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Recent years have shown the critical importance of inter-regional neural network connectivity in supporting
healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however
the richness of the electrophysiological signalmakes gaining a complete picture challenging. Specifically, connec-
tivity can be calculated as statistical interdependencies between neural oscillationswithin a large range of differ-
ent frequency bands. Further, connectivity can be computed between frequency bands. This pan-spectral
networkhierarchy likely helps tomediate simultaneous formation ofmultiple brain networks,which support on-
going task demand. However, to date it has been largely overlooked, with many electrophysiological functional
connectivity studies treating individual frequency bands in isolation. Here, we combine oscillatory envelope
based functional connectivity metrics with a multi-layer network framework in order to derive a more complete
picture of connectivitywithin and between frequencies. We test this methodology using MEG data recorded dur-
ing a visuomotor task, highlighting simultaneous and transient formation of motor networks in the beta band,
visual networks in the gamma band and a beta to gamma interaction. Having tested our method, we use it to
demonstrate differences in occipital alpha band connectivity in patients with schizophrenia compared to healthy
controls. We further show that these connectivity differences are predictive of the severity of persistent symp-
toms of the disease, highlighting their clinical relevance. Our findings demonstrate the unique potential of
MEG to characterise neural network formation and dissolution. Further, we add weight to the argument that
dysconnectivity is a core feature of the neuropathology underlying schizophrenia.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

A core feature of healthy human brain function involves the recruit-
ment of multiple spatially separate and functionally specialised cortical
regions, which are required to support ongoing task demand. Such
inter-areal connectivity has been shown to be a consistent feature of
measured brain activity, even when the brain is apparently at rest
(Beckmann et al., 2005; Biswal et al., 1995). Moreover, significant evi-
dence shows that this network formation is altered in pathologies rang-
ing from developmental disorders (e.g. Attention Deficit/Hyperactivity
Disorder (Liddle et al., 2011)) to neurodegenerative disease (e.g.
Parkinson's disease (Tessitore et al., 2012)) making it a critically impor-
tant area of study. Measurement and characterisation of networks of
functional connectivity is a focus ofmany neuroimaging studies, and re-
cent years have seen rapid advances in the use of magnetoencephalog-
raphy (MEG) for this purpose (Engel et al., 2013;Hall et al., 2014;O'Neill
et al., 2015a; Scholvinck et al., 2013). MEG (Cohen, 1972) assesses
M.J. Brookes).
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electrical activity in the human brain, based upon measurement of
changes inmagnetic field above the scalp induced by synchronised neu-
ral current flow. MEG offers non-invasive characterisation of brain elec-
trophysiology with excellent temporal resolution. In addition, recent
improvements in modelling the spatial topographies of scalp level
field patterns allow for spatial resolution on a millimetre scale
(Troebinger et al., 2014). This unique combination of high spatial and
temporal resolution, coupled with the direct inference on brain electro-
physiology, makes MEG a highly attractive option for connectivity mea-
surement, particularly given recent findings that dynamic changes in
connectivity occur on a rapid (potentially millisecond) timescale
(Baker et al., 2012; Baker et al., 2014; Hutchison et al., 2013; O'Neill
et al., 2015b).

Despite its excellent promise, MEG based characterisation of
connectivity is complicated by the rich information content of electro-
physiological signals. MEG measurements are dominated by neural os-
cillations (rhythmic changes in electrical potential synchronised across
cell assemblies) which occur at multiple temporal scales, ranging from
1Hz to ~200 Hz. These oscillations have been shown to be integrally in-
volved in mediating long range interactions across the cortex (Brookes
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al., 2011; de Pasquale et al., 2010; Hipp et al., 2012; Marzetti et al.,
2013). However,many studies probe only single frequency bands in iso-
lation without reference to a bigger ‘pan-spectral’ picture. In addition,
the richness of the signal facilitates multiple independent measures of
functional connectivity (Scholvinck et al., 2013). These include fixed
phase relationships between band limited oscillations (Nolte et al.,
2004; Stam et al., 2007), as well as synchronisation between the ampli-
tude envelopes of the same band limited oscillations (Brookes et al.,
2011; Hipp et al., 2012). Furthermore, evidence shows that in addition
to neural interactions within specific frequency bands, connectivity
may also be mediated by between frequency band interactions. These
might include synchronisation of oscillatory envelopes (Furl et al.,
2014) as well as an influence of low frequency phase in one region, on
high frequency amplitude in another region (or vice versa) (Canolty
et al., 2006; Canolty et al., 2010; Florin and Baillet, 2015). Ongoingmen-
tal activity certainly necessitates the simultaneous formation of multi-
ple networks of communication and it seems likely that the brain
employs multiple frequency bands, as well as cross frequency interac-
tions and potentially independent modes of connectivity (e.g. phase
versus amplitude) in order to achieve this. It therefore follows that a sin-
gle framework in which to combine pan-spectral and cross frequency
interactions to assess the efficiency of the brain as a single multi-
dimensional network would be highly desirable.

A potential solution to this problem is a multi-layer network. This
concept, which is well studied in physics (see e.g. (De Domenico et al.,
2014; Zanin, 2015)), can be understood using the simple example of a
transport network. An individual can move between European cities
in multiple ways, including by air, rail or road. These three modes of
transport can be represented by three seemingly independent net-
works, with the network nodes being different cities, and the strength
of connections between them (i.e. the edges) representing the number
of aircraft, trains, or cars that travel between them each day. In order to
determine the efficiency of the system, it may be tempting to analyse
each network (air, rail, road) in isolation. However, to understand the
overall picture, one must also realise that each network depends criti-
cally on the other two. For example, a broken rail link between Notting-
hamand Londonwould increase road traffic between the two cities, and
might decrease passengers on flights from London airports. For this rea-
son, a multi-layer network model is required which characterises the
three separate networks (air, rail and road) as individual layers in the
model, and also measures the dependencies between these networks
as between layer interactions. This model allows amore complete char-
acterisation of the overall transport system, taking into account all
modes of transport and their interdependencies. This multi-layer
framework has been applied to many complex systems, including the
human brain. Here we aim to apply it to MEG derived functional
connectivity.

In this paper, we use envelope correlation as a means to quantify
connectivity between spatially separate brain regions. This metric has
been used extensively in recent years (Engel et al., 2013; Hall et al.,
2014; O'Neill et al., 2015a) and has been described as an ‘intrinsic
mode’ of functional coupling in the human brain (Engel et al., 2013).
We estimate ‘all-to-all’ connectivity between a-priori defined brain re-
gions, which are based on an atlas (Tzourio-Mazoyer et al., 2002). Con-
nectivity is estimated within multiple separate frequency bands and
these within frequency band interactions define the separate layers in
the model (i.e. a single layer is constructed for the alpha, beta and
gamma bands independently — these are analogous to the separate
road, rail, and air networks described above). Connectivity is also esti-
mated between frequency bands; for example, we might measure cor-
relation between the alpha envelope of brain region 1, and the gamma
envelope of brain region 2. This forms the between layer interactions
(analogous to interactions between transport modalities (e.g. air to
road) in the above example). In this way we aim to form a more com-
plete picture of the brain as a multi-layer dynamic system. In what fol-
lows we will test our multi-layer approach on MEG data recorded
during a simple visuo-motor task. Further, we will use the same frame-
work to identify perturbed network formation in patients with
Schizophrenia.

Methods

Data collection

All data used in this study were acquired as part of the University of
Nottingham's Multi-modal Imaging Study in Psychosis (MISP; see also
Acknowledgements) and have been described in a previous paper
(Robson et al., in press). The study received ethical approval from the
National Research Ethics Service and all participants gave written in-
formed consent prior to taking part. 23 healthy control subjects (17
male) with no history of neurological illness were recruited to the
study. An equal number of patients with schizophrenia were also re-
cruitedwith the two groupsmatched for age (Patients: 27±7; Controls
27 ± 7), sex and socio-economic background. In order to derive a score
for overall severity of psychotic illness in the patients, the three charac-
teristic syndromes of schizophrenia (reality distortion, psychomotor
poverty and disorganization) were quantified (using the signs and
symptoms of psychotic illness (Liddle et al., 2002), speed of cognitive
processing assessed using a variant of the Digit Symbol Substitution
Test and scores from the Social andOccupational Function Scale, respec-
tively). These measurements were combined in a principal component
analysis and the first principal componentwas extracted to give a single
score representing the severity of the persistent symptoms of schizo-
phrenia for each patient. We have demonstrated previously that this
first component is a suitable measure of severity of residual illness
that correlates with several measures of brain function (Palaniyappan
et al., 2013; Robson et al., in press).

All subjects completed a visuomotor task. The paradigm comprised
visual stimulation with a centrally-presented maximum contrast verti-
cal square wave grating (3 cycles per degree). The grating subtended a
visual angle of 8° and was displayed along with a red fixation cross on
a grey background. In a single trial, the grating was presented for 2 s
followed by a 7 s baseline period where only the fixation cross was
shown. During presentation, participants were instructed to repeatedly
press a button with the index finger of their right hand. Participants
could press the button as many times as they wanted during the stimu-
lus. A total of 45 trials was used, giving a total experimental time of
7 min. Visual stimuli were back-projected via a mirror system onto a
back projection screen inside amagnetically shielded room at a viewing
distance of approximately 46 cm. Button presses were recorded using a
response pad.

MEG data were acquired throughout the task using a 275 channel
CTF MEG system (MISL, Coquitlam, Canada) operating in the third
order synthetic gradiometer configuration (Vrba and Robinson, 2001).
Data were acquired at a sampling frequency of 600 Hz, and all subjects
were oriented supine. Three electromagnetic head position indicator
coils were placed on the head as fiducial markers (at the nasion, left
preauricular and right preauricular points). The locations of these fidu-
cials were tracked continuously during the recording by sequentially
energising each coil and performing a magnetic dipole fit. This allowed
both continuous assessment of head movement throughout the mea-
surement, and accurate knowledge of the location of the head relative
to the MEG sensors. Prior to the MEG recording, a 3-dimensional
digitisation of the subjects head shape, relative to the fiducial markers,
was acquired using a 3D digitiser (Polhemus Inc., Vermont). In addition,
as part of the MISP programme, all participants underwent an anatom-
ical MRI scan using a Philips Achieva 7 T system. (MPRAGE sequence,
volume transmit and 32 channel receive head coil; 1 mm isotropic res-
olution TE/TR= 3/7ms; FA= 8°). Coregistration of theMEG sensor ge-
ometry to the anatomical MR image (hence brain anatomy) was
subsequently achieved byfitting the digitised head surface to the equiv-
alent head surface extracted from the anatomical MR image. This
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coregistration was employed in all subsequent forward and inverse
problem calculations.

Data analysis

MEGdatawere initially inspected visually. Any trials deemed to con-
tain an excessive amount of interference, for example generated by eye
movement or muscle activity, were removed from that individual's
data. In addition, any trials in which the head was found to be more
than 7 mm (Euclidean distance) from the starting position were
excluded. Following this pre-processing, data were analysed using
beamforming for source localisation, and a multi-layer network frame-
work (see also Fig. 1).

AAL atlas and source localisation
In order to calculate awhole cortex representation of functional con-

nectivity, the cortex was first parcellated into 78 individual regions ac-
cording to the automated anatomical labelling (AAL) atlas (Tzourio-
Mazoyer et al., 2002). Note that these same cortical regions have been
used successfully in previous MEG connectivity studies (see e.g.
(Tewarie et al., 2014)). A beamformer spatial filtering approach
(Robinson and Vrba, 1998) was then employed to generate a single sig-
nal representative of electrophysiological activity within each of these
78 regions. To achieve this, for each region, the centre of mass was de-
rived. Voxels were also defined on a regular 4 mmgrid covering the en-
tire region, and the beamformer estimated timecourse of electrical
activity derived for each voxel. To generate a single regional timecourse,

Q̂RðtÞ, individual voxel signals were weighted according to their dis-
tance from the centre of mass such that,

Q̂R tð Þ ¼
X

i
exp −r2i

.
400

� �
Q̂ i tð Þ ð1Þ

where i represents a count over all voxels within the AAL region, Q ̂ iðtÞ
represents the beamformer projected timecourse for voxel i, and ri de-
notes the distance (measured in millimetres) from voxel i to the centre
of mass of the region. Note that the Gaussian weighting function
Fig. 1. Schematic diagram of the connectivity data analysis pipeline including construction of a
separating low gamma (30 Hz–50 Hz) and high gamma (50–100 Hz). However in order to sim
ensures that the regional timecourse Q̂RðtÞ is biased towards the centre
of the region. The full width at half maximum of the weighting was
~17 mm; this was chosen to reflect the approximate spatial scale of
the AAL regions.

To calculate the individual Q̂ iðtÞ, a scalar variant of beamformingwas
employed (Robinson and Vrba, 1998). Covariancewas computedwithin
a 1 Hz–150 Hz frequency window and a time window spanning the
whole experiment in order to minimise covariance matrix error
(Brookes et al., 2008). Regularisationwas applied to the data covariance
matrix using the Tikhonov method with a regularisation parameter
equal to 5% of themaximumeigenvalue of the unregularised covariance
matrix. The forward model was based upon a dipole approximation
(Sarvas, 1987) and a multiple local sphere head model (Huang et al.,
1999). Dipole orientation was determined using a non-linear search
for optimum signal to noise ratio (SNR). Beamformer timecourses
were sign flipped where necessary in order to account for the arbitrary
polarity introduced by the beamformer source orientation estimation.
Regional changes in source amplitude
Application of the beamforming method to each AAL region yielded

78 regional timecourses and we initially aimed to assess which of those
timecourses (hence regions) exhibited a significant task induced re-
sponse. Regional timecourseswere frequency filtered into four separate
frequency bands; alpha (α) (8 Hz–13 Hz), beta (β) (13 Hz–30 Hz), low
gamma (γL) (30 Hz–50 Hz) and high gamma (γH) (50 Hz–100 Hz). The
resulting timecourses were then Hilbert transformed in order to gener-
ate the analytic signal. The absolute value of the analytic signal was then
computed to yield the amplitude envelope (henceforth termed the Hil-
bert envelope) of each timecourse. Hilbert envelopes were averaged
across trials. In order to determine the AAL regions that exhibited a sig-
nificant task related power change, the fractional change in oscillatory
amplitude (for all frequency bands and regions)wasmeasured between
a ‘stimulus’window [0 s b t b 2 s] and a ‘rebound’window [2 s b t b 4 s].
(These windows were chosen to give maximum contrast in the motor
system, since the stimulus window will centre on movement related
beta power decrease whereas the rebound window will centre on the
multi-layer network. Note that, in our actual analysis, the gamma band was split into two,
plify the Figure, this is not shown.



428 M.J. Brookes et al. / NeuroImage 132 (2016) 425–438
post movement beta rebound.) The statistical significance of the frac-
tional change between windows was determined using a two-sided
signed rank test of the null hypothesis that the change in Hilbert enve-
lope (measured independently in 23 subjects) originated from a distri-
bution whose median is zero. The threshold for significance (p b 0.05)
was Bonferroni corrected to account for multiple comparisons across
all 78 regions. In four AAL regions of interest (left sensorimotor cortex,
right sensorimotor cortex, left primary visual cortex and right primary
visual cortex) a time frequency spectrogram was generated. Again this
employed the Hilbert transform, however in order to increase spectral
resolution, Hilbert envelopes were generated in 33 overlapping fre-
quency bands in the 1 Hz to 150 Hz range. Hilbert envelopes were aver-
aged across all trials and then concatenated in the frequency dimension
to form a time-frequency spectrogram (TFS) for the average trial. These
TFSs were then averaged across subjects.

The multi-layer model: Leakage correction, muscle artifact reduction, and
connectivity estimation

The overall aim of our connectivity analysis was twofold. First, to ex-
amine significant changes in functional connectivity induced by the
visuomotor task in healthy individuals. Second, to probe differences in
functional connectivity between schizophrenia patients and controls.
To achieve these aims, all connectivity analyses were applied within
predefined time windows, on a trial by trial basis, using unaveraged
beamformer projected data (i.e. following beamforming we measured
amplitude envelope correlation within specific time windows for each
trial, and then averaged these connectivity estimates across trials.
Time windows were defined as follows:

• To examine task induced change in healthy controls, we measured
connectivity within an active [0 s b t b 4 s] window and a control
[4.5 s b t b 8.5 s]window; contrasting the twowindows in order to de-
rive significant connectivity change. Note that the active windowwas
selected such that it encompassed both the stimulus, and any post
stimulus response (e.g. the rebound in themotor regions). In addition,
note that the longer the timewindow used, themore reliable the con-
nectivity estimate becomes. For this reason the two windows were
made as long as possible and equal in length to allow for robust and
unambiguous contrast.

• To compare controls to patients with schizophrenia, we measured
connectivity across the whole trial using a [0 s b t b 8.5 s] window.
This was done separately in the two groups (patients and controls)
and results compared.

In all cases, functional connectivity was computed between every
pair of AAL regions (henceforth known as the seed and the test region).
Regional timecourses were again frequency filtered into four separate
frequency bands; alpha (α) (8 Hz–13 Hz), beta (β) (13 Hz–30 Hz),
low gamma (γL) (30 Hz–50 Hz) and high gamma (γH) (50 Hz–
100 Hz). These bands were chosen based upon previous literature; spe-
cifically, previous work has shown robust effects in visual cortex in the
alpha and gamma bands (Brookes et al., 2005; Zumer et al., 2010) as
well as robust effects in motor cortex in the beta band (Stancak and
Pfurtscheller, 1995; Stevenson et al., 2011). A schematic diagram of
the multi-layer framework is shown in Fig. 1; note however that for
simplicity we only depict 3 frequency bands.

Estimation of electrophysiological functional connectivity is
non-trivial and warrants some discussion. The most significant con-
found in MEG connectivity analysis is that of signal leakage between
beamformer projected timecourses. This is generated as a result of the
ill-posed inverse problem and means that projected timecourses can
be artifactually correlated. This problem, and associated solutions,
have been well documented in the literature (Brookes et al., 2012;
Colclough et al., 2015; Hipp et al., 2012; Maldjian et al., 2014; O'Neill
et al., 2015a). Here we employed a pairwise leakage reduction scheme
(Brookes et al., 2012; Hipp et al., 2012)which exploits the fact that leak-
age manifests as zero-time lag correlation between beamformer
projected timecourses from separate regions. Such zero-time lag linear
dependency was removed using linear regression to ensure that, prior
to connectivity estimation, the underlying band limited windowed sig-
nals were orthogonal. It is important to note that, in studies of this type
where separate time windows are to be compared, orthogonalisation
must be carried out on each window separately, rather than on the
whole timecourse, since task induced changes in signal variance can
also introduce significant changes in the magnitude of leakage (see
the analytical analysis in the supplementary information from (O'Neill
et al., 2015b)).

Following leakage reduction, theHilbert envelopewas computed for
the orthogonalised seed and test timecourses. In addition to leakage, ar-
tifacts due to muscle activity were also a concern, particularly for high
gamma band connectivity estimation. It is well known that increased
muscle activity in, for example, the jaw or neck, generates increased os-
cillatory signals in the high gamma band. Such artifacts are typically bi-
lateral and can cause spurious inflation of interhemispheric gamma
envelope correlation. For this reason, the regional beamformed
timecourses were also filtered into the 120 Hz–150 Hz band. This
band was deemed to be higher than any neural activity of interest but
would accurately capture any artifacts resulting from the
magnetomyogram. Prior to calculation of connectivity, theHilbert enve-
lope of thesemagnetomyogramdatawas computed and regressed from
both the seed and test timecourses (independently for each trial) in
order to reduce the influence of muscle artifact on functional connectiv-
ity measurement (see also (O'Neill et al., 2015b) who use a similar
method).

Following leakage and magnetomyogram reduction, connectivity
was calculated between windowed timecourses as the Pearson correla-
tion coefficient between windowed oscillatory envelopes in the seed
and test regions. As noted above, correlation coefficients were comput-
ed within each time window, and each trial separately, and the mean
correlation coefficient over all trials computed. This same procedure
was applied:

1. Within each frequency band (i.e. within the alpha, beta, low gamma
and high gamma bands) and between each region pair. This generat-
ed four 78 × 78 adjacency matrices (AMs) showing inter-regional
connectivity for each of the four bands separately. These formed
the 4 separate layers of the multi-layer model (see the “within
band connectivity” column of Fig. 1).

2. Between each pair of frequency bands (i.e. alpha-to-beta, alpha-to-
low-gamma, alpha-to-high-gamma, beta-to-low-gamma, beta-to-
high-gamma and low-gamma-to-high-gamma) and between each
region pair. This generated a further six 78 × 78 AMs showing
inter-regional connectivity for each of the six frequency band pairs.
These formed the between layer interactions of the multi-layer
model (see the “between band connectivity” column of Fig. 1).

These processes yielded a total of 10 adjacency matrices (which we
also term tiles). These were combined to generate a single ‘super-adja-
cencymatrix’ (SM), an example of which is shown in Fig. 1. The SM con-
tains a complete description of both within frequency band and
between frequency band connectivity, measured across the entire
brain. A single SMwas generated for each timewindow (active, control
and whole trial), meaning that three separate SMs were available for
each subject. Contrasting these separate SMs allows testing for differ-
ences in network connectivity between task and rest, or patient and
control. Note that the individual tiles making up the SM have different
symmetries: The within frequency band matrices (diagonal tiles) have
diagonal symmetry, since correlation, for example, between visual
alpha and motor alpha, is identical to correlation between motor
alpha and visual alpha (i.e. the two calculations commute; order doesn't
matter). However, this diagonal symmetry is not reflected in the off
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diagonal tiles (between frequency AMs). This is because a high correla-
tion between, for example, visual alpha andmotor gammadoes not nec-
essarily imply a high correlation between visual gamma and motor
alpha.

The multi-layer model: statistical testing for task induced
connectivity changes

To test for an effect of the visuomotor task on connectivity, we
contrasted SMs measured in the [0 s b t b 4 s] active and the
[4.5 s b t b 8.5 s] control time windows. This was done via subtraction,
generating a single matrix for each subject showing the difference in
connectivity between time windows. These difference-SMs (dSMs)
were then averaged across subjects. In order to assess statistical signifi-
cance, a permutation test was employed (Nichols and Holmes, 2001). It
was reasoned that if the task had no effect, then the labelling of the two
time windows (active or control) would have no meaning. For each el-
ement in the SM, we therefore constructed a null distribution. This was
calculated via the generation of multiple ‘sham’ dSMs where the win-
dow labels were switched randomly. 20,000 sham matrices were con-
structed and a null distribution of connectivity differences derived. For
each dSM element, the ‘real’ difference between windows was com-
pared to the null distribution and a p-value generated. In order to cor-
rect for type I errors due to multiple comparisons across matrix
elements, we applied a false discovery rate (FDR) correction based on
the Benjamini–Hochberg procedure. This procedure resulted in a
thresholded dSM showing which connectivity values in the dSM were
modulated significantly by the task.

The multi-layer model: testing for differences in patients
with schizophrenia

In the case of testing for effects of schizophrenia on connectivity,
we employed SMs generated using a single time window spanning
thewhole trial [0 s b t b 8.5 s]. In order to probe the relevance of our con-
nectivity measurements to schizophrenia, two tests were used.

• First it was reasoned that if connectivity was abnormal in schizophre-
nia, then a difference between mean connectivity values across the
patient and control groups would be observed. This is henceforth
termed the effect of diagnosis and was measured by subtraction of pa-
tient and control SMs.

• Second, it was reasoned that if such a difference wasmeaningful clin-
ically, then connectivity values measured within individual patients
would correlate significantly with their severity of symptoms (mea-
sured behaviourally — see above). This is henceforth termed effect of
severity and was measured, on an element by element basis, by Pear-
son correlation (across all 23 patients) between severity and estimat-
ed connectivity in each element of the SM.

These two tests yield two newmatrices, both equal in size to the SM,
which represent the effect of diagnosis and the effect of severity.

Under a null hypothesis that there is no systematic effect of either di-
agnosis or severity on functional connectivity measurements, then it
would be predicated that there would be no significant relationship,
across elements, betweenmatrices representing diagnosis and severity.
However, if the MEG connectivity measures are truly descriptive of
schizophrenia, then those matrix elements most affected by the pa-
tient–control difference might be expected to be the same elements
that are most correlated with severity. Hence a relationship between
the diagnosis and severity matrices would be observed. With this in
mind, we measured correlation across matrix elements, on a ‘tile-by-
tile’ basis (henceforth termed tile correlation). (In other words, we first
correlate elements from the tile representing alpha-to alpha connectiv-
ity, then do the same thingwith the tile representing alpha to beta con-
nectivity, and so on, for all 10 independent tiles.) To test this statistically
we used a permutation test. First, patient/control labels were switched
randomly and a new average difference between sham groups comput-
ed. (This was based on the assumption that if diagnosis has no effect on
connectivity then patient and control labels would be meaningless).
Second, the individual patient disease severity scores were randomised
across subjects and the correlationwith connectivity score recomputed.
(Based on the assumption that if connectivity had no effect on severity
then the re-ordering of the severity scores would have no effect). This
yielded two ‘sham’ matrices which could be compared, and again we
measured tile correlation. 10,000 iterations of this test were used to
generate a null distribution and comparison with the ‘real’ tile correla-
tion value yielded a probability that the result occurred by chance. We
used a two tailed test: meaning that we allow the possibility that
those patients with the worst symptoms could look more like controls
than patients with lesser symptoms — though apparently counter-
intuitive such an effect is conceivable and could result from compensa-
tion mechanisms. Finally, since testing each tile individually led to 10
separate tests, Bonferroni correction was performed. Statistical signifi-
cance was therefore defined at a threshold of p b 0.05, which is
corrected to p b 0.0025 to account for the two tailed test and 10 separate
comparisons. Anything at p b 0.025 (i.e. uncorrected for multiple com-
parisons) was considered a ‘trend’. It should be noted here that, in prin-
ciple, a standard parametric test (distinct from our permutation
approach) could also be employed; however this would require direct
estimation of the degrees of freedom in the correlation. The spatial
smoothness inherent in the tiles of the SMmeans that thenumber of de-
grees of freedom in the correlation is vastly less than the number of ma-
trix elements (782). Estimating the reduction in degrees of freedom,
whilst possible, is non-trivial. For this reason we employ the permuta-
tion approach, where spatially smoothness in the measured tiles is
also mirrored in the sham tiles.

The tile correlation test was used to identify tiles in the SM in which
connectivity valueswere related significantly to schizophrenia. (i.e. tiles
in which the effect of diagnosis correlated with the effect of severity).
Following this, tiles deemed significant were used in order to visualise
which individual brain connections were driving the observed
significant correlation. To do this, for each matrix element within a sig-
nificant tile, we first measured the effect of diagnosis (tested using a
permutation test); second we measured the effect of severity (again
tested via permutation). These tests were treated independently and
those matrix elements significant (p b 0.01) in both tests were used in
visualisation.
Results

Task induced changes in brain activity and connectivity

Fig. 2 shows the change in oscillatory amplitude induced by the
visuomotor task. Fig. 2A shows time frequency spectrograms (TFSs) ex-
tracted from the left primary sensorimotor cortex (upper panel), and
left primary visual cortex (lower panel). Note that, as expected, in sen-
sorimotor cortex a reduction in beta amplitude is observed during stim-
ulation with an increase above baseline immediately following
movement cessation. In visual cortex, an increase in gamma amplitude
is observed during stimulation alongside a concomitant decrease in
alpha amplitude. These results are further shown in Fig. 2B, where the
coloured circles show the locations of AAL region centroids with a sig-
nificant (pc b 0.05) change in neural oscillatory amplitude between
stimulus and reboundwindows. The sizes of the circles reflect themag-
nitude of the change. Note that significant changes are observed in
motor cortex for beta and low gamma bands, and in visual cortex in
the high gamma band.

Figs. 3 and 4 show task induced change in functional connectivity.
Firstly, Fig. 3A presents a schematic diagram showing the structure of
each individual adjacency matrix tile (upper panel) and how these
tiles are used to form the Super adjacency matrix (lower panel). In the



Fig. 2. Task induced changes in oscillatory amplitude. A) TFSs generated in the left primary sensorimotor region, and left primary visual area, in healthy control subjects. B) AAL regions
exhibiting a significant (pc b 0.05) change in oscillatory amplitude between stimulus and reboundwindows. The four images show the four separate frequency bands studied (alpha, beta,
low gamma and high gamma).
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upper panel, regions of the adjacency matrix corresponding to the visu-
al, motor and visual-to-motor networks are highlighted in red, blue and
yellow respectively.
Fig. 3. Task induced change in functional connectivity. A) Schematic showing structure of eac
matrix (lower panel). B) Super-adjacency matrices computed in the active (left) and control (
frequency band (off diagonal tiles) interactions. C) Task induced change (Active–Control) in
hand panel shows the same matrix thresholded to include only statistically significant (pc b 0
and high gamma bands, with significant between frequency interactions in the beta to low gam
Fig. 3B shows SMs, averaged across all subjects, in the active (left)
and control (right) timewindows. Note first that a high degree of struc-
ture is observable in both matrices, particularly in the alpha and beta
h individual tile (upper panel) and how these are combined to form the super-adjacency
right) time windows. Matrices show within frequency band (diagonal tiles) and between
connectivity. The left hand panel shows change averaged across all subjects. The right

.01 – FDR corrected) changes in connectivity. Note the main differences occur in the beta
ma, and beta to high gamma bands.



Fig. 4. Visualisation of task induced change in functional connectivity. The central matrix depicts the dSM,whilst the outer images show significant task induced changes within individual
tiles. Significant results are observed in the beta and high gammabands, aswell as between frequency band effects in the beta to low gamma, and beta to high gamma ranges. In all images,
the line thickness represents the magnitude of task induced connectivity change.
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bands. Note also that, particularly in high frequency bands, increased
structure is observable in the active compared to the control window.
These results are further confirmed in Fig. 3C which shows the average
difference between active and control windows (left) and the
thresholded (pc b 0.01— FDR corrected) difference (right). Comparison
of the individual tiles of Fig. 3B and 3C with the upper panel of Fig. 3A
show clearly that visual networks are observed in the alpha and
gamma bands, alongside a sensorimotor network in the beta band.
Note also an anti-correlation between motor cortex beta oscillations
and visual cortex high gamma oscillations. This manifests as significant
clusters in the beta to high gammaband tile. Note the asymmetrymean-
ing that a reciprocal ‘motor gamma to visual beta’ network is not
observed.

Fig. 4 shows visualisation of the transient brain networks formed
during the active window of the visuo-motor task. The central panel
shows the dSM, and in the outer images, red lines denote the connec-
tions between brain region pairs that exhibit a significant task induced
change in functional connectivity. The thickness and colour of the line
denotes the strength of connection. Within frequency band changes
are observed in the beta and gamma ranges. The beta band shows a
transient task induced increase in connectivity within amotor network.
Specifically, connectivity is increased between the left and right primary
motor regions as well as between left primary motor cortex, pre-motor
cortex, supplementary motor area (SMA) and the left secondary so-
matosensory area (S2). This finding is in good agreement with previous
results in motor tasks (for example (O'Neill et al., 2015b)). The high
gamma band also demonstrates increased connectivity in a visual net-
work which includes primary visual regions and associated (lateral) vi-
sual areas. Again this is in good agreement with the well-known effect
of increased gamma oscillations with presentation of visual gratings
(Adjamian et al., 2004; Hall et al., 2005; Zumer et al., 2010). Significant
between frequency band interactions are also observed. Beta to low
gamma band connectivity is increased during the taskwithin a network
of brain areas which includes bilateral pre-motor cortex and left
primary motor cortex. Note the spatial difference between this beta to
low gamma band interaction and the beta network, the former being
centred on premotor regions whilst the latter is centred on primary
motor cortices, making it tempting to speculate that these networks
perform different functional roles. Finally, a beta to high gamma band
reduction in connectivity is observed between the visual cortex and
the left sensorimotor region. These effects will be addressed further in
our discussion.

Difference between patients with schizophrenia and controls

Fig. 5 shows the effects of schizophrenia on multi-layer network
connectivity. Fig. 5A shows the mean SMs computed in controls (left)
and patients (right). Recall that these matrices are computed within a
single window spanning the entire length of the task trial, with connec-
tivity estimated for each trial separately and averaged across trials, and
subsequently subjects. Fig. 5B shows the difference between groups
(Controls–Patients) which we term the effect of diagnosis. Note that
clear structure in the differencematrix is observable, particularly within
the tile representing alpha-to-alpha connectivity. Fig. 5C shows the
cross subject correlation (patients only) between functional connectiv-
ity and the severity of persistent symptoms of schizophrenia, which we
term the effect of severity. Again a clear structure is observable, partic-
ularly in the alpha-to-alpha tile. Under a null hypothesis where connec-
tivity metrics are unaffected by illness, then the effect of diagnosis (i.e.
the matrix in Fig. 5B) and the effect of severity (i.e. the matrix in
Fig. 5C) would be completely unrelated and showno similarity. Howev-
er, visually it is easy to see a clear relationship within some (but not all)
tiles within these matrices. Fig. 5D formalises this relationship: each el-
ement in the matrix represents tile correlation between effect of diag-
nosis and effect of severity. Relationships are measured as Pearson
correlation coefficients across all matrix elements within each tile (see
Fig. 5D for an example of alpha-to-alpha connectivity). Notice that, as
would be expected from Fig. 5B and 5C, alpha-to-alpha connectivity



Fig. 5. Differences in functional connectivity between controls and schizophrenia patients. A) Super-adjacency matrices computed in controls (left) and patients (right). B) Effect of
diagnosis (i.e. difference in connectivity between groups (Controls–Patients)). C) Effect of severity (correlation across individuals between connectivity and the severity of persistent
symptoms of schizophrenia, measured by questionnaire). D) Tile correlation showing the relationship between the effects of diagnosis and effects of severity. Relationships are
measured as Pearson correlation coefficients across all matrix elements within each tile of the super-adjacency matrix. ** indicates a significant correlation (pc b 0.05 corrected for
multiple comparisons across tiles). * indicates a trend (p b 0.05 uncorrected). The right hand panel shows the single example of correlation across matrix elements in the alpha band
(p = 0.0005).
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Fig. 6. Visualisation of the differences in alpha band functional connectivity between patients and controls. A) Shows the brain regions between which connectivity differs most between
groups. The linewidth represents the strength of the difference. B)Mean connection strength, averaged across the network identified in (A), for patients and controls. Error bars represent
standard error across subjects. C) Mean connection strength (again averaged over all connections in (A)) computed in 23 patients and plotted against a measure of illness severity.
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shows a significant relationship between effects of diagnosis and sever-
ity, implying that these connectivity estimates are affected by schizo-
phrenia. Interestingly, no other tiles show a significant relationship
following multiple comparison correction.

Having shown a significant effect of schizophrenia within alpha-to-
alpha connectivity, we further investigate these effects in Fig. 6. Fig.
6A highlights the brain regions between which connectivity differs (in
terms of both diagnosis and severity) between groups. Again the lines
denote connectivity between AAL regions and their width indicates
the magnitude of the difference between patients and controls. Note
that a clear network structure is observed with the occipital lobe
being most strongly implicated. Fig. 6B shows mean connection
strength, averaged across the observed occipital network, in both pa-
tient and control groups. The bar chart shows mean group connectivity
and error bars represent standard error across subjects. Fig. 6C shows
mean connection strength (again averaged over all connections in the
occipital network) computed separately in 23 patients and plotted
against illness severity. Note how, in patients with less severe symp-
toms, alpha band connectivity tends to a value close to that of controls,
whereas in those patients with more severe symptoms, the mean alpha
band connectivity ismarkedly reduced. This important point implies di-
rect clinical relevance of the results shown, which will be further ad-
dressed in the discussion below.

Finally, Fig. 7 shows results of a post-hoc analysis of primary visual
cortex activity and connectivity in the alpha band. Fig. 7A shows
timecourses of alpha band Hilbert envelope, averaged over trials and
subjects. The blue line shows the mean alpha envelope for controls
whereas red shows the equivalent envelope in patients. The left hand
plot shows the case for left visual cortex and the right hand plot
shows right visual cortex. Note that there is relatively little difference
in trial averaged alpha envelopes between patients and controls; both
groups exhibit marked alpha desynchronisation during stimulation
with the largest changes from baseline occurring shortly after stimulus
onset and offset. The similarity of the trial averaged alpha band enve-
lopes is further confirmed in Fig. 7B. Here, the left and right bar charts
show mean change in alpha amplitude between a stimulus window
[0 s b t b 2 s] and a controlwindow [6.5 s b t b 8.5], in left and right visual
cortices respectively. Note that amplitude is reduced during stimula-
tion; however there is no measurable difference between patients and
controls. Fig. 7C shows alpha connectivity measured between left and
right visual regions. In the left hand plot, distinct from the rest of this
study, “connectivity” is measured between trial averaged Hilbert enve-
lopes; i.e. the bar chart reflects correlation between the trial averaged
alpha band Hilbert envelopes measured in left and right visual cortex.
[This ismeasured independently in each subject and the result averaged
across subjects; error bar shows standard error.] In the right hand plot,
connectivity is measured using the standard method in unaveraged
data (i.e. envelope correlation is measured within each trial and these
correlation values are subsequently averaged across trials — as de-
scribed in our Methods section). Note that a significant difference in
connectivity is observed between groups in the unaveraged case, but
not in the averaged case. Averaging across trials prior to connectivity es-
timation causes a marked reduction in any signal fluctuations that are
not time locked to the stimulus—meaning that trial averaged “connec-
tivity” is a reflection of the degree towhich task induced change is coor-
dinated between regions. It thus follows that the reduction in alpha
connectivity observed in Figs. 5 and 6 is not due to atypical coordination
of the task induced response between regions; rather, the primary effect
is due to the superposition of atypical task independent activity that
that fails to synchronise between regions. This will be addressed further
below.

Discussion

Recent years have shown the critical importance of inter-regional
neural network connectivity in supporting healthy brain function.
Such connectivity is measurable using neuroimaging techniques such
as MEG, however the richness of the electrophysiological signal makes
gaining a complete picture challenging. Specifically, connectivity can
be calculated as statistical interdependencies between neural oscilla-
tions measured across a large range of frequencies, as well as between
frequency bands. This pan-spectral nature of network formation likely



Fig. 7. Alpha band amplitude and connectivity changes in visual cortex. A) Timecourses of alpha band oscillatory envelope in patients (red) and controls (blue). The left hand plot shows
left visual cortexwhereas the right hand plot shows right visual cortex. B) The left and right bar charts showmean task induced change in alpha band oscillatory amplitude in left and right
visual cortices respectively. C) The left hand plot shows alpha “connectivity” between left and right visual cortices, calculated using trial averaged data (i.e. correlation between the trial
averaged alpha envelopes). The right hand bar chart shows alpha connectivity between left and right visual regions based on unaveraged data. Note a significant difference in connectivity
when calculated using unaveraged data. This is measured in the absence of measurable differences in task induced amplitude change or a significant change in trial averaged correlation.
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helps to mediate the simultaneous formation of multiple brain net-
works, which support the demands of ongoing mental tasks. However,
to date, in studies of electrophysiological connectivity this has been
overlooked, with many studies treating individual frequency bands in
isolation. Here, we combine envelope correlation based assessment of
functional connectivity with a multi-layer network model in order to
derive amore complete picture of connectivity within and between fre-
quency bands. Using a visuomotor task, we have shown that our meth-
od can highlight simultaneous and transient formation of a motor
network in the beta band, and a visual network in the high gamma
band. More importantly, we have used this same methodology to dem-
onstrate significant differences in occipital alpha band functional con-
nectivity in patients with schizophrenia relative to controls. This
methodology represents an improved means by which to obtain a
more complete picture of network connectivity, whilst our findings in
schizophrenia demonstrate the critical importance of measuring con-
nectivity in clinical studies.

Methodology and the visuomotor task

Methodologically, this paper demonstrates the utility of a multi-
layer model in characterising within and between frequency interac-
tions. In our visuomotor application, itwas our intention to demonstrate
this framework using a well characterised task that is known to induce
robust changes in neural oscillations in multiple frequency bands. It is
well known thatfingermovement induces a drop in beta bandoscillato-
ry amplitude in primary sensorimotor cortex duringmovement, follow-
ed by an increase above baseline shortly followingmovement cessation.
Furthermore, it is also known that beta band envelopes are associated
with long rangemotor network connectivity. Herewe added to this pic-
ture by showing directly that unilateral finger movement is supported
by the transient formation of a broad network of brain regions including
left and right primarymotor cortices as well as pre-motor cortices, SMA
and secondary somatosensory regions; further, this network is mediat-
ed in the beta band. In addition, passive viewing of a visual grating has
longbeen known to increase the amplitude of gammaoscillations in pri-
mary visual cortex (Adjamian et al., 2004; Hall et al., 2005). Here we
have shown that induced gamma envelopes are correlated across visual
regions.Whilst this interactionmay be expected, it is interesting to note
that it is not simply due to signal leakage between hemispheres. Linear
interactions (i.e. simple zero-phase lag correlation between signals
measured at spatially separate locations) have been removed via our
leakage reductionmethodology. The significant increase in connectivity
observed therefore represents envelope correlation mediated by non-
zero phase lagged (i.e. time lagged) events in the underlying neural sig-
nals. To the authors' knowledge this is the first direct measurement of
this effect, whichmaywarrant further investigation in future studies. Fi-
nally, significant task driven changes between frequency bands were
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also observed. A network involving bilateral pre-motor and left primary
motor areas was observed as a beta to low gamma interaction and the
spatial differences noted between this and the motor network limited
to the beta bandmakes it tempting to speculate that the cross frequency
interaction serves a different functional role, however this requires sig-
nificant further investigation. An anti-correlation between the motor
and visual regions was also measurable as a beta to high gamma inter-
action.Whilst it may be tempting to interpret this as a network that co-
ordinates activity between these two regions, it should be pointed out
that, given the task is well known to increase gamma amplitude and si-
multaneously decrease beta amplitude in the visual andmotor areas re-
spectively, such an interactionwould be expected. In fact, the likelihood
is that this transient anti-correlation results from two independent
stimulus driven variations, rather than a functional network per se.
This said however, this cross frequency network also potentially war-
rants further investigation. Overall, despite some ambiguity, the
visuomotor task represents a useful testbed for themulti-layer network
framework and its ability to extract simultaneous transiently forming
networks both within and across frequency bands.

In terms of the method itself, there are four core components that
warrant discussion: cortical parcellation; source space projection; the
connectivity metric and statistical analysis. First, regarding the AAL
parcellation, this was chosen based on its successful use in previous
MEG investigations (e.g. (Tewarie et al., 2016; Tewarie et al., 2014)).
However, our method could be used with any cortical parcellation. It
is noteworthy that the separate AAL regions vary markedly in size,
meaning that our use of a single full width at half maximum of the
Gaussian function (Eq. (1))maymean that some regions are better rep-
resented than others; this represents a limitation of the presentmethod.
Related, the inhomogeneous spatial resolution of MEG may mean that,
in some cases multiple AAL regions may generate degenerate
timecourses, whilst in other cases a single region may contain multiple
independent signals. In future, the use of brain parcellations based di-
rectly on the MEG data may therefore prove instructive. However this
is non-trivial and should be a subject of future investigation. Secondly,
for source localisation, we used a beamformer technique. Beamforming
has been shown previously to be particularly useful in the characterisa-
tion of neural oscillations, and has been used successfully in the mea-
surement of connectivity (Brookes et al., 2011). The reasons for the
success of this algorithm in such studies has been addressed at length
in previous papers, and will not be repeated here. However, we do
point out that other inverse solutions could be substituted for
beamforming in the present processing pipeline, and would likely gen-
erate similar results. Thirdly, regarding the choice of functional connec-
tivity metric: here we choose to use envelope correlation based on the
previous success of this measurement in facilitating long range connec-
tivity estimation. However, it is important to point out that the multi-
layer network framework is not limited to envelope metrics, but could
be extended to other electrophysiological measurements of functional
connectivity. Recent years have seen the emergence of a number of
metrics for functional coupling, including within frequency band and
between frequency band interactions. It is easy to conceive how such
metrics could be employed to form a set of super adjacency matrices
similar to those employed here. For example the diagonal tiles (within
frequency connectivity) could easily be generated using either the
imaginary part of coherence (Nolte et al., 2004) or the phase lag index
(Stam et al., 2007). When considering between frequency band interac-
tions obviously the notion of phase coupling becomes problematic.
However, one could consider measuring a fixed phase relationship be-
tween two bands where, for example, the duration taken for n cycles
of frequency band one always coincides with the duration taken for m
cycles of frequency band two. In addition, cross frequency interactions
can also be quantified via coupling between the phase of low frequency
oscillations and the amplitude of high frequency oscillations (Canolty
et al., 2010; Florin and Baillet, 2015). Finally, following derivation of
super-adjacency matrices, there are many ways in which to analyse
those matrices statistically. Here, a simple approach was employed in
which significant differences between task and rest (or patients and
controls) was sought on an element by element basis. We used this ap-
proach since it allowed direct inference on both task driven networks
and patient-control differences. However, more complex analyses may
be highly informative: In particular, graph theoreticalmetrics such as al-
gebraic connectivity have become a popular way to analyse single layer
networks in neuroimaging and are equally applicable to multi-layer
models. Such measures would offer summary statistics regarding
changes in the efficiency of the network as a whole (e.g. algebraic con-
nectivity reflects, loosely, a measure of synchronisability of the net-
work). Such measures may be of significant utility in characterising
task, compared to rest, or patients versus controls. Overall, it is possible
to conceive multiple ways of forming and analysing a multi-layer net-
work equivalent to that used here. This same framework will offer
unique insight into how the brain employs multiple temporal scales in
order to simultaneously form, and dissolve, networks of communication
in the task positive and resting states.

Insights into schizophrenia

Following testing of themulti-layer framework,we sought to further
demonstrate its utility by gaining insights into the neuropathology un-
derlying schizophrenia. Abnormalities in motor function have been
noted since the earliest descriptions of schizophrenia and are a well-
accepted feature of the disorder (Kraepelin, 1919). Similarly, patients
with schizophrenia exhibit deficits in low-level visual function (Butler
et al., 2001; Cadenhead et al., 2013; Keri et al., 2002; Slaghuis, 1998).
For this reason, the visuomotor task represents a useful means by
which to probe abnormalities in this debilitating disorder. Using
multi-layer connectivity assessment, we observed significantly reduced
alpha band functional connectivity in a network of brain regions
spanning the visual cortex (Fig. 6A and 6B). Furthermore, the clinical
relevance of this difference was confirmed since the magnitude of
measured alpha connectivity in visual cortex inversely correlated with
behavioural measures representative of the persistent features of the
disease (Fig. 6C). This result adds weight to an argument that impaired
connectivity is a feature of Schizophrenia. Our result is further
summarised in Fig. 7 which shows activity within and connectivity be-
tween the left and right primary visual regions. First note that there is
no significant difference in themagnitude of stimulus driven alpha am-
plitude change, between patients and controls (Fig. 7B). In agreement
with this, the alpha envelope timecourses (Fig. 7A) in patients and con-
trols are remarkably similar: both show an overall loss in amplitude
during stimulation, and both show a transient dip shortly after stimulus
onset and offset meaning their overall structure (and signal to noise
ratio) is the same. We did observe a moderate difference in amplitude
between controls and patients in a small time window at around 3 s
post stimulus; however this was not found to be significant (p b 0.05)
following FDR correction across independent time samples.Whenmea-
suring connectivity (envelope correlation) between left and right visual
corticeswe observed a significant reduction in thepatient group (Fig. 7C
right hand plot). This difference is due neither to altered leakage in pa-
tients, nor to altered SNR (see Appendix A). Recall that connectivity is
measured as amplitude envelope correlation within each trial individu-
ally, prior to trial averaging. Our result thus shows that in unaveraged
data, there is greater coordination (correlation) between the visual
areas in controls compared to patients. Put anotherway, there are signal
components – asynchronous across regions – which occur in patients
and not in controls. Importantly, these additional signals are not task re-
lated and therefore average out across trials, since they have no observ-
able impact on trial averaged alpha envelope timecourses. Further,
there is no significant difference between groups when “connectivity”
is measured using trial averaged data (Fig. 7C; left hand plot). This key
point shows the importance of measuring connectivity between areas
using unaveraged data.
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It is important to remember that this is an exploratory analysis in a
small group (23 controls and 23patients). For this reason, results should
not be over interpreted and they require replication in a second patient
cohort. However, given the relatively well characterised role of alpha
oscillations it is tempting to speculate on what these measurements
might imply. Our multi-layer network model captured connectivity
across the entire 8–100 Hz frequency range. This analysis encompassed
many pan-spectral networks including the beta band sensorimotor net-
work and the gamma band visual network (indeed, this structure is
clear in the super-adjacency matrices shown in Fig. 5). It is therefore
of significant note that only the occipital alpha network demonstrated
a robust relationship to schizophrenia. Visual alpha oscillations have
been observed since the first EEG recordings. For many years, these ef-
fects were treated as epiphenomena, with little or no relevance to neu-
ral processing. However, in recent years important insight has been
gained into the functional role of these oscillatory effects. Specifically,
a link has been made between alpha activity and attention, with high
alpha amplitude being thought of as a marker of inattention (Handel
et al., 2011; Thut et al., 2006; Zumer et al., 2014). This is shown clearly
in studies in which individual subjects are asked to switch their atten-
tion from one visual region to another. If, for example, attention is
switched from the left visual field to the right, one sees an increase in
alpha oscillations in the right hemisphere and a decrease in the left.
The reverse is true when switching attention from the right visual
field to the left. Furthermore it has been proposed that these alpha oscil-
lations act to gate information flow to higher order cortical regions
(Zumer et al., 2014). Given this hypothesis, it follows that a lack of coor-
dination between alpha envelopes across brain regions may be reflec-
tive of an inability to direct visual attention appropriately, and more
specifically an inability to accurately gate incoming visual information
to higher order brain regions. This, in turn, may have an influence on a
number of the ongoing persistent symptoms of schizophrenia including
an apparent disorganization or impoverishment of mental activity. We
therefore speculate that this may be why reduction in alpha connectiv-
ity correlateswellwith behaviouralmeasures of persistent illness sever-
ity. For this reason, whilst this remains an exploratory analysis, future
studies of schizophrenia patients usingMEG should use this same tech-
nique to further probe alpha band attentional effects and their relation-
ship to the core symptoms of schizophrenia.

Conclusion

We have combined oscillatory envelope based functional connectiv-
ity metrics with a multi-layer network model in order to derive a com-
plete picture of connectivity within and between oscillatory
frequencies. We demonstrate our methodology in a visuomotor task,
highlighting the simultaneous and transient formation of motor net-
works in the beta band and visual networks in the high gamma band,
as well as cross-spectral interactions. More importantly, we employ
our framework to demonstrate significant differences in occipital
alpha band networks in patientswith schizophrenia relative to controls.
We further show that these same measures correlate significantly with
symptom severity scores, highlighting their clinical relevance. Our find-
ings demonstrate the unique potential of appropriately modelled MEG
measurements to characterise neural network formation and dissolu-
tion. Further, we add weight to the argument that dysconnectivity is a
core feature of the neuropathology underlying schizophrenia.
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Appendix A. Testing signal leakage and signal to noise ratio

As noted in section 2.2, signal leakage between source space esti-
mates is a significant problem in MEG functional connectivity estima-
tion (Brookes et al., 2012; Colclough et al., 2015 ; Hipp et al., 2012;
O'Neill et al., 2015a). Leakage results from the ill-posed MEG inverse
problem, which causes spatial blurring in beamformer reconstruction
and means that a point source will spread across a finite volume. In ad-
dition, mislocalisation of sources, for example due to inaccuracies in
modelling the forward vector, or deviation from the assumptions
driving the inverse model also adds to the effect of leakage. Overall
the effect is that if two temporally independent and spatially separated
sources are reconstructed via beamforming, the resultant estimated
timecourses may no longer be orthogonal. This causes artifactually in-
flated functional connectivity estimates.

In the present paper, we employed orthogonalisation (via regres-
sion) in order to limit the effect of leakage. However this technique,
whilst highly effective, is not perfect and a degree of leakage can remain
if, for example, underlying beamformer projected data are non-Gaussian
(O'Neill et al., 2015a). For this reason, it is conceivable that the between
group differences in functional connectivity (effect of diagnosis) ob-
served in our schizophrenia study could result directly from between
group differences in leakage. Leakage itself is dependent on beamformer
accuracy, and this relates directly to the accuracy of both the data covari-
ancematrix, and the forwardfieldmodel. Covariance and forwardmodel
accuracy, in turn, both rely heavily on subjects remaining still through-
out the MEG data acquisition, as well as on the signal to noise ratio of
the data and the total amount of data available. Patients are more likely
tomoveduring acquisition. Furthermore, patients could potentially have
more eye movements, and more muscle artifact. It is therefore conceiv-
able that patients could exhibit a different leakage profile to controls. In
addition, it has been shownpreviously (Schoffelen andGross, 2009) that
change in connectivity can be driven by a change in SNR. Again, SNR in
MEG could potentially differ between patients and controls. For these
reasons it is critical in studies of this type to analyse both the leakage
profile (before orthogonalisation) and SNR, measured across both
groups, to check that any observable connectivity differences do not
result from poor beamformer reconstructions.

Fig. A1 shows results of post-hoc tests for between group differences
in leakage and SNR. Fig. A1A shows adjacencymatrices representing the
source leakage between all AAL region pairs. Source leakage is quanti-
fied as the fraction of variance explained in the test timecourse by the
seed timecourse, prior to leakage reduction or envelope calculation.
(In other words, leakage is quantified as the squared zero-phase-lag
correlation between projected timecourses.) The left hand matrix
shows the case for controls and the right hand matrix shows patients.
Note that whilst leakage is apparent in both groups, there is little differ-
ence between them. Fig. A1B shows summed leakage (sum of all
elements of both matrices in Fig. A1A) for controls and patients and
Fig. A1C shows regional specific leakage between left and right visual
cortex; again there is no apparent difference between groups. Finally,
Fig. A1D and E show measured SNR in the left and right visual regions
respectively. SNR is quantified as themean difference in alpha band am-
plitude between a stimulus [0 s b t b 2 s] and control [6.5 s b t b 8.5 s]
window, divided by the standard deviation of the trial averaged enve-
lope in the controlwindow. Again that there is nomeasurable difference
between patients and controls. These analyses are extremely important
since they show clearly that the between group differences presented in
the main manuscript cannot be driven by either leakage or SNR. Such
post-hoc checks should be a significant part of all future studies seeking
a between group difference in MEG derived functional connectivity.



Fig. A1. Testing for leakage and signal to noise ratio between control and patient groups. A) Adjacencymatrices representing source leakage betweenAAL regions. Note that whilst leakage
is apparent, there is little difference between groups. B) Summed leakage between all brain regions for controls and patients. C) Regional specific leakage between left and right visual
cortex. D) Measured SNR in left visual area. E) Measured SNR in right visual area. Note neither leakage nor SNR differs between groups.
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