corrections to the H4 operator at order 1/M4.
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FIG. 7: One-loop corrections to the tt̄φφ vertex in the considered toy model, extended by the disformal coupling.

after inserting the boundary condition cT (M) = 1. Since
the anomalous dimension is positive definite, it flows to
small coupling in the infrared, consistent with the behav-
ior of a coupling that parametrises the interaction with
SM energy-momentum. It is important to note that when
calculating the operator renormalisation in Eq. (27) we
do not obtain spurious singularities, which would need
to be absorbed by additional counter terms unrelated to
Odis. The presence of such terms would be tantamount
to a RGE flow-induced mixing of Odis with other inde-
pendent operators§ that are excluded from our effective
theory of Eq. (23) at the UV scale (by construction).
While such terms could in principle be present, see the
appendix, our constraints can be understood as consis-
tent limits on the operator Odis alone.

Furthermore, in the previous sections we have found
limits in the 650 GeV range, which are mass scales easily
resolved by the LHC at 8 TeV. In principle this raises
the question of whether we can trust our effective field
theory prescription if the most sensitive region to the
presence of disformal couplings is given by pT,j > M in,
e.g., the mono-jet analysis. However, equipped with the
above RGE equations we can separate the scale of mea-
surement and new physics consistently (see e.g. [50] for a
related discussion in Higgs phenomenology): If the new
physics scale is indeed higher than the resolved scale we
can compute the modified limit using RGE equations like
Eq. (29). Since the top quark is the heaviest particle in
the SM, we can expect that Eq. (29) also gives a reason-
able estimate of the size of these effects in the full SM.
If we push the fundamental scale M outside the LHC
coverage the effectively resolved scale due to Eq. (29) re-
mains numerically unchanged due to the smallness of the
anomalous dimension γcT and our limit is solid against
these aforementioned issues.

§Independent in this context means that redundancies are removed
with equations of motion.

The findings for the running of the disformal coupling
deserve a few additional remarks. Firstly, the renormal-
isation is not only gauge-invariant, i.e. the terms ∼ ξ
drop out, but all terms ∼ 1/M0 cancel in the calcula-
tion. This means that the internal symmetries which are
expressed as the zeroth order in the ∼ M−4 expansion
do not influence the running of the disformal coupling.
The leading term in the renormalisation only depends on
invariants of Lorentz symmetry (masses and gauge cou-
plings) and arises purely from wave function renormalisa-
tion constants (Eq. (26) is pure gauge), meaning that the
coupling remains universal under renormalisation group
flow. This is an explicit realisation of the result derived
in [68] by Hui and Nicolis, who demonstrated that once a
universal coupling between a scalar field and matter has
been postulated, this coupling is stable against classical
and quantum renormalisations in the matter sector.

If we take the calculation at face value (and neglect the
potential presence of higher order terms) the running of
cT (with UV boundary condition cT (M) = 1) is given as
a function of all masses in the theory, which displays the
running of the energy momentum tensor by all explicit
sources of the breaking of conformal invariance.¶ The
running is not influenced by the gauge couplings, this
demonstrates that the dynamics of internal and external
symmetries factorize reminiscent of the general structure
discussed by Coleman and Mandula [70].

VI. CONCLUSIONS

If dark energy couples to matter disformally our best
chances to detect these interactions come from events oc-
curring at high energies: While precision measurements

¶It is worth pointing out that this result therefore crucially relies on
dimensional regularisation to avoid spurious terms [69].
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at LEP provide a bound on M , the LHC offers the best
current prospects for such a study, and we have shown
that mono-jet searches performed by the CMS collabo-
ration provide the best current constraint on the energy
scale of the disformal coupling M & 650 GeV. The par-
ticular form of the interactions, coupling to the energy
momentum tensor, decouples the disformal scalar from
precision electroweak observables as well as from the run-
ning of SM couplings, in agreement with the expectation
of a factorisation of outer and inner symmetries in in-
teracting QFT. This leaves direct detection as the main
collider avenue to set constraints on the presence of dis-
formal couplings. To this end we extrapolate the CMS
mono-jet result to the higher energy collisions at the 13
TeV LHC run 2 and estimate that the 8 TeV result can
be improved to M & 750 GeV for a run 2 luminosity of
100 fb−1, or even higher if systematics are improved.
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Appendix: Additional interactions

In this work we have studied the leading order be-
haviour when matter fields move on geodesics of a purely

disformal metric. However if we wanted to relax this as-
sumption there are a two other possible types of operator
that would allow the scalar field to interact with matter
in a universal way that have the same mass dimension as
those considered here. Firstly, the scalar field may also
couple conformally to matter. If this coupling is purely a
function of the scalar derivatives then the leading order
interaction with matter is:

(β/M4)(∂φ)2T (A.1)

for constant β. Secondly, additional terms arise because
the energy momentum tensor of the matter fields is only
uniquely defined up to addition of terms proportional to
the equations of motion. In general relativity the energy
momentum tensor remains finite under the renormalisa-
tion group flow after allowing for the inclusion of such
terms [71]. For the Higgs scalar in Minkowski space, for
example, this allows for the inclusion the term

R(g̃)|H|2 (A.2)
where g̃µν is the disformal metric of Eq. (1), and R is
the associated Ricci scalar. Written explicitly in terms
of the disformal scalar this allows for the inclusion of
interactions of the form

γ

M4
((�φ)2 −∇µ∇νφ∇µ∇νφ)|H|2 (A.3)

We stress, however, that if β and γ are assumed ini-
tially to be zero, as in the main body of this article, then
they remain zero under the renormalisation group flow,
at least to order (E/M)4. If these terms are allowed to
be non-zero then the renormalisation group is expected
to mix these coefficients with cT via the equations of mo-
tion.
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