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1 INTRODUCTION

In many countries, environmental questions have become an important part of the decision-
making process for design and maintenance of highways (Beuving et al., 2004). Therefore, fuel
efficiency and limiting greenhouse gas (GHG) emissions of road pavements has become a cen-
tral focus of many projects and studies all over the world. Life-Cycle Assessment (LCA) aims
at evaluating the impacts associated with all stages of a product’s life. This method has been
used to estimate the long-term impact of pavements on the environment (Santero et al., 2011),
but different methodologies can lead to different conclusions (Trupia et al., 2016). This can be
because different studies consider different phases of the life of a pavement in their analyses
(Santero and Horvath, 2009, Trupia et al., 2016), because of inadequate information available,
or because of different models for estimating the effect of road pavement conditions on vehicle
fuel consumption (Zaabar and Chatti, 2010).

In the past many pavement LCA studies omitted the Pavement Vehicle Interaction (PVI) and
its effects on vehicle fuel economy. PVI represents the impact of the interactions between
pavements and vehicles during the use phase of a road. Although the energy losses due to the
PVI can be mainly tracked to the tyre properties, the characteristics of the pavement surface, in
terms of roughness and macrotexture, can also significantly affect the rolling resistance and
therefore the vehicle fuel consumption (Sandberg et al., 2011).

This area of study is particularly interesting for pavement engineering and road agencies, be-
cause of the opportunity to reduce the fuel consumption associated with the road surface condi-
tion through conventional maintenance strategies. Pavement condition improvements, based on
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ABSTRACT: Experimental studies have estimated the impact of road surface conditions on ve-
hicle fuel consumption to be up to 5% (Beuving et al., 2004). Similar results have been pub-
lished by Zaabar and Chatti (2010). However, this was established testing a limited number of
vehicles under carefully controlled conditions including, for example, steady speed or coast
down and no gradient, amongst others. This paper describes a new “Big Data” approach to val-
idate these estimates at truck fleet and route level, for a motorway in the UK. Modern trucks are
fitted with many sensors, used to inform truck fleet managers about vehicle operation including
fuel consumption. The same measurements together with data regarding pavement conditions
can be used to assess the impact of road surface conditions on fuel economy. They are field da-
ta collected for thousands of trucks every day, year on year, across the entire network in the
UK. This paper describes the data analysis developed and the initial results on the impact of
road surface condition on fuel consumption for journeys of 157 trucks over 42.6km of motor-
way, over a time period of one year. Validation of the relationship between road pavement sur-
face condition and vehicle fuel consumption will increase confidence in results of LCA anal-
yses including the use phase.



the reduction of rolling resistance, by controlling pavement roughness and texture depth, can be
made rapidly using available technology, and have the potential to generate significant energy
and cost savings, and reductions in GHG emissions. By contrast, approaches involving im-
provements in vehicle technology or traffic reduction can be more complicated and require
longer implementation periods.

Calculating the impact of pavement surface properties on the rolling resistance and then on
vehicle fuel consumption is complex, although some studies have been performed over the last
years (Wang et al., 2012a; Wang et al., 2012b; Hammarström et al., 2012) to analyze this com-
ponent and its impact in a pavement LCA. These studies, as well as showing the relevance of
the impact of surface condition on a pavement LCA, have developed and implemented some
models correlating pavement surface properties to vehicle fuel consumption.

A recent study (Trupia et al., 2016) has analyzed the implications of using different rolling
resistance models calibrated in different geographical locations for a UK case study. They con-
cluded that some methodological choices and site-specific elements can play a significant role
in the development of these models, producing rolling resistance and fuel consumption models
that are not suitable for all geographic locations. In addition, the LCA results are sensitive to
the chosen model and can generate significantly different findings, reducing confidence in their
use for LCA studies. For UK roads, there are not yet any general rolling resistance and fuel
consumption models, able to predict the relationship between pavement surface properties and
fuel economy, based on local conditions. Further research is needed in this area before intro-
ducing this component in the pavement LCA framework with confidence.

Recent studies assessed that road surface conditions account for approximately 5% of the to-
tal fuel consumption of road vehicles (Beuving et al., 2004 and Zaabar and Chatti, 2010). In
England, the 2% reduction in fuel consumption assumed by Zaabar and Chatti (2010), would
mean a saving of up to £1 billion a year (considering the current cost of fuel) which corre-
sponds to a quarter of the funding spent in maintenance of local highways (House of Commons,
2011).

Zaabar and Chatti (2010) calibrated their model for US conditions, using a limited number of
vehicles tested under carefully controlled conditions (e.g. steady speed) along selected road
segments (with selected geometry). This can reduce the range of validity of the study first to the
US and second to specific vehicle models and road conditions.

Other studies on the topic (Hammarström et al., 2012) used coast-down measurements (in
order to exclude the impact of road gradient on the fuel consumption measurements) or cruise
control (no change in direction and vehicle speed) performing the tests only in good weather
conditions (e.g. wind speed <4m/s). This controls the variables in an experimental method to
improve the repeatability of results but does not reflect what happens at route level under real
driving conditions.

Nowadays, truck fleet managers analyse fleet performance to reduce vehicle operating costs
by: 1) training drivers and 2) maintaining vehicles. Previous studies (e.g. Atkinson and Postle,
1977, and Evans, 1979 among others) demonstrated the high impact of the driver behaviour and
poor maintenance on vehicle fuel economy. Data are collected by sensors that are installed on
trucks as standard (SAE International, 2002), and measure the vehicle fuel usage, the vehicle
speed, its direction and position, the engine performance, among many other parameters. These
data are collected continuously during vehicle use. Road agencies monitor road surface condi-
tion for decision making about pavement maintenance. Data are usually collected on an annual
basis, including measurements of the pavement surface condition and structural strength, etc.

Using these data, it may be possible to validate the results of experimental studies for specif-
ic routes and vehicle types during operation. This is important because for instance, the truck
fleet in the US is different to that in Europe. Different payloads are allowed, different tyres are
used, different engines are installed, and different speed limits are set. As assessed by many dif-
ferent authors in the past from Sandberg (1990) to Zaabar and Chatti (2010), the impact that
these variables can have on fuel economy is much larger than that of pavement surface condi-
tions. Using truck fleet data may allow fuel efficiency models to be calibrated for different geo-
graphical areas and fleet composition.

In this paper we report the results of an initial study to test the feasibility of using truck fleet
data for a motorway in England, to establish the impact of pavement surface texture depth and



roughness on truck fuel efficiency. The results are compared to those of some previous studies
and discussed in terms of LCA and its role in decision making for road maintenance strategies.

2 DATA

The truck data are recorded every time an ‘event’ is triggered at any brake, stop, anomaly, or
routinely each 2 minutes (120 s) or 2 miles (~3,219 m). From hundreds of gigabytes of data that
each single vehicle’s performance database contains, this study considers:

- the vehicle profile, identifying the vehicle and its main characteristics,
- the tracker ID reference for the system of sensors installed,
- the geographical position of the truck, (5 m GPS precision),
- the distance travelled by the vehicle since the previous event (m),
- the time spent by the vehicle to travel to the current position from the previous event (s),
- the total fuel consumed until the current event is recorded (0.001 litres precision, rounded

to 0.1 litres for the purpose of reducing database size),
- the air temperature (0.1ºC precision),
- the current gear,
- the current engine torque percentage,
- the engine revolutions (revs/mins).

The Highway Asset Performance Management System (HAPMS) is the database owned and
used by Highways England to monitor the condition of the strategic road network in England.
The database contains historical information and condition measurements, including:

- a road identifier code,
- a direction code,
- the year of construction,
- the latest date of significant maintenance,
- the construction materials,
- gradient
- roughness measurements (longitudinal profile variance (LPV)),
- texture measurement (sensor-measured texture depth (SMTD),
- skid resistance measurement (not considered in this study),
- deflection measurement (not considered in this study).

In this initial study only information about road surface condition is taken from HAPMS. This
includes measurements of roughness (Longitudinal Profile Variance, LPV, at 3 and 10 metres
in mm2), texture (Sensor-Measured Texture Depth (SMTD) in mm), skid resistance (SCRIM
Coefficient), and road gradient (0.1% resolution). These are the most common parameters used
in England for road condition monitoring. Previous studies typically used IRI (International
Roughness Index) as a measurement of roughness and MPD (Mean Profile Depth) as a meas-
urement of texture. Benbow et al. (2006) and Viner et al. (2006) established that these rough-
ness and texture parameters are closely related.

3 METHOD

In this initial study, data from trucks driven on M18 (near Doncaster, England) in 2015 where
considered. The M18 motorway has been chosen because of its wide range of pavement surfac-
es, including asphalt and concrete. To the initial 910,591 records available the following filters
were applied:

- 3-axle tractor and 3-axle trailer articulated trucks with Euro 5 or Euro 6 engine.
- measurements recorded at the default time or distance (i.e. no other driving event (e.g.

harsh braking or cornering) triggered the record),
- speed is steady and set to an average of 85km/h (±2.5km/h),
- no gear change (gear 12, the most commonly used gear at 85km/h was selected).

These filters were applied in this initial study to reduce the effect of other variables and iso-
late the effect of pavement surface condition on truck fleet fuel economy. Data from 157 articu-



lated trucks driving along the M18 in 2015 remained to be considered in this study. In all, 3677
records are available.

Of these, 1707 data points are for articulated trucks equipped with 12,419cc, Euro 6 engine
and 1970 data points are available for the same type of vehicles but with Euro 5 engine.

Based on the literature review the payload and the gradient are two of the most influential
variables on fuel consumption (Sandberg, 1990, Beuving et al., 2004). However, no data about
the payload is currently available for this study. Therefore, the generated engine torque (as per-
centage of the maximum) is used instead. In this initial study the impact of the pavement type is
not considered. Recent studies have claimed that the differences in fuel consumption between
asphalt and concrete pavements is less significant than the impact of surface condition
(Beuving et al., 2004). The engine torque percentage, the road gradient, LPV at 3 and 10 metres
wavelength and SMTD texture measurements are considered. Performing a backward analysis
based on the Aikake Information Criterion (AIC (Aikake, 1973)), a predictive model for fuel
consumption (l/100km) has been generated. Among all the possible models, the one that shows
the lowest AIC coefficient is considered. Finally the two subsets of data for the two engine
types, their distribution, and the generated models are compared.

4 RESULTS

The two datasets (Euro 5 and Euro 6 engine) show very similar mean fuel consumption and
standard deviation (see Table 1). However, the fuel consumption data is multi-modal, which
probably reflects the resolution of the recorded values. A Kolmogorov-Smirnov two-sample test
excludes the hypothesis that the two datasets come from the same population.

Vehicles Avg Fuel
Consumption

(l/100km)

Standard
Deviation

(σ) 
Euro 5 28.93 9.58

Euro 6 28.66 9.47

Table 1 - Average and standard deviation for fuel consumption data of Euro 5 and Euro 6 articulated
trucks driven on M18 at 85km/h using gear 12.

The following table summarises the range of data included in the analysis:

Statistic Engine
Torque

(%)

Road
Gradient

(%)

LPV10m
Roughness

(mm2)

SMTD
Texture

(mm)
Mean 33.1 0.46 0.87 1.22
Maximum 99.0 3.26 5.62 1.96
Minimum 0.00 -1.85 0.22 0.46
Standard dev. 22.4 0.72 0.36 0.22

Table 2 – Summary of the data included in the analysis. For each value the mean, the maximum, the
minimum, and the standard deviation statistics are provided.

Separate backward AIC analyses have been performed on the two datasets. It is possible to see
that in both cases the generated models include only the profile variance (LPV) at 10 metres
and the texture (SMTD) in the model. Therefore, of those included, they may be identified as
the most impactful road condition measurements on fuel consumption. This is a confirmation of
previous studies (e.g. Sandberg, 1990, Beuving et al., 2004, Zaabar and Chatti, 2010).
For the Euro 5 dataset the following equation has been obtained:

t+LPV.g% +T% +.+FC = 77.21091185.6066018.19 (1)

where, FC = predicted fuel consumption [l/100km]; T% = engine torque percentage [%]; g% =
road gradient [%]; LPV10 = Longitudinal Profile Variance at 10m wavelength [mm2]; t = tex-
ture depth [mm].



In this case, the correlation coefficient (r) between the predicted and the measured fuel con-
sumption is 0.54 (Figure 1).

Figure 1 – Comparison between predicted value and fuel consumption measurements for articulated
trucks, equipped with 12419cc engines Euro 5 driven at 85km/h using gear 12 only.

For the Euro 6 dataset the following model has been generated:

t.+LPV.g% +.T% +.+.FC = 1031040157706701717 (2)

The correlation coefficient (r) between the predicted and the measured fuel consumption is 0.66
(Figure 2).

Figure 2 – Comparison between predicted value and fuel consumption measurements for articulated
trucks, equipped with 12419cc engines Euro 6 driven at 85km/h using gear 12 only.



5 DISCUSSION

The two generated models (equations (1) and (2)) show similar results. Both the models tend to
overestimate low fuel consumption and underestimate high fuel consumption, however the
same behaviour was obtained by Zaabar and Chatti (2010). The model for the Euro 5 trucks
shows that up to 4.5% of the fuel consumption depends on the level of roughness along the
M18. On the other hand up to 4.1% of fuel consumption depends on roughness along the M18
for the considered Euro 6 trucks. Zaabar and Chatti (2010) claimed that the roughness can af-
fect approximately 5% of the fuel consumption. The fact that the first results of this study agree
with those of previous studies (Beuving et al., 2004, Zaabar and Chatti, 2010) gives us confi-
dence in using the Big Data approach. While these two initial models have identified the same
pavement surface condition measurements as the most significant from those tested, the correla-
tion coefficients between the measured and predicted fuel consumption show the models are far
from explaining all the variability in the data. This may in part be due to the influence of un-
measured factors, including for instance, the pavement type, or meteorological factors like the
air temperature or the wind speed and direction, among others. It is also probably due to the
lack of a direct measure of payload and the use of engine torque as a surrogate. Further work
will attempt to address this factor by estimating the payload using a physical-mechanical model.
It may be possible to validate such a model for a limited number of trucks using fleet manager’s
information about delivery schedules or with limited trials of trucks with measured payloads. It
may also be possible to record more frequent and precise fuel consumption data for a limited
number of trucks. More sophisticated techniques for modelling and noise reduction will also be
tested. It is hoped that using these approaches, better predictions will be obtained providing fur-
ther confidence in the use of Big Data to estimating PVI fuel consumption.

Previous research (Sandberg, 1990, Beuving et al., 2004, and Zaabar and Chatti, 2010,
among others) has shown that the impact of PVI on fuel consumption is also significant for
smaller vehicles. However, at the moment, the study considers only 3-axle tractor and 3-axle
trailer articulated trucks due to the fact that they are the most common type in the dataset of the
considered fleet.

The initial results obtained in this paper demonstrate the feasibility of using the Big Data ap-
proach to make a fleet and route level analysis to estimate fuel consumption due to PVI. The
further work that is planned is intended to generate estimates that will be suitable to be intro-
duced into pavement LCA studies, including the use phase, for UK case studies. A similar ap-
proach should be possible in other countries. Assessing this impact at a more general level us-
ing a Big Data approach will represent an important step in the development of consistent and
accurate PVI fuel consumption models. Further research, to extend this approach to all types of
vehicles is necessary to improve confidence in introducing the PVI component into road pave-
ment LCA studies.
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