
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2015 

Modern Digital Chirp Receiver: Theory, Design and System Modern Digital Chirp Receiver: Theory, Design and System 

Integration Integration 

Stephen Ray Benson 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Engineering Commons 

Repository Citation Repository Citation 
Benson, Stephen Ray, "Modern Digital Chirp Receiver: Theory, Design and System Integration" (2015). 
Browse all Theses and Dissertations. 1616. 
https://corescholar.libraries.wright.edu/etd_all/1616 

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It 
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1616?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 
 

Modern Digital Chirp Receiver: Theory, 

Design and System Integration 
 

A dissertation submitted in partial fulfillment of the 

 requirements for the degree of 

Doctor of Philosophy 

 

By 

 

Stephen Ray Benson 

B.S. Computer Engineering, Wright State University, 2008 

M.S. Electrical Engineering, Wright State University, 2010 

 

 

 

 

__________________________________ 

 

 

 

 

 

2015 

Wright State University 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

COPYRIGHT BY 

Stephen Ray Benson 

2015 

 

 

 

 

 

 



 
 

WRIGHT STATE UNIVERSITY 

GRADUATE SCHOOL 

               December  16, 2015 

I HEREBY  RECOMMEND  THAT  THE  DISSERTATION PREPARED UNDER MY   

SUPERVISION BY Stephen Ray Benson ENTITLED Digital Chirp Receiver: Theory, Design 

and System Integration BE ACCEPTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.            

 

       _______________________________ 

         Chien-In Henry Chen, Ph.D. 

Dissertation Director 

            

           _______________________________ 

 Dr. Ramana V. Grandhi, Ph.D. 

Director, Ph.D. in Engineering Program 

 

_______________________________ 

Robert E. W. Fyffe, Ph.D. 

Vice President for Research and 

Dean of the Graduate School 

Committee on  

Final Examination 

 

_______________________________ 

Chien-In Henry Chen, Ph.D.     

 

_______________________________ 

Marty Emmert, Ph.D. 

 

_______________________________ 

Marian Kazimierczuk, Ph.D. 

 

_______________________________ 

Saiyu Ren, Ph.D. 

 

_______________________________ 

Wen-Ben Jones, Ph.D.



IV 
 

ABSTRACT 

Benson, Stephen Ray. Ph.D. in Engineering Program, Department of Electrical Engineering, 

Wright State University, 2015. Modern Digital Chirp Receiver: Theory, Design and System 

Integration. 

Chirp signals can achieve a high range resolution without sacrificing SNR or maximum 

range, making them a strong candidate for use in radar and sonar applications. Chirp signals are 

also power efficient and resistant to interference, making them well suited for communication 

applications as well.  

The proposed digital high chirp rate receivers will showcase the use of digital 

instantaneous frequency measurement (IFM) devices for high chirp rate measurement. The 

receivers are paired with a high resolution time-of-arrival algorithm, capable of detecting the 

TOA and TOD of a pulse with an average error of less than 2ns. The high resolution pulse 

detector is vital for the measurement of high chirp rate, short pulse duration chirp signals when no 

a priori knowledge of the signals or operating environment is available. Three different receivers 

were designed and implemented in order to target three different applications: linear chirp signals, 

nonlinear chirp signals, and linear chirp signals with varying pulse widths. In addition to the 

digital IFM and TOA algorithm, a high rate 43-tap Hilbert Transform was implemented via an 

FIR filter in order to convert incoming real data from the ADC into its complex signal 

representation.  

All three designs were synthesized and successfully tested on a Xilinx Virtex 6 SX475 

FPGA which is paired with a Calypso 12-bit ADC sampling at 2.56GHz. All three receivers run
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at a rate of 320MHz and can measure chirp rates up to 1180MHz in 400ns. The designs boast an 

overall detection rate of greater than 97% with a false alarm rate of      and achieve a frequency 

measurement error of less than 1% for both chirp rates and carrier frequencies. The receivers can 

successfully detect and measure chirp signals and stationary carrier frequencies with SNRs 5dB 

and higher. The largest design, the digital nonlinear chirp receiver only utilizes 13% of the Virtex 

6 SX475 FPGA board. 
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I. INTRODUCTION 

1.1 Motivation 

The range resolution of radar is defined as the minimum distance between two 

objects required for the radar to be able to distinguish between the two objects. If the 

distance between two objects is smaller than the radar’s range resolution, the two objects 

will appear as a single object to the radar. Before the discovery of chirp signals, the 

length of the transmitted pulse determined the range resolution capabilities of radar 

systems.  If a very small range resolution was desired, a very short pulse was necessary. 

Reducing the pulse length has a major drawback, however, as it effectively reduces the 

SNR of the signal being transmitted if additional power is not supplied to the transmitter. 

Reducing the power lowers the effective range that the radar can operate.  This 

relationship creates a tradeoff between range resolution and the maximum range of the 

radar. The range resolution of an unmodulated signal is given by the following equation:   

                                        
    

 
 (1) 

where    represents the speed of the wave, and   represents the length of the transmitted 

pulse [1]. This range resolution limitation can be overcome, however, by increasing the 

bandwidth of the transmitted signal. The range 
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resolution of a frequency modulated signal is given by the following equation:  

                                               
  

   
 (2) 

We can see from the equation that the range resolution is no longer dependent on 

the length of the signal, but by the bandwidth of the transmitted pulse [1]. This allows the 

use of long duration pulses, which can maximize SNR while still achieving a very fine 

range resolution.  Fig. 1 plot (a) shows an unmodulated 50MHz signal with a pulse 

duration of 400ns while Fig. 1 plot (b) shows the output of the signal correlated with its 

matched filter. As expected, the signal has a peak, relative to the maximum correlation 

between the signal and the filter. We can see that the output from the matched filter is 

very wide, alluding to its inefficiency at detecting closely spaced objects.  

Fig. 1 plot (c) shows a linear chirp signal with a chirp rate of 50MHz in 400ns and 

a starting frequency of 50MHz, with a pulse duration of 400ns. A chirp signal is defined 

as a signal whose frequency changes over a period of time. We can see in Fig. 1 plot (d) 

that the peak output of the matched filter still occurs at the same point, however the width 

of the output has been significantly decreased. The width of the matched filter can be 

further reduced if the bandwidth of the signal is increased. Fig. 1 plot (e) shows a linear 

chirp signal with a chirp rate of 1180MHz in 400ns and a starting frequency of 50MHz 

with a pulse duration of 400ns. Fig. 1 plot (f) shows the output from the matched filter. 

We can see the output from the matched filter has a very narrow peak, allowing for the 

detection of objects which are very close to one another.  

 



3 
 

 

Figure 1 - Chirp rate vs. matched filter output.  

 

A simple example can be used to visualize the range resolution performance of 

these three signals.  If a radar pulse is transmitted and reflected off of two objects, which 

are very close to one another spatially, the reflected two pulses from the two objects will 

be received by the receiver separated by a very short delay. Depending on the spatial 

distance between the objects, it is possible for the reflected pulses to overlap one another. 

Fig. 2 plot (a) shows the two unmodulated received pulses, while plot (b) shows the 

output from the matched filter (MF) correlated with these two signals. It can be seen from 

the plot that the two objects become ambiguous and cannot be distinguished between one 

another.  Plot (c) shows two frequency modulated signals with a bandwidth of 50MHz 

and plot (d) shows the output of these signals correlated with their matched filter. The 

two objects are now clearly distinguishable from one another with no ambiguities. As 

expected, plot (e) shows two frequency modulated signals with a bandwidth of 1180MHz 

and plot (f) shows the resulting output from the signals correlated with their matched 
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filter. The further increase in signal bandwidth allows for a much finer range resolution 

as well as a suppression of the unmatched correlations.  

In addition to typical radar applications, chirp signals have also been used for 

measuring the thickness of snow ice [2], in automotive ranging applications [3], multiple 

input multiple output (MIMO) radars [4], short-distance detecting and imaging systems 

[5], and multiple target localization [6]. In fact, the use of chirp signals has spread beyond 

just radar systems and are becoming widely used in communication systems [7, 8, 9].  

 

Figure 2 - Chirp rate vs. matched filter output for closely spaced targets.  

1.2 Chirp Signal Measurement  

Chirp signals can have linear or nonlinear changes in frequency. If the chirp rate 

is small relative to the measurement period, a traditional fast Fourier transform (FFT) or 

instantaneous frequency measurement (IFM)  device can be used over multiple 

measurement periods to estimate the chirp rate through slope calculation [10]. However, 

this method is impractical for use with high chirp rates, which change significantly during 

the measurement period. 
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Of course other methods have been used to measure chirp rates, including a 

Wigner distribution, which has been used to detect non-stationary phase-modulated 

signals [11, 12].  By computing the line integral of the Wigner distribution of a linear 

frequency modulated signal along all lines in the time–frequency plane, it is found that 

the line that produces the maximum value corresponds to the maximum likelihood of the 

linear instantaneous frequency of the chirp. The Radon–Wigner transform [13] converts 

the problem of tracking straight lines in the time–frequency plane into locating maxima 

in an initial frequency versus chirp rate two-dimensional plane. Radon-ambiguity 

transform [14] combines Radon-Wigner transform and the ambiguity function to improve 

the detection of linear frequency modulated signals by searching the location of maxima 

over chirp rates only.  Another approach using fractional autocorrelation for parameter 

estimation of linear frequency modulated signals and chirp rates was proposed [15].  

Hough transform was proposed to reduce computational load to detect long and very 

slow chirp signal, i.e., 1-Hz drop in a 10-hour interval [16]. A state dependent differential 

Riccati equation (SDDRE) based estimator was proposed in [17]. Mathematical models 

proposed by these approaches require large computation.  No hardware implementation 

or chirp rate range was discussed or tested. 

Chirp rates can be classified as up or down chirps, i.e. the frequency increases or 

decreases over time. The research presented in this dissertation will focus on up chirps; 

however, the techniques shown are also useable with down chirps. 

Because the frequency parameters of chirp signals do not remain constant during 

the length of the pulse, parameter estimation can be a difficult task and is reliant on 

multiple factors. The speed at which the signal changes relative to the sampling 
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frequency has the biggest effect on measurement performance. As the chirp rate 

increases, the sampling frequency must also be increased to ensure a proper Nyquist 

sampling rate as well as provide an adequate number of samples for measurement.  

Chirp signal measurement is not limited to the use of a single type of 

measurement device; however, the type of device chosen will dictate the temporal and 

frequency resolution limits.  The FFT is widely used in the signal processing community 

and is a powerful tool due to its computational efficiency [18]. The FFT is used to 

convert time domain data into the frequency domain. The FFT excels at detecting 

multiple simultaneous signals as it provides a snapshot of the entire spectrum. The size of 

the FFT determines its computational complexity, latency, frequency resolution and 

temporal resolution. As the size of the FFT increases, the frequency resolution is 

improved. However, the trade-off is a reduction in temporal resolution, with an increase 

in complexity and latency.  

The computational complexity of the FFT grows at the rate of O(N     ) while 

the frequency resolution grows at a rate of 
  

 
, where N is the number of data samples 

collected (size of the FFT) and    is the sampling rate [19]. If the signal of interest has a 

short pulse duration, then the sampling frequency must be high in order to obtain enough 

samples to achieve the desired frequency resolution. This has practical limits as high 

sample rate ADCs are expensive and are limited by current technology. 

 For these reasons, it is difficult to achieve a fine frequency resolution when 

measuring short pulsed waveforms with an FFT. The process used to measure chirp 

signals further reduces the number of samples available to the FFT. The number of 

available samples is reduced due to the need to mix the chirp signal with a delayed and 
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conjugated copy of itself in order to isolate the higher order frequency components. The 

sensitivity of the chirp measurement is increased as this delay is increased. However, 

every sample of delay used reduces the number of available samples for measurement. If 

an FFT is used for measurement, a large delay will increase the sensitivity of the 

measurement, however a reduction in samples will reduce the frequency resolution of the 

FFT.  

If a chirp signal contains multiple chirp parameters; they can be accurately 

measured by isolating and removing the highest order parameter present until only the 

carrier frequency is left. Fig. 3 will be used to visualize the process for isolating each 

frequency component. Fig. 3 plot (a) shows the FFT plot of a chirp signal which contains 

a 780MHz in 400    nonlinear chirp rate, a 390MHz in 400ns linear chirp rate and a 

starting frequency of 50MHz. 
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Figure 3 - Nonlinear chirp signal measurement using an FFT.  
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The nonlinear frequency component of a chirp signal can be isolated by utilizing 

two separate mixing processes. First, the original signal needs to be mixed with a delayed 

and conjugated copy of itself. This resulting signal needs to be mixed with a delayed and 

conjugated copy of itself once more. The optimal delays used for these mixing processes 

are determined by the pulse width of the signal and the measurement period of the device. 

For an FFT, the measurement period of the device is chosen based on the desired 

frequency and temporal resolution. If a 512-point FFT is chosen and a sampling rate of 

2.56GHz is used, then the measurement period will be 200ns. The target pulse width of 

chirp signals in this research is 400ns, therefore the optimal delay will be (400ns – 200ns 

= 200ns). Since two separate mixing processes are used, the delay must be split between 

the two processes. The optimal ratio for this split is a 1:2 ratio. The delay for the second 

mixing process should be twice as long as the delay used for the first mixing process. 

Therefore, the delay for the first mixing process becomes 
 

 
                and the 

delay for the second mixing process is 
 

 
               . Fig. 3 plot (b) shows the 

isolation of the nonlinear chirp component after the signal has undergone both mixing 

processes.  

Once the nonlinear chirp rate has been determined, it is possible to remove the 

nonlinear chirp rate by mixing the signal with a de-chirping signal. The de-chirping 

signal should have the same ramp rate, but in the opposing direction. The de-chirping 

signal is mixed with the original signal to remove the nonlinear chirp rate. After 

nonlinear de-chirping, the linear chirp component can be measured. The linear chirp 

component is isolated by mixing the de-chirped signal with a delayed and conjugated 

copy of itself. The delay value used for this process will be the same as the one used in 
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the nonlinear chirp isolation process (200ns). Fig. 3 plot (c) shows the isolation of the 

linear chirp rate after the nonlinear chirp rate has been removed.  

Once the linear chirp rate has been measured, it can be removed from the signal 

by mixing it with an appropriate linear de-chirping signal. The linear de-chirping signal 

will have the same ramp rate, but in the opposing direction. The de-chirping signal will 

be mixed with the nonlinear de-chirped signal to remove the linear chirp rate. After all 

chirp components have been removed from the signal, only the carrier frequency (starting 

frequency) will remain. The FFT plot of the carrier frequency is shown in Fig. 3 plot (d).  

Chirp parameter isolation and measurement can be shown through mathematical 

analysis. A digitized nonlinear chirp signal can be represented by  
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where ω represents the carrier frequency (starting frequency), α represents the linear 

chirp rate, and β represents the nonlinear chirp rate. The sample number will be 

represented by n and the sample period will be represented by   .A delayed and 

conjugated copy of the signal can be represented by  
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where m represents the number of sample delays used. If the two sequences are mixed 

they become  
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Each parameter in Eq. (5) can be grouped according to its power, and the following 

substitutions can be made 

 
                   (

 

 
)       

 

   
               

           

After substitutions, Eq. (5) becomes  

   (   )  |  |   (  
     

        
      ) (6) 

Eq. (6) no longer contains a 3
rd

 order term. We can therefore mix this equation with a 

delayed and conjugated copy once more, allowing for the removal of the second order 

term. The resulting signal will contain only the original nonlinear chirp rate, but it will be 

represented as a first order term. It is at this stage that a typical FFT or IFM device can be 

used to measure the nonlinear chirp rate. Eq. (7) shows the 2
nd

 mixing process required to 

isolate the nonlinear chirp rate.   

   (   )     (   )    ((   )  )   

  |  |  |  |   ( (                        
    ) (7) 

Once again grouping all parameters of the same power, the following substitutions can 

then be made  

                  
     (8) 

           (9) 
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So Eq. (7) then becomes  

   (   )  | |   (         )  

  | |   (                ) (10) 

Since    is a constant, Eq. (10) only contains the nonlinear chirp parameter, represented 

as a first order term. This makes it easily measured by an FFT or IFM. Once the chirp 

rate has been determined, a de-chirping signal can be generated and mixed with the 

original signal of Eq. (3) 
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Eq. (11) is now in the same format as Eq. (6) and therefore the same procedure used for 

Eq. (6) can be utilized again. Eq. (11) will be mixed with a delayed and conjugated copy 

of itself to yield  

   (   )    (   )    ((   )  )
 
  

        (                      ) (12) 

                   (13) 

         (14) 

    | |   (         ) (15) 

Since    is a constant, S3 only contains the linear chirp rate as a first order term and can 

be easily measured with an FFT or IFM. Once the linear chirp rate is measured, the 
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appropriate linear de-chirping signal can be generated to remove the linear chirp rate 

from Eq. (11). The de-chirping process is as follows.  
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Eq. (16) no longer contains any chirp parameters and the carrier frequency can now be 

easily measured using an FFT or IFM.  

1.3 Contribution 

The research made possible by DAGSI’s sponsorship has resulted in this 

dissertation as well as multiple models, which simulate the detection and measurement of 

high chirp rate signals. Along with the simulation models, three VHDL models and 

FPGA programming files have been created and tested on a Virtex 6 FPGA, allowing for 

the real-time operation of the digital chirp receivers.  The three designs which have been 

created are as follows: 

1. Digital Linear Chirp Receiver: Capable of measuring linear chirp rates ranging 

from 50MHz in 400ns up to 1180MHz in 400ns and carrier frequencies ranging 

from 50MHz up to 1230MHz.  

2. Digital Nonlinear Chirp Receiver: Capable of measuring nonlinear chirp rates 

ranging from 50MHz in 400    up to 1180MHz in 400    as well as linear chirp 

rates ranging from 50MHz in 400ns up to 1180MHz in 400ns and carrier 

frequencies ranging from 50MHz up to 1230MHz. 
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3. Digital Variable Linear Chirp Receiver: This receiver is not limited to a single 

chirp period, but rather is bound by frequency across a wide range of chirp 

periods. The fastest chirp rate measureable is 1180MHz in 400ns, while the 

slowest chirp rate measurable is roughly 50MHz in 1 hour.  This receiver is also 

capable of measuring carrier frequencies ranging from 50MHz up to 1230MHz.  

1.4 Overview 

This dissertation will begin by describing the development design flow and 

prototyping hardware for each of the receivers in Section II. The development and 

performance of the time-of-arrival algorithm used by all three of the chirp receivers will 

be described in Section III. The design and implementation of the Hilbert Transform will 

be covered in Section IV. The digital instantaneous frequency measurement (IFM) device 

and its use for chirp rate measurement will be discussed in Section V. The digital linear 

chirp receiver design will be presented in Section VI. Section VII will cover the design 

and implementation of the nonlinear digital chirp receiver. The operation of the variable 

chirp receiver will be presented in Section VIII. In depth performance evaluations for all 

three chirp receiver designs will be provided in Section IX. The final chapter will 

summarize the research presented in this dissertation as well as give insight into how this 

research could be furthered. 
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II. Design Flow and Prototyping Hardware 

2.1 Design Flow 

The flow of design for developing, testing and verifying all the designs in this 

research followed an identical path. Ideas were developed and tested in Matlab first in 

order to prove their feasibility. The code was enhanced and optimized using Matlab’s 

built in code profiler. The profiler was able to record the amount of time spent in each 

function and each line of code, as well as the number of times each function was called 

throughout a simulation. This provided a thorough analysis on the efficiency, or lack 

thereof, of the code. The simulation run times were significantly reduced by vectorizing 

the code. Matlab has been highly optimized for vector and matrix operations, meaning it 

can perform a function on a vector almost as quickly as it can perform a function on a 

single value. Vectorizing the code is the process of modifying the code to perform all 

operations on as many simultaneous elements as possible. This greatly reduces the 

number of times a function needs to be called and greatly reduces the simulation run 

times.  

Once the Matlab code has been completely optimized and verified, the next step 

in the development process was transitioning the Matlab code into a design based in 

Simulink/Xilinx System Generator (XSG). The flow between the two tools was not 

always a simple conversion. It is possible for Simulink to
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implement small portions of Matlab code using a translator known as the “Mcode” block. 

Not all Matlab functions are useable within a Mcode block, and extra precautions must be 

taken to ensure proper data types and bit widths are used.  

The use of Mcode blocks allows for higher levels of abstraction and easier design 

implementation, while reducing the amount of control over the system that the user has. 

Extra care is needed when using Mcode blocks as the designer has minimal control over 

implementation styles and a limited ability to alleviate timing issues. An additional 

downside to using Mcode blocks is they are limited to using a single clock rate, which is 

set by the System Generator token.  

In addition to the numerous pre-fabricated blocks, which are provided from Xilinx 

for use in Simulink, the user can also write his own VHDL/Verilog code and insert it 

directly into the design through the use of the “Black Box” tool. In comparison with the 

Mcode block, the Black Box provides a much greater level of control to the designer. The 

Black Box is capable of handling multiple clock rates, though the implementation of the 

clock rates is not necessarily straightforward or intuitive. The Simulink/XSG tool does 

not provide clock input ports for any of the design blocks and this is true for Black Boxes 

as well. In order for a designer to utilize multiple clock rates within a Black Box, 

matching ‘clock’ and ‘clock_enable’ input ports must be included in the entity definition 

in their VHDL code. The ‘clock’ and ‘clock_enable’ ports will not be visible when 

viewing the block in Simulink, so no physical connection within the design needs to be 

made. In the configuration file for the Black Box, the user has the ability to choose the 

rate of for the ‘clock_enable’, which will effectively determine the rate of the clock 

paired with that ‘clock_enable’. 
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The majority of the logic for the digital chirp receivers was generated using the 

pre-fabricated blocks provided within the Xilinx block set, in which there is no simple 

conversion from Matlab code. Therefore most of the designs were developed by hand 

using the GUI.  

The Simulink/XSG model has access to all the variables in Matlab’s workspace, 

and can use the workspace variables as either inputs or outputs. There are currently no 

tools that can estimate the hardware usage or check whether the design will meet timing 

constraints for the target device within Simulink/XSG.  To accomplish this, the 

Simulink/XSG model must first be translated into VHDL/Verilog code. The 

VHDL/Verilog code can then be synthesized by the Xilinx ISE tool. It is at this stage that 

the design can be analyzed in regards to hardware usage as well as determine if it will 

meet the timing constraints. If a design fails to meet the constraints, design changes will 

need to be made to the original Simulink/XSG model, which will need to be re-translated 

into VHDL/Verilog and synthesized again.  This process can be extremely time 

consuming as certain timing constraints can be very difficult to meet.   

2.2 Prototyping Hardware 

The target device for this research is a Virtex 6 SX 475 FPGA paired with a 

Calypso 12-bit ADC, which was developed by Tekmicro. The ADC is capable of 

sampling at a rate of up to 3.6GSPS, but was configured to use a sampling rate of 

2.56GSPS for all the digital chirp receivers in this dissertation. The Tekmicro device can 

be seen in Fig. 4. 

In order to generate short duration, high chirp rate signals, an arbitrary waveform 

generator was needed. For this, a Keysight M8190A 12GSa/s arbitrary waveform 
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generator was used to generate the needed signals and is shown in Fig. 5. The signal 

generator was supplied with a Matlab based GUI, greatly simplifying the process of 

signal generation.  The large memory size of the signal generator allowed for the storage 

of up to 1 second’s worth of samples to be stored at a time. This was more than sufficient 

storage to allow the entire frequency range of all the signal types to be tested 

consecutively.  

In order to retrieve the frequency measurement information from digital chirp 

receivers on the FPGA, the results were written to a set of FIFOs. Once the FIFO’s were 

filled, their data was sent over Ethernet to a local PC for analysis.  
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Figure 4 –  Calpyso Virtex 6 SX475 FPGA paired with 3.6 GSPS 12 -bit ADC. 

 

 

 

Figure 5 –  Keysight M8190A 12GSPS arbitrary waveform generator.
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III. Time-of-Arrival Detection of Chirp Signals 

3.1 Motivation 

Accurate time of arrival estimation for chirp signals with very high chirp rates is 

immensely important. The effect of time-of-arrival estimation error on the measurement 

of chirp signal parameters depends greatly on the type of chirp signal. An exponential 

nonlinear chirp rate is the most forgiving of TOA estimation error. This is because the 

slowest change in frequency occurs at the beginning of the signal. However, linear chirp 

signals are greatly affected by TOA estimation error since the frequency change in the 

beginning of the signal is substantially higher than its nonlinear counterpart. Fig. 6 plots 

the instantaneous frequency for a nonlinear chirp signal in plot (a) and a linear chirp 

signal in plot (b).
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Figure 6 –  Instantaneous frequency vs. time for nonlinear and linear chirp signals.  

 

A simple example can be used to highlight the differences between measuring 

nonlinear chirp signals and linear chirp signals. If very fast chirp rates are considered for 

both signal types, say a nonlinear signal with a chirp rate of 1180MHz in 400    and a 

linear chirp signal with a chirp rate of 1180MHz in 400ns, we can calculate the expected 

starting frequency error based on the average expected TOA error. If the detection system 

being utilized achieves an average TOA error of 5ns, then measuring the starting 

frequency of the nonlinear chirp rate will encounter an average error of at least 184 KHz. 

However, when measuring the starting frequency of the linear chirp signal, the system 

will encounter an average error of at least 14.75MHz. Accurate TOA estimation is one of 

the greatest challenges when trying to measure high chirp rate signals when no a priori 

signal or environmental knowledge is available. TOA estimation is not a great concern 
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when measuring stationary, non-chirp signals because there is no reduction in 

measurement performance if the signal is detected late. For these reasons, many of the 

widely used energy detectors and TOA estimators used in the signal processing 

community are not suitable for use with high chirp rate, short pulse duration signals.  

Therefore, a new TOA methodology was studied and developed for use with short 

duration, high chirp rate signals. All three digital chirp receivers were targeted for real-

time implementations on a Virtex 6 SX 475 FPGA. Utilizing a sampling rate of 2.56GHz, 

the FPGA operating frequency is set at 320MHz since the incoming samples are de-

multiplexed at a ratio of 1:8.  The requirements for TOA detection were established based 

on the following principles: 

1) Minimum operating frequency of 320MHz 

2) Accuracy and resolution capabilities better than ~10ns 

3) Detection rate higher than 90% 

4) False alarm rate less than      (1 in 10,000,000) 

5) Function for SNRs from 5dB up to 20dB 

6) Signal detection based on no a priori knowledge 

The following sections will cover the investigation and development of the TOA 

algorithm, which is suitable for use with high chirp rate signals.  

3.2 Time-of-Arrival Study for Chirp Signals 

Data is sampled at 2.56GHz and is de-multiplexed at a 1:8 ratio, allowing for 8 

samples to be provided every clock cycle. Every sample from the ADC is represented by 

4 bits, setting an amplitude range of -7 to 7. In order to keep computational complexity at 

a minimum to allow for the 320MHz operational frequency, simple time-domain 

amplitude based criteria were studied for TOA detection. 

Two of the simplest criteria to consider are mean value and maximum amplitude 
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based thresholds. Since data is provided in 8-sample chunks, all evaluations are based on 

evaluating 8 samples in parallel. One of the most difficult tasks for TOA detection is 

determining the optimal thresholds.  The difficulty of this task is further increased by the 

extremely long simulation times needed to determine the detection rates and false alarm 

rates for each threshold setting. In order to overcome this hurdle, a statistical model was 

developed to predict the performance of various threshold settings without the need for 

lengthy simulations. 

In order to develop a useful statistical model, a very large data set was needed, 

which accurately represents both signals and noise. Remember, no a priori knowledge is 

available on the incoming signals, so all variables must be accounted for in the data set. 

The variables which can have a significant impact on signal detection include SNR, 

starting frequency, chirp rate, and chirp signal type. A data set was created which fully 

represents all 4 variables and contains the following boundaries:  

 Stationary Signals: 

o SNRs: 1dB to 20dB  in 1dB increments 

o Carrier Frequencies: 50MHz to 1230MHz in 0.25MHz increments 

o Chirp Rate: N/A 

o Pulse Length: 200ns  

o 200ns * 20 SNRs * 4,720 Frequencies = 18.8ms of samples 

 

 Linear Chirp Signals: 

o SNRs: 1dB to 20dB  in 1dB increments 

o Carrier Frequencies: 50MHz to 1180MHz in 0.25MHz increments 

o Chirp Rate: 1180MHz in 400ns down to 50MHz in 400ns in 1MHz 

decrements 

o Pulse Length: 200ns  

o 200ns * 20 SNRs * 4,520 Frequencies = 18ms of samples 
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 Nonlinear Chirp Signals: 

o SNRs: 1dB to 20dB  in 1dB increments 

o Carrier Frequencies: 50MHz to 1180MHz in 0.25MHz increments 

o Chirp Rate: 1180MHz in 400    down to 50MHz in 400    in 1MHz 

decrements 

o Pulse Length: 200ns  

o 200ns * 20 SNRs * 4,520 Frequencies = 18ms of samples 

 

 Nonlinear and Linear Chirp Signals: 

o SNRs: 1dB to 20dB  in 1dB increments 

o Carrier Frequencies: 50MHz to 1130MHz in 0.25MHz increments 

o Chirp Rate: Nonlinear swept from 1130MHz in 400    down to 50MHz 

in 400    in 1MHz decrements and linear swept from 50MHz in 400ns 

up to 1130MHz in 400ns.  

o Pulse Length: 200ns  

o 200ns * 20 SNRs * 4,320 Frequencies = 17.2ms of samples 

 

The detection rate of signals was estimated by utilizing signals embedded with 

additive white Gaussian noise (AWGN). A pulse length of 200ns was utilized instead of 

400ns in order to reduce the simulation time. The initial target for TOA accuracy was 

±10ns, and it was therefore determined unnecessary to simulate the last 200ns of the 

different signal types. Utilizing these parameters resulted in a total of 72ms of sampled 

data, or roughly 184 million data samples.  

False alarm rates were estimated by creating a data set in which only AWGN was 

present. Noise was generated in Matlab with zero mean and a standard deviation of 1. 

Similar to the first data set, 72ms of AWG noise was generated in Matlab. 
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3.3 Algorithm Development and Threshold Optimization 

Once the data sets were created, they were analyzed in 8-sample blocks in which 

the average of the absolute values as well as the number of occurrences for each 

magnitude value were recorded for each 8-sample block. This allowed for the creation of 

cumulative distribution functions at each SNR for the following criteria: 

 Criteria 1 

o Average of the absolute values of 8-sample blocks 

 

 Criteria 2 

o Magnitude values which occur at least 1 time in an 8-sample window 

o Magnitude values which occur at least 2 times in an 8-sample window 

o Magnitude values which occur at least 3 times in an 8-sample window 

o Magnitude values which occur at least 4 times in an 8-sample window 

o Magnitude values which occur at least 5 times in an 8-sample window 

 

Since the number of iterations providing the best performance was unknown, 

numerous versions were tested. Fig. 7 shows the estimated detection rates in plot (a) and 

false alarm rates in plot (b) for Criteria 1 at an SNR of 7dB for different threshold 

settings. The dotted vertical lines represent the lowest threshold setting, which meets the 

false alarm requirement of     . However, the graph shows that this threshold is not able 

to meet the 90% detection rate at an SNR of 7dB as it only obtains a detection rate of 

67.9%.  

Fig. 8 shows the estimated detection rates in plot (a) and false alarm rates in plot 

(b) for Criteria 1 at an SNR of 11dB. The same vertical dotted lines show the lowest 

threshold setting, which achieves the desired false alarm rate. The higher SNR changes 

the expected detection rate dramatically, as nearly a 100% detection rate is predicted.   
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Figure 7 –  Cumulative Distribution Function for TOA criteria 1 @ SNR = 7dB.  

 

Figure 8 - Cumulative Distribution Function for TOA criteria 1 @ SNR = 11dB.  
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Figure 9 - Criteria 1 plot of 90% detection rate and      false alarm rate 

thresholds. 

Fig. 9 shows the SNR and threshold combinations, which are able to 

simultaneously meet the detection and false alarm rate requirements. Any threshold value 

above the horizontal dotted red line, or any SNR to the right of the vertical dotted red line 

represents an acceptable threshold/SNR combination, which simultaneously meets the 

90% detection rate and       false alarm rate requirements.  

The same plots were generated to measure the performance of criteria 2, which 

operates using the maximum magnitude value within an 8-sample block. An additional 

constraint was added to criteria 2, which sets the minimum number of occurrences 

required within an 8-sample block. Fig. 10 shows the 90% detection rate threshold vs. 

SNR for criteria 2 when only 1 magnitude occurrence is required. The lowest SNR, 

which meets both detection and false alarm requirements when utilizing a single 
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magnitude occurrence, is 10dB. The performance of criteria 2 is slightly improved when 

two occurrences of a magnitude value are required and a plot of the 90% detection 

threshold vs. SNR is shown in Fig. 11. The use of three occurrences achieved the best 

performance with an SNR of 8dB, and is plotted in Fig. 12.  Figures 13 and 14 show the 

90% detection threshold vs. SNR when 4 and 5 magnitude occurrences are required, but 

the performance is degraded when compared to using 3 occurrences.  

 

Figure 10 –  Criteria 2 – 1 iteration plot of 90% detection rate and      false alarm 

rate thresholds. 
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Figure 11 - Criteria 2 – 2 iterations plot of 90% detection rate and      false alarm 

rate thresholds. 

 

 

Figure 12 - Criteria 2 – 3 iterations plot of 90% detection rate and      false alarm 

rate thresholds. 
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Figure 13 - Criteria 2 – 4 iterations plot of 90% detection rate and      false alarm 

rate thresholds. 

 

Figure 14 - Criteria 2 – 5 iterations plot of 90% detection rate and      false alarm 

rate thresholds. 

The distributions for all criteria are not assumed to be normally distributed, such 
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is the case with criteria 2, which uses the maximum value within an 8-sample window. 

However, the distribution for this criteria is assumed to be normal-like, as a very large 

number of samples are utilized, and useful estimations are derived from the use of the 

CDF.  

Detection rates and false alarm rates were also estimated when both criteria are 

utilized simultaneously. After analyzing the data, it was found that no combination of 

thresholds could meet the detection rate, false alarm rate and SNR requirements 

simultaneously. An additional study was done to evaluate the detection performance 

when multiple threshold crossings were considered over a series of 8-sample blocks. 

Instead of limiting signal detection to a single 8- sample block, multiple blocks were 

considered, which required further threshold optimization. Investigation was necessary to 

determine the optimal thresholds, the optimal number of sample blocks to consider as 

well as the number of threshold crossings which would be required. To find the optimal 

configuration a Matlab simulation was used to test the following conditions: 

 SNRs from 1dB up to 10dB 

 Criteria 1 thresholds between 1 and 2 

 Number of sample windows to consider for detection between 2 windows 

and 8 windows 

During the study, it was determined that TOA variability could be greatly reduced 

if the number of threshold crossings required was equal to the number of sample 

windows being considered minus 1. For example, if 6 consecutive sample windows are 

evaluated and only 2 threshold crossings are required for signal detection, the system will 
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encounter an inherent variability in TOA estimation of 4 sample windows (32 samples). 

This is because the signal TOA could occur in the first 2 sample windows, or the last 2 

sample windows, the difference between the two points is 4 samples windows. This 

variability can be reduced by requiring the number of threshold crossings to be one less 

than the number of sample windows being evaluated, reducing the variability to only 1 

sample window. This also reduced the number of combinations which needed to be 

considered during the simulations. The simulations found that only 2 threshold/sample 

window combinations were able to simultaneously meet the detection rate and false alarm 

rate requirements at an SNR of 5dB.  

The first combination that met the requirements used a threshold setting of 1.125 

for criteria 1 while requiring the thresholds to be crossed 7 sample windows out of 8 and 

is shown in Fig. 15. The second combination that met the requirements used a threshold 

setting of 1.25 for criteria 1 while requiring the thresholds to be crossed for at least 5 

sample windows out of 6 and is shown in Fig 16. 
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Figure 15 –  Criteria 1 & 2 predicted detection and false alarms rates utilizing  8-

sample windows. 
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Figure 16 –  Criteria 1 & 2 predicted detection and false alarms rates utilizing 6 

sample windows. 

The second combination was chosen for use as it requires 2 sample windows (16 

samples) less to make a detection decision. Even though the use of criteria 1 and 2 meet 

all the initial requirements for signal detection, the threshold setting does not provide any 

adjustability or fault tolerance. In order to increase the robustness and flexibility of the 

TOA algorithm, a third criteria was added.  

Criteria 3 operates by monitoring the average of the absolute values of each 8-

sample window over an extended period of time. During this evaluation period, the 

number of threshold crossings is recorded. If the total number of threshold crossings is 

higher than the criteria, then a signal is considered detected. The purpose of criteria 3 is 

to verify the correct detection of a signal and is therefore only activated after criteria 1 or 

2 have their thresholds crossed for at least 5 sample windows out of 6 consecutive sample 
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windows. Since criteria 1 and 2 utilize a much shorter evaluation period, they achieve a 

finer temporal resolution. The optimal evaluation period for criteria 3 was studied and 

modeled in Matlab. Lengths of 50ns (16 sample windows), 100ns (32 sample windows), 

and 200ns (64 sample windows) were investigated for use.  

Statistical data for criteria 3 was extracted from the large data sets originally 

created for TOA evaluation. All signals and noise samples were analyzed in 50ns, 100ns, 

and 200ns blocks, while recording the average number of threshold crossings for each 

threshold possibility as well as calculating standard deviations. New CDFs were 

generated to represent the detection rates and false alarm rates across the various 

threshold settings. 

Figures 17 through 19 show the thresholds which meet the 90% detection rate and 

      false alarm rate requirements based on the statistical data. The red line in the 

figures represents the lowest threshold combinations which meet the       false alarm 

rate. The blue line in the figures represents the largest threshold combinations which meet 

the 90% detection rate requirement. The shaded blue area between the two lines 

represents all threshold combinations which meet both requirements simultaneously.  

It can be seen from the figures that all evaluation lengths are capable of 

simultaneously meeting the false alarm and detection requirements, however choosing an 

evaluation period of 200ns allows for a much greater range and flexibility in threshold 

settings. Since the minimum pulse width for the signals in this research is 400ns, criteria 

3 is able to use 200ns of the pulse length for evaluation without any increase in latency or 

throughput.   
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Since the TOA algorithm operates over a span of 70 sample windows, 6 sample 

windows for criteria 1 and 2 followed by 64 sample windows for criteria 3, the definition 

of the false alarm rate requirement needs to be redefined. A false alarm rate of 1 in 10 

conveys that for every 10 signals detected, it is likely that one of the detected signals is 

actually a false alarm. From this definition, if 70 sample windows are required for signal 

detection, then our false alarm rate should be based on 70 sample windows. A false alarm 

rate of       insinuates that a false alarm should occur no more frequently than once 

every 7.0e7 sample windows. In order to meet this new false alarm rate, criteria 3’s final 

average threshold was set to 1, with a minimum number of crossings equal to 42 

windows out of 64 windows. 

 

 

Figure 17 –  Criteria 3 acceptable threshold region utilizing 200ns evaluation 

period. 
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Figure 18 - Criteria 3 acceptable threshold region utilizing 100ns evaluation period.  

 

Figure 19 - Criteria 3 acceptable threshold region utilizing 50ns evaluation period.  
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An example pulsed-wave (PW) signal activating all 3 criteria has been provided 

in Fig. 20 to allow the reader to visualize the operation of the TOA algorithm. The dotted 

red horizontal lines represent the thresholds for each criteria. The green vertical dotted 

lines for criteria 1 and 2 encapsulate 6 sample windows and the green vertical dotted lines 

in criteria 3 encapsulate 64 sample windows. The blue line represents the average value 

or maximum magnitude value for each sample window. The actual signal begins at 

sample window 32. The figure shows that criteria 1 and 2 operate simultaneously and the 

signal causes both criteria’s thresholds to be crossed for at least 5 out of 6 continuous 

sample windows. Once this occurs, criteria 3 is activated and evaluated over 64 sample 

windows (200ns). Since all of the sample windows are above the threshold set for criteria 

3, the signal will be considered detected at the end of the 200ns evaluation period.  
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Figure 20 –  TOA Algorithm activation example.  

3.4 Time-of-Departure for Chirp Signals 

TOD detection utilizes the same criteria and thresholds as the TOA detector in 

order to simplify the implementation. However, instead of counting the number of 
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threshold crossings, the TOD detector tracks the number of sample windows in which 

none of the thresholds are crossed.  

If the TOA of a signal was previously detected, then criteria 1 and criteria 2’s 

threshold crossings are monitored. If they are not crossed for at least 5 sample windows 

out of 6, then a TOD is considered detected. After TOD detection, the algorithm is reset 

and will attempt to detect the next TOA of an incoming signal.  

If no signal was previously detected and neither criteria 1 nor criteria 2’s 

thresholds are crossed for at least 5 sample windows out of 6, then the algorithm is reset 

and will begin waiting for the next TOA of an incoming signal. 

The accuracy of the TOD detector is particularly important for the variable chirp 

receiver, which will be discussed in detail in Section VIII Variable Chirp Receiver. The 

variable chirp receiver specifically requires the collection of the last 384 samples of a 

signal, which is reliant on an accurate TOD measurement. 

Additionally, the TOD detector also plays an important role in the proper 

operation of all three digital chirp receivers. If the TOD detector’s thresholds are set too 

low, then it can cause the algorithm to be unable to reset before the arrival of the next 

signal. This can cause multiple signals to be considered as a single signal, or it can inject 

substantial TOA measurement bias into the receiver. If the TOD detector’s thresholds are 

set too high, then the algorithm may reset too frequently, causing a single signal to be 

detected multiple times which can lead to incorrect frequency measurements. The 

thresholds for the TOD detector and TOA are therefore carefully balanced to ensure the 

proper operation of the algorithm and to minimize false alarms.  
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3.5 Performance Evaluations 

The statistical data cultivated from the data sets allowed for the analysis and 

optimization of the thresholds for the TOA algorithm. However simulations were needed 

to verify that the TOA algorithm operated as the model predicted and to quantify the 

temporal performance of the algorithm. To accomplish this, the TOA algorithm was 

implemented in Matlab using the optimized thresholds. All signal types were tested and 

swept across their entire frequency range. Actual detection rates and false alarms were 

recorded for SNRs from 5dB up to 16dB. Fig. 21 shows the predicted estimates for signal 

detection and false alarm rates as well as the simulated detection rates and false alarms 

from the implemented TOA algorithm. The statistical data predicted a detection rate of 

99.88% while the TOA algorithm achieved an actual detection rate of 99.95%. A total of 

1.9x10
9
 noise samples were used to test the accuracy of the false alarm rate predictions, It 

was found no false alarms were encountered.  

After verifying the operation of the TOA algorithm, further simulations were 

needed to test the TOA temporal accuracy. This was accomplished by simulating all 

signal types across their entire frequency range while TOA, TOD, and pulse width 

measurements were recorded for SNRs from 5dB up to 20dB.  

The TOA model achieves an average TOA error of 2.76 samples (1.07ns), an 

average TOD error of 3.45 samples (1.35ns), and an average pulse width error of 5.32 

samples (2.08ns) for SNRs from 5dB to 20dB. The temporal resolution provided from the 

TOA model is well below the 10ns requirement and is acceptable for use with high chirp 

rate signals with short pulse durations. The plot of TOA/TOD and pulse width 

measurement error can be seen in Fig. 22.  
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Figure 21 –  TOA Algorithm predicted detection and false alarm rates for SNRs 5dB 

to 20dB. 
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Figure 22 –  TOA algorithm TOA/TOD/Pulse Width performance for SNRs from 

5dB to 20dB. 
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IV. Digital Implementation of Hilbert Transform for 

Wide Bandwidth Signals 

4.1 Introduction 

In signal processing, Hilbert Transforms are commonly used to transform single 

channel real data into their complex signal representation. The Hilbert Transform is a 

linear operator which applies a 90° phase shift to an incoming real valued signal. 

Complex valued signals are often desired, as is the case with the digital IFM. The digital 

IFM requires a complex valued signal as it measures the instantaneous phase of incoming 

signals, effectively calculating       (
 

 
) where Q represents the imaginary component 

of a signal and I represents the real component of a signal. It is for this reason that the 

Hilbert Transform is a necessary component of the digital chirp receivers and will be 

discussed in detail in the following sections.  

4.2 Theory 

The equation for the Hilbert transform is given by: 

  ( )     ( ( ))    
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(17) 

and its inverse is given by: 
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(18) 
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Some of the most useful transformations [20] from the Hilbert Transform can be seen in 

the following table:  

 
If the input signal to the Hilbert Transform is of the form cos(x), then the output 

from the Hilbert transform is of the form sin(y). This transformation is widely used 

within the signal processing community, as it creates a     phase shift between the input 

and output signals. This is important as it allows for the generation of a complex valued 

signal when only real data is provided. A complex signal can be defined as follows using 

Euler’s formula:  

       ( )      ( ) (19) 

which can be visually represented using the unit circle, shown in Fig. 23.  

 

Figure 23 –  Unit circle showcasing real and imaginary components.  

f(x) g(y)

cos x sin y

sin x -cos y



46 
 

4.3 Digital Implementation 

The discrete Hilbert Transform can be modeled by the following equation: 

  ( )   
 

  
 [∫        

 

  
  ∫        

 

 
] (20) 

which can be modeled as an IIR filter using the following:  

 ( )  (
            
 

  
          

) 

(21) 

This filter can also be implemented by an FIR approximation. If an odd number of 

anti-symmetric coefficients are used, the filter will be a Type III, which will function as a 

band pass filter. If an even number of anti-symmetric, non-zero coefficients are used, the 

filter will be a Type IV and will function as a high pass filter [21].  

A Hilbert transform was originally developed for use with the digital IFM in [22]. 

The original IFM was based on a mono-bit design and the Hilbert transform was designed 

accordingly to accept 1-bit samples. The original HT used in the design was implemented 

by a set of LUTs which effectively implemented an 11-tap FIR filter with the coefficients 

[6 0 10 0 30 0 -30 0 -10 0 -6]. Since there is an odd number of anti-symmetric 

coefficients, it operates as a Type III, band pass filter. The coefficients for the FIR filter 

were determined by scaling the optimal coefficients until all integer coefficients were 

obtained [-1/5 0 -1/3 0 -1 0 1 0 1/3 0 1/5] x 30 = [6 0 10 0 30 0 -30 0 -10 0 -6]. 

 In order to enhance the performance of the digital IFM to allow for accurate chirp 

signal measurement, the original IFM implementation was modified to accept 2-bit 

samples instead of only 1-bit samples. In depth details on the digital IFM and the changes 

made are provided in Section V. This design change required the original HT to be 

redesigned since the original implementation would be unusable with multi-bit samples.  
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One of the biggest advantages to the mono-bit HT implementation is that no 

multipliers or adders are required, which greatly reduces the complexity and difficulty of 

meeting timing within the FPGA implementation. Another great benefit is that the mono-

bit implementation does not suffer any amplitude imbalances between the real and 

imaginary components.  

Unfortunately the modification of the digital IFM required a more complex 

implementation for the HT. The choice of FIR filter coefficients plays a huge role in the 

performance of the HT as well as the ease of physical implementation. 

 The design of FIR filters typically involves a tradeoff between the desired 

frequency response and the hardware limitations of the target platform. To achieve a 

more desirable frequency response, it is common to increase the number of taps in the 

filter. However, this will require a greater number of adders and multipliers, which can 

quickly consume the hardware resources.  

A better frequency response can also be obtained by approximating the filter 

coefficient values as closely as possible to their optimal values. This too has drawbacks, 

as it increases the number of bits necessary for each addition and multiplication 

operation. In order to reduce the complexity of the design as well as reduce the hardware 

resource utilization, it is often desirable to avoid the use of multipliers whenever possible. 

One of the simplest ways to avoid the use of multipliers in FIR filter design is to 

choose filter coefficients which are based on powers of 2. In digital design, multiplication 

by any power of 2 can be accomplished by a shift to the right (division) or a shift to the 

left (multiply). By utilizing power of 2 coefficients, all multipliers can be replaced with 

simple shift and add operations, which utilizes far less hardware and incurs less latency.  
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An optimal HT implementation using an 11 tap FIR filter will have the 

coefficients [-1/5 0 -1/3 0 -1 0 1 0 1/3 0 1/5]. If coefficients are chosen based on powers 

of 2, then the values which most closely approximate the optimal values are the following 

coefficients: [-1/8 0 -1/4 0 -1 0 1 0 1/4 0 1/8].  

Fig. 24 plot (a) shows the comparison of the optimal coefficient values vs. 

coefficients based on powers of 2 for a 35-tap Type III filter. It is easily recognizable that 

all even numbered coefficients for the Type III filter are zero valued. Fig. 24 plot (b) 

shows the comparison between the optimal coefficient values vs. coefficients based on 

powers of 2 for a 34-tap filter Type IV filter. As expected, there are no zero valued 

coefficients in the Type IV filter.  
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Figure 24 –  34/35 tap Hilbert Transform coefficient plots using power of 2 based 

coefficients. 

We can examine the frequency response of the HT as the number of taps is 

increased, starting with a simple 3 tap design. The frequency response for a simple 3 tap 

Hilbert transform can be seen in Fig. 25. This filter uses the coefficients [1 0 -1] and 

achieves very poor performance for frequencies near zero and near the Nyquist zone. As 

the number of filter coefficients are increased, a wider passband region can be obtained at 

the expense of increased filter implementation complexity. Fig. 26 shows the frequency 

response comparison for a 7 tap HT when the optimal coefficients are used vs. using 

powers of 2 based coefficients. Since only a few taps are used, there are only minor 
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differences between the two coefficient choices. The same results can be seen when a 6 

tap Type IV filter is implemented and is shown in Fig. 27. 

 

 

Figure 25 –  Frequency response of 3-tap Hilbert Transform. 

 

Figure 26 - Frequency response of 7-tap type III Hilbert Transform.  
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Figure 27 - Frequency response of 6-tap type IV Hilbert  Transform. 

If the number of filter taps is increased to 11, it is shown that the passband region 

has been widened, and the difference between the two coefficient choices is more easily 

noticeable. The optimal coefficients achieve a better performance for frequencies near 

zero and near the Nyquist zone. The frequency response for the 11-tap Type III can be 

seen in Fig. 28 and the 10-tap Type IV can be seen in Fig. 29.  

 

Figure 28 - Frequency response of 11-tap type III Hilbert Transform.  



52 
 

A comparison of the Type IV filters shows many of the same tradeoffs as the 

Type III. The optimal coefficients perform better for frequencies near zero, however the 

power of 2 based coefficients encounter less passband ripple effects.  

 

 

Figure 29 - Frequency response of 10-tap type IV Hilbert Transform. 

As the number of taps is increased for both filter types, the differences between 

the optimal coefficients and the power of 2 based coefficients continue to become more 

significant. Fig. 30 shows that the optimal coefficients achieve a much better response for 

frequencies near zero and near the Nyquist zone for a 35 tap Type III filter. The 

coefficients based on powers of two on the other hand, achieve a much flatter passband 

region. Once again, the same differences are present in the 34 tap Type IV filter design as 

shown in Fig. 31. 
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Figure 30 - Frequency response of 35-tap type III Hilbert Transform.  

 

Figure 31 - Frequency response of 34-tap type IV Hilbert Transform. 

A better approximation can be achieved if we do not limit ourselves to only 

coefficients based on powers of 2. The use of multipliers can still be avoided by using 

shift and add operations to mimic a multiplication in order to approximate filter 

coefficients. A simple example will be used to show how the shift and add approximation 

works. If we try to approximate the coefficient 
 

 
 , we must first choose the maximum 

allowable bit shift for the approximation, keeping in mind that larger bit shifts will allow 
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for closer approximations. For this example, we will use a maximum bit shift of 10 bits, 

giving us a coefficient resolution of 
 

    
 =

 

    
. We can calculate the necessary shift and 

add operations through the following decomposition: 
    

 
   341.333. By rounding to the 

nearest integer, the fraction 
   

    
 will be the closest approximation to 

 

 
, assuming that no 

more than 10 bit shifts are possible. The approximation 
   

    
 can then be separated into a 

series of the fractions, representing the necessary shift and add operations. The 

coefficient 
   

    
 can be represented as (

   

    
  

  

    
  

  

    
  

 

    
  

 

    
), which can be 

simplified to (
 

 
  

 

  
  

 

  
  

 

   
  

 

    
). The maximum number of bit shifts and the 

coefficient being approximated will affect the number of shift and add operations 

required, certain coefficients will require more shift and add operations than others.  

Fig. 32 shows the optimal filter coefficients vs. approximated coefficients using 

only shift and add operations. The largest shift used to approximate the coefficients in 

Fig. 32 plot (a) is 6-bits, while a maximum shift of 8-bits was used to approximate the 

coefficients in Fig. 32 plot (b). Better approximations can be achieved by using a greater 

number of bit shifts.  
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Figure 32 - 34/35 tap Hilbert Transform coefficient plots using approximated 

coefficients. 

Various tables were generated which highlight important characteristics of the 

optimal filter coefficients vs the approximated filter coefficients, including the number of 

adders/multipliers required for each implementation as well as the 3dB cutoff frequency. 

The tables also show the amount of suppression at 50MHz, which is relevant to the chirp 

receiver research as it was the targeted as the lower frequency bound for the designs.  

Table I shows the performance of the optimal coefficients for various filter 

lengths and the necessary number of adders and multipliers to implement each Type III 

filter. 
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Table I – Resource and performance comparison for Type III Hilbert Transform with 

optimal coefficients. 

 

 

 Table II shows the performance of the approximated filter coefficients when only 

shift and add operations are utilized for a Type III filter. An additional column is used in 

Table II, which shows the largest shift utilized and the corresponding maximum number 

of unique coefficients, which can be generated using the corresponding number of bit 

shifts. The approximated coefficients require no multipliers, but utilize almost double the 

number of adders as a result. The 3dB cutoff for the optimal filter and the approximated 

filter is comparable throughout most filter lengths.  

 

 

 

 

 

# Taps # Adders # Multipliers 50MHz Suppr. (dB) 3dB Cutoff Freq (MHz)

3 8 0 -18.24 322.5

7 24 16 -11.80 155

11 40 32 -8.33 102.5

15 56 48 -6.01 77.5

19 72 64 -4.32 62.5

31 120 112 -1.34 40

43 168 160 -0.16 27.5

63 248 240 -0.39 20

87 344 336 -1.93 15

123 488 480 -1.68 10

167 664 656 -1.06 7.5

Type III Filter

Optimal Coefficients
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Table II - Resource and performance comparison for Type III Hilbert Transform with 

approximated coefficients. 

 

 

Table III shows the performance of the filters when only power of 2 based 

coefficients are used for Type III filters. The number of adders is greatly reduced from 

the shift and add approximation and no multipliers are required for any of the 

implementations. However, it can be easily seen from the table that the frequency 

response of the filters has greatly diminishing returns when the filter length is increased 

beyond 19 taps.  

 

 

 

 

 

 

 

 

Largest Shift Max # of Taps # Adders # Multipliers 50MHz Suppr. (dB) 3dB Cutoff Freq (MHz)

0 bit 3 8 0 -18.24 322.5

1 Bit 7 24 0 -11.02 140

2 Bits 7 24 0 -12.46 167.5

3 Bits 15 72 0 -6.16 77.5

4 Bits 19 104 0 -5.00 67.5

5 Bits 31 184 0 -1.77 42.5

6 Bits 43 280 0 -0.49 32.5

7 Bits 63 424 0 -0.06 22.5

8 bits 87 616 0 -0.92 17.5

9 Bits 123 904 0 -1.90 12.5

10 Bits 167 1272 0 -1.05 10

Type III Filter

Approximated Coefficients with only Shift and Add
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Table III - Resource and performance comparison for Type III Hilbert Transform with 

power of 2 based coefficients. 

 

 

Tables IV through VI are used to show the optimal coefficients, the approximated 

coefficients and the power of 2 based coefficients for Type IV filter implementations. 

The approximated coefficients achieve a similar performance to the optimal coefficients 

without the requirement of multipliers. The power of 2 based coefficients also show that 

the frequency response of the filters have diminishing returns when the filter length is 

increased beyond 16 taps.  

 

 

 

 

 

 

 

 

 

# Taps # Adders # Multipliers 50MHz Suppr. (dB) 3dB Cutoff Freq (MHz)

3 8 0 -18.24 322.5

7 24 0 -12.46 167.5

11 40 0 -9.76 125

15 56 0 -8.08 102.5

19 72 0 -7.41 97.5

31 120 0 -6.66 92.5

43 168 0 -6.62 92.5

63 248 0 -6.61 92.5

87 344 0 -6.61 92.5

123 488 0 -6.61 92.5

167 664 0 -6.61 92.5

Type III Filter

Reduced Adder Approximation - Only Powers of 2 Coefficients
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Table IV - Resource and performance comparison for Type IV Hilbert Transform with 

optimal coefficients. 

 

 

 

Table V - Resource and performance comparison for Type IV Hilbert Transform with 

approximated coefficients. 

 

 

 

 

 

# Taps # Adders # Multipliers 50MHz Suppr. (dB) 3dB Cutoff Freq (MHz)

2 8 0 -24.25 642.5

4 24 16 -17.74 307.5

4 24 16 -17.74 307.5

8 56 48 -11.69 152.5

10 72 64 -9.80 122.5

16 120 112 -5.98 77.5

22 168 160 -3.62 55

32 248 240 -1.33 40

44 344 336 -0.16 27.5

62 488 480 -0.28 20

84 664 656 -1.71 15

Type IV Filter

Optimal Coefficients

Largest Shift Max # of Taps # Adders # Multipliers 50MHz Suppr. (dB) 3dB Cutoff Freq (MHz)

0 bit 2 8 0 -24.25 642.5

1 Bit 4 24 0 -16.95 280

2 Bits 4 24 0 -18.40 332.5

3 Bits 8 72 0 -11.85 155

4 Bits 10 104 0 -10.57 135

5 Bits 16 184 0 -6.62 82.5

6 Bits 22 280 0 -4.45 62.5

7 Bits 32 424 0 -2.01 45

8 bits 44 616 0 -0.60 32.5

9 Bits 62 904 0 -0.03 22.5

10 Bits 84 1272 0 -0.99 17.5

Type IV Filter

Approximated Coefficients with only Shift and Add
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Table VI - Resource and performance comparison for Type IV Hilbert Transform with 

power of 2 based coefficients. 

 

 

After analyzing the filter performance data, a 43 tap Type III FIR filter was 

chosen to implement the HT. The 43 tap FIR provided the best tradeoff between 

frequency response and implementation complexity. Fig. 33 compares the frequency 

response of the optimal coefficients vs. approximated coefficients for a 43 tap Type III 

HT.  Fig. 34 compares the frequency response of the optimal coefficients vs. 

approximated coefficients for a 44 tap Type IV HT.  It can be seen from the figures that 

the frequency response of the approximations is very close to the response of the optimal 

coefficients.  

 

 

# Taps # Adders # Multipliers 50MHz Suppr. (dB) 3dB Cutoff Freq (MHz)

2 8 0 -24.25 642.5

4 24 0 -18.40 332.5

4 24 0 -18.40 332.5

8 56 0 -13.84 202.5

10 72 0 -13.08 192.5

16 120 0 -12.14 182.5

22 168 0 -12.02 185

32 248 0 -12.00 185

44 344 0 -12.00 185

62 488 0 -12.00 185

84 664 0 -12.00 185

Type IV Filter

Reduced Adder Approximation - Only Powers of 2 Coefficients
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Figure 33 –  Frequency response of Type III 43-tap Hilbert Transform filter. 

 

 

Figure 34 - Frequency response of Type IV 44-tap Hilbert Transform filter.  

4.4 Amplitude Imbalance 

Amplitude imbalance between the real and imaginary components can cause 

significant measurement error within the digital IFM. The I/Q imbalance can occur from 

the inherent scaling caused by the FIR filter or from suppression due to the frequency 

response of the filter itself. Ideally the filter should be designed to minimize the 
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variability of the I/Q imbalance across the desired frequency range.  Amplitude 

imbalance in the digital chirp receivers is corrected by utilizing the shift and add 

operations to approximately correct the imbalance. Since the frequency response of the 

HT throughout the crucial frequency ranges (50MHz – 1230MHz) is nearly constant, a 

constant amplitude correction is acceptable. The 43 Tap Hilbert transform suffers a 

maximum imbalance variability of 2dB for frequencies between 50MHz and 1230MHz. 

The average scaling for frequencies ranging from 50 MHz up to 1230MHz was simulated 

to be 1.7115. The correction value of 
 

      
        was therefore estimated by using 

the shift and add approximation (1/2 + 1/16) = 0.5625. This correction factor was used to 

scale all of the samples outputted from the HT.  

The effect of this imbalance on the digital IFM’s measurement performance was 

simulated in Matlab. Carrier frequencies ranging from 50MHz up to 1230MHz were 

measured using the digital IFM with the imbalance present and were measured again 

after applying the correction factor previously mentioned. Fig. 35 shows the 

measurement performance at an SNR of 10dB when the imbalance is present. The digital 

IFM achieved an average carrier frequency error of 0.146MHz. Fig. 36 shows the 

measurement performance when the imbalance is corrected; the digital IFM achieved an 

average carrier frequency error of 0.0848MHz, a difference of 58%. 
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Figure 35 –  Digital IFM frequency measurement error when the imbalance from the 

Hilbert Transform is not corrected.  

 

Figure 36 –  Digital IFM frequency measurement error when the imbalance from the 

Hilbert Transform is corrected. 
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V. Digital Instantaneous Frequency Measurement for 

Chirp Measurement 

5.1 Introduction 

The instantaneous frequency measurement (IFM) device was developed in the 

1950’s as an analog device to allow for “instantaneous” frequency measurement with low 

system complexity [23]. Since its digital counterpart has been developed, with the 

advancement of today’s FPGAs, it can be easily implemented in digital hardware. The 

maturing of the IFM is discussed in greater detail in [23, 24]. Recent research has been 

conducted with utilizes the IFM to tackle an ultra-wideband (UWB) frequency 

measurement problem [25]. 

The IFM functions as a phase measurement device, which has a linear 

relationship to a signal’s frequency. IFMs have several desirable traits, which include fine 

frequency measurement resolution, simple design and implementation as well as easy 

configurability. One of the biggest downfalls to the IFM is its inability to measure 

simultaneous signals. Unlike the FFT, the IFM is capable of obtaining fine frequency 

resolution as well as fine temporal resolution simultaneously. This is due to the fact that 

the IFM’s measurement performance is not solely dependent on the number of samples 

collected.  The hardware complexity of the IFM also does not always scale as its 

frequency measurement accuracy is improved. Utilizing only 256 samples, the digital 

IFM 
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is capable of a frequency resolution of < 1MHz with a bandwidth of over 1GHz if a 

sampling rate of 2.56GHz is utilized. Comparing this result to a typical FFT, the FFT 

would require more than 2048 samples at a sampling rate of 2.56GHz to achieve a similar 

frequency resolution. The temporal resolution of the digital IFM is 100ns compared to the 

temporal resolution of the FFT which is 800ns or greater. For these reasons, the digital 

IFM was chosen as the foundation for the digital chirp receiver presented in this research. 

5.2 Theory 

The digital IFM operates by calculating the phase angle of multiple auto 

correlators, which are then mapped into their corresponding frequency. The relationship 

between the phase angle measurement and frequency is linear. A complex signal is 

required as input into the IFM, which requires the use of the Hilbert Transform for our 

digital chirp receivers. The incoming complex signal is auto correlated with itself 

multiple times, with each autocorrelation utilizing a different delay value. The auto 

correlators used in the digital IFM are Sm for m = 1, 2, 8, 32, 128, and are shown as 

follows:  

 

    ∑ ( )  (   )
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(22e) 

The computation of each auto correlator results in a summation of the 

autocorrelation operation, therefore each auto correlator will be contain a real and 

imaginary sum. The phase of each correlator can be calculated by the following:  

         =       (
         (  )

    (  )
) (23) 

The phase of the first auto correlator can be mapped directly into frequency, 

however, the sensitivity of the measurement to frequency change is very low, making it a 

poor estimator of the true frequency.  

        (24) 

Auto correlators which utilize longer delays will have an increased sensitivity, 

allowing for a more accurate frequency approximation. However, as the length of delay is 

increased, the number of ambiguous frequencies for a given phase angle will be 

increased. For this reason, the phase of the auto correlator with a smaller delay is used to 

map the appropriate zone of the auto correlator using a longer delay. This allows 

frequency ambiguities to be resolved.  The calculation of the correct zone for the phase 

measurement to be mapped to is as follows:  
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         (
(     )

  
) 

(25) 

Once the correct zone has been determined, the phase of the auto correlator can be 

mapped to its appropriate frequency as follows: 

    
  

 
     

  

 
 

(26) 

The final signal frequency can be calculated from the auto correlator with the 

longest delay by using Eq. 27.  

 
Signal_frequency = 

    

  
    (27) 

 

Example plots of the phase angle measurement for each correlator and the 

corresponding zone calculation are shown in Fig. 37 and 38 respectively. It can be seen 

that the S1 correlator contains no frequency ambiguities, and can therefore directly be 

mapped into frequency. The phase measurements from S1 and S2 are used to determine 

the appropriate zone for S8. Once the zone of S8 has been determined, the phase and 

zone can be determined for S32. Finally the phase of S128 can be measured and mapped 

to the appropriate zone, which will allow for the final mapping of phase to frequency.   
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Figure 37 –Phase angle measurement from digital IFM auto  correlators. 
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Figure 38 –  Zone mapping measurements from digital IFM auto  correlators. 

5.3 Design Considerations 

The digital IFM developed in [26] was designed for wideband stationary carrier 

frequency measurement. The original design covered a bandwidth of 1.2GHz and 

completed a frequency measurement every 100ns (based on a sampling frequency of 

2.56GHz). Though the IFM will output a frequency measurement every 256 samples 

(100ns), because of the S128 correlator, the initial frequency measurement will incur an 
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extra 50ns latency due to the 128- sample delay used.  The original design used mono-bit 

samples in order to minimize the design complexity. The mono-bit approach meant that 

only the values of [-1, 1] could be represented in the IFM. The digital IFM was later 

ported into a mono-bit digital chirp receiver in [27]. 

The frequency measurement performance of the IFM was investigated in order to 

understand which design criteria have the greatest effect on performance. The study 

found that the accuracy of the IFM is determined by three criteria, the total number of 

samples collected, the number of bits used to represent each sample, and the delay values 

chosen for the auto correlators. Fig. 39 shows the performance of the digital IFM as it 

was tested across its entire frequency range for each IFM size. The delay values for the 

correlators are kept constant as 1, 2, 8, 32 and 128, while each sample is represented by 3 

bits and the SNR is kept constant at 0dB. The number of samples collected by the IFM 

was swept from 8 samples up to 512 samples in 4 sample increments.  

The plot shows that a significant performance improvement can be had if the 

number of samples collected is increased.  This makes sense intuitively as more samples 

will result in a higher correlation of the signal, and less correlation of the noise. 

Additionally a larger sum allows for a finer phase angle to be resolved within the unit 

circle. Remember, each auto correlator consists of a real and imaginary accumulated total 

from which the inverse tangent is calculated.  

As an example, if only 2 1-bit samples are collected and accumulated, the 

smallest step size for 
 

 
 will be 

 

 
, approximately 26.56°. However, if 16 1-bit samples are 

collected, the smallest step size for 
 

 
 will be 

 

  
, approximately 3.57°. From this example 
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we can see that collecting a larger number of samples allows for a finer phase 

measurement to be obtained. This can also be seen graphically in Fig. 40, which represent 

a unit circle scaled by 2 and 16. The unit circles are meant to represent all possible 

combinations for the real and imaginary summations if a total of 2 1-bit samples are 

accumulated for the IFM vs. the accumulation of 16 1-bit samples for the IFM.  

 

Figure 39 –  Digital IFM frequency measurement per formance vs. number of 

samples correlated. 
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Figure 40 –  Unit circle resolution. 

The phase measurement resolution of the IFM can also be improved by increasing 

the amount of data stored within each sample. Fig. 41 shows the average frequency 

measurement error of the IFM as the number of bits per sample is increased. Again, the 

entire frequency range from 50MHz up to 1230MHz was tested for each point on the 
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graph. The SNR for all signals was kept constant at 0dB and the correlators used were [1 

2 8 32 128]. The IFM collected a total of 512 samples for each simulation. It can be seen 

that the largest improvement is gained from increasing the number of bits from 1 to 2. 

Utilizing a single bit is very restrictive because it does not allow for the representation of 

the values [-1, 0, 1], instead only the values [1, -1] can be represented. A wider range of 

values per sample allows for a wider range in the accumulated sums for the auto 

correlators, allowing for a finer phase measurement to be obtained. 

 

Figure 41 - Digital IFM frequency measurement performance vs. number of bits per 

sample. 

The longest delay chosen for the auto correlators also has a significant impact on 

the phase measurement capabilities of the IFM, though it is not as intuitively understood 
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as the other two parameters. Fig. 37 from before was used to show the phase angle 

measurements from each of the auto correlators as an input signal was swept across the 

entire frequency range. These plots can also be used to understand why a longer auto 

correlator allows for a better frequency measurement. The purpose of the shortest delay 

line is to resolve any frequency ambiguities. Since the entire bandwidth 0MHz – 

1.28GHz has a linear relationship with the phase 0 – π, every frequency can be 

unambiguously converted. However, the sensitivity of the first correlator is very low, 

meaning a large change in frequency is needed to cause a change in the phase angle 

measurement. We can see that as longer delay values are chosen, the sensitivity of the 

auto correlator to a change in frequency is increased. In other words, a very small change 

in frequency translates to a large change in the phase measurement. This allows for a 

finer frequency resolution to be obtained. Fig. 42 shows the average measurement error 

as the longest correlator delay is increased.  
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Figure 42 - Digital IFM frequency measurement performance vs. longest correlator 

delay. 

A downfall to this is that the zone determination for auto correlators using longer 

delays rely on the auto correlators with shorter delays to resolve the frequency 

ambiguities. This causes the IFM to be susceptible to large ‘encoding’ errors. If the zone 

of one of the auto correlators is mapped incorrectly, it will cause the error to propagate 

forward into the zone mapping for the rest of the auto correlators. The biggest contributor 

to zone encoding errors is noise. The IFM’s resistance to noise interference is directly 

related to the total number of samples collected. As more samples are collected, it will act 

as an increase in SNR, as the signal will correlate with itself while the noise will not. The 

improvement in noise sensitivity can be seen in the following figures. Fig. 43 shows the 

average IFM measurement error at a low SNR, -5dB when an IFM size of 128 samples is 



76 
 

used with different maximum auto correlator delays. It is apparent that by using only 128 

samples, the IFM is too sensitive to noise for the increase in the delay length to cause any 

measurement improvement.  

 

Figure 43 –  Effect of longest correlator delay on digital IFM performance at low 

SNR. 

Fig. 44 shows similar results when an increasing number of bits per sample are 

tested at -5dB SNR with an IFM size of 128 samples. The IFM is not able to function 

properly in the presence of such strong noise.  
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Figure 44 - Effect of bits per sample on digital IFM performance at low SNR.  

However, when the number of samples collected by the IFM is increased, we can 

see a significant improvement in measurement performance, even at an SNR of -5dB. 

Fig. 45 shows the IFM performance as the size of the IFM is varied from 128 samples up 

to 512 samples.  
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Figure 45 - Effect of number of correlated samples digital IFM performance at low 

SNR. 

The findings from investigating the performance of the IFM resulted in a change 

of the original mono-bit IFM design. The design was modified to accept two bit samples, 

allowing for better frequency measurement capabilities. The correlator delays used from 

the original design we left unchanged. The IFM still collects 256 samples as it provides 

sufficient noise resistance at an SNR of 5dB, which is the lowest SNR that the TOA 

algorithm is capable of operating at. 

Another important aspect of the digital IFM, which has not been mentioned yet is 

the detection variable, which is a measurement of the signal power. The detection 

variable is calculated by summing the squares of the auto correlator values as follows:  
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 Detection Variable = S1*S1’ + S2*S2’ + S8*S8’ + S32*S32’ 

+S128*S128’ 

(28) 

The detection variable from the original digital IFM design was used as a signal 

detector. If the detection variable crossed a threshold, a signal was considered to be 

present and its frequency measurement was outputted. The process to determine and set 

the threshold for signal detection was relatively simple, as the original design targeted 

stationary signals. In depth information as to how the detection variable is used for chirp 

signal measurement is covered in Sections VI and VII.  

An important aspect to the detection variable is that its frequency response is 

directly affected by the frequency response of the Hilbert Transform.  For this reason, the 

determination of any detection thresholds should only be determined when the HT and 

IFM are operating together. The relationship between the HT response and the detection 

variable can be seen in Fig. 46 and 47 respectively. Fig. 46 shows the frequency response 

of the HT when it is implemented by a 7-tap FIR filter with the coefficients [1 0 2 0 -2 0 -

1] and the output of the detection variable as the input frequency is swept from 50MHz 

up to 1230MHz. Fig. 47 shows the frequency response of the HT when it is implemented 

by an 11-tap FIR filter with the coefficients  [0.25 0 0.5 0 2 0 -2 0 -0.5 0 -0.25] and the 

detection variable once again as the input frequency is swept from 50MHz up to 

1230MHz.  
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Figure 46 –  Frequency response of the digital IFM detection variable when a 7 -tap 

Hilbert Transform is utilized.  
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Figure 47 - Frequency response of the digital IFM detection variable when an 11 -

tap Hilbert Transform is utilized.  
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VI. Linear Chirp Receiver 

6.1 Introduction 

The linear chirp receiver utilizes the TOA algorithm, Hilbert Transform, and 

digital IFM previously discussed to accurately measure short pulse, high linear chirp rate 

signals. The target platform for the design is a Virtex 6 SX475 FPGA which is paired 

with a Calypso 12-bit ADC sampling at 2.56GSPS.  

Real data is supplied to the FPGA from the Calypso ADC, which first passes 

through the TOA detection block. After a signal is detected, the data will pass through the 

HT to generate the complex signal representation. The output from the HT will enter the 

first digital IFM, which will measure the linear chirp rate, if one is present. Once the 

chirp rate has been measured, the appropriate de-chirping signal can be selected and 

output from a de-chirping LUT. The original signal is then mixed with the de-chirping 

signal, allowing for the removal of the chirp rate. Once the chirp rate has been removed, 

the 2
nd

 IFM is used to measure the starting frequency. If no chirp rate is present 

(stationary signal), the data will pass through the first IFM and will not be de-chirped, 

instead the 2
nd

 IFM will be used to measure the carrier frequency. The following sub-

sections will describe each of these stages in detail. Table VII highlights the acceptable 

ranges for linear chirp rates and carrier frequencies that the linear chirp receiver is 

capable of measuring.  
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Table VII – Digital linear chirp receiver acceptable chirp rates and carrier frequency 

ranges. 

 

6.2 Data Acquisition 

The ADC is configured to sample at 2.56 GSPS, which is a speed at which the 

FPGA cannot operate. To overcome this, the incoming serial data is de-multiplexed at a 

ratio of 1:8, allowing 8 samples to be provided in parallel at a rate of 320MHz. Only the 4 

most significant bits are used by digital chirp receiver design. The TOA algorithm will 

utilize 4 bits to detect the TOA and TOD of a signal.  The samples will then pass through 

the HT to form the complex signal representation. The samples will be trimmed to 2-bits 

after leaving the HT and will be maintained at 2-bits as they pass through the rest of the 

chirp receiver design. Only after a signal has been detected by the TOA algorithm and 

passed through the HT will any frequency measurements begin. To aid in the digital 

linear chirp receiver design discussion, a data flow chart for the linear chirp receiver is 

shown in Fig. 48. 

 

Signal Type Linear Chirp Rate Starting Frequency

Linear Chirp Signal 50MHz in 400ns - 1180MHz in 400ns 50MHz - 1180MHz

Stationary Signal N/A 50MHz - 1230MHz

Acceptable Frequency Ranges for Each Signal Type
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Figure 48 –  Digital linear chirp receiver data flow.  

6.3 Linear Chirp Rate Measurement 

The complex signal generated by the HT is mixed with a delayed and conjugated 

copy of itself before entering the first digital IFM. The delay value chosen for this 

operation is vital to the accurate measurement of the linear chirp rate. To optimize chirp 

rate sensitivity and measurement performance, the delay length should be as long as 

possible. The appropriate delay value for a design can be calculated by subtracting the 

total measurement period from the targeted chirp pulse length. For the linear chirp 

receiver design, the digital IFM has a total measurement period of 150ns, (100ns to 
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collect 256 samples and 50ns to accommodate the longest delay for the autocorrelator) 

and is targeted to measure chirp pulse lengths of 400ns. The optimal delay value for 

mixing is therefore 400ns – 150ns = 250ns. Shorter delay values may be used if 

necessary, but will cause a reduction in the frequency measurement accuracy of chirp 

rates.  

Once the original signal has been mixed with its delayed and conjugated copy, the 

first digital IFM is used to measure the linear chirp rate of the signal, if one is present. 

Along with the frequency measurement, the digital IFM will also take a signal power 

measurement as well as a DC power measurement. These three values will be evaluated 

to determine whether a linear chirp rate is present or not.   

The signal power is measured by the following equation: 

 

              ∑| ( )|

   

   

 

(29) 

while the signal’s DC component is measured by the following equation:  

 

                 ∑ ( )

   

   

 

(30) 

where x(n) is the complex signal entering the IFM. In depth details for how these 

measurements are used for signal classification will be provided in sub-section 6.6. 

6.4 Linear De-chirping 

If a linear chirp rate is detected by the first IFM, an appropriate de-chirping signal 

is chosen from a de-chirping LUT. The LUT contains 1024 linear de-chirping signals, 

which are uniformly spaced from 40MHz in 400ns up to 1190MHz in 400ns in 1.12MHz 

increments. Each de-chirping signal is complex signal with a length of 384 samples, 
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where each sample is represented by a single bit. In order to accurately measure the 

carrier frequency, the 2
nd

 IFM requires the original signal to be de-chirped for 384 

samples (150ns) due to the IFMs initial measurement latency of 150ns.  

6.5 Carrier Frequency Measurement 

The de-chirping signal is mixed with the original signal to remove the linear chirp 

rate from the signal. Once the signal has been de-chirped, the 2
nd

 IFM is used to measure 

the carrier frequency.  

If no linear chirp rate is present, the original input signal is allowed to pass 

through without being de-chirped, this allows stationary PW signals to be measured as 

well. In addition to the frequency measurement from the 2
nd

 IFM, it will also output a 

signal power measurement. The frequency measurement and signal power measurement 

is used with the frequency measurement, signal power measurement and DC power 

measurement from the first IFM to correctly classify the signal and for error checking. 

The process for signal classification is discussed in the next sub-section. 

6.6 Signal Classification 

Signal classification is an important aspect to the linear chirp receiver design 

since no a priori knowledge is known about the incoming signals. For this reason, the 

presence of a linear chirp rate must be determined by evaluating the signal power 

measurements and frequency measurement outputs from the two IFMs. The appropriate 

thresholds were determined by testing both signal types: linear chirp signals and 

stationary signal types across their entire frequency ranges and for SNRs from 5dB up to 

20dB.  Only simulations in which the receiver encountered less than 10MHz in 400ns of 
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linear chirp rate error and 10MHz of carrier frequency error were considered for 

threshold determination. This prevents any possible zone mismatch errors within an IFM 

from skewing the threshold settings. Fig. 49 shows the entire range of values that each 

power measurement assumed during the simulations for each of the signal types. Linear 

chirp signals exhibit DC power measurements from the first IFM which are typically very 

small in magnitude. As a result, the power measurement from the first IFM is typically 

significant in magnitude. When stationary signals are considered, the opposite findings 

are typical, i.e., the DC measurement from the first IFM is typically very large and is 

paired with a signal power measurement that is small in magnitude. From the plot, we 

can see that the DC measurements and signal power measurements from the first IFM do 

not overlap for the two signal types. These findings support the notion that the power 

measurements are capable of distinguishing the difference between the presence of a 

linear chirp signal and a stationary signal type.  

Since each power measurement exhibits a large range of acceptable values, each 

power measurement will have an upper and lower bound for each signal type. For a 

signal to be classified all of the power measurements much fall within the acceptable 

ranges and the frequency measurements must be within acceptable ranges as well. If a 

signal does not fall within the ranges of a signal types, the receiver will not output any 

measurements.  

After the threshold values were determined from simulations, the linear chirp 

receiver was simulated once again using the new thresholds.  For each signal type the 

entire frequency range were tested for SNRs ranging from 5dB up to 20dB. Table VIII 

shows the resulting signal detection rate as recorded from the TOA detection block as 
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well as the correct classification rates and misclassification rates from using the 

thresholds. The correct classification rate for linear chirp signals was simulated to be 

99.98% and the correct classification rate for stationary chirp signals was simulated to be 

99.99%. 

 

 

Figure 49 –  Classification thresholds for digital linear chirp receiver.  

 

 

Table VIII - Digital linear chirp receiver detection and correct classification rates. 

 

  

  

Signal Type TOA Detection Rate Correct Classification Misclassifications

Linear Chirp Signal 100% 99.98% 0

Stationary Signal 100% 100.00% 0

Overall 100% 99.99% 0
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VII. Nonlinear Chirp Receiver 

7.1 Introduction 

The nonlinear chirp receiver utilizes the TOA algorithm, Hilbert Transform, and 

digital IFM previously discussed to accurately measure short pulse, high chirp rate 

nonlinear signals. The target platform for the design is a Virtex 6 SX475 FPGA which is 

paired with a Calypso 12-bit ADC sampling at 2.56GSPS. 

Real data is supplied to the FPGA from the Calypso ADC which will first pass 

through the TOA detection block. After a signal has been detected, the data will pass 

through the HT to generate the complex signal representation. The output from the HT 

will enter the first digital IFM, which will measure the nonlinear chirp rate, if one is 

present. Once the nonlinear chirp rate has been measured, the appropriate de-chirping 

signal can be selected and output from the nonlinear de-chirping LUT. The original signal 

is then mixed with the de-chirping signal, allowing for the removal of the nonlinear chirp 

rate. Once the nonlinear chirp rate has been removed, the 2
nd

 IFM is used to measure the 

linear chirp rate, if one is present. After measuring the linear chirp rate, the appropriate 

linear de-chirping signal can be generated from a linear de-chirping LUT. The de-

chirping signal will be combined with the signal outputted from the first IFM to remove 

the linear chirp rate. Once both the nonlinear chirp rate 
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and linear chirp rate have been measured and removed, the third IFM is used to 

measure the starting frequency. If no chirp rate is present, the data will pass through the 

design and will not be de-chirped, instead the 3
rd

 IFM will be used to measure the carrier 

frequency. The following sub-sections will describe each of these stages in detail.  

7.2 Data Acquisition 

The ADC is configured to sample at 2.56 GSPS, which is a speed at which the 

FPGA cannot operate. To overcome this, the incoming serial data is de-multiplexed at a 

ratio of 1:8, allowing 8 samples to be provided in parallel at a rate of 320MHz. Only the 4 

most significant bits are used by digital chirp receiver design. The TOA algorithm will 

utilize 4 bits to detect the TOA and TOD of a signal. The samples will then pass through 

the HT to form the complex signal representation. The samples will be truncated to 2-bits 

after leaving the HT and will be kept as they pass through the rest of the chirp receiver 

design. Only after a signal has been detected by the TOA algorithm and passed through 

the HT will any frequency measurements begin. To aid in visualizing the differences 

between the linear receiver and nonlinear receiver, fig. 50 shows the flow of data as it 

passes through the nonlinear chirp receiver. Table IX shows the acceptable frequency 

ranges for the four different signal types.  
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Table IX - Digital nonlinear chirp receiver acceptable chirp rates and carrier frequency 

ranges. 

 

 

Figure 50 - Digital nonlinear chirp receiver data flow.  

Signal type Nonlinear Chirp Rate Linear Chirp Rate Starting Frequency 

Nonlinear Chirp Signal 50MHz - 1180MHz** N/A 50MHz - 1180MHz

Linear Chirp Signal N/A 50MHz - 1180MHz* 50MHz - 1180MHz

Nonlinear & Linear Chirp Signal 50MHz - 1130MHz** 50MHz - 1130MHz* 50MHz - 1130MHz

Stationary Signal N/A N/A 50MHz - 1230MHz

Acceptable Frequency Ranges for Each Signal type

**  Chirp rate period is 400ns^2

* Chirp rate period is 400ns
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7.3 Nonlinear Chirp Rate Measurement 

In order to isolate the nonlinear chirp rate, the complex signal output from the HT 

must be mixed with a delayed and conjugated copy of itself. The resulting signal must be 

mixed with a delayed and conjugated copy of itself once more.  

In order to extract the highest nonlinear chirp rate sensitivity, the longest possible 

delay should be used for the two mixing processes. The longest possible delay is 

calculated by subtracting the IFM measurement latency period from the target pulse 

period. The target pulse period is 400ns and the IFM has a latency of 150ns. The 

remaining period for the time delay is 250ns, which is to be split between the two mixing 

processes. The optimal ratio for these delays is 1:2. Based on this, the first mixing 

process uses a delay of ~83.33ns while the other mixing process uses a delay of 

~166.6ns.  

After the incoming signal has been mixed twice, the data enters the first IFM to 

measure the nonlinear chirp rate, if one is present.  

7.4 Nonlinear De-chirping 

If a nonlinear chirp rate is detected, the appropriate nonlinear de-chirping signal is 

selected from a LUT which contains 1024 de-chirping signals, spaced apart in 1.12MHz 

increments from 40MHz in 400    up to 1,190MHz in 400   . The de-chirping signal 

will be mixed with the original incoming signal to remove the nonlinear chirp rate. If a 

nonlinear chirp rate is not detected, the original signal is allowed to pass through the first 

IFM unaltered.  
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7.5 Linear Chirp Rate Measurement 

Once the nonlinear de-chirping process has completed, the linear chirp 

measurement process will begin. To isolate the linear chirp rate, the incoming signal is 

mixed with a delayed and conjugated copy of itself. The longest delay value possible 

should be chosen in order to maximize the sensitivity of the chirp measurement. The 

optimal delay should therefore equal to the total measurement latency minus the pulse 

width.  

For the nonlinear chirp receiver however, the delay length chosen inherently 

dictates the size of the nonlinear de-chirping LUT. If the optimal delay of 250ns (400ns 

pulse length – 150ns measurement latency = 250ns) is chosen, then the nonlinear de-

chirping table must store 1024 complex signals of length of 400ns (1,024 samples). The 

size of the LUT can be reduced by over 31% if a delay value of 125ns is chosen instead. 

Using a delay of 125ns will require the nonlinear de-chirping table to store de-

chirping signals of length 275ns (150ns for the IFM + 125ns for the delay). The tradeoff 

of using a shorter delay value is a reduced linear chirp measurement performance. 

After the linear mixing process is complete, the data passes into the 2
nd

 IFM 

where the linear chirp rate is measured, if one is present. 

7.6 Linear De-chirping 

If a linear chirp rate is detected, a 2
nd

 LUT is used to generate a de-chirping 

signal, which will be mixed with the signal from the first IFM to remove the linear chirp 

rate. The 2
nd

 LUT contains 1024 de-chirping signals, spaced uniformly from 40MHz in 
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400ns up to 1,190MHz in 400ns. If no linear chirp rate is detected, the signal will pass 

through unmodified into the 3
rd

 stage of the chirp receiver. 

7.7 Carrier Frequency Measurement 

After the signal has been appropriately de-chirped or allowed to pass through, the 

3
rd

 digital IFM is used to measure the carrier frequency. After all frequency 

measurements are completed, a final classification block is used to verify the presence of 

the measured chirp parameters. An in depth discussion on classification follows in the 

next section.  

7.8 Signal Classification 

Signal classification takes place after all frequency measurements and signal 

power measurements have been completed. The classification block in the nonlinear 

chirp receiver utilizes 7 power measurements in addition to the 3 frequency 

measurements in order to correctly classify incoming signals. Recall that to measure the 

nonlinear component requires two separate mixing operations. A DC power measurement 

and signal power measurement is taken after each mixing operation resulting in two DC 

measurements and two signal power measurements.  

To measure the linear frequency component requires a single mixing operation, 

therefore a single DC power measurement and signal power measurement is taken. Since 

the measurement of the carrier frequency does not require a mixing process, only a single 

power measurement is taken from the third IFM, resulting in a total of 7 power 

measurements. 
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Four possible signal types are considered for classification: nonlinear chirp signal, 

linear chirp signal, simultaneous nonlinear and linear chirp signal, and a stationary signal. 

Each signal type uses its own set of thresholds for each power and frequency 

measurement. If all of the measurements fall within an acceptable range for a given 

signal type, the signal will be classified as that type. If the measurements do not meet all 

the criteria for any signal type, the receiver reports no output. 

A lower and upper threshold is stored in the receiver for each measurement and 

signal type combination. Fig. 51 shows the acceptable range for each measurement and 

signal type. 

Threshold values were determined by simulating each signal type throughout its 

acceptable frequency ranges for SNRs ranging from 5dB to 20dB. Only simulations in 

which the parameter estimation error was small were used for threshold determination. 

The lowest simulated values from the simulations were used for the lower thresholds, 

while the highest values were used for the upper thresholds. A total of       

simulations were run for each signal type, resulting in a total of        simulations.  

Utilizing the thresholds found from simulations, the nonlinear receiver achieved 

an overall correct classification rate for the four signal types of 98.99% for SNRs 

between 5dB and 20dB. Detailed classification rates can be seen in Table X. 
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Figure 51 –  Classification thresholds for the digital nonlinear chirp receiver  (DC 

denotes DC power measurement and PWR denotes signal power measurement)  

Table X - Digital nonlinear chirp receiver detection and correct classification rates. 

 

 

 

Signal Type Correct Classification Misclassifications

Nonlinear Chirp Signal 97.69% 0

Linear Chirp Signal 99.51% 0

Nonlinear & Linear Chirp Signal 99.09% 0

Stationary Signal 99.67% 0

Overall 98.99% 0
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VIII. Variable Chirp Receiver 

8.1 Data Acquisition 

The variable chirp receiver utilizes the TOA algorithm, Hilbert Transform, and 

digital IFM previously discussed to accurately measure variable pulse length linear chirp 

signals. The target platform for the design is a Virtex 6 SX475 FPGA, which is paired 

with a Calypso 12-bit ADC. 

Real data is supplied to the FPGA from the Calypso ADC at a rate of 2.56GSPS. 

The data is de-multiplexed at a ratio of 1:8, setting the FPGA operating frequency at 

320MHz.  Real data from the ADC will first pass through the TOA detection block, 

which will detect the beginning and the end of a signal. After detection, the data will pass 

through the HT to generate the complex signal representation. The detection of the 

beginning of the pulse and the end of the pulse is used to control a set of FIFO’s and a 

FILO (First In, Last Out), which will collect the first 384 samples of the signal as well as 

the last 384 samples of the signal. The use of FIFO’s allows for a variable amount of 

delay, which optimizes the chirp rate measurement for various pulse widths. The chirp 

rate and carrier frequency can be measured simultaneously, however, a frequency 

correction based on the measured pulse width will need to be applied to both 

measurements. The correction factor for the carrier frequency is dependent on the 

measurement of the chirp rate. An abstract data flow for the 
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variable chirp receiver can be seen in Fig. 52. 

 

 

Figure 52 –  Digital variable chirp receiver data flow.  

8.2 Linear Chirp Rate Measurement 

Measurement of the linear chirp rate in the variable chirp receiver is similar to the 

process used by the linear chirp receiver. However, instead of utilizing a static delay 

length, a set of FIFOs is used to collect the first 384 samples and the last 384 samples of a 

signal. This approach is made possible by the high accuracy of the TOA and TOD 

measurements from the TOA algorithm. The first 384 samples are element wise 
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multiplied by the conjugate of the last 384 samples. The resulting signal is used by the 

first digital IFM to measure the linear chirp rate, if one is present.  

The same digital IFMs which are utilized in both the linear chirp receiver and 

nonlinear chirp receiver, are used in the variable chirp receiver. However, the chirp rate 

calculation is adjusted based on the measured pulse length, reported by the TOA 

algorithm. The equation for correcting the chirp rate measurement can be seen in Eq. (28) 

in Section V. The original IFM was calibrated to measure linear chirp rates based on a 

pulse width of 400ns (1024 samples at 2.56GHz) and a delay length of 250ns (640 

samples at 2.56GHz). The measured pulse width of the signal is used to determine the 

ratio between the actual pulse width and the original pulse width of 400ns. This ratio is 

multiplied by the measured chirp rate, which is provided by the IFM to calculate the 

correct chirp rate, which is then output by the receiver.  

Corrected Chirp Rate = Chirp Rate * 
(

           

            - 384
)

(
    

   
)

 
(31) 

8.3 Carrier Frequency Measurement 

Measurement of the carrier frequency in the variable chirp receiver is also similar 

to the process used by the linear chirp and nonlinear chirp receivers. The digital IFM used 

to measure the carrier frequency remains unchanged, however two FIFOs are used to 

supply the IFM with the necessary data. One of the FIFOs stores the first 384 elements in 

their original order, while the second FIFO stores the first 384 elements in reverse order. 

The outputs from the two FIFOs are element wise multiplied together, where the 

conjugate of one of the FIFOs data is taken. The resulting signal is passed as input into 
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the digital IFM, which measures the carrier frequency. 

 Since the variable chirp receiver does not attempt to de-chirp incoming chirp 

signals, a correction factor must be applied to the carrier frequency. The correction factor 

depends on the length of the pulse, as well as the chirp rate measured by the first digital 

IFM. The equation to correct the carrier frequency can be seen in Eq. (29).  

 

Corrected Carrier Frequency = 

                  –                        (
   

           
)

 
 

 

 

 

 

 

(32) 
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IX. Performance Evaluations 

9.1 Matlab / Simulink Based Simulations Overview 

For all three digital chirp receiver designs, the Matlab / Simulink based 

simulations were setup in an identical manner. For each SNR from 5dB up to 20dB, the 

entire acceptable frequency range for each signal type was tested in 0.25MHz increments. 

For nonlinear chirp signals, this resulted in testing nonlinear chirp rates from 50MHz in 

400    up to 1180MHz in 400    while the starting frequency was simultaneously 

swept from 1180MHz down to 50MHz in 0.25MHz steps. This resulted in a total of 4,520 

signals being simulated for each SNR. Linear chirp signals were simulated in an identical 

manner.  

In the case of combination nonlinear and linear chirp signals, the nonlinear chirp 

rate and linear chirp rate were simultaneously swept in opposing directions while the 

carrier frequency was kept constant. Thus, nonlinear chirp rates were swept from 50MHz 

in 400    up to 1130 MHz in 400    while linear chirp rates were simultaneously swept 

from 1130MHz in 400ns down to 50MHz in 400ns and the carrier frequency was kept 

constant at 50MHz. This resulted in a total of 4,320 simulations per SNR.  

In the case of stationary signals, carrier frequencies were swept from 50MHz up 

to 1230MHz in 0.25MHz increments, resulting in a total of 4,720 simulations per SNR.  

The variable chirp receiver required additional simulations beyond what the linear 

chirp receiver and nonlinear chirp receiver required as multiple pulse widths needed to be 
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simulated. For the variable chirp receiver simulations, pulse widths ranging from 

400ns up to 4,000ns were tested in 400ns increments. The simulations conducted at each 

pulse width were identical to those used for the original linear chirp receiver.  

9.2 FPGA Based Simulations Overview 

Once all of the designs had been fully synthesized and all timing constraints were 

met, the designs were loaded onto a Virtex 6 SX475 FPGA. The board used for testing is 

a Microtek board, which interfaces a Calypso 12-bit 2.56GSPS ADC with the Xilinx 

Virtex 6 FPGA. Simulating the designs and gathering the results from the FPGA board 

required the use of 3 separate signal generators. One of the signal generators provided the 

1.28GHz clock for the FPGA, setting the sample rate of the ADC. The ADC operated in 

dual edge triggered mode, thus a sample was collected every rising and falling edge of 

the clock.  

The second signal generator provided the 100MHz clock required for the Ethernet 

communication between the FPGA and PC. The outputs from the digital chirp receivers 

were temporarily stored in FIFOs until they became full. Once filled, they would transmit 

their contents over Ethernet to the PC where they were written to a text file and stored on 

the hard drive.  

A third signal generator was used to provide the high chirp rate signals used as 

input into the digital chirp receivers. This signal generator was a 12 GSa/S Arbitrary 

Waveform Generator, Keysight Model M8190A. The signal generator came paired with a 

Windows based PC, which also had Matlab installed. This allowed for the easy creation 

of arbitrary waveforms within Matlab, which were downloaded into the signal 

generator’s DAC. The DAC is accompanied by a large memory module, which allows for 
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the storage of up to 1 second’s worth of samples at the DAC’s sampling rate of 12GSa/s.  

Simulations for all three digital chirp receivers were setup identically to the 

original Matlab based simulations. AWGN was added to each of the signals in Matlab 

before loading them into the arbitrary waveform generator’s DAC. SNRs ranging from 

5dB up to 20dB were tested.  

For the linear chirp receiver and the nonlinear chirp receiver a train of pulses were 

generated for each SNR, allowing all frequencies to be measured at each SNR. The pulse 

length for all signals was kept at 400ns, and the pulse repetition interval (PRI) was set at 

a constant 500ns. This was necessary as no external sync was used between the FPGA 

and the arbitrary waveform generator. By keeping the pulse width and PRI constant, it 

allowed for an accurate measurement of the detection rate for the receivers as well as 

preventing any frequency measurement bias from being injected into the results.  

 In addition to keeping the pulse width and PRI constant, a set of sync frequencies 

were also used to determine the beginning of a simulation set. This was important as the 

arbitrary waveform generator would continuously repeat the train of pulses, which were 

stored in its memory. A set of stationary carrier frequencies at a high SNR and pre-

determined frequencies were used to determine the start of the pulse train.  

This sync pattern was used by a Matlab script after the receiver data had been 

written to text files. The scripts were able to find the sync patterns allowing for the 

frequency measurement performance to be accurately measured.  

For the variable chirp receiver design, the pulse width and PRI were kept 

constant, dependent on the current pulse width being simulated. The PRI was always set 

to be 100ns longer than the pulse width. Pulse widths ranging from 400ns up to 4,000ns 
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were simulated in 400ns increments.  

9.3 Linear Chirp Receiver Matlab/Simulink 

From the simulations, the digital linear chirp receiver obtained an average linear 

chirp measurement error of 0.30MHz in 400ns with a standard deviation of 0.23MHz in 

400ns. The linear chirp receiver measured the starting frequency of linear chirp signals 

with an average measurement error of 1.80MHz and a standard deviation of 1.87MHz. 

For non-chirp stationary signals the average carrier frequency error was simulated to be 

0.26MHz with a standard deviation of 0.20MHz.  

Fig. 53 plot (a) shows the mean error in MHz per 400ns for linear chirp rate 

measurement error. Plot (b) shows the mean carrier frequency error in MHz for both 

linear chirp signal and stationary signal types. Table XI summarizes the performance of 

the linear chirp receiver for all signal types. 
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Figure 53 –  Linear chirp receiver Matlab based frequency measurement 

performance. 

Table XI - Linear chirp receiver Matlab based frequency measurement performance 

 

 

9.4 Linear Chirp Receiver FPGA 

The linear chirp receiver was synthesized using Xilinx ISE and targeted for a 

Virtex 6 SX475 FPGA. Fig. 54 shows a highlight of the synthesis report for the design. 

The digital linear chirp receiver design only utilizes 9% of the total resources available 

and meets all timing constraints at a rate of 320MHz.  

Signal Type

Linear Chirp Rate 

Avg. Error

Linear Chirp Rate 

Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Linear Chirp 0.30Mhz in 400ns 0.23Mhz in 400ns 1.80MHz 1.87MHz

Stationary N/A N/A 0.26MHz 0.20MHz
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Figure 54 - Linear chirp receiver FPGA based frequency measurement performance.  

From the FPGA tests, the digital linear chirp receiver obtained an average linear 

chirp measurement error of 0.35MHz in 400ns with a standard deviation of 0.39MHz in 

400ns. The linear chirp receiver measured the starting frequency of linear chirp signals 

with an average measurement error of 1.75MHz and a standard deviation of 2.09MHz. 

For non-chirp stationary signals the average carrier frequency error was simulated to be 
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0.33MHz with a standard deviation of 0.40MHz.  

Fig. 55 plot (a) shows the mean error in MHz per 400ns for linear chirp rate 

measurement error. Plot (b) shows the mean carrier frequency error in MHz for both 

linear chirp signal and stationary signal types. Table XII summarizes the performance of 

the linear chirp receiver for all signal types. 

 

Figure 55 - Linear chirp receiver FPGA based frequency measurement performance.  
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Table XII - Linear chirp receiver FPGA based frequency measurement performance 

 

 

In addition to recording the frequency measurement performance, data was also 

collected and analyzed to properly adjust the receiver thresholds for signal classification 

based on the sampled data.  After adjusting the thresholds, detection rates and 

misclassification rates were re-evaluated for the FPGA based linear chirp receiver. Fig. 

56 shows the threshold ranges for the FPGA based linear chirp receiver for all three 

signal power measurements. Fig. 57 shows the achieved detection rates for both linear 

chirp signals and stationary signals across all the tested SNRs. Table XIII shows the 

average detection rates and also shows that no misclassification errors were encountered 

for all 800,000 signals tested on the FPGA design. The overall detection rate was 

maintained above 99% for both signal types.  

The FPGA based linear chirp receiver achieved similar detection rates as 

predicted by the original Matlab simulations. The Matlab simulations predicted a correct 

detection rate of 99.99% and the FPGA based design achieved an overall correct 

detection rate of 99.27%.  

 

Signal Type

Linear Chirp Rate 

Avg. Error

Linear Chirp Rate 

Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Linear Chirp 0.35Mhz in 400ns 0.39Mhz in 400ns 1.75MHz 2.09MHz

Stationary N/A N/A 0.33MHz 0.40MHz
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Figure 56 - Linear chirp receiver FPGA based thresholds for signal classification.  

 

 

 

Figure 57 - Linear chirp receiver FPGA based detection rates  vs. SNR. 
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Table XIII - Linear chirp receiver FPGA based detection and correct classification rates. 

 

9.5 Relevant Linear Chirp Receiver Comparisons 

Table XIV compares the results presented in this research with the results 

obtained from the mono-bit linear chirp receiver in [27] and the digital channelized 

receiver in [28]. The digital linear chirp receiver presented in this dissertation achieves 

significantly better performance for both linear chirp measurement and carrier frequency 

measurement of linear chirp signals. It should also be noted that the mono-bit linear chirp 

receiver in [27] assumes perfect TOA detection, whereas TOA is estimated with the 

digital linear chirp receiver and the digital channelized receiver. This significantly 

degrades the performance of carrier frequency measurements. Though the chirp rates 

researched in [28] are significantly slower than the chirp rates presented in this paper, the 

high linear chirp receiver achieves significantly better measurement results. 

 

 

 

 

 

 

Detection Rate Misclassifications Number of Simulations

Linear Chirp Signal 99.07% 0 418,898                               

Stationary Signal 99.47% 0 385,401                               

Overall 99.27% 0 804,299                               
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Table XIV – Comparison of chirp rate and carrier frequency measurement abilities of 

various receivers 

 

9.6 Nonlinear Chirp Receiver Matlab/Simulink 

The simulations for the digital nonlinear chirp receiver test four different signal 

types; nonlinear chirp signals, linear chirp signals, simultaneous nonlinear and linear 

chirp signals and stationary carrier signals.  

For nonlinear chirp signals, the receiver measured nonlinear chirp rates with an 

average error of 1.27MHz in 400    and a standard deviation of 0.99MHz in 400     

Starting frequencies were measured with an average error of 0.77MHz and a standard 

deviation of 0.69MHz.  

For linear chirp signals, the receiver measured linear chirp rates with an average 

error of 0.46MHz in 400ns and a standard deviation of 0.36MHz in 400ns. Starting 

frequencies were measured with an average error of 1.70MHz and a standard deviation of 

1.80MHz.  

For simultaneous nonlinear and linear chirp signals, the receiver measured 

nonlinear chirp rates with an average error of 1.26MHz in 400    and a standard 

Linear Chirp Range Linear Chirp Error

Digital Linear Chirp Receiver 50MHz in 400ns - 1180MHz in 400ns 0.08%

Mono-bit Linear Chirp Receiver [27] 80MHz in 400ns - 1600MHz in 400ns < 2%

Digital Channelized Receiver [28] 0.4MHz in 400ns - 4MHz in 400ns 1% - 10%

Carrier Range Carrier Error

Digital Linear Chirp Receiver 50MHz - 1230MHz 0.68%

Mono-bit Linear Chirp Receiver [27] 60MHz - 1.2GHz < 4%

Digital Channelized Receiver [28] 500ns pulse - 1µs pulse 10%

*The original chirp period for the mono-bit linear chirp receiver was 300ns. This value was converted to its 

equivalent chirp in 400ns for ease of comparison.

** The original chirp period for the digital channelized receiver was 1us. This value was converted to its equivalent 

chirp in 400ns for ease of comparison.
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deviation of 0.98MHz in 400   . Linear chirp rates were measured with an average error 

of 2.80MHz in 400ns and a standard deviation of 2.75MHz in 400ns. Starting frequencies 

were measured with an average error of 1.44MHz and a standard deviation of 1.42MHz.  

For stationary carrier signals, the receiver measured carrier frequencies with an 

average error of 0.26MHz and a standard deviation of 0.19MHz.   

Fig. 58 plot (a) shows the mean error in MHz per 400    for nonlinear chirp rate 

measurement error. Plot (b) shows the mean error in MHz per 400ns for linear chirp rate 

measurement error. Plot (c) shows the mean error in MHz for starting frequency / carrier 

frequency measurement error. Table XV summarizes the performance of the nonlinear 

chirp receiver for all signal types. 

 

Figure 58 - Nonlinear chirp receiver Matlab based frequency measurement 

performance. 
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Table XV - Nonlinear chirp receiver Matlab based frequency measurement performance 

 

 

9.7 Nonlinear Chirp Receiver FPGA 

The nonlinear chirp receiver was synthesized using Xilinx ISE and targeted for a 

Virtex 6 SX475 FPGA. Fig. 59 shows a highlight of the synthesis report for the design. 

The digital nonlinear chirp receiver design only utilizes 13% of the total resources 

available and meets all timing constraints at a rate of 320MHz.  

Signal Type

Nonlinear Chirp 

Rate Avg. Error

Nonlinear Chirp 

Rate Std. Dev.

Linear Chirp 

Rate Avg. Error

Linear Chirp 

Rate Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Nonlinear Chirp

1.27MHz in 

400ns^2

0.99MHz in 

400ns^2 N/A N/A 0.77MHz 0.69MHz

Linear Chirp N/A N/A

0.46Mhz in 

400ns

0.36Mhz in 

400ns 1.70MHz 1.80MHz

Nonlinear & 

Linear Chirp

1.26MHz in 

400ns^2

0.98MHz in 

400ns^2

2.80Mhz in 

400ns

2.75Mhz in 

400ns 1.44MHz 1.42MHz

Stationary N/A N/A N/A N/A 0.26MHz 0.19MHz
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Figure 59 - Nonlinear chirp receiver Matlab based frequency measurement 

performance. 

 

The FPGA results for the digital nonlinear chirp receiver test four different signal 

types; nonlinear chirp signals, linear chirp signals, simultaneous nonlinear and linear 

chirp signals and stationary carrier signals.  

For nonlinear chirp signals, the receiver measured nonlinear chirp rates with an 

average error of 1.52MHz in 400    and a standard deviation of 1.95MHz in 400     
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Starting frequencies were measured with an average error of 0.63MHz and a standard 

deviation of 0.81MHz.  

For linear chirp signals, the receiver measured linear chirp rates with an average 

error of 0.80MHz in 400ns and a standard deviation of 0.98MHz in 400ns. Starting 

frequencies were measured with an average error of 1.74MHz and a standard deviation of 

2.23MHz.  

For simultaneous nonlinear and linear chirp signals, the receiver measured 

nonlinear chirp rates with an average error of 1.66MHz in 400     and a standard 

deviation of 1.71MHz in 400   . Linear chirp rates were measured with an average error 

of 1.67MHz in 400ns and a standard deviation of 2.10MHz in 400ns. Starting frequencies 

were measured with an average error of 1.40MHz and a standard deviation of 1.77MHz.  

For stationary carrier signals, the receiver measured carrier frequencies with an 

average error of 0.35MHz and a standard deviation of 0.43MHz.   

Fig. 60 plot (a) shows the mean error in MHz per 400    for nonlinear chirp rate 

measurement error. Plot (b) shows the mean error in MHz per 400ns for linear chirp rate 

measurement error. Plot (c) shows the mean error in MHz for starting frequency / carrier 

frequency measurement error. Table XVI summarizes the performance of the nonlinear 

chirp receiver for all signal types. 
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Figure 60 - Nonlinear chirp receiver FPGA based frequency measurement 

performance. 

Table XVI - Nonlinear chirp receiver FPGA based frequency measurement performance 

 

 

 

The thresholds for signal classification were also re-evaluated for the FPGA based 

nonlinear chirp receiver once all of the data had been collected. Fig. 61 shows the 

threshold ranges for the receiver for all seven signal power measurements. Fig. 62 shows 

Signal Type

Nonlinear Chirp 

Rate Avg. Error

Nonlinear Chirp 

Rate Std. Dev.

Linear Chirp 

Rate Avg. Error

Linear Chirp 

Rate Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Nonlinear Chirp

1.52MHz in 

400ns^2

1.95MHz in 

400ns^2 N/A N/A 0.63MHz 0.81MHz

Linear Chirp N/A N/A

0.80Mhz in 

400ns

0.98Mhz in 

400ns 1.74MHz 2.23MHz

Nonlinear & 

Linear Chirp

1.66MHz in 

400ns^2

1.71MHz in 

400ns^2

1.67Mhz in 

400ns

2.10Mhz in 

400ns 1.40MHz 1.77MHz

Stationary N/A N/A N/A N/A 0.35MHz 0.43MHz
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the detection rates achieved for all four signal types across the tested SNRs. Table XVII 

shows the average detection rates and also shows that no misclassification errors were 

encountered for all 1,380,000 signals tested on the FPGA. The overall detection rates are 

maintained above 97% for all four signal types.  

The FPGA based nonlinear chirp receiver achieved nearly identical detection rates 

as predicted by the original Matlab simulations. The Matlab simulations predicted a 

correct detection rate of 98.99% and the FPGA based design achieved an overall correct 

detection rate of 99.06%.  

 

Figure 61 - Nonlinear chirp receiver FPGA based thresholds for signal 

classification. 
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Figure 62 - Nonlinear chirp receiver FPGA based detection rates vs. SNR.  

Table XVII - Nonlinear chirp receiver FPGA based detection and correct classification 

rates. 

 

 

9.8 Variable Chirp Receiver Matlab/Simulink 

The variable chirp receiver performance was first tested on signals with a pulse 

width of 400ns. From the simulations, the digital variable chirp receiver obtained an 

average linear chirp measurement error of 3.65MHz in 400ns with a standard deviation of 

4.95MHz in 400ns. The linear chirp receiver measured the starting frequency of linear 

chirp signals with an average measurement error of 1.82MHz and a standard deviation of 

2.06MHz. For non-chirp stationary signals the average carrier frequency error was 

Detection Rate Misclassifications Number of Simulations

Nonlinear Chirp Signal 97.59% 0 349,519                               

Linear Chirp Signal 99.79% 0 343,414                               

Nonlinear/Linear Chirp Signal 99.72% 0 347,768                               

Stationary Signal 99.16% 0 345,346                               

Overall 99.06% 0 1,386,047                            
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simulated to be 0.13MHz with a standard deviation of 0.13MHz.  

Fig. 63 plot (a) shows the mean error in MHz per 400ns for linear chirp rate 

measurement error. Plot (b) shows the mean carrier frequency error in MHz for both 

linear chirp signal and stationary signal types. Table XVIII summarizes the variable chirp 

receiver performance for signals with a pulse width of 400ns. 

 

Figure 63 –  Variable linear chirp receiver Matlab based frequency measurement 

performance for 400ns pulse widths.  

Table XVIII - Variable chirp receiver Matlab based frequency measurement performance 

for 400ns pulse widths. 

 

 

Signal Type

Linear Chirp Rate 

Avg. Error

Linear Chirp Rate 

Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Linear Chirp 3.65Mhz in 400ns 4.95Mhz in 400ns 1.82MHz 2.06MHz

Stationary N/A N/A 0.13MHz 0.13MHz
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A second set of simulations were run to test the variable chirp receiver’s ability to 

measure linear chirp signals across a range of different pulse lengths. Pulse widths were 

varied from 400ns up to 4,000ns while maintaining the previous SNR and frequency 

ranges for each pulse width test. Fig. 64 plot (a) shows the linear chirp rate measurement 

performance across the range of pulse widths. Plot (b) shows the carrier frequency 

measurement performance for linear chirp signals and stationary signals across the range 

of pulse widths. The average linear chirp rate measurement error was simulated to be 

1.06MHz with a standard deviation of 2.31MHz. The receiver obtained an average 

starting frequency measurement error of 0.54MHz with a standard deviation of 1.05MHz. 

For non-chirp stationary signals, the average carrier frequency measurement error was 

simulated to be 0.13MHz with a standard deviation of 0.13MHz. Table XIX summarizes 

the variable chirp receiver performance for linear chirp signals with various pulse widths. 

 

Figure 64 - Variable linear chirp receiver Matlab based frequency measurement 

performance for various pulse widths.  
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Table XIX - Variable chirp receiver Matlab based frequency measurement performance 

for various pulse widths. 

 

 

9.9 Variable Chirp Receiver FPGA 

The variable chirp receiver was synthesized using Xilinx ISE and targeted for a 

Virtex 6 SX475 FPGA. Fig. 65 shows a highlight of the synthesis report for the design. 

The digital variable chirp receiver design only utilizes 11% of the total resources 

available and meets all timing constraints at a rate of 320MHz.  

Signal Type

Linear Chirp Rate 

Avg. Error

Linear Chirp Rate 

Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Linear Chirp

400ns Pulse 3.65MHz in 400ns 5.54MHz in 400ns 1.82MHz 2.29MHz

800ns Pulse 1.74MHz in 400ns 2.49MHz in 400ns 0.84MHz 1.25MHz

1200ns Pulse 1.15MHz in 400ns 1.63MHz in 400ns 0.57MHz 0.86MHz

1600ns Pulse 0.89MHz in 400ns 1.36MHz in 400ns 0.46MHz 0.67MHz

2000ns Pulse 0.70MHz in 400ns 0.98MHz in 400ns 0.36MHz 0.51MHz

2400ns Pulse 0.59MHz in 400ns 0.81MHz in 400ns 0.31MHz 0.44MHz

2800ns Pulse 0.54MHz in 400ns 0.71MHz in 400ns 0.29MHz 0.40MHz

3200ns Pulse 0.46MHz in 400ns 0.62MHz in 400ns 0.25MHz 0.37MHz

3600ns Pulse 0.44MHz in 400ns 0.58MHz in 400ns 0.24MHz 0.32MHz

4000ns Pulse 0.41MHz in 400ns 0.52MHz in 400ns 0.23MHz 0.31MHz

Stationary N/A N/A 0.13MHz 0.13MHz
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Figure 65 - Nonlinear chirp receiver Matlab based frequency measurement 

performance. 

The variable chirp receiver performance was first tested on signals with pulse 

widths of 400ns. From the FPGA simulations, the digital variable chirp receiver obtained 

an average linear chirp measurement error of 2.94MHz in 400ns with a standard 

deviation of 4.00MHz in 400ns. The variable chirp receiver measured the starting 



123 
 

frequency of linear chirp signals with an average measurement error of 1.69MHz and a 

standard deviation of 2.12MHz. For non-chirp stationary signals the average carrier 

frequency error was simulated to be 0.41MHz with a standard deviation of 0.41MHz.  

Fig. 66 plot (a) shows the mean error in MHz per 400ns for linear chirp rate 

measurement error. Plot (b) shows the mean carrier frequency error in MHz for both 

linear chirp signal and stationary signal types. Table XX summarizes the variable chirp 

receiver performance for signals with a pulse width of 400ns. 

 

Figure 66 - Variable linear chirp receiver FPGA based frequency measurement 

performance for 400ns pulse widths.  
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Table XX - Variable chirp receiver Matlab based frequency measurement performance 

for 400ns pulse widths. 

 

 

A second set of simulations were run to test the variable chirp receiver’s ability to 

measure linear chirp signals across a range of pulse lengths. Pulse widths were varied 

from 400ns up to 4,000ns while maintaining the previous SNR and frequencies ranges for 

each pulse width test. Fig. 67 plot (a) shows the linear chirp rate measurement 

performance across the range of pulse width. Plot (b) shows the carrier frequency 

measurement performance for linear chirp signals across the range of pulse widths. The 

average linear chirp rate measurement error was simulated to be 1.12MHz with a 

standard deviation of 1.60MHz. The receiver obtained an average starting frequency 

measurement error of 0.66MHz with a standard deviation of 0.92MHz. Table XXI 

summarizes the variable chirp receiver performance for linear chirp signals with various 

pulse widths. 

Signal Type

Linear Chirp Rate 

Avg. Error

Linear Chirp Rate 

Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Linear Chirp 2.94Mhz in 400ns 4.00Mhz in 400ns 1.69MHz 2.12MHz

Stationary N/A N/A 0.41MHz 0.41MHz

FPGA
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Figure 67 - Variable linear chirp receiver FPGA based frequency measurement 

performance for various pulse widths.  
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Table XXI - Variable chirp receiver FPGA based linear chirp signal frequency 

measurement performance for various pulse widths. 

 

 

The thresholds for signal classification were also re-evaluated for the FPGA based 

variable chirp receiver once all of the data had been collected. After adjusting the 

thresholds, detection rates and misclassification rates were re-evaluated for the FPGA 

based variable chirp receiver. Fig. 68 shows the threshold ranges for the receiver for all 

seven signal power measurements. Table XXII shows the average detection rates and also 

shows that no misclassification errors were encountered for all 960,000 signals tested on 

the FPGA. The overall detection rates are maintained above 98% for both signal types 

across all the pulse widths tested. 

 

Signal Type

Linear Chirp Rate 

Avg. Error

Linear Chirp Rate 

Std. Dev.

Carrier Frequency 

Avg. Error

Carrier Frequency 

Std. Dev.

Linear Chirp

400ns Pulse 3.77MHz in 400ns 5.07MHz in 400ns 1.70MHz 2.14MHz

800ns Pulse 1.69MHz in 400ns 2.40MHz in 400ns 0.94MHz 1.18MHz

1200ns Pulse 1.12MHz in 400ns 1.61MHz in 400ns 0.70MHz 0.92MHz

1600ns Pulse 0.93MHz in 400ns 1.32MHz in 400ns 0.59MHz 0.83MHz

2000ns Pulse 0.79MHz in 400ns 1.17MHz in 400ns 0.53MHz 0.81MHz

2400ns Pulse 0.69MHz in 400ns 1.05MHz in 400ns 0.48MHz 0.75MHz

2800ns Pulse 0.63MHz in 400ns 0.99MHz in 400ns 0.46MHz 0.75MHz

3200ns Pulse 0.54MHz in 400ns 0.89MHz in 400ns 0.43MHz 0.70MHz

3600ns Pulse 0.54MHz in 400ns 0.83MHz in 400ns 0.42MHz 0.65MHz

4000ns Pulse 0.49MHz in 400ns 0.64MHz in 400ns 0.40MHz 0.47MHz
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Figure 68 - Variable chirp receiver FPGA based thresholds for signal classification.  

 

Table XXII - Variable chirp receiver FPGA based detection and correct classification 

rates. 

 

 

 

Linear Chirp Signal Detection Rate Misclassifications Number of Simulations

400ns Pulse Width 98.49% 0 87,298                                  

800ns Pulse Width 98.65% 0 87,297                                  

1200ns Pulse Width 98.16% 0 87,297                                  

1600ns Pulse Width 98.18% 0 87,298                                  

2000ns Pulse Width 98.25% 0 87,297                                  

2400ns Pulse Width 98.06% 0 87,297                                  

2800ns Pulse Width 98.08% 0 87,298                                  

3200ns Pulse Width 98.06% 0 87,297                                  

3600ns Pulse Width 98.05% 0 87,298                                  

4000ns Pulse Width 98.08% 0 87,297                                  

Stationary Signal 98.06% 0 87,362                                  

Linear Chirp Overall 98.21% 0 872,974                               

Overall 98.13% 0 960,336                               
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X. Conclusion 

10.1 Research Contributions 

Measuring high chirp rate, short pulse duration signals is a difficult problem. 

Ideally, a long pulse duration is desirable to achieve a high SNR and allow for an 

accurate and reliable frequency measurement. This allows for a large size FFT to be 

utilized. However, when the pulse duration is very short, the FFT is unable to measure 

frequencies with a high resolution unless a very high sampling rate is utilized. The 

difficulty of this problem is further compounded when no a priori knowledge of the 

signal is available. Typical approaches utilize a matched filter approach, which is a 

maximum likelihood solution. The research conducted for this dissertation successfully 

shows a proof of concept, which is able to detect and measure high chirp rate linear and 

nonlinear signals with no a priori knowledge.  

The contributions from this research include the production of a high resolution 

TOA algorithm, capable of accurately detecting both time of arrival and time of departure 

of incoming chirp and stationary signals. Significant research and simulations were run to 

ensure a 90% detection rate with less than a      false alarm rate for SNRs ranging from 

5dB up to 20dB. The algorithm was developed to run in real time, at clock rates up to 

320MHz on a Virtex 6 FPGA. The algorithm can detect the TOA of a signal with an 

average error of 2.76 samples (1.07ns). 
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In addition to the TOA algorithm, significant research was conducted to 

investigate the use of various Hilbert Transform designs and their effect on chirp signal 

measurement. For this research, a 43 tap Type III Hilbert Transform was implemented, 

able to operate at a clock rate of 320MHz on a Virtex 6 FPGA.  

Significant research regarding the use of digital IFMs for high chirp rate signal 

measurement has also been conducted and presented in this dissertation. Both the 

strengths and weaknesses of the digital IFM have been extensively quantified. It was 

found that digital IFMs are more than adequate for high chirp rate signal measurement.  

The linear chirp receiver is able to measure linear chirp rates up to 1180MHz in 

400ns with an average linear chirp rate error of 0.35MHz in 400ns and carrier frequencies 

up to 1230MHz with an average error of 0.33MHz.  

The nonlinear chirp receiver is able to measure nonlinear chirp rates up to 

1180MHz in 400    with an average chirp rate error of 1.52MHz in 400   , linear chirp 

rates up to 1180MHz in 400ns with an average chirp rate error of 0.80MHz in 400ns and 

carrier frequencies up to 1230MHz with an average error of 0.35MHz.  

The variable chirp receiver is able to measure linear chirp signals with a wide 

range of pulse widths and achieve a chirp rate error of less than 3.77MHz in 400ns. 

10.2 Future Research 

The biggest limitation of the three digital chirp receivers is their inability to 

measure more than one simultaneous signal. This is due to the inherent functionality of 

the digital IFM, which takes a single discrete phase measurement. It should be possible to 

measure more than one simultaneous signal by utilizing multiple channelized receivers, 
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for example one receiver operates from 50MHz up to 1,230MHz and a second receiver 

operates from 1,330MHz up to 2,510MHz.  

 Though a variable chirp receiver was designed to measure linear chirp signals 

with varying pulse widths, the same approach cannot be used for nonlinear chirp signals, 

due to the nonlinear rate of change. A new methodology will need to be investigated for 

use with the nonlinear chirp receiver.  

 The receivers could also be modified to detect and measure additional modulation 

types, such as frequency hopping spread spectrum, phase-shift keying, or frequency-shift 

keying.  
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